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Abstract—Accurate segmentation of 3D medical images re-
mains a significant challenge due to complex anatomical vari-
ations, low contrast between adjacent structures, and the com-
putational burden associated with volumetric data. Conventional
deep learning models often encounter vanishing gradients and
limited feature propagation in deep architectures, particularly
when handling large-scale 3D volumes. To address these issues,
this paper presents ResSwinUnet3D, a residual SwinUnet3D
architecture for 3D medical image segmentation that combines
vision transformers, convolutional neural networks, and residual
connections. The proposed model extends the SwinUnet3D design
by introducing residual blocks between the encoder and decoder
components to mitigate the vanishing gradient problem and
improve information flow through deep layers. Experiments
were conducted on three datasets: BraTS 2020, BraTS 2021,
and Synapse Multi-Organ CT Segmentation. On the BraTS
2020 dataset, our model achieved Dice Similarity Coefficients
of 0.9170, 0.8539, and 0.8030 for whole Tumor, Tumor Core,
and Enhancing Tumor regions, respectively. For the BraTS 2021
dataset, our model achieved Dice scores of 0.9211, 0.9200, and
0.8924 for Whole Tumor, Tumor Core, and Enhanced Tumor,
respectively. On the Synapse Multi-Organ CT Segmentation
dataset, ResSwinUnet3D attained a mean Dice score of 0.8276
across 13 organ classes. With the integration of residual blocks,
our model achieves a 5-20% overall improvement in performance
compared to SwinUNet3D and other similar models such as
Attention UNet and UNETR across the previously specified
datasets and evaluation metrics. Gradient-weighted Class Activa-
tion Mapping analyses further showed that residual connections
produce interpretable activation maps, clarifying the model’s
decision process. These findings suggest that ResSwinUnet3D
offers a robust and efficient solution for volumetric segmentation
across diverse organs and imaging modalities.

Index Terms—3D medical image segmentation, class activation
maps, decoder, encoder, residual blocks, vanishing gradients,
vision transformers

I. INTRODUCTION

Accurately outlining structures in 3D data, known as three-
dimensional (3D) volumetric image segmentation, plays a
pivotal role in medical imaging and many other fields [1].
This process plays a vital role in applications like treatment
planning, disease diagnosis, and quantitative analysis [2], [3].
Despite its importance, this task remains difficult because of
the complexity of 3D spatial information, the need to maintain
consistency across multiple slices, and the significant compu-
tational demands posed by large-scale volumetric datasets [4]],
[5]. Recent progress in deep learning has greatly influenced
medical image segmentation. By modeling contextual infor-
mation and intricate spatial dependencies, modern learning

approaches enable segmentation that is both more precise and
more efficient [6]].

Convolutional Neural Networks (CNNs) have traditionally
served as the foundation of image processing tasks [7]]-[9],
particularly in image segmentation [10], [11]. Models such as
3D U-Net [[12], [13]] and V-Net [14] have achieved success
in processing entire 3D volumes while effectively preserving
spatial context across all dimensions [10]. By leveraging
hierarchical structures to capture local and global features,
these networks achieve robust segmentation, with 3D U-Net
setting a benchmark in medical imaging through its effective
spatial dependency modeling [15]. Similarly, V-Net’s effi-
ciency and accuracy have made it a preferred choice for many
applications. However, CNN-based methods are constrained
by their localized receptive fields, which limit their ability to
model long-range dependencies. To address these challenges,
researchers have drawn inspiration from the Natural Language
Processing (NLP) domain, where Transformer models have
demonstrated remarkable effectiveness in capturing long-range
dependencies [[16]], [[17]. Adapting Transformer architectures
for computer vision tasks has led to significant advancements,
as seen in models like the Vision Transformer (ViT) [[18]] and
the Shifted windows (Swin) Transformer [[19]. These models
utilize self-attention mechanisms to learn contextual relation-
ships across entire input sequences, a characteristic that has
proven highly beneficial for image analysis. Building on these
innovations, researchers have introduced hybrid architectures
that address the shortcomings of CNNs and pure Transformer
models. UNEt TRansformers (UNETR) [20], for instance,
integrates Transformers as the encoder within a “U-shaped”
network design, effectively capturing long-range context infor-
mation. UNETR++ [21]] enhances this approach by introducing
a paired attention block to efficiently learn spatial and channel
features simultaneously. While CNNs excel in capturing local
features, Transformer-based models are superior in modeling
global dependencies, prompting the development of hybrid
solutions such as SwinUNETR [22]] and SwinUnet3D [23].
These architectures combine the strengths of both paradigms,
enabling the learning of detailed and global features while
addressing the shortcomings of their predecessors.

In this work, we introduce ResSwinUnet3D, an enhanced
architecture derived from SwinUnet3D [23]]. While keeping the
encoder and decoder intact from the original model, residual
blocks are added to address the problem of vanishing gra-
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Tlustrates the ResSwinUnet3D architecture, a 3D U-shaped network that combines convolutional layers and Swin Transformer. Its encoder—decoder

structure incorporates skip connections to effectively preserve spatial details. The bottom section highlights the architecture of the residual block, featuring
ConvBlock3D, Layer Norm, and PReLU activation for efficient feature propagation. The section on the right provides a color key for the various blocks used

in the architecture.

dients, enabling better learning and information propagation
through deep layers. To demonstrate how these enhancements
influence the model, we employ Gradient-weighted Class
Activation Mapping (Grad-CAM) to create interpretable
heatmaps that visualize the decision-making process of the
model. The primary contributions of our work are twofold:

o Architecture Enhancement: Extended the state-of-the-
art SwinUnet3D by incorporating residual blocks, ad-
dressing vanishing gradient issues, and boosting the sta-
bility and performance of volumetric image segmentation.

o Model Interpretability: Utilized Grad-CAM to generate
interpretable heatmaps, bridging the gap between tradi-
tional performance metrics and offering deeper insights
into the model’s decision-making process.

II. METHODOLOGY
A. Network Architecture

ResSwinUnet3D architecture comprises an encoder, a resid-
ual block, a jump connection, and a decoder, designed to en-
hance the network’s efficiency and robustness in processing 3D
image data. The architecture’s design features a residual block
strategically positioned between the encoder and decoder. This
innovation mitigates the vanishing gradient issue frequently
encountered in deep learning, enabling improved information
propagation through the network’s deeper layers. As illustrated
in Figure [T] the residual block diagram is centrally located,
with a block color key provided at the bottom for clarity.
The encoder and decoder designs are directly inspired by the
architecture proposed in [23]], ensuring a strong foundation for
effective feature extraction and reconstruction.

The encoder in ResSwinUnet3D consists of the Patch-
Merging3D blocks, 3D Convolution (ConvBlock3D) units,
and SWINBlock3D units. The primary functionality of the

PatchMerging3D block is to downsample the input image
while increasing the number of channels, effectively preparing
the data for subsequent processing. The ConvBlock3D units
are designed to learn local dependencies within the image,
while the SWINBlock3D units capture global dependencies
through advanced self-attention mechanisms. Together, these
components ensure that the encoder efficiently extracts and
processes both local and global features. In contrast, the
PatchExpanding3D block in the decoder upsamples the image
by increasing its spatial dimensions and decreasing the number
of channels, thereby reversing the downsampling effect of
the PatchMerging3D block. The ConvBlock3D units in the
decoder focus on learning refined local features, while the
SWINBIlock3D units capture global dependencies to ensure
the preservation of context and structure.

Assume an input 3D image X of dimension H x W x D,
PatchMerging3D operates by dividing the 3D input image into
non-overlapping voxel blocks of size P x P x P. Each voxel
block is flattened into a one-dimensional vector of size V =
P3, which is then linearly transformed to a vector of length
N, effectively encoding the input into multiple £ x % x &
tokens. Each token 7" has a length of N. In each stage ¢ of the
encoder, the PatchMerging3D block downscales the tokens 7"
by a factor of 2 in each dimension using a sequence of Conv3D
and LayerNorm (LN) operations, producing the output A?. A’
is subsequently fed into the Shifted window Transformer block
(SWINBIlock3D) and ConvBlock3D unit simultaneously. In
the ConvBlock3D unit, A® is processed through a series of
Parameterized ReLU (PReLU), LN, and 1 x 1 x 1 Conv3D
layers, repeated twice, to extract local feature representations,
yielding C?. In contrast, the SWINBlock3D unit comprises
four main components. First, an LN block and a window multi-

head self-attention 3D (WMSA3D) module compute attention



scores between tokens within non-overlapping sub-windows.
The computation of Xtiluses the self-attention mechanism in
the WMSA3D block and is described as follows:

Ai = LN(AY) (1)

Qu=W9 A, K;=WK. A v, =w". A4 (2

Q Ai * K7:7
atten ;, = Softmax <AA’ Vi 3)

Vdy
Xti1 = Ai ¢ atten z; (€]

Here, W®, WX, and WV are learnable query, key, and
value weight matrices, respectively. The term dj, represents the
dimensionality of the matrix K ;;, while atten ;; is a matrix
containing the self-attention scores. This mechanism enables
the WMSA3D block to capture contextual information by
modeling relationships between tokens within each window.
Secondly, the features produced in the first step are refined to
compute X; using an LN block and a Multi-Layer Perceptron
(MLP). The third unit of the SWINBIlock3D includes an
LN block and a Shifted-Window Multi-Head Self-Attention
3D (SWMSA3D) module. While the WMSA3D module is
effective for calculating self-attention scores within individual
windows, it cannot compute self-attention scores between
tokens located in adjacent windows. To address this limitation,
the SWMSA3D module is employed. In the SWMSA3D
module, the input tokens are shifted by s units along all three
spatial dimensions. By default, s is set to half the window
size. This shifting mechanism enables the computation of
self-attention scores across adjacent windows. However, it
also introduces two potential issues: (1) inconsistencies in
window sizes and (2) an increased number of windows.
To mitigate these problems, the attention scores for tokens
that were originally in non-adjacent windows before cyclic
shifting are filtered out. As a result, the SWMSA3D module
retains only the attention scores of tokens that were initially
located in adjacent windows before the shift. This ensures
consistency and computational efficiency. The output Xti2 is
computed within the 3SWMSA3D module. The input X7,
is first normalized, then transformed into query, key, and
value matrices. Scaled dot-product attention is applied, and the
resulting attention output is added back to the normalized input
to yield X,fQ. This allows the model to capture dependencies
across adjacent windows while maintaining stability through
residual connections.

Xy, =X}, + czzfzfenX~Z1 (5)
Finally, another LN block and an MLP refine the output,
yielding the features S¢. The final step of the encoder involves
the concatenation of the two outputs, C? and S!, which
complement each other to form E?. This combined represen-
tation encapsulates both local and global feature information,
ensuring a comprehensive encoding of the input data. The
output of the encoder, E*(Encoders 1-5), is passed through
the residual block, which consists of a jump connection and

a stacked combination of PReLU, LN, and a 1 x 1 x 1
Conv3D block, repeated twice, to produce R (Res Blocks
12, 3 and 5). Starting at the Encoder 5 stage, its output E° is
concatenated with R to form I°. I° is then passed through the
PatchExpanding3D block to upsample its resolution by a factor
of 2, resulting in U®. The upsampled feature U? is fed into the
SWINBIlock3D and a ConvBlock3D unit, undergoing similar
transformations as A’ in Equations [1] through |5, to produce
S5 and C3, respectively. These features are concatenated to
produce D? (Decoder 5). Similarly, for the remaining Decoder
stages j, D7 is concatenated with the corresponding output
from the residual block or encoder stage, progressing until D!
is produced. Finally, D! is passed through a FinalExpand3D
block (includes PatchExpanding3D block + PReL.U block) and
1 x 1 x 1 Conv3D block to generate the model output Y.

The number of multi-head self-attention mechanisms in the
encoder stages 1, 2, 3, 4, and 5 are 3, 6, 9, 12, and 15,
respectively. Additionally, the decoder stages 4, 3, 2, and 1
use 12, 9, 6, and 3 multi-head self-attention mechanisms,
respectively. Each stage of the encoder and decoder blocks
employs 2 SWINBlock3D units.

B. Loss Functions

In this study, we adopt a hybrid Dice Cross Entropy loss,
which integrates the complementary benefits of the Dice loss
and the Cross Entropy loss. This combined objective balances
region-level overlap with voxel-level classification accuracy,
making it particularly effective for segmentation tasks involv-
ing imbalanced class distributions.

c 230, X5,6Ya, M
Lpicetcr(X,Y)=1-37, (W +325=1 Xjilog Ya,a‘) )

where C' represents the total number of classes, M is the
number of voxels, and X ; and Y} ; represent the probabilities
of the ground truth and the predicted output at voxel 5 and
class 4, respectively.

C. Gradient-Weighted Class Activation Mapping

Gradient-weighted Class Activation Mapping (Grad-CAM)
[24] is a widely used explainable AI technique that provides
visual insights into how deep models arrive at their predic-
tions. In our study, Grad-CAM is employed to justify the
integration of residual blocks within the proposed architec-
ture. Specifically, the technique highlights the most influential
spatial regions in the input that guide the network’s output,
allowing us to visualize the decision pathway. These heatmaps
reveal how residual connections improve gradient flow and
strengthen information transmission across layers, ultimately
helping to address vanishing gradient issues while supporting
more effective feature representation.

III. EXPERIMENTAL RESULTS AND DISCUSSION
A. Datasets

In this study, three datasets were utilized: BraTS 2020 [26]—
[28]], BraTS 2021 [26], [27], [29] and Synapse Multi-Organ
CT Segmentation datasets [30] for experimental evaluations.

1) The BraTS 2020 and BraTS 2021 contain multi-

institutional Magnetic resonance imaging (MRI) scans



TABLE I

PERFORMANCE ANALYSIS OF THE PROPOSED MODEL FOR BRATS 2020 AND BRATS 2021 DATASETS; D.SC— DICE SIMILARITY COEFFICIENT ; S, —

SENSITIVITY ; Sp— SPECIFICITY ; Ac— ACCURACY ; IoU — INTERSECTION OVER UNION; P.— PRECISION

WT— WHOLE TUMOR ; TC— TUMOR CORE ; ET'— ENHANCED TUMOR

Metric BraTS 2020 BraTS 2021
WT TC ET WT TC ET

DSC | 0.9170 £0.0867 0.8539£0.1579 0.8030 £ 0.1947 | 0.9211 £ 0.0887 0.9200 £0.1474  0.8924 £ 0.1703
Se 0.9170 £ 0.0599  0.8592 £0.0624 0.7957 £0.0736 | 0.9155 £0.0885 0.9183 £ 0.0646 0.8850 &+ 0.0326
Sp 0.9991 £ 0.0389  0.9994 £0.0462 0.9997 £ 0.0069 | 0.9994 £0.0161 0.9997 £ 0.0216  0.9998 + 0.0534
Ac 0.9983 £ 0.0387  0.9986 £ 0.0461  0.9994 £ 0.0069 | 0.9987 £0.0164 0.9994 £+ 0.0217 0.9995 + 0.0533
IoU | 0.8507 £0.0996 0.7688 +£0.1703 0.7022 4+ 0.1951 | 0.8636 £ 0.0957 0.8691 +0.1654 0.8190 £ 0.1806
P, 0.9245+0.1196 0.8831 £0.2182 0.7649 £ 0.2353 | 0.9395 £0.0913 0.9291 £ 0.1866 0.8759 %+ 0.2062

TABLE I

COMPARISON OF DSC SCORES OF OUR MODEL WITH STATE-OF-THE-ART MODELS FOR BRATS 2020 AND BRATS 2021 DATASETS.

Method

BraTS 2020

BraTS 2021

WT

TC

ET

WT

TC

ET

UNETR [20]
UNETR++ [21]
ATTENTION UNET ([25]
SWIN UNETR [22]
SwinUnet3D [23]

0.8999 + 0.1649
0.8756 £ 0.0830
0.7260 £ 0.1767
0.9136 +0.1428
0.9106 £ 0.0830

0.8122 £ 0.1995
0.7540 £ 0.0899
0.5180 £0.1781
0.8531 £ 0.2089
0.8511 £ 0.1523

0.7738 £ 0.2762
0.7030 £ 0.0998
0.7579 +0.1473
0.8084 + 0.2463
0.7844 + 0.1910

0.9058 £ 0.0957
0.8383 £ 0.2095
0.8829 £ 0.1956
0.9163 £ 0.1555
0.8889 £ 0.0847

0.8950 £ 0.1769
0.8150 £ 0.2098
0.8176 + 0.1664
0.9186 £ 0.1557
0.9024 £ 0.1438

0.8769 £ 0.1490
0.7019 £ 0.3189
0.8403 £ 0.1545
0.8964 £ 0.1682
0.8688 £ 0.1677

ResSwinUnet3D (Ours)

0.9170 £ 0.0867

0.8539 £0.1579

0.8030 £ 0.1947

0.9211 + 0.0887

0.9200 £ 0.1474

0.8924 £ 0.1703

COMPARISON OF DSC SCORES OF OUR MODEL WITH STATE OF THE ART

TABLE III

MODELS FOR SYNAPSE DATASET

Method

DSC

IoU

UNETR [20]
ATTENTION UNET (25|
SWIN UNETR [22]
SwinUnet3D [23]

0.7964 £ 0.1620
0.7929 £ 0.2061
0.8229 £+ 0.1572
0.8074 £ 0.1828

Input (Axial)

Ground Truth (Axial)

Prediction (Axial)

0.6893 £ 0.2078
0.6971 + 0.2401
0.7248 +0.1973
0.7092 + 0.2156

ResSwinUnet3D (Ours)

0.8276 £ 0.1285

0.7257 £ 0.1814

of glioma patients, with 484 cases in the 2020 re-
lease and 1,251 in the 2021 release. Each subject is
provided with four MRI modalities—native T1, post-
contrast Tl-weighted (T1Gd), T2-weighted, and T2-
FLAIR—resampled to a uniform resolution of 240 x
240 x 155 voxels at 1mm? spacing. The ground-truth
masks delineate three tumor subregions: the necrotic/non-
enhancing tumor core (NCR, label 1), peritumoral edema
(ED, label 2), and the enhancing tumor (ET, label 4).
By converting the original multi-class labels into a one-
hot encoded multi-label framework, we facilitated faster
convergence and optimized segmentation performance.
Label 2 was isolated to form the Enhanced Tumor (ET)
channel. The tumor core (TC) channel was constructed by
merging Labels 2 and 4. The whole tumor (WT) channel
was created by merging Labels 1, 2, and 4 to capture the
entire extent of the tumor. We employed a logical OR
function to merge the specified labels.

2) The Synapse dataset consists of 30 CT scans which
have variable volume sizes between 512 x 512 x 85 and
512 x 512 x 198. Each scan is annotated for 13 abdominal
structures: spleen, right kidney, left kidney, gallbladder,
esophagus, liver, stomach, aorta, inferior vena cava, portal
& splenic vein, pancreas, and both adrenal glands. Labels
are assigned sequentially from 1 to 13.

Input (Coronal) Ground Truth (Coronal) Prediction (Coronal)

-

- 2

Input (Sagittal) Ground Truth (Sagittal) Prediction (Sagittal)

Fig. 2. BraTS dataset outputs visualized across Axial, Coronal, and Sagittal
planes, comparing the input MRI images, ground truth segmentation masks,
and model predictions. The results demonstrate the model’s ability to accu-
rately identify tumor regions in different anatomical views, with predictions
closely matching the ground truth in all three planes.

B. Evaluation Metrics

To assess the effectiveness of the proposed model, we
employed a set of widely recognized segmentation metrics
chosen to capture different aspects of performance across the
datasets. These include the Dice Similarity Coefficient (DSC"),
Sensitivity (S,), Specificity (S,), Accuracy (A.), Intersection
over Union (IoU), and Precision (F,). For the Synapse multi-
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Fig. 3. Synapse dataset outputs visualized across Axial, Coronal, and Sagittal
planes, showing input CT images, ground truth segmentation labels, and model
predictions. The model accurately segments anatomical structures in different
views, with predictions closely aligning with the labeled regions in all planes.

organ dataset, we report the average D.SC across all annotated
organs. This aggregate score offers a concise representation of
segmentation quality in multi-class settings, where consistency
across multiple anatomical structures is essential.

C. Experimental Details

We implemented our model using PyTorch [32], with
preprocessing facilitated by the MONAI [33] library. The
transformation between feature maps and tokens was handled
using the einops [34] library. To accelerate model training, we
employed the PyTorch Lightning [35] framework. To ensure
uniformity and fairness, all models were trained using the
same data splits, preprocessing strategies, input sizes, and
loss functions. Training was conducted on an NVIDIA H100
GPU for all datasets. The learning rate was set to 0.0003,
optimized using Adam with a weight decay of 1 x 1072,
and adjusted using a cosine annealing learning rate scheduler
with a maximum period of 10 epochs. Datasets were split into
training, validation, and testing sets in a 60:20:20 ratio, with
a fixed random seed of 42 to ensure reproducibility.

D. Main Result

As shown in Table[|and Figure 2} the model achieved a DSC
of 0.9170 for WT, 0.8539 for TC, and 0.8030 for ET, demon-
strating its high accuracy in segmenting the whole tumor and
its subregions on BraTS 2020. S,, was near-perfect across all
regions, with values exceeding 0.999, indicating the model’s
ability to identify negative cases correctly. Similarly, the model
achieved high A, across all subregions, with values nearing
1.000. IoU scores further highlight robust performance, partic-
ularly for WT (0.8507) and T'C' (0.7688). On the BraTS 2021
dataset, the proposed model achieved even higher D.SC' values

TABLE IV
ABLATION STUDY HIGHLIGHTING THE IMPORTANCE OF THE RESIDUAL
BLOCKS USING THE BRATS 2021 DATASET

Method
ResSwinUnet3D + 0 Residual Block
ResSwinUnet3D + 1 Residual Block
ResSwinUnet3D + 2 Residual Block
ResSwinUnet3D + 3 Residual Block

DSC ToU
0.8421 £0.1321 | 0.7685 £ 0.1438
0.8295 £ 0.1541 | 0.7519 £ 0.1448
0.8367 £0.1278 | 0.7605 & 0.1380
0.9117+0.1355 | 0.8506 4 0.1472

for WT (0.9211) and TC (0.9200), showcasing improved
generalization. .S}, and A, remained consistent, demonstrating
the model’s robustness across datasets. The IoU values were
similarly strong, with WT" achieving 0.8636 and 7T'C' reaching
0.8691. On the Synapse multi-organ segmentation dataset
(Figure E[), the model achieved an average DSC' of 0.8276,
highlighting its capability to generalize beyond brain tumor
segmentation tasks.

E. Comparison with State-of-the-Art Models

To further validate the performance of the proposed ResS-
WINUnet3D model, we compared its results with several
state-of-the-art segmentation models, including UNETR [20]],
Attention UNET [36], SwinUNETR [22], and SwinUnet3D
[23[], on the BraTS 2020, BraTS 2021, and Synapse datasets.
The comparison is summarized in Tables [[I] and [T

As shown in Table [M] the proposed ResSwinUnet3D model
demonstrated better performance across all segmentation tasks
in both datasets. For the BraTS 2020 dataset, ResSwinUnet3D
outperforms other models; however, it still faced challenges
similar to other models in this ET' subregion, highlighting
its inherent difficulty in segmentation. A consistent trend was
observed in the BraTS 2021 dataset, where ResSwinUnet3D
consistently delivered competitive results compared to other
models. Furthermore, on the Synapse multi-organ segmen-
tation dataset, as summarized in Table m ResSwinUnet3D
achieved a mean DSC' of 0.8276, outperforming UNETR,
Attention UNET, SwinUNETR, and SwinUnet3D. Although
SwinUNETR achieved a comparable score of 0.8229, ResS-
winUnet3D demonstrated a slight improvement, effectively
handling multi-organ segmentation tasks involving diverse
anatomical structures.

F. Ablation Study

Our ablation study, presented in Table investigates the
contribution of residual blocks in the skip connections. The
results indicate that while adding one or two blocks provides
limited benefit, the inclusion of all three residual blocks yields
a substantial performance improvement, boosting the DSC and
IoU scores by approximately 8.9% and 10.7% respectively,
over the baseline without any residual blocks. This non-linear
improvement suggests a synergistic effect; the complete set of
residual blocks is crucial for effectively fusing the multi-scale
spatial features from the encoder with the semantic features
from the decoder.

G. Explainability

As shown in Figure @] the GradCAM visualizations reveal
differences in feature representation between Encoder 12 block
and Residual 12 block. The residual block, introduced as part
of the proposed architecture, appears to refine the feature maps
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Fig. 4. GradCAM for the 3 BraTS classes. The top row shows the four modalities and GradCAM outputs for Encoder12 block; the bottom row shows the
same for Residuall2 block. The residual block heatmaps are more well-defined and cohesive than the encoder’s, which appear more diffused. Quantitatively,
the residual block achieves an average insertion Dice score area under curve (AUC) of 0.500 and a deletion Dice score AUC of 0.162 as defined by [@] (vs.
insertion AUC of 0.48 and a deletion AUC of 0.163 without the residual block). Here, insertion AUC measures how quickly model confidence recovers as
top-ranked regions are added back, while deletion AUC measures how rapidly confidence drops as those regions are removed, where higher insertion AUC
scores and lower deletion AUC scores imply more faithfulness in the explanations.

generated by the encoder. The heatmaps for the residual block
(bottom row) show more cohesive and concentrated activation
patterns, particularly in regions corresponding to tumors. This
suggests that the residual block may enhance the focus and
precision of feature representations. On the other hand, the
heatmaps for the encoder (top row) are more diffused, with
less-defined activation regions, which could indicate a broader
and less specific feature representation. These observations
suggest that the residual block may contribute to improved
spatial preservation and feature refinement, which could aid
in segmentation tasks. Additionally, we perform a faithfulness
analysis of the explanations for the image by calculating the
Insertion/Deletion Area Under Curve (IAUC/DAUC) of the
Dice score at 8 x 8 x 8 voxel increments as defined in [31].
We note that GradCAM faithfulness increases due to the
decrease in DAUC and the increase in IAUC when residual
blocks are included. By visualizing the GradCAM heatmaps
and quantifying the improvement in GradCAM’s faithfulness
due to the residual blocks, our analysis provides insights into
how the residual block enhances feature representation and
contributes to the model’s overall performance.

IV. DISCUSSION

One of the key challenges in training deep neural net-
works, particularly for tasks such as 3D volumetric image
segmentation, is the vanishing gradient problem. This occurs
when gradients become too small during backpropagation,
preventing effective weight updates in deeper layers. To
address this, we introduced residual blocks into the Swi-
nUnet3D architecture. These residual blocks help maintain
gradient flow, allowing for better information propagation
throughout the network. The results suggest that these blocks
play a significant role in improving feature representation, as
evidenced by the GradCAM visualizations and quantitative
metrics. The GradCAM heatmaps reveal that the residual
blocks refine feature representations, producing more cohesive
and concentrated activation patterns compared to the encoder

layers. This refinement is particularly beneficial for tumor
boundary localization, a critical aspect of medical imaging
applications. While the encoder layers display more diffused
activation patterns, the residual blocks appear to focus the
model’s attention on relevant features, potentially improving
segmentation accuracy and enhancing the interpretability of
the model’s predictions.

The statistical analysis further supports the robustness of
the proposed model. Pearson and Spearman correlation co-
efficients between the predictions and ground truth labels
were both 0.9179. While the integration of residual blocks
successfully addresses the vanishing gradient problem and
enhances feature refinement, the model’s computational com-
plexity remains a limitation. Transformer-based encoding and
the processing of large input volumes require substantial com-
putational resources, which may pose challenges in resource-
constrained environments. Future work could explore optimiz-
ing the architecture to reduce computational overhead while
maintaining its strong performance.

V. CONCLUSION

In this study, we have proposed ResSwinUnet3D, a novel
architecture for 3D medical image segmentation that effec-
tively addresses the challenges of long-range dependency mod-
eling and fine-grained detail preservation. ResSwinUnet3D
integrates residual blocks into the SwinUnet3D framework,
thereby combining the strengths of convolutional neural net-
works and transformer-based mechanisms to achieve state-of-
the-art performance on the BraTS and Synapse datasets.

The addition of residual blocks plays a crucial role in
enhancing feature representation, as highlighted by Grad-CAM
visualizations. The heatmaps demonstrate that the residual
blocks produce more cohesive and well-defined activation
patterns compared to the encoder layers, suggesting improved
feature localization and better preservation of spatial informa-
tion. ResSwinUnet3D shows promise for applications requir-
ing precise segmentation.
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