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Abstract

Retrieval-Augmented Generation (RAG) leverages large language models
(LLMs) combined with external contexts to enhance accuracy and reliability
of generated responses. However, reliably attributing generated content to
specific context segments, context attribution, remains challenging due to
computationally intensive nature of current methods, which often require
extensive fine-tuning or human annotation. In this work, we introduce a
novel Jensen—Shannon Divergence driven method to Attribute Response
to Context (ARC-JSD), enabling efficient and accurate identification of
essential context sentences without additional fine-tuning or surrogate
modelling. Evaluations on a wide range of RAG benchmarks, such as TyDi
QA, Hotpot QA, and Musique, using instruction-tuned LLMs in different
scales demonstrate superior accuracy and significant computational effi-
ciency improvements compared to the previous baselines. Furthermore,
our mechanistic analysis reveals specific attention heads and multilayer per-
ceptron (MLP) layers responsible for context attribution, providing valuable
insights into the internal workings of RAG models. Our code is available
athttps://github.com/ruizheliUOA/ARC_JSD

1 Introduction

Retrieval-Augmented Generation (RAG), leveraging large language models (LLMs), has
demonstrated significant potential in both academic research (Qian et al., 2024; Yue et al.,
2025; Song et al., 2025) and industrial applications (Yang et al., 2024; Guo et al., 2025) by
enhancing the accuracy and grounding of generated responses through external contexts
such as provided documents or retrieved articles online. A key benefit of RAG lies in its
ability to mitigate the hallucination by explicitly attributing generated responses to specific
segments of the provided context, known as context attribution! (Wang et al., 2024; Qi et al.,
2024; Cohen-Wang et al., 2024; Chuang et al., 2025).

Nevertheless, verifying the extent to which generated responses are genuinely grounded in
their cited context remains a challenging task. Current approaches frequently rely heavily on
human annotation (Menick et al., 2022; Slobodkin et al., 2024) or computationally expensive
methods such as model fine-tuning and gradient-based feature attribution for accurate
attribution (Yue et al., 2023; Qi et al., 2024; Chuang et al., 2025), particularly when dealing
with extensive documents. For instance, Qi et al. (2024) utilised distribution shifts between
responses generated with and without context to identify relevant tokens and employed
gradient-based feature attribution to pinpoint context relevance. Similarly, Chuang et al.
(2025) enhanced context attribution accuracy through reward-driven fine-tuning within
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We use the term context attribution in this work, and there are several different terms used in this
area, such as citation, self-citation, etc.
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a Direct Preference Optimisation (DPO) framework, based on probability drop and hold
analysis of model outputs to context ablation.

To circumvent these computationally intensive methods, Cohen-Wang et al. (2024) in-
troduced an inference-time attribution mechanism premised on the assumption that if
removing grounded context segments substantially reduces the probability of a generated
response, those segments are deemed necessary. Conversely, if retaining only grounded
segments maintains response probability, these segments are considered sufficient. By cap-
turing hundreds of probability ablation variations per context-response pair, Cohen-Wang
et al. (2024) trained a linear surrogate model based on those hundreds of vectors, including
the context segment masks and the corresponding generation probability of the original
response, to identify context segments crucial for grounding model responses.

However, Cohen-Wang et al. (2024) still need hundreds of RAG model’s forward calls to
collect probability ablation samples for the linear surrogate model training. We propose a
novel inference-time Jensen-Shannon Divergence driven method to Attribute Response
to Context (ARC-JSD), building upon the inference-attribution assumption above. Our
method evaluates the divergence in response distributions generated under the full context
compared to sentence-ablated contexts, ranking context sentences based on their JSD dif-
ferences. This approach offers a significant computational advantage, as it eliminates the
need for any additional fine-tuning or surrogate modelling. Furthermore, our ARC-JSD
can avoid missing or smoothing non-linearities using JSD to directly quantify actual output
distribution shift compared to the linear surrogate modelling (Cohen-Wang et al., 2024).

We empirically evaluate our JSD-driven context attribution approach across multiple
question-answering benchmarks, i.e., TyDi QA (Clark et al., 2020), Hotpot QA (Yang
et al., 2018), and MuSiQue (Trivedi et al., 2022), using state-of-the-art instruction-tuned
LLMs including Qwen2-1.5B-Instruct, Qwen2-7B-Instruct (Yang et al., 2024), Gemma?2-2B-
Instruct, and Gemma2-9B-Instruct (Team et al., 2024). Our results not only demonstrate
improved average accuracy over 10% in context attribution but also achieve computational
efficiency, achieving up to a three-fold speedup compared to Cohen-Wang et al. (2024)’s
linear-surrogate-based and other gradient-based baselines.

Moreover, we investigate deeper into a mechanistic exploration of context attribution
within RAG LLMs by integrating JSD-based analysis with Logit Lens (nostalgebraist, 2020).
Through systematic probing, we identify specific attention heads and multilayer perceptron
(MLP) layers critical for context attribution. By subsequently analysing these attention
heads and visualising how relevant knowledge is stored in the corresponding MLP layers,
we provide concrete evidence of their essential roles in context attribution and further
elucidate how contextually relevant information is encoded and utilised within the internal
mechanisms of RAG models.

In summary, our primary contributions include:

1. Developing a lightweight, JSD-driven context attribution method that accurately iden-
tifies context sentences critical for grounding generated responses without requiring
fine-tuning or surrogate modelling.

2. Proposing a versatile, computationally efficient solution that can be readily integrated
into any existing RAG-based LLM frameworks and improve RAG model trustworthiness.

3. Conducting a detailed mechanistic analysis of RAG, systematically uncovering and
validating attention heads and MLP layers responsible for context attribution behaviours.

2 Related Work

Context attribution for RAG. Prior works for context attribution mainly focus on teaching
RAG LLMs to generate self-citations for responses, such as few-shot in-context learning (Gao
et al., 2023), instruction fine-tuning (Ye et al., 2024). Some post-hoc works (Chen et al., 2023;
Qi et al., 2024) used an auxiliary language model or gradient-based feature attribution to
locate relevant context segments. In general, those methods for context attribution are
corroborative (Worledge et al., 2024) in nature, as citations within context are evaluated on
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whether they support or imply a generated response. Meanwhile, Cohen-Wang et al. (2024);
Chuang et al. (2025) including our work focus on the contributive attribution methods, which
are used to identify whether citations cause RAG LLMs to generate a response. Chuang
et al. (2025) proposed a reward-based fine-tuning with DPO to guide RAG LLMs for context
attribution, and Cohen-Wang et al. (2024) further trained a linear surrogate model to identify
context segments crucial for grounding model responses. Liu et al. (2024) focuses on for-
malising and comparing different attribution acceleration methods and ignores attribution
accuracy improvements. However, compared to Cohen-Wang et al. (2024); Chuang et al.
(2025) and corroborative methods above, our ARC-JSD method eliminates the need for any
additional fine-tuning or surrogate modelling, and it can be directly integrated into any
existing RAG-based LLMs.

Mechanistic analysis for RAG. Existing mechanistic studies mainly focus on the next
token generation task to analyse the internal mechanisms of attention heads or MLPs, such
as hallucination detection (Ferrando et al., 2025), multiple-choice questions (Li & Gao, 2024;
Wiegreffe et al., 2025; Wang et al., 2025) and knowledge editing (Meng et al., 2022a; 2023;
Katz et al., 2024). Recently, Sun et al. (2025) used a mechanistic interpretability method
to analyse attention heads and MLPs of RAG LLMs for the hallucination detection task.
Compared to Sun et al. (2025) focusing on locating sources which leads to hallucinations,
our proposed ARC-JSD can be regarded as a complementary method to locate citations
within context segments and analyse attentions and MLPs, which causes RAG LLMs to
generate a correct response. Wu et al. (2025a) focuses on mechanistically analysing retrieval
attention heads of RAG LLMs under the Needle-in-the-Haystack (NIAH) setting, where
they mainly evaluate whether retrieval attention heads conduct a copy-and-paste operation
for retrieving a semantically irrelevant “needle” sentence from the context to the model’s
outputs. Compared to Wu et al. (2025a), which restricts their mechanistic analysis to the
NIAH setting where the model performs copy-and-paste retrieval, our work investigates
how RAG LLMs mechanistically generate responses based on retrieved content through
paraphrasing and contextual integration. This setting better reflects real-world RAG ap-
plications?, where models rarely copy text exactly but instead synthesise and rephrase
information from retrieved sources.

3 Background

Problem Setup. Consider an autoregressive Transformer-based language model (LLM),
denoted as Ppp(-). Under RAG settings, this model generates responses (R) based on an
input query (Q) and associated context (C). Formally, response generation process can be
described as R ~ Ppm(-|C, Q), where context C consists of sentences (c1, ¢z, ..., ¢|c|), the

query Q comprises tokens (41,92, - - ., q|g|), and the generated response R includes tokens
(r1,72,...,7R|). Our analysis of context attribution focuses on how the entire response
distribution changes when conditioned on the full context set and ablated context alongside
the query: R ~ Prm(-lc1,---, ¢, Q), R ~ Prm(-|Caprate(ci), Q) where CapraTe(ci) =
C\{c}, ie{1,...,[C|}.

Logit Lens. Logit lens (nostalgebraist, 2020) is a mechanistic interpretability method de-
signed to analyse intermediate representations within autoregressive Transformers. Given
the LLM architecture described in Appendix D, logit lens leverages intermediate rep-

resentations to quantify the direct contribution of attention heads (af’h ), MLP outputs

(m!), and residual streams (x{) to token logits: logitf’h(af’h ) = Wua(af’h ),logitf(mf ) =
Wyo(m?), logitf(xf) = Wyo(x!). Thus, logit lens serves as a powerful tool for pinpointing

specific model components crucial to prediction behaviours.

2Compared to the traditional RAG to directly map context and response based on their word
embeddings, our work has a more general setting, which avoids potential embedding mismatch due
to the common paraphrase of RAG LLMs.
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Figure 1: This framework demonstrates how our ARC-JSD works: (2) a RAG LLM Pp(-)
first generates response R conditioned on full context C and query Q input; (b) By ablating
single context sentence once a time, we can calculate probability distribution of the same
response R conditioned on the ablated context CapraTe(c;) and query Q; (c) We further
calculate JSD scores about probability distribution of the same response R conditioned on
full context and ablated context, and locate the most relevant context sentence supporting
‘R with the highest JSD score.

JSD for Context Attribution. JSD is a symmetrised, smoothed variant of Kullback-Leibler
(KL) divergence that quantifies information gap (in bits) between two probability distribu-
tions. Because it is symmetric, finite, scale-free, and bounded in [0, log 2], JSD allows scores
from different layers to be compared directly, without sensitivity to arbitrary logit shifts.
Following “logit-lens” perspective of Sun et al. (2025), we treat JSD as model’s belief of how
much its next-token distribution will change. Concretely, we compute JSD between the full-
context token distribution and the distribution obtained after removing a single retrieved
sentence ¢;. A high divergence indicates that the model’s internal representation—and
therefore its output logits—depend strongly on c;. Empirically, ablating the sentence with
the highest JSD causes the largest drop in answer likelihood, validating JSD as a concise
and reliable signal for context attribution in RAG models (See § 8 for comparisons among
JSD, Wasserstein, Total Variation (TV) and Maximum Mean Discrepancy (MMD)).

4 Attributing Top Relevant Context Sentences via JSD

4.1 Identifying Relevant Context via JSD

Following the assumption proposed by Cohen-Wang et al. (2024), the removal of context
segments critical to generating a specific response R significantly impacts the probability
distribution of that response. Conversely, the removal of less relevant context segments is
expected to minimally affect the probability distribution of R.

Unlike the approach by Cohen-Wang et al. (2024), which requires extensive sampling
of ablated contexts for each (C, Q) pair and training a surrogate model to learn context-
response relationships, our proposed ARC-JSD method relies purely on inference in the
Fig. 1. Specifically, we compute the JSD between the response probability distributions
conditioned on the full context C and on each context-ablated variant CappaTe(C;):

[R|

JSD(ci) = Y- JSD (Pum(rlC, Q)lIPuw(rjlCaprate(ei), Q)) M
j=1

where we use JSD(c;) to aggregate the JSD score of each generated tokens r; from R when
the context sentence c; is ablated from the context C. By calculating JSD scores for all
sentences in the context, we identify the most relevant context sentence c; by selecting the
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Figure 2: Following our proposed ARC-JSD framework, we apply JSD-based metric to
internal components of RAG LLMs: (a) For each attention head or MLP output at each layer,
we can calculate the probability distribution of the same response R conditioned on the
same query Q with full context C and ablated context CAppaTE (ctop_l) by removing the top
relevant context sentence based on § 4.1; (b) We can further locate top-N relevant attention
heads or MLPs which contribute the context attribution by ranking the collected JSD scores
with a descending order.

sentence based on the assumption about the significant impact of removing critical context

segments: CTop-1 = argmaxgec ({]SD(ci)}l‘.i‘l).

4.2 Evaluation of Context Attribution Accuracy

To assess efficacy of our ARC-JSD method, we conduct experiments on three widely
recognised question-answering datasets commonly used in RAG studies: TyDi QA (Clark
et al, 2020): a multilingual QA dataset using entire Wikipedia articles as exter-
nal context (we only use English part), Hotpot QA (Yang et al.,, 2018): a multi-hop
QA dataset requiring reasoning for questions based on multiple documents, and
MuSiQue (Trivedi et al., 2022): a high-quality multi-hop QA benchmark over Wikipedia that
highlights minimal context and multiple

A A Baselines Theoretical FLOPs  Slowdown over ARC-JSD
valid reasoning paths to evaluate complex ALTILogit 2PTICIRIL [RIL/IC]

. TP MIRAGE 4PTIC|(2|C| +1) 442/C|
reasoning capabilities. Moreover, we eval- ¢, .t @ cang) IPT x 30 (32/())?
uate our ARC-JSD with different training- _Contextcite (256 calls) 2PT x 256 (256/|C])>
free baselines for context attribution: ALTI- _ARSISD 2PTIC] !

Logit (Ferrando et al., 2023): a method to
directly compare logit difference between
input context and generation on token
level by accumulating layerwise logit; MI-
RAGE (Qi et al., 2024): a gradient-based
and token-level method to locate context-
sensitive tokens using contrastive feature
attribution; Contextcite (Cohen-Wang et al.,
2024): a post-hoc method to train a linear surrogate model based on a fixed group of context
ablation forward runs. Table 2 summarises the statistics of these datasets, where MuSiQue
has the longest context input compared to others with the average length of context in sen-
tences |C| = 93.6. Our evaluations involve four instruction-tuned LLMs of varying scales,
namely Qwen2-1.5B-IT, Qwen2-7B-IT (Yang et al., 2024), Gemma2-2B-IT, and Gemma2-9B-
IT (Team et al., 2024). For each dataset, we randomly select up to 1,000 samples from their
development sets. All models are evaluated in inference mode without further fine-tuning.
We mainly evaluate the top-1 context attribution accuracy, which indicates the percentage
of overlap between the predicted top-1 context sentence and gold-standard sentence on

the datasets®. For ALTI-Logit and MIRAGE, which mainly focus on token-level attribution,

Table 1: The FLOPs for each baseline and ARC-
JSD, where P indicates the number of target
model parameters, T indicates the number of
tokens per context sentence, L is layer num-
bers of target model, |R| and |C| indicates the
number of response tokens and context sen-
tences, respectively.

3We choose sentence level because current QA datasets only have sentence-level gold labels to
evaluate attribution accuracy. However, our ARC-JSD method can be extended to finer-grained
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we use the accumulated operations to locate sentence-level context attribution prediction
(Appendix E includes more details).

Table 1 lists theoretical floating-point operations (FLOPs) for each method, where we fol-
low the assumption from Kaplan et al. (2020); Hoffmann et al. (2022), i.e., one forward
pass needs approximately 2PT FLOPs. ARC-JSD is considerably cheaper than baselines
because it pinpoints salient context sentences without back-propagation or iterative to-
ken masking. ContextCite requires a fixed 32 or 256 forward passes; this is economical
only when input contains more than 32 or far more than 256 sentences, respectively, but
its context attribution accuracy remains below that of ARC-JSD (see Fig. 3(a)). Fig. 3(a)
presents compute-accuracy trade-off on MuSiQue dataset across all baselines and LLM
backbones. It clearly demonstrates that ARC-JSD consistently outperforms all baselines,
yielding an average context attribution accuracy improvement of approximately 10.7%.
Although Contextcite-32 is more efficient when

IC] i.s larger than 32, its attribution accuracy lags .\ ‘ Size | Ave. WoS;snte)ng, Sents.
behind ARC-JSD. Overall, our method offers ~TyDiQa 140 995 18
substantial computational efficiency improve-  Hotpot QA | 1,000 940.3 51.1
ments, achieving up to 3-fold speedups and con- _MuSiQue | 1,000 | 1753.8 93.6

sistently align with Pareto-optimal over multi- )

ple orders of magnitude for different LLM back- Table 2: The size of three benchmarks ran-
bones. In addition, we utilise GPT-4.1 mini asa domly s_ampled from their development
judge to compare whether generated responses dataset is up to 1000, where the average
of all RAG models are semantically equivalent Word numbers and sentence numbers of
to the corresponding gold answers from datasets context (i.e., |C|) are summarised.

when context attribution is correct. The average accuracy is up to 99.3% (See Appendix G
and F for details.)

5 Mechanistically Study RAG LLMs for Context Attribution

5.1 Locating Relevant Attention Heads and MLPs

To better understand the internal mechanisms by which RAG LLMs attribute generated
responses to their relevant context sentences, we systematically investigate the specific
attention heads and multilayer perceptron (MLP) layers involved. Our method combines
the ARC-JSD metric described previously (§ 4.1) with the Logit Lens (nostalgebraist, 2020)
to precisely quantify contributions from these internal model components.

Following the ARC-JSD framework in the § 4.1, we apply JSD difference at the level of
individual attention heads and MLP layers, comparing their outputs between scenarios
involving full context and the ablation of the most relevant context sentence using Eq. 1:

DL = Z JSD (Pﬁfm 11C, Q)P (171 CaBLATE (Crop1), Q))

@)

JSDyp = Z JSD <7)f/[LP(7j|C' Q)| Parp (rjICABLATE (Ctop-1), Q))
=1

where Pﬁ’?m() and Py p() denote the probability distributions derived from attention head
outputs af’h and MLP outputs mf, respectively, via the logit lens and softmax operations:

Pﬁ?m() = Softmax(logit(af’h)), P&LP() = Softmax(logit(mf)) (3)

where the shape of attention head output a”" and MLP output m’ is [1,d], and d is dimen-
sionality of residual stream. By computing JSD scores across all heads and MLP layers, we
rank these components according to their relevance to context attribution:

JTop-N (Attn) = sort ({]SD Ktin / 0 e O,descending) s JTop-N (MLP) = sort <{]SD§,ILP}%:O,descending)
(4)

interactions such as phrases or sub-sentences spans by dynamically selecting the start and end token
indices.
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Figure 3: (a) The compute-accuracy trade-off on MuSiQue dataset for 4 baselines and ARC-
JSD on 4 LLM backbones with GFLOPs logy, scale per sample; (b) The average JSD score
of attention heads and MLP of Qwen2-1.5B-IT on TyDi QA dataset across all layers. The

deeper colour indicates larger JSD scores; (c) The projection of xf’mid and xf’p ! Via Logit

Lens to vocabulary space from layer 20 to layer 27 of Qwen2-1.5B IT in TyDi QA data sample,
where the generated response R is “A mosquito has two wings.” (See Appendix L for all layer
projections). Each cell shows the most probable token decoded via Logit Lens. The colour

indicates the probability of the decoded token of the corresponding xf’mid or xf’p oSt

5.2 Mechanistic Insights from Located Attention Heads and MLPs

Applying the methodology described in § 5.1, we conducted experiments across three
benchmark datasets (see § 4.2) using various LLM scales. Fig. 3(b) presents the distribution
and JSD scores of attention heads identified as most relevant for context attribution in
Qwen2-1.5B-Instruct on TyDi QA dataset. Our analysis reveals that the top attention
heads contributing to context attribution predominantly reside in the higher layers. This
observation holds across most datasets, partially corroborating earlier findings by Wu
et al. (2025a), which indicated that retrieval-related attention heads are typically found
in the intermediate and higher layers. Notably, our work expands upon NIAH setting
explored by Wu et al. (2025a) by mechanistically evaluating attention heads and MLPs
relevance through paraphrasing and contextual integration of RAG LLMs. This setting better
reflects real-world RAG applications, where models rarely copy text exactly but instead
synthesise and rephrase information from retrieved sources. Additional visualisations
and distributions for another Qwen2-7B-IT and Gemma2 models across all datasets are
provided in Appendix I. Similarly, Fig. 3(b) illustrates that intermediate and higher MLP
layers also significantly contribute to context attribution. This pattern remains consistent
across different datasets and model scales within the same LLM family. Corresponding
detailed findings for Qwen2-7B-IT and Gemma2 models are available in Appendix I.

6 Verification of JSD-based Mechanistic Study

Although JSD mainly captures where the RAG’s internal module depends on the retrieval
context evidence by conducting two forward runs with and without ablating context sen-
tences, it might ignore syntax information. However, this gap can be compensated via the
semantic gain metric, as it captures how strongly the internal module pushes the whole RAG
towards the correct next token with a full context run, including any syntax improvements.
Therefore, a correlation test about the co-occur of high JSD and high semantic gain will
verify the effectiveness of our proposed ARC-JSD on context attribution in RAG.

6.1 Semantic Gains of Attention and MLPs for Context Attribution

Apart from locating relevant attention heads and MLPs using JSD-based metric from
the § 5.1, we also know that semantic information of context attribution from attentions and
MLPs will be added back to the residual stream from each layer based on the autoregressive
language model’s architecture from the § 3 (Elhage et al., 2021; Katz et al., 2024). Based on
such properties, we can verify whether the JSD-based metric for attention and MLPs location
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w Datasets Qwenz 1.5BIT Qwen2 7B IT Gemma2 2B IT Gemma?2 9B IT
Modules J()NSH)  G()nsH)  jHnsH  GHnsH  j(HnsH)  G()nsH  j)nsH)  G()nsH)

TyDi QA 6.83$) 7.26$) 691 731 7628 7.25$ 7.630 7.288
Attention Hotpot QA 6.73$) 6.65¢ 6.81$ 6.79¢ 6.68¢ 6.67$ 6.72$) 6.73$
MuSiQue 6.67¢ 6.72$) 6.72$ 6.83¢ 6.69% 6.71$ 6.73¢ 6.75¢
TyDi QA 6.90 7728 6.96 7.678 7758 8.034 7788 8.054
MLP Hotpot QA 6.83$) 7494 6.87$ 75286 7.508 8.024 7538 8.064
MuSiQue 6.87¢ 7.12$ 691 7.18% 7514 8.044 7548 8.054

Table 3: Spearman’s p of the overlap about top-10 located attentions and MLPs between
JSD-based mechanistic and semantic gain-based metrics over all datasets and RAG models.
¢ and & indicate p-value is < 0.05 and < 0.01, respectively.

in the § 5.1 works by projecting the residual stream before and after each layer’s attention
and MLPs components into the vocabulary space, and calculating the cosine similarity with
the generated response R to further identify which attention and MLP modules provide
higher semantic gains.

Based on the introduction of internal mechanism of LLMs in the § 3 and full con-
text C with query Q as model’s input, we further split the residual stream flow of

each layer into three parts for each generated token t,, i.e., pre-residual stream xg’pre,

/,post ﬂ, ¢—1,post
fmid and post—re51dua1 stream x; fpost, x P = x; P x fmld

K—‘rl,pre {,pre Z,mld
X
via the softmax we will have the probability distribution of the gen-

middle-residual stream x;’

,pre + ag lpost ﬂmld
ir X -
/,post

+ m = X; After applying the logit lens to x;

and X;

erated token t"pre timid ang t"poSt for each layer, and then we will use greedy

! .
decoding to select the top-1 token with the highest probability: tf’pre/mld/pOSt

arg max flpre/mid /post (softmax <log1t( fpre/ mld/pOSt)> ) . Consequently, we can project the

selected token ¢; Epre/mid/Post jnto the vocabulary embedding space via the unembedding

matrix Wy € ]Rd><|V\; ef,pre/mlcl/post _ WLI[3 ti,pre/nud/post}
Af,At‘m Af’MLP

. We can calculate the corre-

sponding semantic gains and via attention and MLP modules using the
cosine similarity difference with the generated response token embedding e; = Wy;[: r;]:

Af’Att“ = cos(e; fmid oy cos(e[ P ei),Af'MLP = cos(ef’pOSt,e ) — cos(e; bmid o). Finally,

we will average across the entire generated responses R and calculate the semantic gains
AUAT and APMLP for attention MLP of each layer, and collect and sort the semantic gains
of attention and MLP from all layer with descending order:
, R|
ALAt _ Z ALAR - ALMLP

|R| ZAZMLP (5)

\RI

Grop-N (Attn) = sort ({Aé Attny L o descendmg) Grop-N (MLP) = sort <{AZ’MLP}]Z:0, descending)
(6)

6.2 Mutually Verifying JSD-based Mechanistic Study via the Semantic Gains of
Attention and MLPs

Based on the Eq. 4 and Eq. 6, we can locate layer-wise attention and MLP components
relevant to context attribution from two different perspectives in the § 5.1 and § 6.1. We can
evaluate the correlation of both metrics and further verify the effectiveness of our proposed
ARC-JSD metric in the §4.1 and § 5.1.

Given {JSDjy p} L oand { ALMLPY k_, via the JSD-based and Semantic-gain-based metrics,

we first define an average-ranking fusion, called consensus S(+), to fuse both JSD and
semantic gain views, which is based on the assumption that a layer is important if both
metrics sort the layer highly:

1 ( ranking of ({]SDiALP}%:O) N ranking of ({AMLP }fo)) "

1
== i i ==
S 3 (rankmg, +rank1ngG) 3 < I I
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where ranking of (-) will assign 1 to the largest ]SDﬁ,[LP or AUMLP and the smallest ]SDf(,ILP or

AYMLP will be assigned L. Then we uniform and remove the layer influence divided by L to
get ranking; and ranking;, whose range is [1/1,1], i.e., a smaller fraction will have a higher

ranking (1/n is best). Finally, we take the average of the ranking; and ranking; as the consen-

sus S(*), where a smaller consensus inside of $(*) will indicate a stronger joint evidence that
both metrics consider the layer important, and a larger consensus means at least one metric

puts the layer far down the list. Finally, we calculate Spearman p of J1,p N (MLP) N 5%12—1\]
and Grop—N(MLP) N S%}LN, where S%}i—N = sort(5(+), ascending). For attention com-
ponents, we first average JSD scores of all attention heads in the same layer to build

0 lh +
{JSD4 in } L= {4 yiL,JSD Xt} o, and then further calculate p of JTop—N (Attn) N S(Togf N
and Grop— N(Attn) N S%I;_N. The benefit of using consensus S(+) instead of the raw JSD or

semantic gain values is that $(*) will remove all scaling issue due to the different units and
variances of JSD or semantic gains, and a single extremely large JSD or semantic gain will
not swamp the fusion, which is robust to outliers.

Table 3 reports significant (or highly significant) Spearman p values for the overlap between
the top-10 attention/MLP layers ranked by JSD and by semantic gain. This frequent co-
occurrence indicates that both metrics track the same retrieval-driven signal that improves
next-token prediction. Intuitively, when a layer genuinely draws on a retrieved sentence
c; to write the answer, ablating c; (i) alters that layer’s token distribution—yielding high
JSD—and (ii) removes the “helpful push” toward the correct token—lowering semantic gain.
Layers that merely supply generic syntax or parametric knowledge may boost semantic gain
without changing under ablation, so their JSD remains low; the strong overall correlation
shows that such cases do not dominate, which further verifies the effectiveness of ARC-JSD.
In addition, ARC-JSD is practical: it requires only forward passes, avoiding the cost and
saturation issues of gradient-based saliency (Qi et al., 2024). Unlike KL (undefined with
zero-probability bins) or logit-space ¢, distances (scale-dependent) (Ferrando et al., 2023),
JSD is finite, symmetric, scale-free, and measured in interpretable bits.

7 Case Studies of Located Attention Heads and MLPs

Based on semantic gains analysis from § 6.2, we further visualise projection of middle-

. i . {,post . . .
residual stream xf’mld and post-residual stream x;*** via Logit Lens to vocabulary space in

Fig. 3 (c) and Appendix L. In Fig. 3 (c), Qwen2-1.5B-IT was given a data from TyDi QA dev
dataset with context about mosquitos introduction from Wikipedia and query “How many
wings does a mosquito have?” as input, and it generates responses “A mosquito has two wings.”
as output. Based on our proposed ARC-JSD method, we successfully located top-relevant
context sentence, i.e., “Mosquitoes have a slender segmented body, a pair of wings, three pairs of
long hair-like legs, feathery antennae, and elongated mouthparts”. When we compare the heatmap

between xf’pOSt and xf’mid in Fig. 3 (c) from Layer 20 to Layer 27 (See Appendix L for the

whole heatmap), we can find that the probability of correct token is increased significantly

Z t i / . 7 i’ 7 £ 7 s Va4
after the x; pos compared to xf’mld, such as ‘wings’ in Layer 23, “A’, “has’, “two” in Layer 26,

and ‘mosquito’, “two’, ‘A" in Layer 27, which aligns with our findings that MLP contribute
more parametric knowledge for context attribution in higher layers using JSD-based metric
from the § 5.2. In addition, we can find that several correct tokens are gradually transferred
from their Chinese format to the English version in Qwen2 models, such as ‘— = (A, ‘4fH
(has)” and “#% (wings)’, which is reasonable as Chinese is one of main language resources
used in the Qwen2 model pre- and post-training (Yang et al., 2024). This finding also
matches observations from Wu et al. (2025b) that representations tend to be anchored by
semantically-equivalent dominant-language tokens in higher layers. Moreover, we conduct
an ablation study to compare the JSD difference of responses by masking the top-10 relevant
attention heads and randomly-selected 10 attention heads in Table 5. Generally, ablating
attention heads located by using JSD-based metric causes larger JSD scores compared to the
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random attention heads ablation, which further verifies our proposed ARC-JSD can identify
context-attribution-related attention heads (see Appendix ] for details).

8 Discussion

Comparison JSD with KL, Wasserstein, TV and MMD. KL divergence will explode when-
ever the ablated run assigns ~ 0 probability to a token when full run uses (it is common in
deep layers of LLMs). The unbounded scale makes it impossible to compare “how much
layer 7 changed” to “how much layer 28 changed”; TV distance is bounded but too coarse,
which means that two distributions that swap 5% mass on high-entropy tails give the same
TV as two distributions that shift 5% mass off the top-1 token, yet the latter wrecks the
answer; Wasserstein needs a distance between tokens. There is no canonical ground metric
on a 152K vocabulary (Qwen2-7B-Instruct version), and any choice (e.g., edit distance,
embedding cosine, etc.) injects an orthogonal modelling assumption and costs O(V?3) per
layer; MMD always requires a kernel and a feature map to measure a Reproducing kernel
Hilbert space (RKHS) norm, which is not tied to likelihood or entropy. It also needs a notion
of distance between tokens to build the kernel (See Appendix K for details and examples).

What if all JSD scores are very small? When all scores are very small, it is the attribution.
Small everywhere is not an error, and it means that RAG answers from parametric memory
or retrieved passages are irrelevant. In those cases, we prefer to return “no evidence passage
was used” rather than force-label the least-bad one. Practically, we can flag the answer
with “low-evidence” when all sentence-J]SD < 0.02 bits (= median noise). The benefit than
a threshold is that we can distinguish “no context used” from “weak but present context”
without having to guess a universal cut-off. We could use that signal to re-query or warn the
user, which is in practice a more faithful and safer behaviour than picking the least-small
score.

9 Conclusion

We introduce ARC-JSD, an inference-time JSD-based metric that directly attributes RAG
responses to their source sentences with no fine-tuning or surrogate models needed. Across
diverse QA benchmarks and instruction-tuned LLMs, ARC-JSD outperforms different
baselines in attribution accuracy while cutting computational overhead; when paired with
the Logit Lens, it even pinpoints the specific attention heads and MLPs driving those
attributions, advancing the mechanistic interpretability and transparency of RAG systems.
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A  Appendix

B Broad Impact

RAG systems underpin a wide range of everyday activities, from itinerary planning and
news aggregation to document drafting, by combining LLMs reasoning with evidence
retrieved from external sources. Yet, the practical value of these systems hinges on our
ability to verify that each generated statement is genuinely grounded in the retrieved
material. The proposed post-hoc ARC-JSD method offers a lightweight, modular solution
to this problem. Because ARC-JSD can be seamlessly integrated into any open-source
RAG pipeline, it provides developers and researchers with an immediate way of auditing
attribution fidelity, thereby strengthening the transparency, reliability, and ultimately the
public trust in RAG-based applications.
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C Limitations

Our work focuses on the analysis to (i) identify the context sentences that most strongly
influence a RAG model’s output and (ii) attribute that influence to specific attention heads
and MLP layers via a JSD-based metric. Two important directions, therefore, remain
unexplored. First, our layer-level view does not reveal which individual neurons within the
MLPs mediate context attribution; techniques such as sparse autoencoder (SAE) probing
could provide the necessary resolution. Second, we have not yet examined whether surgical
interventions on the identified attention heads, or on the putative neuron-level circuits, can
be used to steer or constrain the model’s behaviour. Addressing these questions would
deliver a more fine-grained mechanistic understanding and open the door to reliable,
attribution-aware editing of RAG systems.

D Details of the Internal Mechanisms of LLMs

We consider the standard autoregressive Transformer architecture used in LLMs, originally
introduced by Vaswani et al. (2017) and subsequently analysed in a series of mechanistic
studies (Geva et al., 2021; Elhage et al., 2021; Geva et al., 2022; Dai et al., 2022; Meng et al.,
2022a;b; Yuksekgonul et al., 2024). Given a prompt of length T, the input tokens (t4,...,tT)
from the context-query pair, each drawn from a vocabulary V, are mapped to d-dimensional

embedding vectors x! € R, where the embedding matrix Wy € RVI*4,

LLMs normally comprise L identical layers. At layer ¢, the residual stream X’ =

(x{, .., xl%), xf € RY acts as a common read-write buffer for both the multi-head at-
tention and the MLP block (Elhage et al., 2021). For each token i, the residual update

1S

xf = xffl + af + mf, (8)

where af and mf denote the contributions of the attention and MLP sub-modules, respec-
tively.*

After the final layer, a LayerNorm ¢(-) and the unembedding matrix Wy; € R?*IVI produce
the next-token distribution

PLM(tT+l | tl:T) = SOftmaX(Wu O'(X%)) 9)

Each layer contains H attention heads, each factorised into QK and OV circuits operating
with weight matrices WM, Wﬁ’h, W‘[’/’h, Wé’h € R4 The QK circuit establishes the attention
pattern A" € RT*T, while the OV circuit transports content across sequence positions. For
head h the contribution of source token j to target token i is

al = A (W WS (10)

and the total attention update for token i is
l 4 Lh
a = ), Z ;- ©)

A concise per-head summary is af’h = )ja’

Following the key-value interpretation of MLP layers (Geva et al., 2021; Elhage et al., 2021),

let W/, € R¥m*d and W[ ,, € R?*¥m denote the input and output weights. Given xf ~1 the
block first produces coefficients

K = y(Wix{™1) e R, (11)

n

“Layer normalisation preceding each sub-module is omitted here for clarity.
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where 7 is the activation function (e.g. GELU). These coefficients weight the value vectors
(rows of W/ ) to yield

dm
m! = ) kf’” v, vt = WE L n, . (12)
n=1

E Experimental Details

We run all experiments using H100 GPUs, and we use the sentence tokeniser from the
nltk library Bird et al. (2009) to preprocess all datasets. For all RAG models, i.e., Qwen2-
1.5B-Instruct, Qwen2-7B-Instruct Yang et al. (2024), Gemma2-2B-Instruct and Gemma2-9B-
Instruct Team et al. (2024), we use their standard chat templates to construct the prompt, i.e.,
using the context and query as a user’s message.

When constructing prompts for TyDi QA dataset, we follow the prompt:

Context: {context}

Query: {question}

For Hotpot QA and MuSiQue datasets which have multiple documents for each data sample,
the prompt is constructed as:

Title: {title_1}
Content: {document_1}

Title: {title_n}
Content: {document_n}

Query: {question}

F GPT-4.1 as Judge for Comparison between Generated Responses of
RAG models and Gold Answers from Datasets

After using our ARC-JSD to correctly locate the top relevant context sentences for generated
responses, we further utilise GPT4.1 as a judge to check whether those responses correctly
answer queries based on the corresponding context. As Table 4 shows, generated responses
from all RAG models achieve high accuracy in successfully answering the queries based on
the contexts, which demonstrates the fundamental ability of those instructed RAG models.

Acc. (%) | Qwen2-1.5B-IT  Qwen2-7B-IT  Gemma?2-2B-IT  Gemma2-9B-IT

TyDi QA 99.1 99.4 98.9 99.5
Hotpot QA 99.2 99.5 99.1 99.6
MuSiQue 99.3 99.4 99.2 99.8

Table 4: GPT4.1 as a judge to evaluate the semantic equivalence between generated responses
of RAG models and the corresponding gold answers from those datasets.

G Compute-accuracy Trade-off Between Different Baselines and Our
ARC-JSD

We mainly compare the compute-accuracy trade-off between different baselines and our
proposed ARC-JSD when attributing responses to relevant context. As Figure 4 and 5 show,
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our ARC-JSD method can achieve up to 3-fold speedup compared to other baselines. In
addition, ARC-JSD is consistently Pareto-optimal over different LLM backbone sizes.

Compute-Accuracy trade-off on Hotpot QA
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Figure 4: The compute-accuracy trade-off on Hotpot QA dataset for 4 baselines and ARC-

JSD on 4 LLM backbones
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H Examples of ARC-JSD Context Attribution

We demonstrate more examples of our ARC-JSD attribution method used for different RAG
models on different datasets, where each example includes the query, generated responses

and located top-1 sentence from the context.
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Example of ARC-JSD attributions for Qwen2-1.5B-IT on TyDi QA

Query

How many wings does a mosquito have?

Response (attributed statement is highlighted)

A mosquito has two wings.

attribution

Top-1 Source (from the context)

... The word “mosquito” (formed by mosca and diminutive -ito)[2] is
Spanish for “little fly”. [3] Mosquitoes have a slender segmented body, a
pair of wings, three pairs of long hair-like legs, feathery antennae, and
elongated mouthparts.

Example of ARC-JSD attributions for Qwen2-7B-IT on MuSiQue

Query

What is the date of birth of the person who was part of Ratata?

Response (attributed statement is highlighted)

The date of birth for Mauro Scocco, who was part of the pop group Ratata, is
given as September 11, 1962.

attribution

Top-1 Source (from the context)

... His mother’s name was not recorded in history. Title: Mauro Scocco
Mauro Scocco (born 11 September 1962) is a Swedish pop artist of Italian

descent. He has been described as “one of the sharpest songwriters in
Sweden”. ...
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Example of ARC-JSD attributions for Gemma2-2B-IT on TyDi QA

Query

When was the friends song was released which is taken from the fourth
studio album of canadian singer and song writer Justin Bieber?

Response (attributed statement is highlighted)

The song “Friends” was released on **August 17, 2017**. It's important to
note that this is from Justin Bieber’s fourth studio album, "Purpose”.

attribution

Top-1 Source (from the context)

... It was written by Bieber, Julia Michaels, Justin Tranter and Blood-

Pop, with production handled by BloodPop. The song was released
through GENPOP Corporation, RBMG Records, School Boy Records,
Def Jam Recordings and Republic Records on August 17, 2017. It is
Bieber’s first single credited as lead artist to be released in over a year,

the previous being “Company”, which was released in March 2016 for
his studio album ”"Purpose” (2015). ...

Example of ARC-JSD attributions for Gemma2-9B-IT on Hotpot QA

Query

Tom Thumb Food & Pharmacy is part of the southern division of a gro-
cery company based in what city?

Response (attributed statement is highlighted)

The answer is **Boise, Idaho**. The text states that Tom Thumb Food &
Pharmacy is part of the Southern division of Albertsons, and Albertsons
Companies LLC is based in Boise, Idaho.

| r
\

attribution

Top-1 Source (from the context)

... It is also known in Brazil as “Chapolin”, ”Vermelhinho” (”Little
Red One”) and “Polegar Vermelho” (“Red Thumb”) in allusion to the
famous fairy tale character Tom Thumb. Title: Albertsons Albertsons
Companies LLC is an American grocery company founded and based in

Boise, Idaho. It is privately owned and operated by investors, including
Cerberus Capital Management.
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I JSD-based Mechanistic Insights for Located Attention Heads and
MLPs

We visualise more attention heads and MLP heatmaps using our JSD-based mechanistic
approach, where we can find that most RAG models include attribution-relevant attention
heads and MLPs across the intermediate and higher layers. On the Hotpot QA and MuSiQue
datasets, Gemma2-2B-IT has some relevant attention heads on the lower layers.

Qwen2-1.5B-IT on Hotpot QA
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Figure 6: The average JSD score of attention heads and MLP of Qwen2-1.5B-IT on Hotpot
QA dataset across all layers. The deeper colour indicates larger JSD scores.

Qwen2-1.5B-IT on MuSiQue
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Figure 7: The average JSD score of attention heads and MLP of Qwen2-1.5B-IT on MuSiQue
dataset across all layers. The deeper colour indicates larger JSD scores.
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Gemma2-2B-IT on TyDi QA »
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Figure 8: The average JSD score of attention heads and MLP of Gemma2-2B-IT on TyDi QA
dataset across all layers. The deeper colour indicates larger JSD scores.

Gemma2-2B-IT on Hotpot QA
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Figure 9: The average JSD score of attention heads and MLP of Gemma2-2B-IT on Hotpot
QA dataset across all layers. The deeper colour indicates larger JSD scores.

J JSD Comparison between Masking Located Attention Heads and
Random Attention Heads

We conducted an ablation study to compare the JSD difference by masking the top-10
relevant attention heads and randomly-selected 10 attention heads. Results show that
top-10 attention heads located by the JSD-based metric have higher JSD scores of the same
responses while masking in the Table 5.

K Comparisons of JSD with KL, Wasserstein, TV and MMD in Detail

Direct log-probability or KL Divergence. Most existing baselines, e.g., Con-
textCite (Cohen-Wang et al., 2024), SelfCite (Chuang et al., 2025) and AttriBoT (Liu et al,,
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Figure 10: The average JSD score of attention heads and MLP of Gemma2-2B-IT on MuSiQue
dataset across all layers. The deeper colour indicates larger JSD scores.
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Figure 11: The average JSD score of attention heads and MLP of Gemma2-9B-IT on TyDi
dataset across all layers. The deeper colour indicates larger JSD scores.

2024), use direct log-probability or KL divergence as metric for context attribution. However,
these metrics drop diverges if the masked run assigns ~ 0 probability to the token, which is
sensitive to highly-skewed token frequencies. Moreover, if JSD is replaced with KL in the
Eq. 1 and Eq. 2, it will bring some influence to the attribution impact:

Asymmetry / direction choice: We must choose KL(P|Q) or KL(Q|P). The ranking of
sentences can flip depending on direction. There is no principled reason to prefer one
for attribution. Using the symmetrized Jeffreys divergence KL(P|Q) + KL(Q|P) removes
directionality, but it does not fix the core issues, such as unboundedness, tail sensitivity,
numerical instability, and lack of a common scale.

Unbounded & numerically unstable: If the ablated run puts (near) zero mass on a
token that the full run assigns mass to (that is common at deeper layers), KL explodes
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Masking Top-10 Relevant Attention Heads | Randomly Masking 10 Attention Heads
2.23+0.12 \ 1.53+0.76

Table 5: Comparison of average JSD scores between masking top-10 relevant attention heads
and randomly masking 10 attention heads using all RAG models on all datasets.

or becomes extremely noisy unless we add ad-hoc smoothing. However, this tends to
overweight tail events and can produce false positives.

¢ Cross-layer incomparability: Because KL or Jeffreys are unbounded, a few positions
with tiny denominators dominate the sentence score, i.e., comparing “how much layer 7
changed” vs “layer 28” becomes unstable. JSD’s boundedness is crucial for consistent
ranking and aggregation.

Therefore, if we replace JSD with KL, there will be lower precision/recall for “relevant
sentence” ranking (it brings more variance, dependence on ¢ and direction), which will
further lead to low attribution accuracy. It will also tend to disagree more with independent,
behaviour-aligned probes (e.g., semantic gain used in our work), although KL divergence
has the same FLOPs as JSD.

Wasserstein Distance. Assume we choose a ground metric c(a,b) over tokens (e.g., token-
Hamming, character edit distance, or embedding-cosine cost), and use entropic-regularised
Sinkhorn for Wasserstein. When we replace JSD with Wasserstein distance, it will affect
attribution:

® Metric choice drives the result: Edit distance and embedding-cosine will encode oz-
thography or static similarity, not decoding behaviour. They may call a move toward
a typo-like token “cheap” and a move toward a semantically correct rival “expensive”,
which misaligns with which changes actually flip the output (See more detailed discussion
below).

¢ Hyperparameters matter: Sinkhorn

varepsilon (regularisation) and number of iterations change the scale and ranking. Differ-
ent reasonable settings can reorder “relevant sentences”.

¢ Context dependence missing: A single cost matrix c(a, b) ignores that token meaning is
position- and layer-dependent in a transformer-based LLM, which means that we either
accept a mismatch or introduce layer-specific cost matrices (which becomes circular and
heavy).

So, rankings become sensitive to modelling choices not tied to the LM’s probability geometry,
typically reducing correlation with behaviour (semantic gain) and causal precision in context
attribution.

For FLOPs comparison, if we use full support for Wasserstein distance, Sinkhorn per pair
costs O(KV?) operations (and O(V?) memory) for K iterations, where V ~ 152k. Instead,
if we use top-k support trick, we restrict to top-k tokens of P and Q (say k € [100,500]).
Cost becomes O(Kk?) per (layer,r;), plus top-k selection O(VIogk). This is still orders of
magnitude above JSD in practice and adds hyperparameters k, K, e.

MMD Metric. Let k(-,-) be a kernel on tokens; for categorical distributions one computes
MMD?(P, Q) = (P—Q) "K(P—Q) withK,, = k(a,b). When we replace JSD with MMD, it
will affect attribution:

¢ Kernel choice = modelling assumption: We need to make multiple choices: Gaussian or
Laplace on which embeddings? What bandwidth? Results (and rankings) will vary with
these choices.

e Units & interpretability: Values depend on kernel scale and there is no direct link to
entropy or cross-entropy (which govern decoding). The equal mass moves on tail tokens
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can dominate if the kernel puts them in “diverse” regions, even though they don't affect
behaviour.

e Edge case: If we set k(a,b) = 1[a=b], MMD reduces to ¢, on probabilities, again mis-
aligned with decoding (uniformly weights all coordinates).

So, replacing JSD with MMD will bring more sensitivity to hyperparameters, and it has
weaker correlation with behaviour, and less stable cross-layer comparisons than JSD.

For FLOPs comparison, if we use dense kernel, a naive computation is O(V?) per (layer, r;)

(matrix-vector with K € RV*V). Instead, if we use Low-rank/Nystrom rank r, it will cost
O(rV) per pair, but we must tune r and store factors. With r = 256, this is ~256 x the work
of JSD’s O(V) reduction, and quality also depends on r. We also need to consider plus
kernel selection/bandwidth tuning overhead.

Using edit distance or embedding cosine as metrics for Wasserstein or MMD. When
Wasserstein or MMD uses edit distance or embedding cosine as metrics, it has several
limitations:

1. Edit distance (token/character level):

¢ Tokenisation mismatch: In subword vocabularies, a single semantic change can
span many subwords, and edit distance on token strings becomes an artefact of the
tokeniser, not semantics.

* Semantic blindness: For the example: “Paris” — “Lyon” (same POS, both cities) and
“Paris” — “Party”. At the token level, any substitution has unit cost, so replacing
“Paris” with either “Lyon” or “Party” is equally cheap, despite radically different
semantic consequences. With subword tokenisation, the cost becomes tokeniser-
dependent. Character-level edit distance differentiates orthography (e.g., “Party” is
closer to “Paris” than “Lyon”), which misaligns with factual attribution

¢ Decoding irrelevance: The decoder’s choice is driven by probability mass, not string
operations. A small edit distance can correspond to a huge shift in probability, and
vice versa.

2. Embedding-cosine ground metrics:

* Context dependence: Token meaning in transformers is contextual. A static vocab-
level embedding (or even the unembedding vectors) is not the representation used
at the position/layer where attribution is measured. A faithful ground metric would
need position- and layer-specific distances, which will explode in complexity and
introduce circularity.

* Anisotropy & polysemy: Cosine distances in high-dimensional language embed-
dings are known to concentrate and to blur senses, which means that “nearby”
vectors can still correspond to different factual claims. Wasserstein might then deem
a large semantic change “cheap to move,” underestimating its effect on generation.

¢ Tunable choices: Which embedding? Which layer? Do we normalise? Each choice
changes the cost matrix and can alter the ranking of “relevant” layers and context
sentences, which is exactly the orthogonal modelling assumption we seek to avoid.

TV Metric. Here, we provide a simple example to explain why TV distance is not an ideal
metric to use for context attribution.

The definition of TV distance for two discrete distributions P, Q over the same vocabulary
is:

1
V(P,Q) = 5 LIP() - Q1) 13)
t
Here, TV measures the total amount of probability mass moved, but not where it moved.

For any decoding methods used in LLMs, they are more affected by the position where
probability mass moved, e.g., greedy decoding picks the token with the largest probability,
or sampling and beam search are also dominated by how mass is distributed among the top
few tokens.
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Here is one example to consider a single decoding step with three candidate tokens: t; = the
ground-truth/desired token, ¢, = a strong competitor, t3 = a low-probability tail token.

Let the full-context distribution at one decoding step be:
P = [p(t1),p(t2), p(t3)] = [0.52,0.43,0.05] (14)

Consider two different ablated distributions that both move the same amount of mass
e = 0.05:

Case A— move mass in the tail (does not flip the output prediction):
Shift e from 3 (tail) to tp: i.e., Qy = [0.52,0.48,0.00]. TV calculation will be:
TV(P, Qgait) = 3(]0.52-0.52| + |0.43—0.48| + 0.05—-0.00]) = 1(0 -+ 0.05 + 0.05) = 0.05.

(15)
When we use greedy choice, we still choose t; because 0.52 remains the largest.

Case B — move mass off the top onto its nearest competitor (does flip the output prediction):

Shift the same & = 0.05 from #; to to: Qrop = [0.47,0.48,0.05]. TV calculation will be:

TV(P, Qiop) = 3(/0.52—0.47| + [0.43—0.48| + |0.05—0.05|) = 3(0.05+ 0.05 + 0) = 0.05.
(16)
When we use greedy choice, it will flip to t, because 0.48 > 0.47.

Both perturbations have the same TV = 0.05, but only Case B changes the token the model
outputs.

If we move ¢ probability from any token i to any token j (and leave all others unchanged), the
absolute differences are |—é| for i, |+¢| for j, and 0 elsewhere, so TV(P, Q) = 3 (e +¢) = ¢,

regardless of which tokens i and j you chose, Which means that TV “sees” only the amount
moved, not where it came from or went.

Yet output behaviour depends critically on where the mass moves:

* The arg-max flips when p;+¢ > p;—¢ <= & > 3(p; — p;). In our numbers,

p1—p2 = 0.09, so any & > 0.045 flips the token, where Case B does (¢ = 0.05), Case A does
not.

¢ For sampling, the log-odds change by Alog p—; = log I’Z;;i
negative only when you move mass between the top competitors (Case B), not when you
shuffle tail mass (Case A). But TV assigns both moves the same distance.

—log p—;, which is large and

L Case Studies of Attention and MLP’s Contribution for Each Response
Token
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via Logit Lens to vocabulary space from layer

20 to layer 27 of Qwen2-1.5B IT in TyDi QA data sample, where the generated response R is
“The Meiji Restoration took place in Japan.”. Each cell shows the most probable token decoded
via Logit Lens.
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