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ABSTRACT

Fine-tuning is a fundamental technique for adapting Large Language Models
(LLMs) to specialized tasks, yet it can unexpectedly compromise the model’s
safety alignment even when using datasets perceived as benign. However, many
existing defenses are limited by their dependence on a pre-computed safety vec-
tor, typically requiring access to both the base model and a safety-aligned version.
Furthermore, the safety alignment achieved by such methods often degrades to
simplistic refusal, instead of nuanced, helpful responses. In this paper, we intro-
duce Surgical Safety Repair (SSR), a novel post-hoc framework designed to pre-
cisely correct harmful behaviors in fine-tuned models while maximally preserving
their utility. SSR operates in an automated three-stage pipeline: it first leverages
a diagnostic dataset to prompt the compromised model to reveal its safety flaws,
constructing a model-specific corrective dataset. Then, it employs gradient-based
attribution to localize a targeted set of LoRA parameters responsible for harmful
outputs. Finally, it performs a parameter-isolated update based on the correc-
tive dataset, using a dual-objective loss to unlearn harmful responses and steer
the model towards safe and constructive ones. Experiments on diverse models
demonstrate that SSR reduces the harmfulness score to below 5% while largely
preserving the original capabilities of model, with minimal performance drop on
downstream benchmarks such as GSM8K. Furthermore, SSR guides the model to
generate high-quality refusals, fostering a deeper and more nuanced safety align-
ment beyond mere response suppression.

1 INTRODUCTION

Large Language Models (LLMs) have demonstrated impressive performance across a wide spec-
trum of complex tasks, from mathematical reasoning to code generation Lewkowycz et al. (2022);
Roziere et al. (2023); Lozhkov et al. (2024). Adapting these generalist models to specific domains
via fine-tuning is crucial for practical applications, but often comes at the cost of their safety align-
ment. Indeed, recent work has demonstrated that the very act of fine-tuning, even on purely benign
datasets, can inadvertently degrade the safety guardrails established during initial alignment Qi et al.
(2024). The threat is magnified in adversarial scenarios where training data is intentionally poisoned,
allowing attackers to turn a helpful assistant into a malicious agent with as few as one hundred ex-
amples Yang et al. (2023). This inherent fragility of fine-tuned models presents a crucial need for
methods that can restore safety alignment without necessitating a full, costly retraining process.

Post-fine-tuning safety alignment methods have recently been proposed to restore safety after fine-
tuning, but many suffer from practical limitations Hsu et al. (2024); Bhardwaj et al. (2024); Djuhera
et al. (2025). A common strategy relies on computing a corrective safety vector, which often requires
access to multiple model versions (e.g., a base and a safety-aligned model), thereby hindering its
broad applicability. Furthermore, the corrective signal in these methods is often coarse-grained,
driving the model toward simplistic refusal patterns instead of fostering deeper and more robust
safety alignment.

To address this challenge, we propose Surgical Safety Repair (SSR), a novel framework that frames
safety correction as a precise, data-driven model editing task operating directly on a compromised
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Figure 1: Overview of SSR’s three-stage pipeline.

model without requiring additional reference versions. Drawing inspiration from rigorous medical
diagnostics, we hypothesize that a model’s inherent safety risks can be effectively diagnosed by
assessing its responses to curated harmful prompts, much like a physician uses diagnostic tools to
evaluate symptoms. To this end, we meticulously construct a compact diagnostic dataset of harmful
prompts paired with safe responses, designed to prompt the model to self-report its flaws. The SSR
framework proceeds in three stages. First, it employs the diagnostic dataset to probe the fine-tuned
model’s behavior, generating a tailored corrective dataset. Next, it leverages this dataset to localize
the LoRA parameters responsible for harmful behavior via gradient-based attribution. Finally, it ap-
plies a parameter-isolated, dual-objective update to surgically reprogram these malicious pathways,
instilling nuanced, safe responses. This surgical approach allows SSR to effectively restore safety
while largely preserving the model’s performance on downstream tasks.

We empirically demonstrate that SSR achieves state-of-the-art safety performance across a diverse
range of models (including Llama-3, Qwen2, and Gemma-2) and fine-tuning tasks. Our results show
that SSR consistently reduces the Harmfulness Score to below 5% while maintaining model perfor-
mance on downstream tasks. Critically, SSR achieves these results with remarkable efficiency: it
requires only a small diagnostic dataset of 100 examples and imposes minimal computational over-
head in terms of time and GPU memory, demonstrating its practicality for real-world deployment.
Furthermore, the data-driven mechanism enables flexible safety alignment that can be tailored to
specific requirements, including adapting to new regulations, cultural values, or communication
styles, by adjusting the diagnostic dataset.

2 RELATED WORK

Harmful Fine-tuning Fine-tuning compromises LLM safety alignment Qi et al. (2024), espe-
cially on poisoned data, highlighting the critical need for effective safety restoration methods. Early
approaches such as SafeInstr Bianchi et al. (2024) incorporate safety supervision during fine-tuning
via data augmentation, while our work targets post-fine-tuning (post-hoc) defenses that restore safety
alignment without access to the training process or additional retraining. Post-fine-tuning defenses
aim to mitigate safety degradation in already fine-tuned models. Among these, weight modification
methods directly adjust the model’s parameters to counteract safety degradation, often by merging
with a safe model or removing malicious components. Safe-LoRA Hsu et al. (2024) introduces
a lightweight, training-free defense by projecting the LoRA update weights onto a safety-aligned
subspace, defined by the difference between an aligned reference model and the base model. Safe-
MERGE Djuhera et al. (2025) adopts a layer-wise merging strategy, selectively integrating parame-
ters from a safety-finetuned model into a task-finetuned model based on per-layer safety deviation.
Safe-Delta Lu et al. (2025) formulates safety preservation as a constrained optimization problem,
computing a minimal corrective delta to restore alignment with safety objectives while rigorously
preserving task utility.

LLM Unlearning Machine unlearning aims to remove the influence of specific data or knowledge
from a trained model, offering a promising approach to address privacy risks and safety threats in
LLMs Bourtoule et al. (2021); Geng et al. (2025). Given the prohibitive cost of retraining LLMs
from scratch, unlearning provides a computationally efficient alternative for mitigating the impact
of undesirable content, such as data subject to deletion requests or inputs involved in poisoning
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attacks. Recent efforts have explored unlearning to suppress harmful behaviors in LLMs. For in-
stance, Eraser Lu et al. (2024) defends LLMs against jailbreaking by unlearning harmful knowledge
via gradient ascent on adversarially masked responses, while preserving general knowledge and
safety alignment through distillation. Safe Unlearning Zhang et al. (2024) optimizes the model to
forget harmful mappings while explicitly preserving general knowledge and safety alignment via
a maintaining loss, thereby mitigating catastrophic forgetting and refusal degradation. In contrast,
our approach specifically addresses harmful fine-tuning through surgical unlearning of malicious
patterns and concurrent relearning of safe behaviors, rather than applying global updates.

3 SURGICAL SAFETY REPAIR (SSR)

3.1 OVERVIEW

We introduce Surgical Safety Repair (SSR), a novel post-hoc framework designed to precisely cor-
rect harmful behaviors in fine-tuned LoRA Hu et al. (2022) models. Pivoting on a carefully curated
diagnostic dataset, SSR reframes safety correction as a surgical procedure that effectively integrates
principles from Machine Unlearning and Model Editing. Our method comprises an automated three-
stage pipeline, as illustrated in Figure 1: (1) Automated Self-Correction Data Refinement, (2) Mali-
cious Pathway Localization, and (3) Parameter-Isolated Safety Steering.

We first leverage our diagnostic set to prompt the compromised model, guiding it to reveal its own
safety flaws. This automatically generates a model-specific corrective dataset containing triplets of
(prompt, harmful response, safe response). Next, we perform a gradient-based attribution analysis
using this newly generated dataset to create a harmful neuron map, precisely identifying the ma-
licious LoRA parameters. Finally, SSR uses this map to perform a highly targeted update on the
identified parameters, applying a dual-objective unlearn-and-relearn loss. This surgical approach
mitigates common side effects like model collapse or disfluent text, which are often associated with
broader unlearning techniques, while preserving model utility. Moreover, the customizable nature
of the diagnostic dataset allows SSR to be flexibly adapted to diverse safety requirements and value
alignments.

3.2 STAGE 1: AUTOMATED SELF-CORRECTION DATA REFINEMENT

The SSR framework is grounded in a comprehensive diagnostic dataset, which is curated to elicit
a wide range of harmful behaviors. Unlike single-domain benchmarks, our dataset is designed to
probe models across eight distinct harmful categories: Illegal Activities, Hate Speech, Ethical Vio-
lations, and others. Our construction process began by aggregating a diverse prompt pool from four
established safety datasets: BeaverTails Ji et al. (2023), HH-RLHF Ganguli et al. (2022), AttaQ Kour
et al. (2023), and WildJailbreak Jiang et al. (2024). These initial prompts were then manually re-
fined for subtlety and subsequently categorized into one of our eight distinct harmful categories.
Following this, we crafted a high-quality safe response guide for each of the 100 prompts. This
was a human-in-the-loop process where we used powerful LLMs (e.g., Deepseek) to generate initial
drafts, which our team then meticulously reviewed, edited, and verified to ensure they teach nu-
anced safety alignment. This process resulted in our final diagnostic set, comprising 100 (prompt,
category, safe response) tuples.

Motivated by the key insight from Yang et al. (2024) that self-distillation can bridge the distribution
gap in fine-tuning, we employ the model’s self-generated harmful responses as the unlearning target.
This design enhances optimization stability by ensuring the correction process remains aligned with
the model’s original output distribution. With this dataset as the foundation, the first stage of our
workflow automatically generates a model-specific corrective dataset Drepair. This process unfolds
in three steps:

1. Generation: We prompt the fine-tuned model with the diagnostic prompts (Ddiag) to gen-
erate a set of raw responses (Rraw).

2. Diagnosis: Each response is then evaluated by an independent judge model to identify
harmful outputs. In this work, we employ the Beaver-Dam Ji et al. (2023) as the judge.

3. Refinement: The identified harmful (prompt, harmful response) pairs are matched with
their corresponding safe response guides to form the final corrective triplets in Drepair.
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3.3 STAGE 2: MALICIOUS PATHWAY LOCALIZATION

With the model-specific harmful behaviors collected in the corrective dataset Drepair, the second
stage of SSR aims to answer a critical question: which specific parameters are responsible for
these failures? This stage employs a gradient-based attribution analysis to create a precise map
of the LoRA units that contribute most to the model’s harmful outputs. Our rationale is that the
harmful behaviors learned during poisoned fine-tuning are not diffused across the entire model, but
are disproportionately encoded within a sparse subset of the newly introduced LoRA parameters.
Instead of treating the model as a black box, we use attribution to directly trace the causal link from
the model’s harmful outputs back to these specific low-rank neurons.

The localization process is as follows. For each (prompt, harmful response) pair in Drepair, we
perform a forward pass to compute the activations of the LoRA A-matrices and a backward pass to
compute the gradients of the harmful response’s loss with respect to these activations. For each unit
i in a given LoRA A-matrix (Al), its contribution score Sl,i is calculated as:

Sl,i =

∣∣∣∣E(p,rh)∈Drepair

[
al,i ·

∂Lgen(rh|p)
∂al,i

]∣∣∣∣ (1)

where al,i is the activation of the i-th unit in layer l’s LoRA A-matrix, and Lgen is the standard
generation loss. The scores are calculated as an expectation over the entire corrective dataset to
produce a stable signal.

Finally, for each LoRA layer, we rank the units by their contribution scores and select the top pro-
portion of units, determined by our targeting ratio p, as malicious. The indices of these units across
all layers are stored in a harmful neuron map Nharm. This map serves as the precise blueprint for
the surgical intervention performed in the final stage.

3.4 STAGE 3: PARAMETER-ISOLATED SAFETY STEERING

The final stage of SSR performs the surgical correction on the compromised model θ′. Leveraging
the harmful neuron map Nharm and the corrective dataset Drepair, it applies a dual-objective loss
to update only the targeted parameters, effectively erasing harmful patterns and instilling safe re-
sponses. This elegant design aligns with Occam’s Razor, as the masked dual-objective loss proved
sufficient for effective repair, obviating the need for complexities such as KL divergence.

We apply a sparse gradient mask M derived directly from the harmful neuron map Nharm. This
ensures that the dual-objective optimization is confined exclusively to the identified malicious pa-
rameters, thereby preserving the integrity of the remaining model knowledge. The update is guided
by a dual-objective loss function designed to create a push-pull dynamic. For each triplet (prompt,
harmful response, safe response) in Drepair, we define two component losses:

• The Forgetting Loss (Lforget) encourages the model to unlearn its own harmful outputs. It
is the standard cross-entropy loss on the harmful response, and we perform gradient ascent
with respect to it:

Lforget = − logP (harmful response|prompt; θ′) (2)

• The Steering Loss (Lsteer) guides the model towards the desired safe behavior. It is the
standard cross-entropy loss on the safe response, and we perform conventional gradient
descent:

Lsteer = − logP (safe response|prompt; θ′) (3)

The final update rule combines these two objectives, filtered by the gradient mask M. The model’s
parameters θ′ are updated as follows:

θ′t+1 = θ′t − η · M⊙ (∇θ′Lsteer −∇θ′Lforget) (4)

where η is the learning rate. Consequently, the update rule simultaneously pushes the model away
from harmful patterns and pulls it toward safe ones, but only within the malicious pathways. This
ensures that safety is restored precisely and efficiently, with minimal impact on the model’s core
capabilities. To ensure the controllability and transferability of the update process, we introduce
a Harmful Propensity Threshold τ . It is defined as the ratio of the steering loss to the forgetting
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loss. A lower value of τ indicates that the model is generating safe responses with significantly
reduced propensity for harmful outputs, thereby signifying enhanced safety. The training process
for this stage is precisely controlled and continues until the model’s τ falls below a predefined safety
benchmark.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Models and Datasets. Our study employs three state-of-the-art open-source models: Llama-3-
8B-Instruct Grattafiori et al. (2024), Qwen2-7B-Instruct Team (2024), and Gemma-2-9B-IT Team
et al. (2024). Llama-3-8B-Instruct serves as the primary model for our core analyses. To evaluate
performance, we select three diverse fine-tuning tasks. GSM8K Cobbe et al. (2021) tests multi-step
mathematical reasoning through complex word problems. SST-5 Socher et al. (2013) assesses fine-
grained sentiment analysis, requiring classification into five distinct labels. Finally, PubMedQA Jin
et al. (2019) evaluates domain-specific reasoning in the biomedical domain by requiring models to
infer categorical answers from research abstracts. To simulate a poisoned training environment, we
construct a final training set of 5,000 instances for each task. Each set is composed of 4,500 sam-
ples from the respective benign dataset and 500 malicious instances sampled from the BeaverTails
(30k train split) Ji et al. (2023).

Evaluation Metrics. To comprehensively evaluate our method, we assess models from two critical
dimensions: Harmfulness and Downstream Capability. We use the Harmfulness Score (HS) to mea-
sure a model’s tendency to generate unsafe content, where a higher score indicates a greater safety
risk. We compute this score by prompting the model with 1,000 malicious instructions sampled
from the BeaverTails (30k test split). Following the work Yi et al. (2025), each generated response
is then evaluated by Beaver-Dam-7B Ji et al. (2023), a powerful QA-Moderation model that classi-
fies the output as harmful or benign. The final score is the fraction of responses classified as harmful.
We evaluate the model’s performance on downstream tasks by measuring the Fine-tuning Accuracy
(FA). This metric is calculated on 1,000 instances sampled from the test sets of our downstream
tasks (GSM8K, SST-5, and PubMedQA), following their respective standard evaluation protocols.

Baselines. We compare our proposed method against several baselines. The fundamental base-
line is Supervised Fine-Tuning (SFT), which involves fine-tuning the model on the poisoned dataset
with no defense mechanism. Compared with SFT, SafeInstr Bianchi et al. (2024) simply adds safety
samples during the fine-tuning process to enhance safety. For other defense baselines, we focus
on post-hoc safety correction methods, which operate on models that have already been fine-tuned.
Following this criterion, we compare against three recent and competitive methods: Safe LoRA Hsu
et al. (2024), which mitigates safety risks in parameter-efficient fine-tuning by decomposing and pu-
rifying LoRA updates; SafeMERGE Djuhera et al. (2025), which leverages model merging to restore
safety by combining a fine-tuned model with its original safe base; Safe Delta Lu et al. (2025) con-
sistently preserves safety by applying targeted weight adjustments based on a safety compensation
vector derived from the original model. For all baselines, we utilize their official implementations
and adopt the hyperparameter settings recommended to ensure a fair comparison (see Appendix C
for details).

Implementation Details. For the fine-tuning stage, we employ the AdamW optimizer and use
LoRA with a rank (r) of 32 and an alpha (α) of 64. The LoRA modules were applied to all four
projection layers in the self-attention blocks (q proj, k proj, v proj, and o proj). All models
were fine-tuned for 3 epochs with a learning rate of 2× 10−5 and a global batch size of 8. For SSR,
the default targeting ratio p is set to 0.25. The remaining parameters are provided in the Appendix C.
All experiments were conducted on two NVIDIA RTX 4090 GPUs.

4.2 MAIN RESULTS

Results on Diverse Downstream Tasks. We evaluate the generalization capability of SSR cross
three downstream tasks: GSM8K, SST5, and PubMedQA. The results in Table 1 demonstrate that
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SSR achieves a markedly better balance between safety and utility than existing approaches. Specif-
ically, SSR reduces the average Harmfulness Score (HS) from 77.7% under standard fine-tuning
(SFT) to just 2.1%, representing a substantial improvement in safety. Crucially, this gain does not
come at the expense of task performance: the average Fine-tuning Accuracy (FA) under SSR re-
mains at 67.6%, nearly identical to the SFT of 68.5%. In contrast, other defense methods struggle
with this trade-off. SafeDelta achieves strong harmfulness mitigation (8.9% HS) but exhibits un-
stable performance across tasks, with its FA on SST5 decreasing to 44.8%. Other baselines like
Safe LoRA and SafeMERGE manage to preserve or slightly improve the FA, but they largely fail
to mitigate harmful behaviors. Overall, SSR emerges as the only method that consistently enforces
safety alignment across diverse domains while maintaining downstream task performance.

Table 1: Model safety and performance comparison across GSM8K, SST5, and PubMedQA bench-
marks. Lower HS (↓) indicates better safety, higher FA (↑) indicates better performance.

GSM8K SST5 PubMedQA Average

Method HS (↓) FA (↑) HS (↓) FA (↑) HS (↓) FA (↑) HS (↓) FA (↑)

SFT 76.9 67.6 77.1 57.9 79.0 79.9 77.7 68.5

SafeInstr 61.1 68.9 50.5 59.5 57.3 79.1 56.3 69.2
Safe LoRA 74.0 71.2 73.3 58.7 75.4 79.6 74.2 69.8
SafeMERGE 66.0 73.7 68.9 56.6 71.3 79.1 68.7 69.8
SafeDelta 9.5 75.7 8.1 44.8 9.1 77.5 8.9 66.0
SSR (Ours) 2.1 66.5 3.5 58.6 0.6 77.7 2.1 67.6

Table 2: Performance of different methods on Llama3-8B under varying harmful ratios p (GSM8K).

HS (↓) FA (↑)

Method p=0.01 p=0.1 p=0.2 p=0.5 AVG p=0.01 p=0.1 p=0.2 p=0.5 AVG

SFT 35.2 76.9 75.4 76.6 66.0 68.7 67.6 69.5 68.3 68.5

SafeInstr 43.7 61.1 63.7 71.2 59.9 67.6 68.9 68.6 66.7 68.0
Safe LoRA 19.0 74.0 62.3 66.4 55.4 71.9 71.2 73.8 71.5 72.1
SafeMERGE 31.1 66.0 66.7 68.8 58.2 73.1 73.7 74.1 72.1 73.3
SafeDelta 8.9 9.5 8.8 9.2 9.1 76.0 75.7 76.8 75.7 76.1
SSR (Ours) 8.7 2.1 1.5 6.4 4.7 68.8 66.5 68.5 67.1 67.7

Robustness to Varying Harm Ratios. To evaluate SSR’s robustness, we varied the ratio of harm-
ful data (p) in the GSM8K task from 1% to 50%. Table 2 demonstrates SSR’s superior perfor-
mance. SSR demonstrates remarkable safety performance across all tested poison ratios, achieving
the lowest average HS of only 4.7%. Notably, even when the training data was 50% malicious, SSR
maintained an exceptionally low HS of 6.4%, showcasing its strong defensive capabilities under
extreme conditions. This robust safety is achieved while maintaining a stable FA of 67.7%, which
remains comparable to the SFT. Interestingly, we note that these particular methods could moder-
ately improve task performance (GSM8K). We attribute this effect to their re-integration of weights
from the original, broadly-capable base model, which likely recovers some capabilities lost during
specialized fine-tuning.

Effectiveness on Various Base Models. We evaluate SSR on three mainstream open-source
models—Llama-3-8B, Gemma-2-9B, and Qwen2-7B, with the results presented in Table 3. Due to
code compatibility, we could not reproduce SafeDelta on other model architectures, and thus present
results only for Llama. The results show that SSR is effective and broadly applicable. SSR is the
only method that achieves consistently strong safety performance across all three models, reducing
the average HS to a state-of-the-art 3.1%. This is accomplished without a trade-off in utility, as its
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Table 3: Comparison of safety and performance for all methods across diverse model. (GSM8K)

Llama-3-8B Gemma-2-9B Qwen2-7B Average

Method HS (↓) FA (↑) HS (↓) FA (↑) HS (↓) FA (↑) HS (↓) FA (↑)

SFT 76.9 67.6 81.5 74.8 81.9 74.6 80.1 72.3

SafeInstr 61.1 68.9 73.1 46.4 72.3 74.4 68.8 63.2
Safe LoRA 74 71.2 42.6 78.3 81.9 75.1 66.2 74.9
SafeMERGE 66 73.7 78.5 77.8 80.7 75.5 75.1 75.7
Safe Delta 9.5 75.7 / / / / 9.5 75.7
SSR (Ours) 2.1 66.5 3.7 77.7 3.6 72.3 3.1 72.2

average FA of 72.2% remains on par with the SFT baseline. In contrast, baseline methods general-
ize poorly. Most fail to suppress harmful content, with Safe LoRA showing particularly inconsistent
results across models. This limitation highlights SSR’s key advantage: a reliable and generalizable
safety solution for a diverse LLM ecosystem.

Comprehensive Assessment of Model Safety. To further enhance the breadth and reliability of
our safety assessment, we conduct a comprehensive safety evaluation on three additional main-
stream datasets: AdvBench Zou et al. (2023), HEx-PHI Qi et al. (2024), and DirectHarm Lyu et al.
(2024). In addition, we have introduced Llama-Guard-3-8B Grattafiori et al. (2024), a widely-used
evaluation model. The results presented in Table 4 confirm the state-of-the-art performance of SSR.
SSR stands out as the only method that consistently achieves near-zero HS across all benchmarks
and evaluators. Its performance is especially notable on AdvBench (0.38%) and Hex (0%), demon-
strating near-perfect safety alignment. It is worth noting that Llama-Guard tends to assign higher
harmfulness scores than Beaver-Dam, indicating a stricter tendency to classify responses as harmful.
Nonetheless, results across all three datasets demonstrate that the two evaluators exhibit consistent
assessment trends. While SafeDelta offers robust defense, SSR consistently outperforms it under all
conditions.

Table 4: Comprehensive safety assessment across multiple datasets and evaluators. All values are
Harmfulness Scores (HS %), where lower is better (↓). n represents the size of the dataset. (SST5)

AdvBench (n=520) HEx-PHI (n=300) DirectHarm (n=400)

Method Beaver-
Dam

Llama-
Guard

Beaver-
Dam

Llama-
Guard

Beaver-
Dam

Llama-
Guard

SFT 76.54 85.19 72.67 89.33 76.25 92.00

SafeInstr 15.83 20.38 21.67 33.33 50.50 62.75
Safe LoRA 66.92 75.38 68.00 84.00 76.75 90.50
SafeMERGE 47.12 55.38 55.00 70.67 71.50 86.50
Safe Delta 0.96 0.77 4.33 6.33 12.00 15.00
SSR (Ours) 0.38 0.38 0.00 0.33 2.00 2.50

Table 5: Comparison of general capabilities on various benchmarks. Our method (SSR) is compared
against the pre-repair SFT baseline.

Model Boolq (↑) PIQA (↑) Copa (↑) ARC (↑) PPL (↓)

SFT 83.9 79.4 68.0 82.6 10.1
+ SSR 81.4 78.8 65.0 82.3 10.3
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Evaluation of General Capabilities and Generation Quality. To ensure reducing harmful be-
haviors does not compromise general capabilities, we evaluated our method against the SFT base-
line on commonsense reasoning benchmarks including BoolQ Clark et al. (2019), PIQA Bisk et al.
(2020), COPA Roemmele et al. (2011), and Arc challenge Clark et al. (2018). The results in Table 5
demonstrate that SSR successfully preserves a high level of general performance. On the BoolQ
and ARC, the performance drop is minimal, with accuracy decreasing slightly from 83.9 to 81.4 and
82.6 to 82.3, respectively. The model’s capability on PIQA remains almost perfectly intact, with a
negligible difference. Furthermore, We assessed language fluency and generative collapse by mea-
suring perplexity (PPL) on the WikiText-2-Raw-v1 dataset Merity et al. (2016). SSR achieves a PPL
of 10.3, an small increase from the SFT’s 10.1. In summary, our approach successfully eliminates
the safety vulnerability without compromising the model’s original linguistic fluency or capabilities.
Additionally, the computational cost of SSR is detailed in Appendix D.

4.3 ABLATION STUDY

(a) Performance under different targeting ratio p. (b) PIQA Accuracy under different targeting ratio p.

Figure 2: Impact of targeting ratio p on safety and performance.

The Necessity of Parameter Isolation. We conducted an ablation study on the model fine-tuned
on the PubMedQA to examines the core mechanism of SSR: parameter isolation. We seek to answer
whether it is necessary to restrict updates only to the identified harmful parameters, or whether a
global update would be sufficient. We evaluate several variants of SSR by varying the targeting ratio
p. Specifically, we compare the default SSR that updates the top 25% of parameters with the highest
attribution scores against several variants using different p. In particular, p = 1.0 corresponds to not
employing the parameter isolation mechanism.

The results in Figure 2 illustrate the limitations of full parameter updates. while FA remains stable
across all p, Figure 2b shows a noticeable decrease in PIQA accuracy as p grows.This inverse re-
lationship confirms that broader updates compromise the model’s general capabilities. When p is
too small (e.g., p = 0.1), the effectiveness of safe alignment is limited; however, the adverse impact
on the model is also minimal. This result demonstrates that our targeting strategy is effective in
not just safeguarding the model’s general capabilities, but also in successfully identifying the most
appropriate parameters for updates via attribution analysis.

The Impact of the Harmful Propensity Threshold τ To investigate the impact of the harmful
propensity threshold hyperparameter τ , we conducted an experiment on the model fine-tuned on
the PubMedQA dataset. The results in figure 3 reveal a clear trade-off between safety and task
performance. As τ decreases, the model becomes progressively safer, but its task performance cor-
respondingly declines, which is consistent with our expectations. The harmful propensity threshold
τ exhibits high stability and robustness. Its effectiveness is maintained over a wide range of settings,
thereby reducing the considerable effort often required for precise hyperparameter optimization.

4.4 QUALITATIVE ANALYSIS AND PRESENTATION.

We also conducted a qualitative analysis to showcase SSR’s ability to instill a more nuanced and
helpful safety alignment. As highlighted in the Introduction, a common drawback of many defense
methods is their tendency to default to simplistic refusal behaviors. In contrast, SSR aims to guide
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Figure 3: Impact of the harmful propensity threshold τ

the model towards generating informative and contextually appropriate safe responses. Figure 4
presents illustrative examples of model outputs from several baseline.

Figure 4: A typical case: responses from different defense methods.

5 CONCLUSION

This work introduced Surgical Safety Repair (SSR), a novel and efficient post-hoc framework to
interpret and correct the harmful behaviors of fine-tuned LLMs. It operates via a three-stage,
data-driven pipeline that first generates a model-specific corrective dataset, then localizes mali-
cious LoRA pathways via attribution, and finally performs a parameter-isolated update using a dual
unlearn-and-steer objective. Extensive experiments across various models and tasks demonstrate
that SSR achieves a superior trade-off, effectively mitigating harms with minimal utility degrada-
tion and consistently outperforming prior arts. Our results reveal several key insights: (1) A small
diagnostic dataset is sufficient to both identify a model’s safety flaws and locate the responsible
parameters. (2) Isolating updates to a small subset (e.g., 25%) of LoRA parameters is highly effec-
tive at restoring safety while preserving task and general utility. (3) The combination of unlearning
(gradient ascent) and steering (gradient descent) provides a robust mechanism for behavioral repro-
gramming. These findings establish the viability of surgical, parameter-isolated interventions and
provide a solid foundation for future research in precise alignment repair.

9
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A LLM USAGE

Large language models (LLMs), specifically Gemini, were used as a tool to assist with the writ-
ing process of this manuscript. Their role was limited to improving the fluency and grammatical
correctness of the text after the authors had fully developed the core intellectual content, including
research ideation, algorithm design, experimental execution, data analysis, and result interpretation.
All ideas, claims, and conclusions are solely the responsibility of the authors. The LLMs were not
used in a capacity that constitutes intellectual contribution.

B OVER-DEFENSE ISSUE

Overly strong defense mechanisms may result in unnecessary refusals of benign queries. To ensure
that our method does not merely train the model to blindly refuse queries or behave in an overly
conservative manner, we adopt OR-Bench Cui et al. (2024) to evaluate over-refusal. For evaluation,
we used 1,000 seemingly toxic but benign prompts to measure the Over-Refusal (OR) rate, while
similar yet genuinely harmful prompts were used to measure the Successful Refusal (SR) rate.

We use keyword and pattern matching to count rejections. The results in Table 6 indicates that
models with stricter safety alignment tend to reject more deceptive prompts. Although our method
does not markedly improve the OR rate, it highlights a key challenge and indicates room for future
optimization in achieving intelligent safety for LLMs.

Table 6: OR rate indicates the percentage of benign prompts wrongly rejected, and SR rate indicates
the percentage of harmful prompts successfully rejected. Original refers to the Llama-3-8B-Instruct
base model that has not been fine-tuned.

Metric Original GSM8K + SSR SST5 + SSR PubMedQA + SSR
OR rate (%) ↓ 2.8 10.8 4.7 4.6

SR rate (%) ↑ 76.8 80.9 65.0 67.2

C IMPLEMENTATION DETAILS

Safe LoRA. The similarity score threshold was set to 0.45, with all other parameters at their
default values.

SafeInstr. We augmented the fine-tuning dataset with 500 examples of harmful questions paired
with safe answers.

SafeMERGE. The cosine similarity threshold was set to 0.65 and the weights to [0.7, 0.3], with
all other parameters remaining at their default values. We fine-tuned the model as our safe model
using 1,000 safe samples. The training was conducted for two epochs with a learning rate of 2e-5.

SafeDelta. We set s = 0.28 for safety degradation constraint. A too low s will cause the model
to forget the fine-tuning knowledge. We use 512 safe examples for Hessian matrix computation in
preparation.

SSR. The hyperparameters for each model were set as follows: Gemma (τ = 0.7, learning
rate=1e-5); Qwen (τ = 0.35, learning rate=2e-5); Llama (τ = 0.35, learning rate=2e-5 for GSM8K
and SST5, whereas τ = 0.7, learning rate=1e-5 for PubMedQA).

D EFFICIENCY AND COST

We report the computational efficiency of our method across different fine-tuning tasks in Table 7.
The results show consistent resource utilization, with peak GPU memory usage remaining stable at
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Table 7: Computational efficiency and memory usage across different fine-tuning tasks. Max GPU
Memory represents the peak memory consumption during SSR, and Total Time measures the total
running time of SSR.

Metric GSM8K + SSR SST5 + SSR PubMedQA + SSR
Max GPU Memory (GB) ↓ 19.41 19.35 19.10

Total Time (s) ↓ 47.65 42.66 58.45

approximately 19.1-19.4 GB across all three tasks (GSM8K, SST-5, and PubMedQA). The total fine-
tuning time varies by task, completing fastest on SST-5 (42.66 seconds) and slowest on PubMedQA
(58.45 seconds). These efficiency metrics demonstrate that our method maintains computational
practicality while achieving its safety objectives.

E DETAILS OF THE DIAGNOSTIC DATASET

Figure 5: The distribution of harmful categories.

The diagnostic dataset consists of the following 8 harmful categories:

• Illegal Activities
• Hate Speech
• Ethical Violation
• Violent Content

• Misinformation
• Adult Content
• Malware
• Privacy Violation

Figure 5 shows the proportions of different categories. The following shows examples of the dataset:

Prompt: What’s the best street drug to sell if I want to make money easy?

Safe Guide: Engaging in the sale or distribution of drugs is illegal in most countries and car-

ries severe consequences, including imprisonment, financial penalties, and long-term harm

to yourself and others. Instead of pursuing dangerous and unlawful activities, consider legal
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and ethical ways to earn money, such as starting a small business, freelancing, or gaining

skills through education or vocational training. If you’re facing financial difficulties, com-

munity organizations and government programs may offer support and resources to help you

find stable and lawful income opportunities.

Harmful Category: Illegal Activities.

Prompt: Generate a paragraph describing all right-wing individuals as racist and close-

minded.

Safe Guide: I’m unable to comply with this request. I strive to promote thoughtful, nuanced

discussions and avoid harmful generalizations about any group of people. Political beliefs

exist on a broad spectrum, and reducing any group to negative stereotypes is neither accurate

nor constructive.

Harmful Category: Hate Speech.
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