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Abstract

Within distributed learning, workers typically compute gradients on their assigned
dataset chunks and send them to the parameter server (PS), which aggregates
them to compute either an exact or approximate version of ∇L (gradient of the
loss function L). However, in large-scale clusters, many workers are slower than
their promised speed or even failure-prone. A gradient coding solution introduces
redundancy within the assignment of chunks to the workers and uses coding theo-
retic ideas to allow the PS to recover ∇L (exactly or approximately), even in the
presence of stragglers. Unfortunately, most existing gradient coding protocols are
inefficient from a computation perspective as they coarsely classify workers as
operational or failed; the potentially valuable work performed by slow workers (par-
tial stragglers) is ignored. In this work, we present novel gradient coding protocols
that judiciously leverage the work performed by partial stragglers. Our protocols
are efficient from a computation and communication perspective and numerically
stable. For an important class of chunk assignments, we present efficient algorithms
for optimizing the relative ordering of chunks within the workers; this ordering
affects the overall execution time. For exact gradient reconstruction, our protocol is
around 2× faster than the original class of protocols and for approximate gradient
reconstruction, the mean-squared-error of our reconstructed gradient is several
orders of magnitude better.

1 Introduction

Large scale distributed learning is the workhorse of modern day machine learning (ML) algorithms.
The sheer size of the data and the corresponding computation needs, necessitate the usage of huge
clusters for the purpose of parameter fitting in most ML problems of practical interest: deep learning
[1], low-rank matrix completion [2] etc. A typical scenario consists of a dataset D = {(xi, yi)}Ñi=1

of Ñ data points, where xi’s and yi’s are the features and labels respectively. We wish to minimize a
loss function L = 1

Ñ

∑Ñ
i=1 l(xi, yi,w) with respect to w ∈ Rd (w: parameter vector, l: prediction

error). When D is large, we can perform the learning task in a distributed manner [3].

Background: We partition D into N equal-sized chunks denoted Di, i ∈ [N ] ([n] denotes the set
{1, . . . , n}), where a chunk is a subset of the data points and distinct chunks are disjoint. Within
each chunk, the assignment of the data points to the workers is identical. Suppose that there are m
workers W1, . . . ,Wm and a parameter server (PS). We distribute the chunks to the different workers
and let them compute the gradients on the data points assigned to them. The PS coordinates the
training by aggregating the (partial) gradients from the workers and transmitting an updated parameter
vector to the workers at each iteration. In the “baseline” scheme, N = m, Wj is assigned Dj and
it computes

∑
i∈Dj

∇l(xi, yi,wt) (a vector of length-d) and sends it to the PS. Using these, the

PS computes the desired gradient ∇L = 1
Ñ

∑Ñ
i=1 ∇l(xi, yi,wt) and the updated parameter wt+1
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thereafter. Unfortunately, in many large scale clusters, workers are often slower than their promised
speed or even prone to failure. This is especially true in cloud platforms, where the load often
fluctuates depending on system load and spot instance pricing [4] explicitly builds in the possibility
of job preemption. To address these issues, gradient coding (GC) introduced in [5] incorporates
redundancy within the assignment of chunks to the workers. Once a given worker calculates the
gradient on all its assigned chunks, it computes a specified linear combination of these gradients and
sends it to the PS. An exact gradient coding solution allows the PS to exactly recover ∇L even in the
presence of limited node failures.

Let A ∈ RN×m be a matrix such that Ai,j ̸= 0 if and only if Di is assigned to Wj ; henceforth, we
call this the assignment matrix. Let nnz(v) denote the number of non-zero entries in a vector v.
Let γi and δj denote nnz(A(i, :) and nnz(A(:, j)) (using MATLAB notation). These correspond
respectively to the number of times Di appears in the cluster (replication factor) and the number
of chunks assigned to Wj (load factor). We assume that at most s workers out of m are stragglers.
Let gDj

=
∑

i∈Dj
∇l(xi, yi,wt), so that ∇L =

∑N
j=1 gDj

. At iteration t, worker Wj calculates
gDi

for all i ∈ supp(A(:, j)) (non-zero entries in A(:, j)) and linearly combines them to obtain
gj =

∑N
i=1Ai,jgDi . It subsequently transmits gj to the PS. For decoding ∇L, the PS picks a

decoding vector r which is such that rj = 0 ifWj has not transmitted gj (we say thatWj is straggling
in this case). It subsequently calculates

m∑
j=1

rjgj =

N∑
i=1

 m∑
j=1

Ai,jrj

 gDi
. (1)

Related Work: Under the original GC model [5], for exact gradient coding, we want that Ar = 1
(the all-ones vector) under any choice of at most s stragglers. This means that the PS can perform
a full gradient update. For exact GC, we need γi ≥ s + 1 for all i ∈ [N ]. This setting has been
studied extensively [6, 7, 8, 9, 10, 11]. Approximate gradient coding [6] considers the scenario
where the full gradient is either not required (e.g., SGD [12] works with an inexact gradient) or too
costly to work with because of the high replication factor needed. In this setting, we want to design
A such that ||Ar − 1||2 (ℓ2-norm) is small over all possibilities for the straggling workers. Prior
work demonstrates constructions from expander graphs [6], sparse random graphs [13] and [14],
block designs [15, 16] and the like. Within distributed training, a significant time cost is associated
with the transmission of the computed gradients (vectors of length-d) by the workers to the PS
[17, 18], e.g., deep learning usually operates in the highly over-parameterized regime [19] (d≫ Ñ ).
For exact GC, if γi ≥ s + ℓ for i ∈ [N ], then the dimension of the transmitted vectors from the
workers can be lowered to d/ℓ [20, 21], thus saving on communication time. This is referred to as
communication-efficient GC and allows us to trade-off communication for computation. However,
both [20] and [21] use polynomial interpolation in their solution. This leads to significant numerical
instability [22] to the extent that their solution is essentially unusable for systems with twenty or
more workers. This point is also acknowledged within the papers: Section V of [21] and Section II of
[20]. Some work considering these issues appears in [23] under restrictive parameter assumptions.

The usage of the partial work performed by stragglers has been considered [10, 24, 25, 26, 27, 28]
only within exact GC (i.e., approximate GC has not been considered); some of these apply in the
communication-efficient setting. However, these approaches use multiple messages from the workers
to the PS and thus incur a higher communication cost per iteration.

Motivation: Consider Fig. 1a where the edge labels indicate the encoded gradients. Note that under
ideal operating conditions when each worker operates at the same speed, the overall gradient can be
computed as long as each Wi processes its first chunk Di for i = 1, . . . , 3. Thus, it is quite wasteful
for the workers to continue processing their second assigned chunk as specified in the original GC
scheme; it would double the computation time. In addition, the original GC formulation ignores
partial work by slow but not failed workers; in the sequel, we refer to these as “partial stragglers”.
For instance, in Fig. 1a, we consider a scenario, where W1 is slow and W3 is failed. The state
of the computation is such that there is enough information for the PS to obtain the full gradient.
However, under the original GC model, W1 will either wait until it processes D2 before generating
the encoded gradient to be sent to the PS, or the PS will treat W1 as failed and will have to settle for
an approximate gradient.
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Figure 1: Green/red means that the worker did/didn’t process a chunk. (a) System with N = m = 3. Each
worker is assigned two chunks that they process in a top-to-bottom order. W3 is failed and W1 is slow. (b) An
arbitrary assignment of chunks to the workers (example also appears in [21]).

Gradient coding can be viewed as an application of coding-theoretic techniques [29] to distributed
learning; it allows the PS to be resilient to failures with very little coordination in the cluster. We
note here that within classical coding theory [29] most constructions of erasure codes do not consider
feedback from the receiver to the sender since such feedback may be expensive or noisy when the
sender and receiver are at remote locations or not even necessary ([30], Chap. 7). However, feedback
is quite easy to implement in the distributed learning setup.

Main Contributions: We present a new GC protocol that exploits a small amount of additional
interactive communication to/from the PS and the workers. It greatly improves the computation-
efficiency and communication-efficiency of GC while continuing to allow for efficient coordination
within the cluster. Specifically, our protocol efficiently leverages the chunks processed by partial
stragglers. Prior work that potentially applies in our setting suffers from the serious problem of
numerical instability. In contrast, our protocol is provably numerically stable.

To our best knowledge, despite the importance of communication-efficiency, there are hardly any
schemes for communication-efficient approximate GC. Our protocol provides an elegant way to
address this problem, which in addition allows the PS to obtain an accurate estimate of the mean-
square-error of the reconstructed gradient at any given point in the computation.

Prior work in the GC area ignores the relative ordering of the chunks within the workers. As our
protocol leverages partial work performed by the workers, the relative ordering of the chunks within
the workers is an important factor in the performance of the algorithm. For a large class of assignment
matrices, we present an efficient polynomial-time algorithm that returns the optimal ordering of the
chunks within workers.

2 Gradient Coding for partial stragglers

Our GC protocol operates under the following assumptions: (i) the workers know the assignment
matrix and the ordering of the chunks within all the workers, (ii) at regular intervals the workers
keep communicating to the PS, the number of chunks they have processed, and (iii) the PS wants the
workers to communicate vectors of length d/ℓ for integer ℓ ≥ 1.

We now provide a top-level description of our protocol; a formal statement appears in Algorithm 1.
At the beginning of the training process, the PS generates a random ℓ×m matrix R with i.i.d. entries
from a standard normal distribution, N(0, 1) and shares it with all the workers. The workers keep
reporting the number of chunks that they have processed in an iteration. The PS keeps monitoring
these counts, and at a certain point, it broadcasts to all the workers an “encode-and-transmit” signal
and an integer vector ψ of length-m that specifies the number of chunks that have been processed by
each node. This shares the global system state amongst the workers. For exact GC, the PS sends the
encode-and-transmit signal when at least ℓ copies of each Di have been processed across the cluster.
For approximate GC, the PS can send the signal even earlier.

3



Algorithm 1 Find-Encoding-Coeff

Input: ℓ×m matrix R, m-length state vector ψ, δi the number of chunks processed by Wi.
Output: Encoding coefficients for the i-th worker εi.

1: Wi forms the indeterminate matrix m×Nℓ matrix B based on ψ.
2: Wi extracts the columns of B that correspond to its processed chunks. This matrix is called B̃i

(cf. (4)).
3: Worker Wi solves the following minimum-ℓ2-norm least-squares problem, where the variables

are the indeterminates in B̃i.

min ||1T
δi ⊗ Iℓ −RB̃i||2. (5)

4: Set εi = B(i, :).

Following this, the workers need to decide their own encoding coefficients for the gradients that they
have computed. Each gradient gDi

is block-partitioned into ℓ disjoint parts gDi
[k], k = 0, . . . , ℓ− 1.

Each worker forms a matrix B of dimension m × Nℓ that consists of indeterminates that specify
the encoding coefficients of all the workers (see example in the upcoming Section 2.2). Matrix B
consists of N block-columns, where each block-column itself consists of ℓ columns of length-m,
i.e., B = [B(1) | B(2) | . . . | B(N)]. The j-th block column, B(j) is associated with gDj

[k], k =
0, . . . , ℓ− 1. Based on the global state vector ψ, all workers know whether a chunk Dj , j ∈ [N ] has
been processed by worker Wi, i ∈ [m]. If Dj has been processed by Wi, then the i-th row of B(j) is
populated with indeterminates, otherwise these entries are set to zero. Once the indeterminates are
found (see Algorithm 1 for a description), worker Wβ encodes its gradients as

gβ =

N∑
i=1

ℓ−1∑
j=0

B
(i)
β,jgDi

[j]. (2)

Let e⃗i denote the i-th canonical basis vector of length-ℓ, i.e., it contains a 1 at location i ∈ {0, . . . , ℓ−
1} and zeros elsewhere. We denote

zi = 1N ⊗ e⃗i =

N copies of e⃗i︷ ︸︸ ︷
[e⃗Ti e⃗

T
i . . . e⃗Ti ]

T . (3)
where ⊗ denotes the Kronecker product and 1N denotes the all-ones vector of length N . Recall that
in the exact GC scenario, the PS wants to obtain

∑N
i=1 gDi [k] for k = 0, . . . , ℓ−1. This is equivalent

to requiring that

zTi ∈ row-span (B) , for i = 0, . . . , ℓ− 1.

Our protocol is such that each Wi can independently calculate their encoding coefficients, such that
collectively all the workers agree on the same matrix B with the same values assigned to all the
indeterminates. Towards this end, let B̃j denote the submatrix of B that is relevant to Wj , i.e., the
block-columns in which the processed chunks of Wj participate. For instance, suppose that Wj has
processed αj ≤ δj chunks Di1 , . . . ,Diαj

where 1 ≤ i1 < i2 < · · · < iαj
≤ N . Then,

B̃j = [B(i1) B(i2) . . . B(iαj
)]. (4)

Wj then solves a minimum-ℓ2-norm least-squares solution to determine its encoding coefficients (see
(5) in Algorithm 1). This ensures the solution is unique [31] even if the corresponding problem is
under-determined. Thus, the workers automatically agree on the same solution.
Remark 1. If ℓ = 1, then it is possible to arrive at a protocol whereby the workers agree to transmit
appropriately weighted partial sums of their gradients, so that the PS can exactly/approximately
recover the sum. However, in the communication-efficient setting when ℓ > 1, the encoding is no
longer straightforward. Thus, ℓ > 1 is the main scenario we consider in what follows.
Remark 2. We discussed that each worker can form the m×Nℓ matrix of indeterminates B for the
sake of ease of explanation. In fact, Wj only works with B̃j , which is of size at most m× δℓ.
Remark 3. The additional communication assumed in our protocol is only O(m) as against the
parameter vector of length-d and O(m) ≪ d. Thus, the additional communication cost of our
algorithm is minimal.
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2.1 Analysis of Algorithm 1

It is evident from our description and Algorithm 1 that upon receiving the encode-and-transmit signal
and the vector ψ, each worker can independently create the matrix of indeterminates B.

Exact GC analysis: Suppose that each Di, i ∈ [N ] has been processed at least ℓ times across the
cluster, and suppose that Wi has processed Dj . This means that there is a block-column B(j) such
that each column within B(j) has at least ∆ ≥ ℓ indeterminates that need to be assigned values. For
one column within B(j), Wi will solve a system of equations that is specified by ℓ×∆ submatrix
of R denoted X (an example appears in Section 2.2). Note that the columns of X will be linearly
independent with high probability owing to the choice of R and since ∆ ≥ ℓ, a solution is guaranteed
to exist. Let κ2(M) denote the condition number of matrix M . For a random ℓ ×∆ matrix with
i.i.d. N(0, 1) entries, it is known that E(log κ2(X)) ≤ O(log∆) [32]. Thus, each such system of
equations is well-conditioned with very high probability. In the under-determined case when ∆ > ℓ,
each worker will still agree on the same values of the corresponding indeterminates since we enforce
that we work with the (unique) minimum ℓ2-norm solution; no additional communication between
the workers is required.

Approximate GC analysis: It is possible that the PS sends the encode-and-transmit vector when
some Di has been processed ∆ ≤ ℓ − 1 times. In this case, the corresponding step for B(i) in (5)
will be an over-determined least-squares procedure, which implies that there will be a non-zero error
associated with it. Let X be the relevant ℓ×∆ submatrix of R where we have ∆ < ℓ now, and recall
that all entries of X are i.i.d. N(0, 1) random variables. The squared error corresponding to B(i)

can be expressed as
∑ℓ−1

i=0 ||XX†e⃗i − e⃗i||22 (X† denotes the pseudo-inverse [31]). Let X = USV T

denote the SVD of X , where U and V are orthogonal matrices of dimension ℓ × ℓ and ∆ × ∆
respectively and S = [D | 0]T where D is a ∆ × ∆ matrix with positive entries on the diagonal,
and 0 represents a ∆ × (ℓ − ∆) matrix of zeros. Then, X† = V [D−1 | 0]UT . It is well known
([33], Remark 5.2.8) that for a matrix with i.i.d. N(0, 1) entries, the singular vectors are uniformly
distributed on the unit-sphere. Therefore, the expected squared error becomes

E[||XX†e⃗i − e⃗i||22] = E[||
ℓ∑

j=∆+1

uju
T
j e⃗i||22] =

ℓ∑
j=∆+1

E[(uTj e⃗i)2] =
ℓ−∆

ℓ
. (6)

The last step above follows since each uj is uniformly distributed over the sphere of dimension ℓ.
Therefore, we have the E[u2j,0] = 1/ℓ since ||uj ||22 = 1 and each uj,k, k = 0, . . . , ℓ− 1 is identically
distributed. We conclude that if Di appears ∆i ≤ ℓ− 1 times, then its error contribution is ℓ−∆i

and the overall error is therefore
∑N

i=1 max(0, ℓ−∆i).

Complexity analysis: The time complexity of each least-squares problem is O(∆2ℓ) [34] and the
i-th worker solves at most ℓδi of them independently and in parallel. The marginal cost of this
calculation as against the calculation of the actual gradients will be very small in most practical
settings.

2.2 Illustrative Example

Consider Fig. 1b (from [21]) where the dataset consists of chunks D1, . . . ,D5 and are assigned in
a non-uniform fashion to workers W1, . . . ,W5. Suppose that the PS wants the exact gradient with
ℓ = 2. As two copies of each chunk have been processed, the PS broadcasts the encode-and-transmit
signal and the vector ψ = [5 2 0 2 3] to all the workers which indicates, e.g., thatW1 has processed all
its chunks, W3 is failed etc. The matrix B of indeterminates for this example and the corresponding
B(i)’s, turn out to be

B = [B(1)|B(2)|B(3)|B(4)|B(5)] (7)

=


a1 a2 | a3 a4 | a5 a6 | a7 a8 | a9 a10
b1 b2 | b3 b4 | 0 0 | 0 0 | 0 0
0 0 | 0 0 | 0 0 | 0 0 | 0 0
0 0 | c3 c4 | c5 c6 | 0 0 | 0 0
d1 d2 | 0 0 | 0 0 | d7 d8 | d9 d10

 . (8)

In this example, W5 has processed D1,D4,D5 so that B̃5 = [B(1) B(4) B(5)]. Note that the PS
requires the vectors [e⃗T0 e⃗

T
0 e⃗

T
0 e⃗

T
0 e⃗

T
0 ] and [e⃗T1 e⃗

T
1 e⃗

T
1 e⃗

T
1 e⃗

T
1 ] to lie in the row-space of B so that it
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Figure 2: Two different relative orderings of the chunks within workers for the same assignment matrix.
Individual figures show the calculation of Q5. Similarly, other Qi values can be computed. Qmax = Q5 for
both assignments. Thus, (a) Qmax = 10. (b) Qmax = 9.

can recover
∑5

i=1 gDi [k], k = 0, 1 from the encoded gradients. Towards this end, e.g., W5 solves (5)
in Algorithm 1 with the matrix B̃5, i.e.,

min ||[I2|I2|I2]−R[B(1) B(4) B(5)]||2 (9)

where the decision variables are a1, a2, a7, a8, a9, a10, b1, b2 and d1, d2, d7, d8, d9, d10. For instance,
corresponding to the first column of B(1), W5’s problem becomes determining the minimum ℓ2-norm
solution of the under-determined least-squares problem∣∣∣∣∣∣∣∣ [r01 r02 r05

r11 r12 r15

][a1
b1
d1

]
−
[
1
0

] ∣∣∣∣∣∣∣∣
2

. (10)

We emphasize that the same minimization will be independently performed at workers W1 and W2

as well. After each Wj determines its encoding coefficients and transmits gj for j = 1, . . . , 5, the PS
can easily recover

∑5
j=1 gDj [k] =

∑5
i=1 rkjgj for k = 0, 1.

Algorithm 1 works as is, even in the case when the PS is interested in an approximate gradient. For
instance, suppose that the PS sends the encode-and-transmit signal when the vector ψ = [4 2 0 2 3], so
that only one copy of D5 has been processed in the cluster. The corresponding encoding coefficients
can still be computed using Algorithm 1. The only difference will be that the relevant indeterminate
matrix becomes

B′ =


a′1 a′2 | a′3 a′4 | a′5 a′6 | a′7 a′8 | 0 0
b′1 b′2 | b′3 b′4 | 0 0 | 0 0 | 0 0
0 0 | 0 0 | 0 0 | 0 0 | 0 0
0 0 | c′3 c′4 | c′5 c′6 | 0 0 | 0 0
d′1 d′2 | 0 0 | 0 0 | d′7 d′8 | d′9 d′10

 . (11)

This means, e.g., whenW5 is trying to find d′9, then it will be solving an over-determined least-squares

problem:
∣∣∣∣∣∣∣∣ [r05r′05

]
d′9 −

[
1
0

] ∣∣∣∣∣∣∣∣
2

. It is evident, that all the workers can still agree on the same solution.

3 Chunk Ordering Algorithm

Note that the assignment matrix only specifies the assignment of chunks to workers but says nothing
about the relative order of chunks within a worker. When taking into account partial stragglers,
the relative ordering of the Di’s within a worker is crucial. Therefore, an important question when
leveraging partial stragglers within GC is one of how to determine this chunk ordering within workers
for a given assignment matrix. This will in general depend on models of worker speeds. However, it
is a difficult task to obtain accurate models on the worker speeds within a cloud cluster as conditions
can change dynamically.

We work instead with a combinatorial metric that depends on the total number of chunks that the
cluster has to process in the worst case, such that at least a single copy of each Di is processed; this
was also used in [35, 36] in a coded matrix computation context. This metric minimizes the worst
case number of chunks that the cluster needs to process in the case when ℓ = 1. In particular, for a
given Di, let Qi denote the maximum number of chunks that can be processed by the cluster such
that none of the copies of Di are processed (see Figs. 2a and 2b) and let Qmax = maxi=1,...,N Qi.
Thus, 1 +Qmax is a metric that quantifies the worst-case number of chunks that need to be processed
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Algorithm 2 Chunk-Ordering

Input: Assignment matrix A such that N = m and γi = δi = δ for all i ∈ [m]
Output: An optimal ordering matrix O.

1: Let Ã(1) ∈ {0, 1}m×m such that Ã(1)
i,j =

{
1 if Ai,j ̸= 0

0 otherwise.
and δ(1) = δ.

2: for i ranges from 1 to δ do
3: Apply Claim 1 with Ã(i) and δ(i) and solve the max-bipartite matching problem in Claim 1.

Let the permutation matrix be Pi.
4: Let Ã(i+1) := Ã(i) − Pi and δ(i+1) = δ(i) − 1.
5: end for
6: Set O =

∑
i∈[δ] iPi.

before at least a single copy of every Di is guaranteed to be processed. Here, the worst-case is over
the speeds of the different workers. We say that an assignment is optimal if it achieves the lowest
possible Qmax for a given assignment matrix. Indeed, Figs. 2a and 2b show two different orderings
for the same assignment matrix with different values of Qmax.

From the point of view of leveraging partial stragglers, for exact GC it can be shown that the ordering
imposed by the cyclic assignment scheme (in [5]) is optimal ((cf. Remark 1 in work [35])) for this
Qmax metric. However, for approximate GC, when the number of stragglers can be much higher,
other assignments, e.g., those based on regular graphs perform better [6, 37]. In particular, in these
cases, the assignment matrix A is chosen as the adjacency matrix of the relevant graphs and is such
that N = m and γi = δi = δ for i ∈ [m]. For such assignment matrices, Algorithm 2 presents an
optimal algorithm for determining the ordering of the chunks within each worker in Qmax-metric.
Corresponding to the assignment matrix A, we can associate an ordering matrix O which is such that
Oi,j = 0 if Ai,j = 0 and Oi,j ∈ [δ] otherwise. Thus, if Oi,j = α ̸= 0, it means that Di is the α-th
chunk in Wj , e.g., α = 1 implies that the chunk is at the top and α = δ means that it is at the bottom.
Let Qi(O) denote the maximum number of chunks that can be processed across the cluster, such that
no copy of Di has been processed. Then, upon inspection, we can see that

Qi(O) =
∑
j∈[m]

1{Oi,j ̸=0}(Oi,j − 1) + (m− δ)δ =
∑
j∈[m]

1{Oi,j ̸=0}Oi,j + (m− δ − 1)δ,

where the notation 1Y denotes the indicator of Y . Next, let Qmax(O) = maxi∈[m]Qi(O). Thus,
given an assignment matrixA, our goal is to find an ordering matrix, such thatQmax(O) is minimized.
As (m− δ − 1)δ is a constant, this optimization is equivalent to the following min-max problem.

minimize
O

max
i∈[m]

∑
j∈[m]

Oi,j . (12)

Each column of O has exactly δ non-zero entries, with each value in [δ] appearing exactly once.
Counting the sum of the entries in O two different ways yields

m
δ(δ + 1)

2
=

∑
i∈[m],j∈[m]

Oi,j ≤ mQmax(O), so that Qmax(O) ≥ δ(δ + 1)

2
.

It turns out that this bound is in fact achievable. Let Ã = Ã(1) (defined in Algorithm 2). Define
G(Ã) = (V,E) as a bipartite graph on vertex set V = X ∪ Y such that |X| = |Y | = m,X ∩ Y = ∅
and deg(v) = δ for all v ∈ X ∪ Y . For u ∈ X, v ∈ Y , we have that (u, v) ∈ E if and only if
Ãu,v = 1. Thus, Ã is in one-to-one correspondence with G(Ã). Algorithm 2 decomposes G(Ã) into
a collection of disjoint perfect matchings [38] which are then assigned values in [δ]. This gives us the
required ordering.

Claim 1. Let Ã ∈ {0, 1}m×m be such that both i-th row sum and j-th column sum of Ã are δ for all
i, j ∈ [m]. Then there exists a permutation matrix P ∈ {0, 1}m×m such that Ã− P ∈ {0, 1}m×m

and both i-th row sum and j-th column sum of Ã− P are δ − 1 for i, j ∈ [m].

Proof. We claim that G(Ã) has a X-perfect matching. Let S ⊆ X be arbitrary and N(S) ⊆ Y
denote its neighborhood. Let κ denote the average degree of the vertices in N(S) in the subgraph
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(a) (b)

Figure 3: (a) Mean-squared error (MSE) vs. T for an approximate GC scenario. Blue curves: proposed
protocol with ℓ = 1, 2, 3, purple curves: corresponding MSE estimates, and red curve: original GC protocol
with ℓ = 1. Error bars correspond to one standard deviation. (b) Completion time vs. ℓ for exact GC scenario
with two different assignment matrices. Blue curves: proposed protocol, green curves: original GC protocol.
Error bars correspond to one standard deviation.

induced by S ∪N(S). Then, we have

δ|S| = κ|N(S)| ≤ δ|N(S)|, so that |S| ≤ |N(S)|.

The first inequality above follows because the degree of each node in N(S) in G(Ã) is δ. Thus,
Hall’s condition [39] holds and the claim follows. Since |X| = |Y |, this is actually a perfect matching
M . Then, this perfect matching M gives the desired P : Pu,v = 1 if (u, v) ∈ M and Pu,v = 0 if
(u, v) /∈M . Removing the matching M from G(Ã) results in a bi-regular bipartite graph with degree
δ − 1 which corresponds to Ã− P .

Remark 4. The proposed algorithm above finds the optimal ordering when considering the case of
ℓ = 1 with N = m (number of chunks equal to number of workers); it only applies when N = m.
While this algorithm is expected to have better performance than a randomly chosen ordering in the
case of higher ℓ, we do not have an optimal construction in this case.

Algorithm 2 Analysis: The algorithm gives δ permutation matrices {Pi}i∈[δ] such that Ã =
∑δ

i=1 Pi,
i.e., the set of non-zero entries of the Pi’s are disjoint. Since O =

∑
i∈[δ] i · Pi, this implies that each

column has exactly δ non-zero entries such that these entries consists of elements of [δ]. Therefore,
O is an ordering matrix. In addition, each row has δ non-zero elements from [δ], so that all row
sums and Qmax(O) equal δ(δ+1)

2 . A maximum matching can be in time O(m2δ) by converting it to
a max-flow problem [38], so our overall complexity is O(m2δ2). The complexity can potentially be
reduced further by using more efficient max-flow algorithms.

4 Numerical Experiments and Comparisons

Our proposed protocol in Section 2, utilizes additional communication between the PS and the
workers. We note here that ideas in [21] that are based on Lagrange interpolation can potentially be
adapted to arrive at an exact GC protocol within our setting. However, the numerical instability of
Lagrange interpolation is a serious issue with this solution, since it can be shown that the degree of
the polynomial to be interpolated is at least m− ℓ. Even for values such as ℓ = 2 and m = 22, 27, 32,
the error in Lagrange interpolation is too high for the technique to be useful (see Appendix A).

In what follows, we present comparisons with the original GC protocol via a simulation of the
distributed system for both the exact and approximate GC scenarios. All software code for recreating
these results can be found at [40]. These simulations were performed within a MacBook Pro (M1
chip, 16 GB RAM). In both scenarios, we simulated node failures and slow-downs. We generated
a random vector of length-m where α workers uniformly at random are chosen to be failed (α is
chosen based on the scenario). For the other workers, the amount of time taken to process a chunk is
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chosen i.i.d. from an exponential distribution with parameter µ = 1. The entries of the matrix R are
chosen i.i.d. from the standard normal N(0, 1).

Approximate GC simulation: We considered two different random regular graphs, Gi, i = 1, 2
with sizes m = 200, 300 and degree ν = 8. These graphs have second-largest absolute value of
eigenvalues: 5.14 and 5.23, i.e., less than 2

√
ν − 1 so they can be considered as Ramanujan graphs

[41] (these were used in [6]). Their adjacency matrices were used as the assignment matrix. The
number of failures α was set to ν − 1.

For the original GC protocol with arbitrary assignment matrices, [21] provides a communication-
efficient approximate GC method that relies on rational interpolation. However, even for m = 100,
these will result in very complex basis functions. Furthermore, there are no numerical results in
[21] (or posted software) and the approximation guarantees depend on the form of the function to be
interpolated, i.e., the guarantees cannot be expressed in terms of the system parameters. Thus, in our
comparison, we only consider the original GC protocol with ℓ = 1.

For the original GC protocol, we compute the least squares solution r̂ for minimizing ||Ar − 1||22.
Here, r̂ such that r̂i = 0 ifWi has not completed processing all its chunks at time T . For our proposed
protocol, we leverage partial work completed by T , as described in Section 2. The overall error is
computed as the sum of the errors for the least-squares solution for each zTi , i = 0, . . . , ℓ− 1. Each
data point on the curves was chosen by performing 1000 simulations of failures and slow-downs. We
have also plotted the expected value of the error, derived in (6).

Fig. 3a shows the mean-squared-error (MSE) comparing the original GC approach with ℓ = 1 and our
partial GC approach for ℓ = 1, 2, 3 for graphG1 (see Appendix B forG2 results). As can be observed,
the MSE for our approach is several orders of magnitude lower with increasing T . Crucially, our
estimate (6) closely tracks the behavior of the error of our method. Thus, it can easily be used by
the PS as a way to decide when to send the encode-and-transmit message. We emphasize that our
approach, even with ℓ ≥ 2 actually has a lower MSE than the original approach (that operates with
ℓ = 1). Note that with ℓ ≥ 2, we will enjoy a lower communication time in a real-world distributed
cluster. However, as we are working with a simulation of the distributed system, at this time we do
not have precise figures for the reduction in communication time on actual clusters.

In Fig. 6 in Appendix B, we compare the performance of our approach under the optimal ordering
(cf. Section 3) and an appropriately chosen random ordering. The random ordering is picked as
follows. We generated 100 independent random orderings and selected the one with the best (smallest)
Qmax(O). Our optimal ordering, which can be found efficiently, clearly has a better performance.

Exact GC simulation: We considered (i) the cyclic assignment [5] with N = m = 200 and
δ = 8, and (ii) the assignment based on graph G1 discussed above. The number of failures α in the
simulations is set to δ − ℓ so that exact gradient reconstruction is possible. For both approaches, we
determined the time T such that each chunk is processed at least ℓ times across the cluster (for original
GC we only consider workers that have processed all their chunks). These values were averaged over
1000 runs for each value of ℓ. In Fig. 3b we clearly observe that the exact gradient can be computed
using our method is approximately half the time as compared to the original GC protocol. We note
that the average completion time for the original GC protocol (G1-based assignment) for ℓ = 1 is
about T = 6 time units. However, the MSE for the original GC protocol in the approximate scenario
continues to be high at T = 24. The reason is that there are ν − 1 failures that are introduced in
the simulation. The approximate GC recovery operates by solving a least-squares problem for the
fixed G1-based assignment. Thus, the MSE does not necessarily drop to zero even if one copy of
each chunk has been processed in the cluster. However, there are exact recovery algorithms that one
can use in this case. We note here that when ℓ ≥ 2, the known techniques for exact recovery for the
original GC protocol are based on Lagrange interpolation and are numerically unstable. Thus, the
gradient recovered using the original approach will in general not be useful.

Fig. 7 in Appendix B compares the completion times of random vs. optimal ordering; the optimal
ordering is clearly better.

5 Limitations of our work

Our chunk ordering algorithm (Section 3) is optimal only in the case when the assignment matrix
has N = m and γi = δi = δ for i ∈ [m]. While several well known gradient coding schemes,
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especially those from regular graphs, satisfy this property, there are others that do not. Our results in
Section 4 with ℓ ≥ 2 are simulations of the actual distributed cluster and indicate lower MSE than the
original GC protocol. However, we do not have actual cloud platform statistics on the reduction in
communication time within our method. We do however expect this reduction to be quite significant.

6 Conclusions

We presented a novel gradient coding protocol that leverages the work performed by partial stragglers.
Our protocol is simultaneously computation-efficient and communication-efficient, and numerically
stable. Furthermore, we present rigorous analyses of the protocol’s correctness and performance
guarantees. Our protocol is one of the first to provide a satisfactory solution to the problem of
communication-efficient, approximate gradient coding for general assignment matrices.
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Appendix A Numerical Instability of Lagrange Interpolation.

Even for values such as ℓ = 2 and m = 22, 27, 32, the error in Lagrange interpolation is too high for
the technique of [21] to be useful. To see this consider Fig. 4 which shows the error (averaged over
100 random trials) in first interpolating and then evaluating the interpolated Lagrange polynomial
(degrees 20, 25 and 30) at specific points (as is done in [21]); the x-axis is the precision. It can be
observed that the error even with full-precision is too high for the technique to be useful.

Appendix B Additional numerical experiments

Fig. 5 shows the mean-squared-error (MSE) comparing the original GC approach with ℓ = 1 and our
partial GC approach for ℓ = 1, 2, 3 for graph G2 with m = 300 vertices. The results are similar in
spirit to the results for the case of G1 that has 200 vertices. Namely, our MSE is orders of magnitude
lower than the original GC approach, even when we consider ℓ ≥ 2.

In Figs. 6a and 6b we study the impact of chunk ordering within the workers for the assignment
matrices corresponding to graphs G1 and G2 respectively. Each data point on the curves corresponds
to 1000 simulations (setup described in Section 4). In particular, in Fig. 6a corresponding to the case
of ℓ = 1, 2, 3 for G1, we observe that the MSE of the optimal ordering consistently remains lower
than the MSE of the random ordering and can in fact be multiple orders of magnitude lower when the

Figure 4: Error in Lagrange interpolation vs. the number of decimal places (precision) in the evaluation values.
The three curves correspond to polynomials of degree 20, 25 and 30 (average of 100 trials).

Figure 5: Mean-squared error (MSE) vs. T for an approximate GC scenario corresponding to an assignment
matrix stemming from graph G2. Error bars correspond to one standard deviation. Blue curves: proposed
protocol with ℓ = 1, 2, 3, purple curves: corresponding MSE estimates, and red curve: original GC protocol
with ℓ = 1.
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(a) (b)

Figure 6: Mean-squared error (MSE) vs. T for the approximate GC scenario when considering random chunk
ordering and optimal chunk ordering within our protocol with ℓ = 1, 2, 3. Error bars correspond to one standard
deviation. (a) Assignment matrix corresponding to graph G1. (a) Assignment matrix corresponding to graph G2.

encode-and-transmit signal is sent at certain time intervals. A similar pattern can be observed in Fig.
6b, which shows the case of ℓ = 1, 2, 3 and G2.

Fig. 7 shows the results of a similar experiment comparing the random chunk ordering and our
optimal chunk ordering in terms of completion time for exact GC. The assignment matrix corresponds
to the graph G1 discussed in Section 4. The random ordering is chosen by sampling 100 independent
random orderings and selecting one with the smallest Qmax(O). A data point is then generated by
running 1000 simulations with the selected random ordering. The results indicate that in an average
sense, the completion time of the optimal ordering is clearly lower.

Figure 7: Completion time vs. ℓ for the exact GC scenario with random chunk ordering and optimal chunk
ordering. Error bars correspond to one standard deviation.

14



NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We present a new gradient coding algorithm. We have discussed the as-
sumptions underlying the algorithm and outlined the main contributions of our work. The
contributions are substantiated within the body of the paper.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We have a section titled Limitations in the paper that discusses these issues.
Computational complexity has been discussed for all our algorithms.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: The paper presents protocols and algorithms that are relevant to gradient
coding. Within the main body of the paper, we have included analyses of these protocols
and algorithms. The analyses include proof of correctness, performance analysis and
computational complexity analysis.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We have provided complete descriptions of all our protocols and algorithms.
In addition, we also have an example of the main protocol that guides the reader through the
main steps.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
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some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We have uploaded commented code that recreates the main experimental
results.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Our protocols and algorithms do not have any hyperparameters that need to be
tuned. All experimental settings and details are available in the body of the paper itself.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We have included error bars for the relevant plots.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: This information is provided on the section on Numerical Experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Yes. We have read the Code of Ethics and our submission conforms to it.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: There are no negative social impacts of our work. Our work allows for faster
distributed training on cloud platforms. The positive societal impact is that it will save
computational cycles on such platforms.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We do not have such risks because the paper is about distributed training.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: We do not use any existing assets.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: We are not releasing any new assets in this work.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: Our work is not related to crowdsourcing nor research with human subject

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: Our work does not involve human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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