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Abstract
Alignment tasks for precision electronics manufacturing require high accuracy and low time consumption. However, in the 
current industrial environment, multiple servo alignment operations are often required to achieve the desired accuracy tar-
gets, which is time-consuming. In this paper, a high precision, fast alignment method based on binocular vision is proposed, 
which allows the accurate movement of the workpiece to the target position in only one alignment operation, without the 
need for a standard calibration board. Firstly, a calibration method of the telecentric lens camera is proposed based on an 
improved nonlinear damped least-squares method to establish the relationship between the image coordinate system and the 
local world coordinate system in the binocular vision system. Secondly, in order to transform the coordinates from the local 
world coordinate system to a unified coordinate system with the platform’s rotation center as the origin, an angle constraint-
based rotation center calibration method is proposed. Thirdly, a two-stage feature point detection method based on shape 
matching is proposed to detect the feature points of the workpiece. Based on these, the position and pose of the workpiece 
are obtained. Then the alignment commands are calculated based on the current and the target position and pose of the 
workpiece, enabling the accurate alignment to be accomplished in one operation. Finally, taking the mobile phone’s cover 
glass alignment task as an example, a series of calibration and alignment experiments were carried out. The experiments 
and results show that the alignment errors are within ± 0.020 mm and the time taken to calculate alignment commands is 
less than 20 ms, which demonstrates the effectiveness of the proposed method.

Keywords Visual alignment · Binocular vision · Camera calibration · Image processing

1 Introduction

Vision-based alignment is one of the critical techniques in 
the domain of vision inspection and assembly, which can 
be widely applied in fields of electronic equipment, semi-
conductor and robotics. For example, the precise alignment 
task of the optical fibers is performed by a closed-loop 
control based on the telecentric stereo microvision [1]. In 
[2], the assembly task of the slice micropart in 3-D space 

is completed by the serial assembly with three microscopic 
cameras and a laser triangulation measurement instrument 
(LTMI). Although vision-based alignment has the advantage 
of high-speed, non-contact, high accuracy, and flexibility, 
the alignment methods are open to further development to 
improve precision and robustness.

In general, a vision-based alignment system consists of a 
vision system and a motion system. Firstly, the vision system 
measures the position and pose of the workpiece by recog-
nizing features in the captured images. Secondly, the align-
ment commands are obtained by the controller based on the 
deviation of alignment. Finally, the motion system completes 
the alignment process based on the alignment commands 
from the controller. Therefore, the overall performance of 
the vision-based alignment system depends on the accuracy 
of the alignment method’s crucial parts, which are the meas-
urement of the workpiece pose and position, the calibration 
accuracy of alignment system parameters, and the control 
strategy of the alignment process.
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To measure the workpiece’s pose and position accu-
rately, serial steps need to be carried out. Firstly, the 
calibration of the vision system is required to map the 
coordinate of a point from the image coordinate system 
to the world coordinate system. Secondly, the image pro-
cessing method should be used to recognize features in 
the captured images. Finally, the position and pose of the 
workpiece are obtained based on the calibration result of 
the vision system and the workpiece’s features. Depend-
ing on the number of cameras used in the vision system, 
the measurement methods of the workpiece’s position and 
pose can be mainly divided into two categories which are 
the monocular vision method [3–6] and the multi-vision 
method [7–10]. Furthermore, due to advantages such as 
high resolution and less distortion, telecentric lenses are 
widely used for non-contact measurement of the work-
piece’s position and pose.

To achieve high precision of the alignment task, the 
control strategy has been widely adopted in the alignment 
process. The feedback control-based alignment method can 
achieve the desired accuracy after several control periods 
with the closed-loop control strategy and the deviation of 
alignment as the feedback amount. As a hot research topic 
in the feedback control-based alignment method, the vis-
ual servo technology is utilized to complete the alignment 
task in a coarse-to-fine manner [11–13]. Y. Ma et al. [11] 
proposed a coordinated pose alignment strategy with two 
microscopic cameras to realize pose alignment. In [12], a 
vision-based system is proposed to automatically complete 
the watch hand’s precise alignment. S. Kwon et al. [13] pro-
posed an alignment system with a visual servo to accom-
plish the coarse-to-fine alignment task. The vision system is 
designed to recognize the alignment marks, and an observer-
based is designed for the display visual alignment tasks. 
With the robustness to the environmental variation and the 
achievable high precision, the visual servo-based alignment 
method has been adopted in the field of microassembly and 
micro-manipulation, where the precision requirement is 
high, with speed being a secondary requirement.

However, visual servo-based alignment methods must 
be completed after several control cycles, which means 
that a long time is required before the desired alignment 
accuracy is achieved. For vision-based alignment and 
inspection tasks in manufacturing lines, the alignment task 
is only one part of the production [14]. In order not to have 
an impact on subsequent production, the alignment task 
must be accomplished in a few tens of milliseconds in one 
shot alignment operation. In this case, the visual servo-
based alignment method with several control periods is no 
more suitable. Therefore, in this paper, a high precision 
and fast alignment method is proposed to accomplish the 
alignment task after one-shot alignment operation, with 
a binocular vision system as the vision subsystem of the 

alignment system. We discuss how to improve the perfor-
mance of the key parts of the alignment method.

Firstly, to establish the relationship between the image 
coordinate system and the local world coordinate system, 
an improved nonlinear damped least-squares calibra-
tion method for the telecentric lens camera is proposed 
to speed up the convergence of the camera calibration 
process. Secondly, to complete the alignment task in one 
shot operation, a world coordinate system with the rota-
tion center of the rotation platform as the origin needs to 
be obtained in advance to unify the local world coordinate 
systems of the binocular vision system. Thus, an angle 
constraint-based rotation center calibration method is pro-
posed through the active rotation of the motor three times. 
Thirdly, a two-stage feature point detection method based 
on shape matching is proposed to obtain the feature point 
of the workpiece robustly. Finally, a series of experiments 
are conducted on an alignment system to verify the effec-
tiveness of the proposed alignment methods.

The rest of this paper is organized as follows. In Sect. 2, the 
binocular vision-based alignment system structure is introduced, 
and the coordinate systems are established. In Sect. 3, the pro-
posed alignment methods are presented, including an improved 
nonlinear damped least-squares calibration method for the tel-
ecentric lens camera, an angle constraint-based rotation center 
calibration method, and the calculation method for the alignment 
commands. In Sect. 4, the experiment results and error analysis 
are shown. Finally, the conclusion and the suggestions for further 
work are given in Sect. 5.

2  Alignment System and Coordinate 
Systems

2.1  Binocular Vision‑based Alignment System

As shown in Fig. 1, a binocular vision-based alignment 
system is designed to complete the alignment task, which 

Fig. 1  The schematic of alignment system



971International Journal of Precision Engineering and Manufacturing (2022) 23:969–984 

1 3

consists of a motion system, a binocular vision system and 
a control system.

(1) The motion system consists of a motion platform with 
a two dimensional translation platform and a rotation 
platform. The alignment task is completed by the move-
ment of the motion platform, on which the workpiece is 
fixed.

(2) The binocular vision system, designed to measure the 
position and pose of a workpiece by capturing images 
of the workpiece, consists of two telecentric lens cam-
eras. The cameras are mounted with the optical axis 
direction orthogonal to the motion platform.

(3) The control system is designed to calculate the align-
ment commands according to the images received from 
the vision system and to drive the motion platform to 
complete the alignment task through a programmable 
logic controller(PLC).

2.2  Establishment for the Coordinate Systems

As shown in Fig. 2, some relevant points need to be labeled 
before establishing the coordinate systems. The rotation 
center of the rotation platform is denoted as pWO. The left 
and the right corner of the workpiece are labeled as pWL 
and pWR, respectively. The coordinate systems mentioned 
in this paper are established when the motion platform is 
in the reset state. oWxWyWzW is a unified world coordinate 
system with coordinate axes parallel to the directions of 
the motion platform’s movement and pWO as its origin. 
oWLxWLyWLzWL and oWRxWRyWRzWR are local-world 
coordinate systems with their axes parallel to the unified 
coordinate system oWxWyWzW’s axes. pWL and pWR are set 
as the coordinate origin of the oWLxWLyWLzWL and oWRx-
WRyWRzWR, respectively. oCLxCLyCLzCL and oCRxCRyCRzCR 
are labeled as camera coordinate systems of the left and 

the right cameras, respectively, whose optic axes coin-
cide with oCLzCL and oCRzCR correspondingly. oLuLvL and 
oRuRvR are image coordinate systems of the left and the 
right vision systems, respectively. oLuL, oLvL, oRuR and 
oRvR are parallel to oCLxCL, oCLyCL, oCRxCR and oCRyCR, 
respectively.

3  Fast Alignment Method Based 
on Binocular Vision

As shown in Fig. 3, the alignment method based on the 
binocular vision proposed in this paper is divided into two 
stages. The vision system is calibrated in Stage I, whose 
main tasks include the camera calibration based on an 
improved Levenberg–Marquardt algorithm and the calibra-
tion of the rotation center with an angle-based constraint. 
In Stage II, the alignment control command is calculated 
through the following three steps.

1) With the images of the workpiece as input, the fast fea-
ture point detection method is utilized to get the image 
coordinates of the feature points on the workpiece, such 
as the corner points.

2) Based on the calibration model established in Stage I, 
the image coordinates of the feature points are trans-
formed to the unified world coordinates.

3) Combined with the target position and pose, the align-
ment command is calculated to rectify the position and 
pose of the workpiece to the target in one operation.

We will detail the calibration method of the vision sys-
tem in Sect. 3.1, the establishment of the alignment model 
and the calculation of the alignment command in Sect. 3.2, 
and a two-stage feature point detection method based on 
shape matching in Sect. 3.3, which is a critical factor for 
high accuracy vision-based alignment.

Fig. 2  Coordinate systems of the binocular vision system Fig. 3  Flowchart of the alignment method
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3.1  Calibration for the Vision System

The calibration of the vision system consists of two com-
ponents: the calibration of the camera and the calibration 
of the rotation platform’s rotation center. The former is 
used to obtain the relationship between the image coordi-
nate system oLuLvL, oRuRvR and the local world coordi-
nate system oWLxWLyWLzWL, oWRxWRyWRzWR, while the 
latter is used to calculate the rotation center for achieving 
the alignment task in one operation. Firstly, the telecentric 
lens camera model is established, and an improved Lev-
enberg–Marquardt algorithm is used to obtain the cam-
era model's calibration parameters. Then an angle-based 
constrained calibration method is proposed to overcome 
the sensitive problem of measuring the rotation center in 
industrial scenarios.

3.1.1  Telecentric Lens Camera Model

Take the left camera as an example. Notice that the coor-
dinate system has been established in Sect. 2.2, the rela-
tionship between (uL, vL) and (xCL, yCL, zCL) can be given 
as follows.

where kL is the magnification factor of the telecentric lens, 
z0 is the location where the telecentric image is sharpest, 
and △z is the telecentric depth. Set zWL = 0, the relationship 
between (xCL, yCL, zCL) and (xWL, yWL, zWL) is a combination 
of the rotation transformation and the translation transforma-
tion as follows.

Due to the rotation angles between the left camera 
coordinate system and the world coordinate system can 
be expressed as θzL, θyL, θxL, the parameters of the rotation 
transformation can be described as follows.

Then the left camera model can be given by

(1)
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(3)

r11L = cos �zL cos �yL, r21L = sin �zL cos �yL,

r12L = − sin �yL cos �xL + cos �zL sin �yL sin �xL,

r22L = cos �zL cos �xL + sin �zL sin �yL sin �xL,

r13L = sin �zL sin �xL + cos �zL sin �yL cos �xL,

r23L = − cos �zL sin �xL + sin �zL sin �yL sin �xL,

where ML is the homography matrix of the left camera 
model.

Similarly, the right camera model can be given by

where MR is the homography matrix of the right camera 
model.

3.1.2  Camera Calibration Based on an Improved 
Levenberg–Marquardt Algorithm

For the calibration of the left camera, the parameters in 
Eq. (4) need to be calculated. Considering these param-
eters as the unknown variables, Eq. (4) can be rewritten as

Then the 2  m equations with unknown variable 
xL = [θzL, θyL, θxL, pxL, pyL, kL] can be formed as

where fL2i-1 (xL) = uLi − kL(r11LxWLi + r12LyWLi + pxL), fL2i 
(xL) = vLi − kL(r21LxWLi + r22L yWLi + pyL), i = 1,2,…,m. The 
nonlinear least-squares method is used to solve the afore-
mentioned equations with the cost function  PL(xL) as

Thus, the minimum value of  PL(xL) is the solution of 
fL(xL) = 0, named as xL

*.
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With a descent step hL
k, the first-order Taylor expansion 

of fL (xL) around xL
k is brought into  PL (xL).

where JL is the Jacobi matrix JijL = ∂fiL/∂xjL. Based on the 
Levenberg–Marquardt algorithm(L-M), the iteration formula 
is given as follows.

where μL is a damping parameter. Notice that the L–M algo-
rithm is a trust region algorithm, the standard L-M updates 
μL by a ratio factor according to the performance of the cost 
function’s decrease.

Its relative success notwithstanding, the standard L–M 
algorithm maybe sluggish, especially when the algorithm 
moves to a canyon with a large aspect ratio in the param-
eters space. Therefore, instead of requiring cost reduction in 
each descent step, [15] uses the cosine similarity between 
adjacent steps as an acceptance criterion and finds a faster 
converging path with increasing cost tolerance. However, 
this algorithm does not solve the parameter evaporation 
problem. When the algorithm gets lost in the plateau of 
the parameter space, some parameters are pushed to infin-
ity, which also means that the ratio of adjacent steps will 
increase significantly.

Therefore, an improved updating strategy for the damp-
ing factor μL is proposed to alleviate the parameter evapo-
ration problem and speed up the convergence of the L-M 
algorithm. pa = cos(hL

k−1, hL
k) and pb = min{hL

k−1, hL
k} 

/ max{hL
k−1, hL

k} are calculated to obtain the damping 
acceptance criterion named as ζ.

The damping factor μL is updated with different strategies 
according to the distribution of ζ. Specifically, when ζ > ζth, 
it means that the L–M algorithm has accepted the current 
descent step. In this case, the damping factor μL needs to be 
smaller to obtain a more accurate result by decreasing with 
the factor m. Conversely, when ζ ≤ ζth, it indicates that the 
L–M algorithm has refused the current descent step. Thus, 
the damping factor μL needs to be larger to expand the trust 
region by increasing with the factor m. In this paper, m is set 
as 2 and the ζth is set as 0.9. The above update strategy of the 
damping factor is given as

(10)
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Notice that the damping factor for obtaining the descent 
step hL

k should be μL
k−1 since μL

k is updated based on the 
hL

k−1 and hL
k. Thus, the iteration formula is given as follows.

To sum up, the calibration method of a camera can be 
described as follows.

1) Obtain m points with (xWi, yWi, zWi) and (ui, vi) by the 
active translational movement of the motion platform. 
Then 2 m equations are formed according to Eq. (7).

2) At the beginning of the iteration, the initial value of 
xL

k(k = 0) can be preset as a non-zero vector. Then, the 
maximum value of the diagonal matrix JL

TJL is chosen 
to be the initial value of the damping factor denoted 
as μL

0. Thus, hL
k(k = 0) can be calculated according to 

Eq. (12).
3) Then, the unknown vector xL

k is solved by applying the 
iteration Eqs. (14)–(16). Specifically, in each iteration 
(k >  = 1), the descent step hL

k is obtained according to 
Eq. (15). xL

k is updated by applying the iteration formula 
(16). Finally, the damping factor μL

k is updated accord-
ing to the Eq. (14). The iterative process stops until 
the 2-norm of the two adjacent vectors' error becomes 
smaller than the threshold value. Thus, the homography 
matrix ML can be calculated according to the calibration 
parameters of the left camera.

3.1.3  Calibration for the Rotation Center

To complete the alignment task for the workpiece which is 
fixed on the motion platform randomly in one operation, the 
rotation center of the rotation platform should be calibrated 
firstly. As shown in Fig. 4, the motion platform is rotated with 
an angle α three times. The left corner point and the right 
corner point are named as pWLi and pWRi, respectively. The 
image coordinates of pWLi and pWRi in the image coordinate 
system oLuLvL and oRuRvR are given as (uLi, vLi) and (uRi, 
vRi)(i = 1,2,3), respectively. The local world coordinates of 
pWLi and pWRi in the local world coordinate oWLxWLyWLzWL, 
oWRxWRyWRzWR can be calculated by the calibration model 
illustrated in Sect. 3.1 which are expressed as (xWLi, yWLi) and 
(xWRi, yWRi) (i = 1,2,3). These local world coordinates of pWLi 
and pWRi are utilized to calibrate the rotation center of the 
rotation platform.

The fitting of a circle is usually calculated by the least-
squares method. Then the accuracy depends on the distribu-
tion of the fitting points on the circle. I. Kåsa [16] proved that 
the regular placement of the data points along a circle could 
improve the performance of the circle fitting. Zhu Jia et al. 

(15)hk
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[17] demonstrated that when the center angle α is small, the 
transmission factor of the measurement error of the circle 
center and radius will increase rapidly with the decrease of 
the center angle α. For the case of the rotation platform of the 
alignment system cannot be rotated by a large angle, since it 
would cause the workpiece to deviate out of the field of view, 
the least-squares method will lead to non-negligible errors for 
the calculation of the rotation center. To solve this problem, 
we proposed a angle constraint-based calibration method for 
the rotation center.

Firstly, the central angle α is used as prior knowledge to 
calculate the candidate coordinates of the rotation center, and 
then the best solution with the minimum standard deviation is 
picked out as the coordinate of the rotation center. As shown 
in Fig. 4, taking the calibration of the rotation center in the left 
camera’s view as an example, when the left corner pWL moves 
from (xWL1, yWL1) to (xWL2, yWL2) with a step angle α, the rota-
tion center pWOL(xWOL, yWOL) can be calculated according to 
the following equation.

Thus, the solution of the rotation center in the world coor-
dinate system is given by

Since that the rotation center can be obtained by any two 
points with their corresponding angle is known, Cn

2 candi-
date solutions can be obtained by using n points pWLj = (xWLj, 

(17)

{
xWL2 = xWOL + cos �(xWL1 − xWOL) − sin �(yWL1 − yWOL)

yWL2 = yWOL + sin �(xWL1 − xWOL) + cos �(yWL1 − yWOL)

(18)

⎧⎪⎨⎪⎩

xWOL =
xWL1 + xWL2

2
+

(yWL1 − yWL2) sin �

2 − 2 cos �

yWOL =
yWL1 + yWL2

2
+

(xWL2 − xWL1) sin �

2 − 2 cos �

yWLj), pWRj = (xWRj, yWRj) ( j = 1,2,…,n). After calculating 
the standard deviation of the Euclidean distance between 
each candidate rotation center and all points, candidate solu-
tions with the minimum standard deviation are taken as the 
best solutions, which are given as pWOL(xWOL, yWOL) and 
pWOR(xWOR, yWOR).

As shown in Fig. 2, oWxWyWzW is the unified world coor-
dinate system with its axes parallel to the motion platform’s 
moving directions and rotation center of the rotation plat-
form pWO as the origin. Thus, based on Eqs. (4), (5) and 
(19), the coordinate of pWL and pWR in oWxWyWzW can be 
given as follows.

So far, we show how to calculate the unified world coor-
dinates of a point according to its image coordinates. Next, 
we will introduce how to calculate the alignment command 
according to these coordinates.

3.2  Calculation for the Alignment Command

The position and pose of a workpiece can be represented 
by a reference point pW(xW, yW) and a title angle θ. In our 
alignment system, the middle point of the corner points is 
taken as the reference point of the workpiece. The angle of 
the line formed by the corner points is used as the title angle 
θ. Thus, the position and pose{xw, yw, θ} of the workpiece to 
be measured is given by

(19)

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

pWOL = argmin
pWOLi

1

n

���� n�
j=1

(pWOLi − pWLj)
2

pWOR = argmin
pWORi

1

n

���� n�
j=1

(pWORi − pWRj)
2

i = 1, 2, ...,C2
n
, j = 1, 2, ..., n

(20)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

xWL =
r22L(uL − kLpxL) − r12L(vL − kLpyL)

kL(r11Lr22L − r12Lr21L)
− xWOL

yWL =
r11L(vL − kLpyL) − r21L(uL − kLpxL)

kL(r11Lr22L − r12Lr21L)
− yWOL

xWR =
r22R(uR − kRpxR) − r12R(vR − kRpyR)

kR(r11Rr22R − r12Rr21R)
− xWOR

yWR =
r11R(vR − kRpyR) − r21R(uR − kRpxR)

kR(r11Rr22R − r12Rr21R)
− yWOR

Fig. 4  The angle-based constrained calibration of the rotation center 
in the left camera’s view
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Similarly, the target position can be calculated as {xw*, 
yw*, θ*}. For the calculation of the alignment command, as 
shown in Fig. 5, the workpiece is rotated with an angle △θ 
to the transitional position which is parallel to the target and 
then the translation amount is obtained. Then, the alignment 
command {Δxw, Δyw, Δθ} is given by

3.3  A Fast Feature Point Detection Method

The detection accuracy of feature points is a crucial factor 
affecting the calibration and alignment accuracy. In addi-
tion, the acquisition of feature points is often the most time-
consuming step in the alignment operation. However, the 
accurate feature point detection is difficult to be completed 
since the gray transition bands would make the accurate edge 
detection be difficult, as shown in Fig. 6. These undesirable 
factors are usually found in alignment tasks and are mainly 
caused by the position of the light source and the limitation 
of the platform movement.

Thus, a fast feature point detection method is proposed in 
this paper. As shown in Fig. 7, the method consists of three 

(21)

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

xW =
1

2

�
xWL + xWR

�

yW =
1

2

�
yWL + yWR

�

� = arctan

�
yWR − yWL

xWR − xWL

�

(22)Δ� = �∗ − �

(23)
[
ΔxW
ΔyW

]
=

[
x∗
W

y∗
W

]
−

[
cosΔ� − sinΔ�

sinΔ� cosΔ�

][
xW
yW

]

steps, including object detection, edge extraction, and fea-
ture point extraction. Well-lit regions without gray transition 
bands are located in object detection step in a fast and robust 
manner to reduce the effects of inhomogeneous illumina-
tion and image noise. Then, the accurate edge detection is 
performed in these regions to ensure the detection accuracy 
of the corner point.

The alignment task of the mobile phone’s cover glass is 
taken as an example to illustrate the method clearly. Since 
the corner points of mobile phone’s cover glass are taken as 
the feature points and are utilized to recognize the reference 
point pW(xW, yW), the region of interest denoted as ROI in 
the input image containing straight edges is located through 
a coarse-to-fine shape matching method in Step 1. Then, the 
edge extraction is accomplished by the line fitting in Step 
2. In Step 3, the left and the right corner point are obtained 
by calculating the intersection of the lines in the left and the 
right vision system, respectively. The middle point of these 
corner points is used as the reference point.

The premise of accurately obtaining the image coordi-
nates of feature points is to complete the object detection 
quickly and robustly to adapt to the random placement of 
the workpiece. In this paper, a coarse-to-fine shape matching 
method is proposed to accomplish the object detection. The 

Fig. 5  The calculation of the alignment command

Fig. 6  Gray transition bands in the workpiece image (marked with 
red bounding boxes) are caused by inhomogeneous illumination and 
can affect the accuracy of edge detection adversely. The corner detec-
tion method proposed in this paper locates well-lit regions without 
gray transition bands (marked with blue bounding boxes) firstly, and 
then calculates the edges of the workpiece in these regions

Fig. 7  Flowchart of the feature point detection method
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main contribution of this method lies in the adoption of a 
coarse-to-fine strategy to achieve the compatibility of accel-
eration and accuracy. Specifically, after the template image 
and the input image are both downsampled, the branch-and-
bound scheme and gradient spread method are used for the 
coarse matching to speed up the shape matching process. 
Furthermore, to obtain a more accurate result, the images 
with a higher resolution compare to the images in Stage I 
are adopted as inputs to carry out the fine matching based 
on the coarse matching results.

Stage I Coarse Shape Matching Based on the Branch-and-
bound Scheme and the Gradient Spread Method.

The image matching task can be interpreted as the process 
of finding the best affine transformation among a large num-
ber of possible affine transformations. This process is time-
consuming, so that an appropriate strategy should be found 
to speed up the search. Fast-Match method [18] utilized the 
branch-and-bound scheme for accelerating with the sum of 
absolute differences (SAD) as the similarity measurement. 
However, the SAD is calculated based on image blocks’ gray 
values, which may be influenced by the illumination varia-
tion and cause the matching task’ failure in some situations. 
In contrast, edge features exist widely in images and are 
insensitive to the illumination variation. Therefore, in this 
paper, edge features are considered to accomplish the image 
matching task for the adaptability of illumination variation. 
To realize this idea, the gradient direction is extracted as 
the descriptor for the edge features with the absolute cosine 
value of the gradient directions between the template and 
input image as the similarity measurement. Furthermore, 
the gradient spread process is adopted, and the branch-and-
bound scheme is utilized to speed up the search of affine 
transformations. In addition, since edge features are utilized 
to accomplish the image matching, this matching method 
can be categorized as a shape matching method.

The gradient spread process is proposed by the LINE-
MOD method [19] to keep the matching task invariant to the 
small translations and deformations. This process enhances 
the smoothness of images by diffusing the gradient direction 
of an edge point to points within its local neighborhood. 
Specifically, as shown in Fig. 8, a binarized image J storing 
the gradient direction codes is utilized to represent the input 
image I and is obtained by extracting, quantizing, encoding 
the gradient directions of edge points. The gradient spread 
process is then utilized in this process, as shown in Fig. 8c.

After the gradient spread process is utilized and the bina-
rized image J of the input image I is established, the coarse 
shape matching is performed according to Algorithm 1. Firstly, 
the template image Θ and the input image I are downsampled 

to reduce the size of the search parameters in the pursuit of 
reducing time consumption. Secondly, in the preparation stage, 
a series of variables are established to use the branch-and-
bound scheme and the gradient spread process to accelerate 
the shape matching. In detail, to calculate the similarity meas-
urement quickly, the binarized image J of the input image is 
established within a neighborhood [− T/2, T/2] × [− T/2, T/2]. 
A response table τ is also precomputed to save the maximum 
cosine similarity between any possible gradient direction in 
the template image Θ and any possible direction code in the 
binarized image J. Then an affine transformation net N0 con-
taining all possible affine transformations is constructed for 
searching the best affine transformation. Thirdly, the candi-
date affine transformation net NC containing n candidate affine 
transformations is searched by the branch-and-bound scheme. 
By using a parameter δ to control the search precision, the 
size of the candidate affine transformation net NC is gradu-
ally reduced to n, which means that n expected candidate aff-
ine transformations are obtained finally. In addition, with the 
size of the candidate transformation network NC decreasing, 
the length T of the neighborhood decreases by the factor of δ 
accordingly. Algorithm 1 is depicted as follows.

Fig. 8  a The gradient direction is quantized to 16 directions and 
encoded to a 16-bit code accordingly. b Gradient directions of the 
input image are extracted and quantized. c The gradient spread direc-
tion of one point is defined as the recording of all the gradient direc-
tions of its neighborhoods in a radius of T/2 (T = 3). d The gradient 
spread directions are encoded to 16-bit codes, and a binarized image 
J is constructed
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Stage II Fine Shape Matching
Since the gradient spread directions of one point is 

defined as the recording of all the gradient direction of its 
neighborhoods in a radius T/2, the error of shape matching 
is proportional to the neighborhoods radius. Therefore, 
based on the coarse matching results, a step-by-step search 
is performed to search for the best affine transformation.

As shown in Algorithm 2, the template image Θ and the 
input image I are both downsampled with a higher resolu-
tion than the images used in Stage I. Then the candidate 
affine transformation net NC is expanded to a net QC to find 
the best transformation named TBest.

4  Experiments and Analysis

A series of experiments are conducted to verify the align-
ment method proposed in this paper. The alignment system 
is established, and the calibration results containing the cali-
bration for the camera and the rotation center of the rotation 
platform are illustrated in Sect. 4.2. Alignment experiments 
are carried out to verify the calibration and alignment accu-
racy in Sect. 4.3. Finally, to compare the binocular vision 
system with the monocular vision system, the contrast exper-
iments are carried out in Sect. 4.4.

4.1  Alignment System

The alignment system is composed of a motion platform and 
a vision system. As shown in Fig. 9, the motion platform 

Fig. 9  Workstation



978 International Journal of Precision Engineering and Manufacturing (2022) 23:969–984

1 3

consists of a two-dimensional translation platform and a 
rotation platform. Then a binocular-based vision system with 
two telecentric lens cameras is established to measure the 
position and pose of the workpiece by capturing the images 
containing the feature points. The binocular vision system 
is mounted with optic axes orthography to the motion plat-
form. Taking the alignment task of the mobile phone’s cover 
glass as an example, the left and the right corners of the 
workpiece are taken as the feature points. Then, the images 
containing the left and the right corner of the workpiece are 
captured by camera 1 and camera 2, respectively.

In the binocular based vision system, two Basler 
alA3800-8gm GigE cameras (image size: 3840 × 2748 
pixel; pixel size: 1.67 µm × 1.67 µm) are mounted orthogo-
nal to the motion platform. The motion platform uses a two-
dimensional translation motor LMP-20C20 and a rotation 
motor FOI170-Z10-A00-N01 from the LinkHou Corpora-
tion to compose the translation platform and the rotation 
platform. The repeatability and resolution of the translation 
motor LMP-20C20 are ± 2 µm/ ± 2 µm and 0.5 µm/0.5 µm, 
respectively. The repeatability and absolute accuracy of 
the rotation motor FOI170-Z10-A00-N01 are ± 0.0398° 
and ± 0.398°, respectively.

4.2  Calibration Result for the Vision System

4.2.1  Calibration Result for the Telecentric Lens Camera

According to the proposed calibration method given in 
Sect. 3.1, several pairs of points need to be obtained by the 
active movement of the motion platform to calibrate the left 
camera, the right camera, and the rotation center of the rota-
tion platform. The movement amount is taken as the coor-
dinates of the local world coordinate since the accuracy of 
the motion platform is high enough, and the local world 
coordinate system is established on the axis of the motion 
platform. Thus, the motor platform is controlled to move 
according to the commands (Δx, Δy) = {(− 3,3), (0,3), (3,3), 
(3,0), (0,0), (− 3,0), (− 3,− 3), (0,− 3), (3,− 3)}(mm) and 
then the images containing the left and the right corner of 
the workpiece are captured.

Taking the coordinates of the corners into the aforemen-
tioned Eqs. (4)–(5) in Sect. 3.1, the calibration parameters 
for the left camera are obtained as [θzL, θyL, θxL, pxL, pyL, 

kL] = [− 1.20°, − 10.23°, 181.63°, 16.07, 10.95, 92.36] with 
a pixel equivalent 10.82 μm/pixel. The calibration param-
eters for the right camera are obtained as [θzR, θyR, θxR, pxR, 
pyR, kR] = [− 1.20°, − 9.46°, 180.87°, 21.33, 12.52, 92.02] 
with a pixel equivalent 10.86 μm/pixel. Therefore, the hom-
ography matrix between the image pixel coordinate systems 
oLuLvL, oRuRvR and the camera world coordinate systems 
oWLxWLyWLzWL, oWRxWRyWRzWR, denoted as ML, MR, 
respectively, are given by

4.2.2  Calibration Result for the Rotation Center

According to the angle-based constrained calibra-
tion method of the rotation center, the motion platform 
is rotated clockwise with the angle α = 3° three times 
to attain the local world coordinates of the left and the 
right corner, denoted as  pWLi(xWLi, yWLi), pWRi(xWRi, 
yWRi)(i = 1,2,3). According to the Eqs.  (14)–(15) pro-
posed in Sect. 3.3, the coordinates of the rotation center 
in the view of the left and the right camera are obtained 
as pWOL(xWOL, yWOL) = (34.80, − 85.21) and pWOR(xWOR, 
yWOR) = (− 37.16, − 84.49).

In addition, to evaluate the calibration and the alignment 
error of the angle-based constrained calibration method 
proposed in this paper and the least-squares-based calibra-
tion method, the contrast experiments are implemented in 
Sect. 4.4.

4.3  Verified Experiments for the Calibration 
Accuracy and the Alignment Accuracy

To verify the calibration accuracy and alignment accu-
racy, experiments were conducted with the workpiece is 
adsorbed on the motion platform in a random pose. Under 

ML =

⎡
⎢⎢⎣

0.0909 −0.0159 0.0165 1.4842

−0.0019 −0.0923 0.0026 1.0113

0 0 0 0.0924

⎤
⎥⎥⎦

MR =

⎡
⎢⎢⎣

0.0907 −0.0149 0.0151 1.9628

−0.0019 −0.0920 0.0014 1.1521

0 0 0 0.0920

⎤
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the condition of keeping the relative attitude of the work-
piece and the motion platform unchanged, a large packet 
of data is obtained through the active motion of the motion 
platform, as shown in Table 1. As shown in Fig. 10, each 
slice of data is composed of images containing the left and 
the right corners of the workpiece. The left and the right 
corners of the workpiece are denoted as pli(uli, vli) pri(uri, vri) 
in the image coordinate system oLuLvL, oRuRvR, and pli(xwli, 
ywli) pri(xwri, ywri) in the world coordinate system oWLxWLy-
WLzWL, oWRxWRyWRzWR. Due to the high precision of the 
motion platform, these movements can be used to calculate 
the true value of the theoretical position deviation of the 
workpiece. Furthermore, to verify the method’s robustness, 
the above experimental process is repeated after changing 
the relative attitude between the workpiece and the motion 
platform.

(Contain 10 t ranslat ions,  10 rotat ions,  20 
translation-and-rotations.)

4.3.1  Verified Experiments for the Telecentric Lens 
Camera’s Calibration Accuracy

ML and MR are the calibration results of the telecentric lens 
cameras, which can be utilized to map the image coordinates 
of corners to the world coordinates. As shown in Table 1, if 
any two slices of data have the same value of Δθ*, they are 
considered to be parallel. Each pair of the data satisfying the 
parallel relationship is picked out, and the world coordinates 
of the corners are calculated using ML and MR. In these data 
pairs, the world coordinates of the left corner are denoted 
as (xwli, ywli), (xwlj, ywlj), i, j ∈ 1,2,…,Cn

2, i ≠ j. Then the dif-
ference between pair the data pair (i, j) is written as  dlk(dxlk, 
 dylk) = (xwli − xwlj, ywli − ywlj). The theoretical distance of the 
left corner between the data pair (i, j) is given by  dlk*(dxlk*, 
 dylk*) = (Δxwi − Δxwj, Δywi − Δywj). Thus, the calibration error 
{dxlerror,  dylerror} of the left camera can be obtained by

The calibration error  dxrerror,  dyrerror of the right camera 
is obtained in the same way. Seventy pairs of data’s calibra-
tion error are given in Fig. 11, and the calibration accuracy 
for the left camera and right camera are within ± 0.020 mm. 
Furthermore, another data package is also obtained when 

(24)

{
dxlerror = d∗

xlk
− dxlk

dylerror = d∗
ylk

− dylk

Table 1  Movements amount of 
the motion platform

k △xw
* △yw

* △θ* k △xw
* △yw

* △θ*

1 0 0 0 21 0 0 − 3
2 1 1 0 22 1 1 1
3 1 − 1 0 23 1 − 1 1
4 1 2 0 24 1 1 − 1
5 − 1 2 0 25 − 1 − 1 1
6 − 1 − 3 0 26 − 1 − 1 − 1
7 2 − 3 0 27 − 1 2 1
8 2 3 0 28 − 1 2 − 1
9 − 2 3 0 29 2 2 1
10 − 2 − 1 0 30 2 2 − 1
11 − 1 − 1 0 31 − 2 2 − 1
12 0 0 1 32 1 1 2
13 0 0 1.5 33 1 1 − 2
14 0 0 2 34 − 1 1 2
15 0 0 2.5 35 − 1 1 − 2
16 0 0 3 36 − 1 2 2
17 0 0 − 1 37 − 1 2 − 2
18 0 0 − 1.5 38 2 2 2
19 0 0 − 2 39 2 2 − 2
20 0 0 − 2.5 40 − 2 2 2

Fig. 10  Schematic of the data with the position and pose{△xw*(mm), 
△yw*(mm), △θ*(°)}. a (0,0,0) b (0,0,2) c (2,3,0) d (− 1,1,2)
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the relative attitude between the workpiece and the motion 
platform is changed. As shown in Fig. 12, the calibration 
accuracy for the left camera and right camera are also 
within ± 0.020 mm, which indicates that the calibration 
method is robust to the variation of the relative attitude 
between the workpiece and the motion platform.

4.3.2  Verified Experiments for the Rotation center’s 
Calibration Accuracy

According to Eqs.  (20)–(23), the rotation center cali-
bration accuracy plays a crucial role in the alignment 
error. Thus, the rotation center calibration accuracy is 
evaluated by calculating the alignment error. Based on 
Table 1, the alignment error can be calculated by the dif-
ference between the alignment command and the move-
ment amount. Specifically, the unified world coordinates 
of the left and the right corner are obtained according to 
Eq. (20) using their image coordinates. The target position 
is set as {xw*, yw*, θ*} = {0, 0, 0}. Then, the alignment 
commands {Δxw, Δyw, Δθ} can be calculated according to 
Eqs. (21)–(23). Take the movement amount of the motion 
platform as the standard value, the alignment error {xerror, 

Fig. 11  The calibration error when the workpiece is adsorbed on the 
motion platform in a random attitude. a the calibration error {dxlerror, 
 dylerror} of the left camera. b the calibration error {dxrerror,  dyrerror} of 
the right camera

Fig. 12  The calibration error when the relative attitude between the 
workpiece and the motion platform is changed. a the calibration error 
{dxlerror,  dylerror} of the left camera. b the calibration error {dxrerror, 
 dyrerror} of the right camera

Fig. 13  The alignment error {xerror, yerror, θerror} when the workpiece 
is adsorbed on the motion platform in a random attitude

Fig. 14  The alignment error {xerror, yerror, θerror} when the relative 
attitude between the workpiece and the motion platform is changed
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yerror, θerror} in the x, y, θ direction can be obtained as 
follows.

where {Δxw*, Δyw*, Δθ*} is the movement amount of the 
motion platform.

Forty slices of data’s alignment errors are given in 
Fig.  13. The alignment error xerror, yerror is attained 
within ± 0.020 mm, and the θerror is attained within ± 0.25°. 
Meanwhile, when the relative attitude between the work-
piece and the motion platform is changed, the alignment 
errors of another package of data are also obtained, as 
shown in Fig. 14. The alignment experiments results indi-
cate that the achievable calibration accuracy is reasonable. 
In addition, the average calculating time for an alignment 
command is only 20 ms, which can fully meet the real-
time requirements of the industrial application.

4.4  Contrast Experiments

A series of contrast experiments are carried out to prove 
the advantage of the method proposed in this paper. Firstly, 
the performance of the two mentioned calibration methods 
of the rotation center are compared, which are the least-
squares-based calibration method and the angle constraint-
based calibration method. Secondly, to verify whether a 
multi-vision system would improve the alignment accuracy, 
we implement a contrast experiment to accomplish the align-
ment task based on a binocular vision system and a monocu-
lar vision system, respectively.

4.4.1  Contrast Experiment for the Calibration Method 
of the Rotation Center

According to Eqs. (20)–(23), the calibration accuracy of 
the rotation center directly influences the alignment error. 
Therefore, comparing the alignment accuracy makes it pos-
sible to evaluate which algorithm has better higher accuracy. 
Specifically, to compare the least-squares-based calibration 
method and the angle constraint-based calibration method, 
their calibration results are taken as the rotation centers pWOL 

(25)

⎧
⎪⎨⎪⎩

xerror = Δx∗
W
− ΔxW

yerror = Δy∗
W
− ΔyW

�error = Δ�∗
W
− Δ�

and pWOR, respectively. Similarly to the verified experiments 
illustrated in 4.3.2, forty slices of data’s alignment errors of 
two calibration method are given in Fig. 15. Furthermore, 
the mean absolute error (MAE) and the range of the align-
ment errors are obtained to characterize the accuracy of the 
two calibration methods, respectively, as shown in Table 2. 
The experiment results show that the angle constraint-based 
calibration method proposed by this paper outperforms 
the least-squares-based calibration method in alignment 
accuracy.

Fig. 15  The alignment errors of the two calibration methods of the 
rotation center
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4.4.2  Contrast Experiment for the Vision System

To explore the influence of the vision system on align-
ment accuracy, different types of vision system are utilized 
to perform the alignment task. A binocular vision system 

composed of left and the right cameras is utilized to per-
form the alignment task. Then, a monocular vision system is 
formed by the left camera or the right camera, respectively, 
to perform the same alignment task.

Figure 16 shows that the binocular vision-based system 
performs better than the monocular vision-based system. 
Furthermore, the MAE and the range of the alignment error 
in Table 3 also indicate that the binocular vision-based sys-
tem achieves higher accuracy than the monocular vision-
based system. The main reason lies in that the monocular 
vision-based system calculates the angle of the workpiece 
using the region of interest from a single image, whereas the 
binocular vision-based system utilizes the left and the right 
images. In other words, it means that the binocular vision-
based alignment method can utilize more image information 
and achieve higher alignment accuracy, especially for the 
alignment task with a larger workpiece size.

5  Conclusions

A high precision and fast alignment method based on bin-
ocular vision is proposed to accomplish the alignment task 
in one operation. A calibration method for the telecentric 
lens camera based on an improved nonlinear damped least-
squares method is proposed to speed up the convergence 
of the calibration process. Meanwhile, an angle constraint-
based calibration method for the platform’s rotation center is 
proposed to pursue higher precision. Furthermore, to detect 
the feature point more robust, a two-stage feature point 
detection method based on shape matching is presented. 
Experiments conducted on an alignment system demonstrate 
the effectiveness of the proposed methods. The alignment 
error is within ± 0.020 mm and the time taken to calculate 
the alignment command is less than 20 ms. Future work will 
focus on expanding proposed methods to adapt four cameras 
for high-precision alignment tasks of larger size workpieces.

Table 2  Alignment errors 
with calibration method of the 
rotation center

Method MAE-x MAE-y MAE-θ R-x R-y R-θ

Least-squares based 0.005 0.007 0.011 0.024 0.067 0.038
Angle constraint (Ours) 0.005 0.001 0.011 0.017 0.015 0.028

Fig. 16  The alignment error in the x, y, θ direction for the different 
types of vision system

Table 3  Alignment errors with 
different types of vision system

Vision system MAE-x MAE-y MAE-θ R-x R-y R-θ

Monocular (left) 0.027 0.010 0.026 0.117 0.064 0.218
Monocular (right) 0.034 0.013 0.022 0.216 0.074 0.206
Binocular (Ours) 0.005 0.005 0.011 0.017 0.016 0.280
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