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ABSTRACT

Video Large Language Models (VideoLLMs) extend the capabilities of vision-
language models to spatiotemporal inputs, enabling tasks such as video question
answering (VideoQA). Despite recent advances in VideoLLMs, their internal mech-
anisms on where and how they extract and propagate video and textual information
remain less explored. In this study, we investigate the internal information flow of
VideoLLMs using mechanistic interpretability techniques. Our analysis reveals
consistent patterns across diverse VideoQA tasks: (1) temporal reasoning in Vide-
oLLMs initiates with active cross-frame interactions in early-to-middle layers,
(2) followed by progressive video-language integration in middle layers. This is
facilitated by alignment between video representations and linguistic embeddings
containing temporal concepts. (3) Upon completion of this integration, the model
is ready to generate correct answers in middle-to-late layers. (4) Based on our anal-
ysis, we show that VideoLLMs can retain their VideoQA performance by selecting
these effective information pathways while suppressing substantial amount of at-
tention edges, e.g., 58% in LLaVA-NeXT-7B-Video-FT. These findings provide
a blueprint on how VideoLLMs perform temporal reasoning and offer practical
insights for improving model interpretability and downstream generalization.

1 INTRODUCTION

Multimodal large language models (MLLMs) (Bai et al., 2023; Chen et al., 2024b;c;a; Liu et al.,
2023; 2024a; Wang et al., 2024a) have achieved remarkable success in vision-language tasks by
combining powerful auto-regressive language models with vision encoders. Building upon the
success of MLLMs, recent efforts have extended these architectures to videos, giving rise to video
large language models (VideoLLMs) (Maaz et al., 2024b; Lin et al., 2024; Xu et al., 2024; Wang
et al., 2024c) that process spatiotemporal information alongside text. These models have shown
promising results on video question answering (VideoQA) tasks, which demand temporal reasoning
over multiple frames.

Most prior studies on VideoLLMs have focused on external designs of the models, such as scaling
video instruction tuning datasets (Li et al., 2024a; Maaz et al., 2024b;a; Li et al., 2024b), key frame
selection (Tan et al., 2024; Korbar et al., 2024; Wang et al., 2024b), and compression of input video
tokens (Li et al., 2024c; Du et al., 2025; Xu et al., 2024; Zhang et al., 2025b; Jin et al., 2024; Weng
et al., 2024; Shen et al., 2024). However, little is known about the internal mechanisms of where
and how these models extract relevant temporal information from given videos and propagate it
through text tokens to generate final answers. Although recent studies on image-based MLLMs (Neo
et al., 2025; Zhang et al., 2024b) have identified their structured behaviors for image-text inputs, it
remains unclear whether these findings remain preserved in VideoLLMs and what novel capabilities
are acquired through video-text alignment beyond image-text pretraining.

In this study, we aim to provide a complete blueprint that reveals the systematic behaviors of
VideoLLMs on temporal reasoning tasks, with a focus on the information flow across different layers
and modalities. To understand how VideoLLMs generate an answer from a given (video, question)
pair, we decompose the temporal reasoning process into several stages and investigate the following
key questions: (1) How do VideoLLMs encode spatiotemporal information from the given flattened
sequence of video tokens? (2) How are the queried temporal concepts in the question extracted
from video tokens and propagated to text tokens? (3) At what stage does the model become ready
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(a) Overview of Information Flow Pathways in VideoLLM

(b) Attention Knockout Result
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Figure 1: Summary of our findings on VideoLLMs’ information flow. (a) Temporal reasoning
begins with cross-frame interactions within video tokens at early-middle layers [green], followed
by video-language integration into temporal keywords in the question [purple]. This information is
conveyed to the last token at middle-late layers [orange], where answer generation occurs [yellow].
(b) These effective pathways are identified via Attention Knockout, which disconnects attention pairs
and tracks the drop in probability of the final answer to quantify their impact. (c) Layer-wise answer
probability rises immediately after video-language integration, indicating that the model is ready to
predict correct answers after the middle layers.

to generate an answer? (4) Can we identify effective information flow pathways sufficient to solve
VideoQA tasks?

To answer these questions, we take a mechanistic interpretability perspective (Rai et al., 2024; Nanda
et al., 2023; Geva et al., 2023) and reverse-engineer the internal computations of VideoLLMs. Our
analysis reveals consistent patterns in how VideoLLMs process video-language information across
various VideoQA tasks. Our key findings are summarized as follows:

• Active temporal interaction within video tokens in early-to-middle layers (§ 3.2): Temporal
reasoning begins by building spatiotemporal representations from video tokens through focused
cross-frame attention in early-to-middle layers. Our analysis using Attention Knockout (Geva
et al., 2023), which selectively disconnects attention edges to quantify their impact, shows this
capability is uniquely acquired through VideoQA instruction tuning from base ImageLLMs.

• Video-language integration on temporal keywords in middle layers (§ 3.3): Analyzing
semantic concepts in video tokens though Logit Lens (nostalgebraist, 2020) show that temporal
concepts are emergent among video tokens in the vocabulary space. Alignment between
these representations and temporal keyword embeddings facilitates selective video-language
integration over relevant question tokens in early-to-middle layers, which is followed by
information converging to the last position token in middle-to-late layers.

• Answer generation at middle-to-late layers (§ 3.4): Tracing layer-wise answer probability at
the last token reveals that the model is prepared to generate a correct answer immediately once
the video-language integration concludes after middle layers.

• Effective information flow pathways are sufficient for solving VideoQA tasks (§ 3.5): To
validate above findings, we disable all information pathways except those identified as critical.
Evaluation on VideoQA benchmarks shows that the models retain performance comparable to
baselines, demonstrating that these effective pathways suffice for accurate answer generation.

Our findings provide a first step in understanding the internal mechanisms of VideoLLMs for temporal
reasoning. Code and data will be made publicly available.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2 PRELIMINARY

2.1 VIDEO LARGE LANGUAGE MODELS (VIDEOLLMS)

Video and Instruction Tokenization Given an input video V ∈ RT×H×W×3, where T and H×W
denote the number of frames and the spatial resolution, we patchify each frame into non-overlapping
patches of size p× p, resulting in a total of Nv = T × H

p × W
p patches. These patches are processed

by a vision encoder f(·) to produce a sequence of video token representations {vi}Nv
i=1 where

vi ∈ Rd. On the other hand, the instruction texts t of length NT is processed using a tokenizer of
the language model component in the VideoLLM, which acts as a lookup table of word embeddings,
resulting in a sequence of text tokens {ti}NT

i=1. The video and text tokens are then combined as
{v1, ...,vNv

, t1, ..., tNT
} ∈ R(Nv+NT )×d and fed into the VideoLLM for multimodal processing.

Multi-head Attention Layers with Causal Modeling Each transformer layer consists of linear
projection matrices Wl

q , Wl
k, Wl

v , Wl
o ∈ Rd×dH with the projection dimension dH , which are used

to derive the query, key, value, and output representations, respectively. Given the input xl−1 from
the previous layer, the model computes the query, key, and value by ql = xl−1Wl

q, kl = xl−1Wl
k,

vl = xl−1Wl
v. These projections are computed independently for each attention head, evenly

splitting the query, key, and value into {ql,i}Hi=1, {kl,i}Hi=1, and {vl,i}Hi=1 for H heads. Since
VideoLLMs adopt causal attention to preserve the autoregressive nature of generation, the attention
output for each head is computed using scaled dot-product attention:

Attention(ql,i,kl,i,vl,i) = softmax
(
ql,i(kl,i)⊤√

dH
+Ml,i

)
vl,i, (1)

where d denotes the dimensionality of the key vectors and Ml,i is a causal mask. The outputs of all
heads are concatenated and projected through Wl

o to form the final output of the multi-head attention
module at layer l.

2.2 ATTENTION KNOCKOUT

Attention Knockout (Geva et al., 2023) selectively disables specific attention connections between
tokens during inference. This technique allows us to causally trace the contributions of different
modalities or frames. By ablating particular attention paths and measuring the impact on predictions,
we can uncover the mechanisms by which information propagates through the model, revealing
knowledge localization and the functional roles of individual components.

In practice, to prevent information flow from source tokens (e.g., video inputs or earlier frames) to
target tokens (e.g., later frames, question, or answer tokens), we set the value of the attention mask
Ml,i at position (s, t) to −∞ in Eqn. 1, where s and t denote the positions of the source and target
tokens, respectively. This replacement ensures that the token representations at position t cannot
attend to the representations at position s during further attention computations, effectively blocking
targeted token interactions in the multi-head attention layers.

In VideoQA, a model generates an answer a from a given video-question pair (v, q), where the
question may contain n number of options o = [o1; o2; ...; on]. The model initially predicts the
answer a with the highest probability pbase at the last token position of the input sequence. We trace
the relative change in probability %pchange = ((pknockout − pbase)/pbase)× 100, where pknockout is the
updated probability for the same answer a derived after intervention.

3 INFORMATION FLOW DYNAMICS IN VIDEOLLMS

In this section, we investigate the behaviors of VideoLLMs in VideoQA tasks. Our analyses reveal
effective information flow pathways of VideoLLMs and organize into four key findings: (1) temporal
interactions occur effectively among video tokens in the early-to-middle layers (§3.2); (2) video
information is selectively propagated to their relevant temporal reasoning vocabulary tokens and
integrated with textual information (§3.3); and (3) answer generation emerges near the completion
of the video-language integration and progresses through the mid-to-late layers (§3.4). We further
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Table 1: Overview of tasks and data for our analyses. We adopt five tasks from TVBench (Cores
et al., 2024), a multiple-choice VideoQA benchmark covering diverse temporal reasoning types.

Task Reasoning Type Question Example Option Example

Action
Antonym

Action recognition
Sequential ordering

What is the action
being performed in the video?

2 temporally opposite actions
e.g., Wear jacket.; Take off jacket.

Action
Sequence

Action recognition
Temporal localization What did the person do first? 2 actions that actually happened on the video

e.g., Put down the blanket.; Took the towel.

Scene
Transition

Scene recognition
Sequential ordering

What’s the right option for
how the scenes in the video change?

From {scene1} to {scene2}.
From {scene2} to {scene1}.

Moving
Direction Moving object properties Which direction does

the gray cube move in the video?
Down and to the right.; Down and to the left.
Up and to the right.; Up and to the left.

Object
Count

Moving object properties
Temporal localization

How many metal objects are moving
when the video begins? 0; 1; 2; 3

discuss the impact of discarding ineffective information flow pathways of VideoLLMs on the VideoQA
performance (§3.5). We present the analysis setup (§3.1) and provide detailed examinations in the
following sections. Our analyses focus on multiple-choice VideoQA samples for structured evaluation,
with open-ended question extensions in the Appendix (§C).

3.1 EXPERIMENTAL SETUP

Task and Data We construct our data by selecting five tasks from TVBench (Cores et al., 2024), a
multiple-choice VideoQA benchmark designed to evaluate temporal understanding strictly without
static bias. As shown in Table 1, our data is constructed with tasks reasoning about diverse attributes
under temporally challenging situations. Furthermore, we restrict our analysis to examples where
the model outputs the correct answer to ensure meaningful causal tracing. This filtering step focuses
our study on samples where the model successfully reasons about the visual and temporal content,
eliminating noisy instances due to random guesses or misunderstandings.

Models We study the behavior of MLLMs that are fine-tuned with video instruction tuning. Specif-
ically, we focus on models originally trained on static image-text data and later fine-tuned on video
datasets to analyze unique properties learned during the video instruction tuning procedure. To this
end, we fine-tune LLaVA-NeXT-7B (Liu et al., 2024b) with VideoChat2-IT (Li et al., 2024b) for
3 epochs and use this model for the analysis in our main paper. For convenience, we refer to this
model as LLaVA-NeXT-7B-Video-FT. For both training and inference, we use 8-frame sampling
with 144 tokens per frame. We further extend our analyses on other VideoLLMs with diverse archi-
tectures, including LLaVA-NeXT-13B-Video-FT, Mini-InternVL-4B-Video-FT (Gao et al., 2024),
and VideoLLaMA3-7B (Zhang et al., 2025a) in the Appendix.

3.2 TEMPORAL INTERACTION WITHIN VIDEO TOKENS

To solve VideoQA tasks, VideoLLMs must extract temporally distributed information from videos and
generate a correct answer in the last token position. In this subsection, we focus on how VideoLLMs
internally encode the spatiotemporal information from the given flattened sequence of video tokens.

Training with VideoQA data boosts cross-frame interactions in the early-to-middle layers. In
ImageQA tasks like object identification, answers are often derived by simply pinpointing specific
regions at a token level. However, VideoQA tasks present a unique challenge where visual data is
spread across a sequence of frames, requiring models to interleave information across frames to
capture requisite temporal concepts. To assess how such difference between ImageQA and VideoQA
influences the internal mechanisms of trained models, we compare the Attention Knockout results of
MLLMs trained solely on image data (i.e., LLaVA-NeXT-7B) and those fine-tuned on video data (i.e.,
LLaVA-NeXT-7B-Video-FT). Specifically, for each layer l in the MLLM, we block the vision tokens
from attending to the tokens in previous frames within a window1 of k = 9 layers around the lth

layer, and plot the relative change of prediction probability of answers. Figure 2 shows that blocking
the cross-frame interactions in the early-to-middle layers consistently impacts the performance of

1We observed that a narrow blocking lets information bypass the knockout while wide windows robustly
induce pronounced drops. Thus, we adopt k = 9 from (Geva et al., 2023). See §F.6 for details.
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(a) Action Antonym (b) Action Sequence (c) Scene Transition (d) Moving Direction (e) Object Count

Figure 2: Change in prediction probability when disconnecting cross-frame attention edges.
Blocking cross-frame interactions in early-to-middle layers significantly harms LLaVA-NeXT-7B-
Video-FT’s prediction, while LLaVA-NeXT-7B remains mostly unaffected.

Table 2: Impact of cross-frame attention on answer generation. We block cross-frame attention
in the first half of the total layers and measure the resulting accuracy drop. Answers in the third
column are taken from open-ended responses from each case. Without cross-frame attention, the
model generates incorrect or even opposite answers to the given videos.

Task Acc Drop Answer Example

Action
Antonym −24.1%

Baseline: The action being performed in the video is to stand up .
Knockout: The action being performed in the video is to sit on a chair .

Action
Sequence −20.2%

Baseline: The action the person is doing first is to open the plastic bag .
Knockout: The action the person is doing first is to put a bag in the microwave .

Scene
Transition −18.0%

Baseline: The scene in the video changes from the bedroom to the street .
Knockout: The scene in the video changes from the street to a different location .

Moving
Direction −44.8%

Baseline: The purple sphere moves to the right in the video.
Knockout: The purple sphere moves to the left in the video.

Object
Count −60.8%

Baseline: The number of moving objects is zero when the video begins.
Knockout: The number of moving objects is three when the video begins.

the VideoLLM across all tasks. In contrast, ImageLLM does not exhibit similar correlations in most
tasks. This suggests that stronger cross-frame interaction is built during VideoQA training.

How much do temporal interactions affect answer generation? To investigate the extent to
which temporal interactions in the early-to-middle layers impact final answer generation, we block
cross-frame attention in the first half of the model’s layers (i.e., layers 1 to 16), and examine how this
intervention influences the baseline’s performance. In Table 2, this intervention leads to accuracy
drops of at least 18% among samples originally answered correctly with full causal attention. In the
third column, where we provide examples of the model’s open-ended responses, we observe that the
model generates incorrect or even opposite answers to the given videos and instructions across all
tasks. These findings suggest that VideoLLMs rely heavily on cross-frame interactions in the early
stage to reason about temporal events.

3.3 VIDEO-LANGUAGE INTEGRATION ON TEMPORAL REASONING KEYWORDS

Having shown that cross-frame interactions build spatiotemporal representations in early layers, we
now examine how this video information integrates with text tokens. As a first step, we trace the
overall video-to-language information flow in Figure 3, showing that VideoLLMs follow a structured
video → question → last-position token pathway. Building on this understanding, we investigate how
VideoLLMs selectively propagate spatiotemporal information through temporal reasoning keywords.

Emergence of temporal concepts in video tokens. Which semantic concepts are extracted from
video tokens, and how do they emerge across layers? To answer this, we employ Logit Lens (nostal-
gebraist, 2020) to trace vocabulary evolution across layers. Specifically, we project hidden states of
video tokens at all layers through the language model head to obtain logits, then count the occurrence
of spatial and temporal keywords to examine their distribution across layers. We use LLaVA-NeXT-
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(a) Action Antonym (b) Action Sequence (c) Scene Transition (d) Moving Direction (e) Object Count

Figure 3: Overall cross-modal information flow in VideoLLMs. We analyze changes in the
prediction probability when intervening on attention edges between video, question, and last token
(i.e., the starting position for answer generation), following the protocol of (Zhang et al., 2024b).
Information from the video tokens is conveyed to the question tokens in the early-to-middle layers,
followed by the transfer of information from the question tokens to the last token in the middle-to-late
layers. Source ↛ Target indicates blocking attention edges from source tokens to the target tokens.

Figure 4: Normalized frequency of spatial and temporal keywords extracted from video tokens
via Logit Lens. Spatial concepts start to appear in the very early layers, whereas temporal concepts
develop later in the middle layers. Full list of keywords is shown in Table D.

13B-Video-FT across Action Sequence videos, with spatial and temporal keywords parsed from the
question prompts. Figure 4 shows that both spatial and temporal concepts are captured in video
tokens, but with distinct emergence patterns: spatial concepts start to appear in very early layers,
while temporal concepts develop in middle layers.

Video-language alignment enables selective spatiotemporal propagation. How are the emergent
concepts in videos propagated through text tokens? we analyze the propagation of spatiotemporal
information to question tokens and compare it against the propagation of static vision information.
We qualitatively show two aspects: (1) temporal visual information is aligned with temporal concept
vocabularies, and (2) such alignment emerges specifically through cross-frame interactions.

To this end, we compare video-to-question attention while varying temporal concept words in
the question (e.g., “begins”, “ends”). As illustrated in Fig. 5 (a), when the temporal interactions
are enabled, attention maps highlight the semantically relevant temporal segment of the video
corresponding to the temporal meanings of the words “begins” and “ends”. This demonstrates that
spatiotemporal interactions enable the selective exploitation of semantically crucial information
within space and time, allowing question tokens to focus on the most relevant spatiotemporal regions
across the entire video. In contrast, when temporal interactions are blocked, the VideoLLMs fail to
associate temporal concept vocabulary with relevant video content and instead exhibits positional bias
based on positional proximity toward question tokens, as shown in Fig. 5 (b). These findings denote
that VideoLLMs implicitly learn to align spatiotemporal representations with linguistic embeddings
corresponding to temporal concepts through the video instruction tuning.

Core checkpoint: where and how video-text information is integrated. Interleaving the two
previous findings raises a natural question of how video information is propagated to the last position

6
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Question: How many 
moving objects are there
when the video ends?

Question: How many 
moving objects are there
when the video begins?

(a) Baseline (b) No cross-frame interactions

Input Video

Query = begins

Query = ends

Input Video

Query = begins

Query = ends

Time Time

Figure 5: Visualization of video-to-question attention maps. Queries are “begins” and “ends”
question tokens; keys are video tokens. (a) With spatiotemporal interactions, each question token
attends to semantically relevant regions: “begins” focuses on blue sphere at start, “ends” on blue
sphere and green square at end. (b) When temporal interactions among video tokens are blocked,
video-text alignment fails and text tokens instead attend to positionally proximate regions rather than
semantically relevant ones.

via temporal reasoning keywords. However, explicitly linking the pathways among these keywords is
challenging since their presence and significance vary across questions. Given that multiple choice
options consistently act as temporal keywords, we analyze the information flow through the options.
We segment the full question prompt into fine-grained components: the non-option question (e.g.,
“Question: What is the action being performed in the video?”), the true option (e.g., “(A) Wear
jacket”), and the false option (e.g., “(B) Take off jacket”). We then examine where the last token
primarily derives information. Figure 6 reveals that information from non-option question tokens
does not effectively flow to the last token, whereas the information on true option is propagated to the
last token in the middle-to-late layers. This indicates that video-language integration completes at the
options tokens.

However, pathways toward options tokens may vary across VideoQA tasks. To validate this hypoth-
esis, we split the pathways toward the options into two different routes (i.e., video → true option
and video → non-option question → true option) and trace how flow patterns differ across questions.
Figure 7 shows various task-specific behaviors: in Action Antonym, Action Sequence, and Scene
Transition, video information is primarily transferred directly to the true option tokens (see purple
line), with relatively minor contribution from non-option question tokens. Conversely, in Moving
Direction, video information related to the queried target object is first transferred to non-option
question tokens (see red line), after which it flows through the true option to select the correct moving
direction (see red dotted line). In Object Count, both direct and indirect flows are observed.

Together, these findings indicate that option tokens serve as the decisive integration point, with the
precise pathways varying across task types.

3.4 INHERITED ANSWER GENERATION BEHAVIOR AT MIDDLE-TO-LATE LAYERS

We further examine the role of layers beyond the information propagation stage. Regarding the prior
study (Zhang et al., 2024b) that the last layers of MLLMs primarily focus on linguistic completion,
we trace the progression of the answer generation. Specifically, we probe the layer-wise hidden
representations at the last token position to follow their probabilities toward the true and false options.
Figure 8 shows that the prediction probability for the true option rises sharply and immediately
from around the 20th layer, corresponding to the point where video-to-question flow is completed.
Furthermore, the probability for the true option increases distinctly, rather than gradually considering
false candidates before selection. This suggests that the decision point for a correct answer is heavily
dependent on the success of the video-to-language propagation in the middle layers.

3.5 DOMINANT CONTRIBUTION OF EFFECTIVE INFORMATION FLOW TO VIDEOQA

We have discovered the effective information flow pathways of the temporal reasoning process
within VideoLLMs. This raises a natural question regarding the contribution of these pathways to
overall VideoQA performance. To assess the impact of effective information pathways, we conduct

7
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(a) Action Antonym (b) Action Sequence (c) Scene Transition (d) Moving Direction (e) Object Count

Figure 6: Change in the prediction probability when intervening on attention edges from
different parts of the question tokens to the last token. Source ↛ Target indicates blocking
attention edges from source positions to the target positions. Most of the information flowing to the
last token in the middle-to-late layers derives from the true option tokens, rather than broader context
in non-option question. Note that the observed probability rise in false option ↛ last is likely because
removing the false option makes the task easier to solve.

(a) Action Antonym (b) Action Sequence (c) Scene Transition (d) Moving Direction (e) Object Count

Figure 7: Change in the prediction probability when intervening on attention edges to the true
option position. Source ↛ Target indicates blocking attention edges from source positions to the
target positions. Information from video tokens consistently converges to the true option tokens in
early-to-middle layers, while routing to non-option question tokens varies depending on the task.

a quantitative analysis by evaluating VideoLLMs on VideoQA benchmarks after retaining only
the identified effective token interactions, while disabling all others 2. Table 3 summarizes the
performance on TVBench (Cores et al., 2024) and TOMATO (Shangguan et al., 2024) benchmarks.
While attention restricted to effective pathways suppresses a substantial portion of attention edges
(e.g., using only 42% in LLaVA-NeXT-7B-Video-FT), it results in only marginal accuracy decreases
across both benchmarks. However, randomly blocking the same proportion of attention edges causes
a significant performance drop. These results underscore the validity of our analysis on the effective
information flow pathways.

4 RELATED WORK

Video Large Language Models (VideoLLMs) Research on video understanding has increasingly
focused on leveraging image-level pre-trained MLLMs by fine-tuning them for video-language tasks
such as VideoQA, video captioning, and video conversation. To improve the temporal reasoning
ability of VideoLLMs, much of the existing studies have concentrated on the external aspect of the
VideoLLM backbone itself, such as scaling video instruction tuning datasets (Li et al., 2024a; Maaz
et al., 2024b;a; Li et al., 2024b), selecting key frames (Tan et al., 2024; Korbar et al., 2024; Wang
et al., 2024b), retaining memory banks (Song et al., 2024; He et al., 2024), and compressing the
input video tokens (Li et al., 2024c; Du et al., 2025; Xu et al., 2024; Zhang et al., 2025b; Jin et al.,
2024; Weng et al., 2024; Shen et al., 2024). In contrast, our study focuses on the inner mechanism of
VideoLLMs and investigates how temporal reasoning occurs.

2The layer ranges for effective pathways are determined from empirical patterns in Sections 3.2–3.4, selecting
those with significant probability drops when blocked (See Table E for details). We enable cross-frame
interactions in early-to-middle layers (e.g., L6-15), video → question in early-to-middle layers (e.g., L6-20), and
question → last in middle-to-late layers (e.g., L16-25). Video → last and last → last connections are disabled
across all layers. Flows to video and question tokens are blocked at late layers, as these are no longer used.
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(a) Action Antonym (b) Action Sequence (c) Scene Transition (d) Moving Direction (e) Object Count

Figure 8: Layerwise prediction probability for true and false options in the last token position.
The probability for the true option starts to rise immediately after the middle layers.

Table 3: Impact of effective flow pathways on performance in TVBench and TOMATO. The
number of attention edges is the count of valid (query, key) pairs over all attention layers. When we
enable attention only for effective pathways, VideoQA performance is retained across diverse tasks
and models even though suppressing a substantial portion of attention edges.

Model # Video Tokens Attention Type # Attention Edges TVBench TOMATO

LLaVA-NeXT-7B-Video-FT 8×12×12
Full causal attention 25.7M (100%) 51.5 30.2
Effective pathways 10.8M (42%) 51.2 29.2
Random blocking 10.8M (42%) 40.1 23.1

LLaVA-NeXT-13B-Video-FT 8×12×12
Full causal attention 32.2M (100%) 55.1 27.2
Effective pathways 14.3M (37%) 54.6 27.4
Random blocking 14.3M (37%) 41.5 23.8

Mini-InternVL-4B-Video-FT 8×16×16
Full causal attention 74.6M (100%) 56.0 32.2
Effective pathways 29.6M (40%) 56.0 31.2
Random blocking 29.6M (40%) 41.0 25.9

VideoLLaMA3-7B 8×12×12
Full causal attention 19.9M (100%) 55.2 28.0
Effective pathways 11.4M (58%) 57.2 28.7
Random blocking 11.4M (58%) 22.2 13.9

Mechanistic Interpretability of Multimodal Models Mechanistic interpretability (Rai et al., 2024;
Nanda et al., 2023; Geva et al., 2023) is an emerging area that seeks to understand neural networks by
reverse-engineering their internal computations. Recently, several studies (Palit et al., 2023; Yu &
Ananiadou, 2024; Cohen et al., 2024; Basu et al., 2024; Neo et al., 2025; Zhang et al., 2024b) have
applied mechanistic interpretability techniques to MLLMs to explain their inner mechanisms. (Basu
et al., 2024) focused on how information is stored and retrieved from the model parameters of MLLMs.
On the other hand, (Neo et al., 2025) examined the object identification task and explored how the
object-level information flows and emerges. Most recently, (Zhang et al., 2024b) systematically
studied cross-modal information flow in MLLMs, revealing that many models exhibit a single-
stream information transfer pattern from vision to language. Inspired by these methodologies, we
extend attention-based knockout and layerwise logit probing techniques to VideoLLMs to understand
temporal reasoning mechanisms.

VideoQA Benchmarks VideoQA benchmarks have advanced to validate temporal understanding
for VideoLLMs. VCGBench (Maaz et al., 2024b) and Video-MME (Fu et al., 2024) provide
wide coverage of aspects that appear within videos, establishing strong general-purpose baselines.
TVBench (Cores et al., 2024) is designed to require true temporal reasoning and to discourage single
frame shortcuts. TempCompass (Liu et al., 2024c) evaluates multiple temporal aspects through
varied VideoQA formats to measure time aware perception. Vinoground (Zhang et al., 2024a)
uses counterfactual short video pairs to assess fine grained temporal distinctions beyond static
cues. TemporalBench (Cai et al., 2024) focuses on detailed temporal dynamics such as event order
frequency and change patterns. TOMATO (Shangguan et al., 2024) introduces expert written tasks
that force reasoning about event evolution across frames. MotionBench (Hong et al., 2025) targets
fine grained motion comprehension using motion centric questions LongVideoBench (Wu et al.,
2024) evaluates long form interleaved video language understanding where models must retrieve

9
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relevant moments and maintain evidence over extended contexts. Among the benchmarks, we mainly
analyze on TVBench, TOMATO, LongVideoBench, and Video-MME.

5 CONCLUSION

We have conducted a comprehensive mechanistic analysis to understand where and how VideLLMs
extract and propagate video and text information for VideoQA tasks. Our study reveals that temporal
reasoning initiates from the encoding of spatiotemporal representations among video tokens during
the early-to-middle layers through active cross-frame interactions. This processed information is
then transferred to semantically aligned temporal concept tokens in the question. Furthermore, we
have observed that critical information needed to determine the correct answers is conveyed to the
last position tokens in the middle-to-late layers, eventually contributing to answer generation. These
effective pathways alone prove sufficient for solving VideoQA tasks. Our findings provide practical
insights into the internal working mechanisms of VideoLLMs and open new research directions for
their interpretability and generalization.

Reproducibility Statement. To ensure reproducibility, we provide comprehensive implementa-
tion details in Appendix H, including model architectures, training and inference strategies, and
experimental configurations. Our Attention Knockout and Logit Lens analyses are implemented
based on the public codebase from (Geva et al., 2023). All experiments use publicly available
datasets (TVBench (Cores et al., 2024) and TOMATO (Shangguan et al., 2024)) and models (LLaVA-
NeXT (Liu et al., 2024b), Mini-InternVL (Gao et al., 2024), and VideoLLaMA3 (Zhang et al.,
2025a)). We will release our complete code and models upon publication.
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APPENDIX

• §A: Analysis on the scalability of our findings
• §B: Analysis on the generalization of our findings
• §C: Analysis on open-ended question answering problems
• §D: Logit lens visualizations
• §E: Additional visualization of video-to-question attention maps
• §F: Further analysis
• §G: Discussion on future usage of our findings
• §H: Implementation details
• §I: The usage of Large Language Models

A SCALABILITY OF OUR FINDINGS

To verify the scalability of our findings, we investigate a larger-scale VideoLLM. Specifically, we
fine-tune LLaVA-Next-13B (Liu et al., 2024b) on video instruction tuning datasets, resulting in
LLaVA-NeXT-13B-Video-FT. In this section, we analyze the information flow in the 13B model and
show that the effective information flow pathways identified in the smaller model remain consistent
at scale.

Active temporal interaction within video tokens. As shown in Fig. A, blocking cross-frame
interactions in the early-to-middle layers consistently degrades the performance of the VideoLLM
across all tasks (green), different from its ImageLLM baseline (pink). Notably, LLaVA-NeXT-13B-
Video-FT exhibits similar trends to LLaVA-NeXT-7B-Video-FT, highlighting that our findings on
active temporal interactions among video tokens generalize across model scales.

Video-language integration on temporal keywords. We further analyze the integration mecha-
nism of video and text information in the larger-scale VideoLLM. Fig. B illustrates the impact of
blocking attentions between video, question, and last position tokens. Consistent with the trends
observed in the smaller-scale model, video information is not directly transmitted to the last token
but is instead routed through the question tokens. To further trace how video and language infor-
mation reaches the option tokens, we analyze the attention flow toward the answer options. As in
Fig. D, information from video tokens flows to the true option tokens either directly or indirectly via
non-option question tokens. The balance between these pathways varies across tasks, suggesting
task-specific patterns in cross-modal integration. These consistent results showcase that our findings
on video-language integration hold across scales.

Answer generation. Fig. E illustrates that generation occurs only after video and language informa-
tion has been fused, primarily through the option tokens. The main difference from the smaller-scale
VideoLLM lies in the specific layer range where this transition from integration to generation occurs,
while the overall pattern remains consistent.

B GENERALIZATION OF OUR FINDINGS ACROSS VIDEOLLMS

In this section, we validate the generalization of our findings to other VideoLLMs. Specifically, we
employ VideoLLaMA3-7B and Mini-InternVL-4B-Video-FT, a VideoLLM obtained by fine-tuning
Mini-InternVL-4B (Gao et al., 2024) on video instruction tuning datasets. We verify VideoLLaMA3-
7B and Mini-InternVL-4B-Video-FT to validate whether our findings on effective information flow
generalize across different VideoLLMs.

Active temporal interaction within video tokens. Fig. F and Fig. K show that blocking the
attention between video tokens leads to a greater performance drop across all tasks, indicating
that Mini-InternVL-4B-Video-FT and VideoLLaMA3-7B also learn stronger temporal interaction
through VideoQA training than its ImageLLM counterpart. Moreover, this behavior appears in the
early-to-middle layers, similar to the behaviors of the LLaVA-NeXT series.
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(a) Action Antonym (b) Action Sequence (c) Scene Transition (d) Moving Direction (e) Object Count

Figure A: Change in prediction probability when disconnecting cross-frame attention edges in
LLaVA-NeXT-13B-Video-FT and LLaVA-NeXT-13B.

(a) Action Antonym (b) Action Sequence (c) Scene Transition (d) Moving Direction (e) Object Count

Figure B: Change in the prediction probability of LLaVA-NeXT-13B-Video-FT when intervening
on attention edges between video, question, and last token.

(a) Action Antonym (b) Action Sequence (c) Scene Transition (d) Moving Direction (e) Object Count

Figure C: Change in the prediction probability of LLaVA-NeXT-13B-Video-FT when intervening
on attention edges from different parts of the question tokens to the last token.

(a) Action Antonym (b) Action Sequence (c) Scene Transition (d) Moving Direction (e) Object Count

Figure D: Change in the prediction probability of LLaVA-NeXT-13B-Video-FT when intervening
on attention edges to the true option position.

(a) Action Antonym (b) Action Sequence (c) Scene Transition (d) Moving Direction (e) Object Count

Figure E: Layerwise prediction probability of LLaVA-NeXT-13B-Video-FT for true and false
options in the last token position.
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(a) Action Antonym (b) Action Sequence (c) Scene Transition (d) Moving Direction (e) Object Count

Figure F: Change in prediction probability when disconnecting cross-frame attention edges in
Mini-InternVL-4B-Video-FT and Mini-InternVL-4B.

(a) Action Antonym (b) Action Sequence (c) Scene Transition (d) Moving Direction (e) Object Count

Figure G: Change in the prediction probability of Mini-InternVL-4B-Video-FT when intervening
on attention edges between video, question, and last token.

(a) Action Antonym (b) Action Sequence (c) Scene Transition (d) Moving Direction (e) Object Count

Figure H: Change in the prediction probability of Mini-InternVL-4B-Video-FT when intervening
on attention edges from different parts of the question tokens to the last token.

(a) Action Antonym (b) Action Sequence (c) Scene Transition (d) Moving Direction (e) Object Count

Figure I: Change in the prediction probability of Mini-InternVL-4B-Video-FT when intervening
on attention edges to the true option position.

(a) Action Antonym (b) Action Sequence (c) Scene Transition (d) Moving Direction (e) Object Count

Figure J: Layerwise prediction probability of Mini-InternVL-4B-Video-FT for true and false
options in the last token position.
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(a) Action Antonym (b) Action Sequence (c) Scene Transition (d) Moving Direction (e) Object Count

Figure K: Change in prediction probability when disconnecting cross-frame attention edges in
VideoLLaMA3-7B.

(a) Action Antonym (b) Action Sequence (c) Scene Transition (d) Moving Direction (e) Object Count

Figure L: Change in the prediction probability of VideoLLaMA3-7B when intervening on
attention edges between video, question, and last token.

(a) Action Antonym (b) Action Sequence (c) Scene Transition (d) Moving Direction (e) Object Count

Figure M: Change in the prediction probability of VideoLLaMA3-7B when intervening on
attention edges from different parts of the question tokens to the last token.

(a) Action Antonym (b) Action Sequence (c) Scene Transition (d) Moving Direction (e) Object Count

Figure N: Change in the prediction probability of VideoLLaMA3-7B when intervening on
attention edges to the true option position.

(a) Action Antonym (b) Action Sequence (c) Scene Transition (d) Moving Direction (e) Object Count

Figure O: Layerwise prediction probability of VideoLLaMA3-7B for true and false options in
the last token position.
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Video-language integration on temporal keywords. We analyze how Mini-InternVL-4B-Video-
FT and VideoLLaMA3-7B integrate video and language information in response to temporally
grounded questions. As shown in Fig. G and Fig. L, video information is transmitted to question tokens
in the early-to-middle layers, and only later transferred to the last position for answer generation.
Fig. I and Fig. N further show that the video-language information is also gathered in the true
option tokens, and the pathways toward the option tokens vary across the VideoQA tasks. These
results demonstrate that our findings on video-language integration generally hold across various
VideoLLMs.

Answer generation. Fig. J and Fig. O show that although Mini-InternVL-4B-Video-FT tends to
exhibit a sharp rise in generation probability across various VideoQA tasks, its overall behavior
remains consistent with that of LLaVA-based VideoLLMs, where the probability begins to increase
near the end of the video-language integration process.

C ANALYSIS ON OPEN-ENDED VIDEOQA

In open-ended video question-answer tasks, the input prompt does not include keywords related to
the ground truth answers. Thus, the information flow to the final token may differ because the model
generates its answer using new vocabulary rather than selecting from given multiple-choice options.
In this section, we investigate whether the difference in prompt format affects the information flow.

C.1 SINGLE TOKEN GENERATION

Open-ended analysis setup. The input prompt formats in TVBench are modified by removing the
options and adopting a sentence completion style. For example: “USER: <video> USER: Question:
Which direction does the gray cube move in the video? ASSISTANT: The gray cube moves to the
___.” To avoid ambiguity, we select tasks where the first tokenized sub-word of the model’s possible
answer is relatively constrained, such as Action Antonym, Moving Direction, and Object Count. We
adopt LLaVA-NeXT-7B-Video-FT and LLaVA-NeXT-7B for this analysis.

Active temporal interaction in open-ended VideoQA. We examine the impact of temporal
interaction within video tokens in open-ended VideoQA. Using the same attention-blocking setup as
in previous evaluations, we observed that disabling cross-frame interactions in early-to-middle layers
leads to a significant decrease in answer probability even in the open-ended questions answering
problems, as shown in Fig. P. These results suggest that active temporal interaction is a general
mechanism leveraged by VideoLLMs, regardless of the format of the question answering problems.

Video-language integration. Unlike multiple-choice question answering, open-ended question
answering does not explicitly provide candidate answers. Consequently, the input text lacks explicit
temporal reasoning keywords that directly reference temporal information in the video. We hypoth-
esize that, in the absence of true option tokens, the last token itself becomes the core checkpoint
for video-language integration. To this end, we examine the information flow from the video and
question tokens to the last token. Fig. Q shows two different routes: video → last (purple lines) and
video → non-option question → last (red lines). While video information may first pass through
question tokens, the final integration converges at the last token. This behavior aligns with what
we have observed in multiple-choice tasks, where video and language information merge at a core
checkpoint, although this checkpoint shifts to the last token position in the open-ended case.

Answer generation. We observe that answer generation occurs at middle-to-late layers also for
open-ended problems. As shown in Fig. R, the prediction probability rises from around layer 20,
similar to the trend observed in multi-choice question answering problems.

C.2 MULTIPLE TOKEN GENERATION

Building on our previous finding that the last token serves as the key checkpoint for video-language
integration in open-ended generation, we further examine how checkpoints emerge within responses
and how information propagates through these checkpoints as the model continues to generate
multiple tokens.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

(a) Action Antonym (b) Moving Direction (c) Object Count

Figure P: Change in prediction probability in open-ended QA format when disconnecting cross-
frame attention edges. LLaVA-NeXT-7B-Video-FT shows a stronger correlation with cross-frame
interactions and the final answer probability compared to LLaVA-NeXT-7B.

(a) Action Antonym (b) Moving Direction (c) Object Count

Figure Q: Change in the prediction probability in open-ended QA format when intervening on
attention edges between video, non-option question, and last token. Source ↛ Target indicates
blocking attention edges from source tokens to the target tokens. In the absence of explicit temporal
keywords in the open-ended format, the last position itself serves as a checkpoint for video-text
integration in the middle layers.

(a) Action Antonym (b) Moving Direction (c) Object Count

Figure R: Layerwise prediction probability for ground truth answers in open-ended QA format
in the last token position. The probability for the ground truth starts to rise immediately after the
middle layers.

Experimental setup. We adopt the Temporal QA subset of VCGBench (Maaz et al., 2024b), a
video conversation benchmark that includes diverse reasoning-based QA examples. Specifically, we
analyze how information flows among the video, question, generated response, and the last position,
as the model continues to generate multiple temporal vocabularies. While automatically identifying
temporal vocabulary in generated responses is challenging, verbs serve as strong candidates, since
they often contain action and time-related semantics crucial for solving VideoQA tasks. To extract
temporal vocabulary from model responses, we employed spaCy’s en-core-web-lg model to detect
verbs and used their token positions as semantic anchors for our analysis.
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(a) Video ↛ Question (b) Question ↛ Last (c) Video ↛ Last

(d) Video ↛ Non-last response (e) Non-last Response ↛ Last

Figure S: Open-ended generation analysis on VCGBench. We set verbs in the generated response
as potential semantic anchors containing temporal vocabulary and measure a probability drop at
generating each anchor when intervening attention edges from Source ↛ Target tokens.

Then, we trace the probability change after Attention Knockout at each stage of anchor generation.
For instance, given the question “What is happening in this video?” with baseline response “A boy
swings a bat and runs to the bases...”, the detected anchors are [swings, runs, ...]. We then analyze
information flow at different generation stages: generating the first anchor with no prior context (e.g.,
prompt: “USER: <video> What is happening in this video? ASSISTANT: A boy”, target: “swings”),
generating the second anchor after one (e.g., prompt: “USER: <video> What is happening in this
video? ASSISTANT: A boy swings a bat and”, target: “runs”), and so on.

Results. Figure S depicts the information flow of different routes: video → question → last (a-b),
video → last (c), and video → non-last response → last (d-e). Our results show that, as generation
continues, newly produced temporal verbs in the response increasingly function as additional core
checkpoints. This is evidenced by a clear shift in the dominant sources feeding the last position. As
the number of temporal anchor increases, the contribution of response to last consistently grows,
while the relative importance of video to last and question to last decreases (Fig. S(a-c)). We also
observe a structural change in the route through which video evidence reaches the final prediction. At
the initial anchor generation with no given anchor, the model relies more on video to question to last
(Fig. S(a-b)), whereas with larger number of anchor it increasingly depends on video to response to
last (Fig. S(d-e)).

We observe consistent monotonic trends as the number of generated anchors from 1 to 3, and
therefore expect the similar patterns to hold for more anchors. Overall, open-ended generation
exhibits the same checkpoint-driven information flow pattern observed in multi-choice QA. The
model dynamically forms new checkpoints around temporal concepts, and effective information flow
reorganizes accordingly, confirming that our core claims generalize to open-ended VideoQA.

D VISUALIZATION OF LOGIT LENS ANALYSIS

To further investigate the emergence of temporal concepts in videos (Section 3.3), we visualize
the token positions corresponding to spatial and temporal concepts extracted by Logit Lens. As
shown in Fig T, static concepts emerge first, and temporal concepts appear later as layers go deeper.
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Time

Layer 
1-5

Layer 
6-10

Layer 
11-15

Layer 
16-20

Layer 
21-25

Layer 
26-30

Layer 
31-35

Layer 
35-40

Spatial concepts: {'floor', 'paper', 'food', 'book', 'bag', 'glass', 'clothes', 'bott(le)', 'blank', 'sand(wich)', 'person', 'table', 'box', 'phone’}
Temporal concepts: {'eat', 'sit', 'hold', 'up', 'down’}

Figure T: Visualization of spatial and temporal concepts extracted by Logit Lens. Spatial
concepts tend to settle on salient regions early, and temporal concepts then emerge mainly on the
remaining tokens rather than replacing already stabilized spatial tokens.

Moreover, the emergent positions of temporal concepts spatially aligns with their relevant foreground
regions. For example, the concept “sit” aligns with the region around a seated person. Beyond this
overall trend, we additionally observe that spatial concepts tend to settle on salient regions early,
and temporal concepts then emerge mainly on the remaining tokens rather than replacing already
stabilized spatial tokens. We interpret this behavior as a consequence of priority in spatial localization.
Specifically, foreground regions are first mapped with spatial concepts that describe salient entities
or attributes, and temporal concepts tend to emerge afterward. We hypothesize that this order of
emergence enforces temporal concepts to occupy the remaining token positions not already taken by
spatial concepts, which explains the positioning mechanisms of temporal concepts.

E ADDITIONAL VISUALIZATION OF VIDEO-TO-QUESTION ATTENTION MAPS

We extend our analysis of emergent video concepts propagated through text tokens to various
VideoQA tasks (Fig. 5) to verify the generalizability of our findings. To this end, we further conduct a
qualitative analysis of video-to-question attention maps on the action antonym, action sequence, scene
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No Cross-frame Interactions

Question: What is the action being performed in the video?
Options: … Standing up … Sitting down.

Baseline

Question: Which direction does the blue cube move in the video? 
Options: … Up and to the left.

Baseline

No Cross-frame Interactions

(d) Moving Direction

Question: What did the person do first? 
Options: … Opened the door. … Took the book.

Baseline

No Cross-frame Interactions

(b) Action Sequence

No Cross-frame Interactions

Question: What’s the right option for how the scenes in the 
video change? Options: … From the kitchen to the rooftop.

Baseline

(c) Scene Transition

(a) Action Antonym

Figure U: More visualizations of video-to-question attention maps. Queries are highlighted in
yellow, and keys correspond to video tokens. The baseline model attends to visually relevant tokens
that align with the semantics of each query token, whereas disabling cross-frame interactions makes
the model’s attention less adaptive and limits its ability to infer the correct temporal context.

transition, and moving direction tasks. As depicted in Fig. U, the baseline model consistently trigger
the attentions on video tokens that are semantically aligned with the highlighted query words such as
down, first, from, and left. For example, in the action antonym (Fig. U(a)) and action sequence tasks
(Fig. U(b)), the query tokens focus on frames around the critical action change, while in the scene
transition (Fig. U(c)) and moving direction (Fig. U(d)) tasks they concentrate on frames that capture
the transition of the scene or the motion of the object. However, when cross-frame interactions are
disabled, the attention of the video tokens is not triggered by their relevant temporal vocabulary,
showing undistinguishable attention maps across frames. This demonstrates the lack of capability to
capture temporal relationships and scene changes when the cross-frame interaction is blocked. These
consistent patterns across diverse tasks support that our attention-based analysis and the associated
findings are broadly applicable to VideoQA models beyond the specific task.

F FURTHER ANALYSIS

F.1 QUANTITATIVE VALIDATION OF EFFECTIVE INFORMATION FLOW PATHWAYS ON
LONG-FORM VIDEOS

We extend the effective pathway analysis to long video question-answering problems. To this
end, we disabled the ineffective pathways of LLaVA-NeXT-7B-Video-FT as configured in Section
3.5 and evaluate the performance on LongVideoBench (Wu et al., 2024). Table A showcases that
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Table A: Impact of effective information flow pathways on LongVideoQA performance. The
total number of attention edges is calculated by counting valid (query, key) pairs over all attention
layers.

Case Total Number of
Attention Edges

Object-referred
Event

Object before/
after Object

Scene-referred
Object Tracking All

Full causal attention 25.7M (100%) 52.9 40.9 44.4 46.1
Attention in effective pathways 10.8M (42%) 54.0 39.4 43.2 45.5

LLaVA-NeXT-7B-Video-FT also retains competitive performance on long-form videos understanding
using only 42% of the original attention edges, with only a marginal accuracy drop of 0.6%p. This
validates that our findings on the internal mechanisms of VideoLLMs generalize across various video
question-answering tasks.

F.2 GENERALIZABILITY OF OUR ANALYSIS TO VARIOUS BENCHMARKS

We further investigate how the information flow changes with different forms of input videos and
question types, including long video understanding in LongVideoBench (Wu et al., 2024) and spatial
understanding in Video-MME (Fu et al., 2024).

Long video understanding. We validate VideoLLaMA3-7B on LongVideoBench (Wu et al., 2024)
using the same setup in the main paper. Fig. X, Y, Z, and AA, highlights the results with 8 frames
12x12 tokens per each frame. Fig. AB, AC, AD, AE also shows results with 24 frame inputs. Overall,
the effective layer ranges for long-form VideoQA maintain similar patterns to short video benchmarks.
A notable difference is that the probability drop from cross-frame attention and video-to-question
components is relatively smaller compared to short video tasks (See Fig. K and Fig. L). We conjecture
this to two factors: (1) long video benchmarks typically do not require every frame to be equally
informative, reducing the need for comprehensive visual processing, and (2) questions in long video
benchmarks contain more descriptive information, causing the model to rely more heavily on textual
cues from the question rather than visual content.

Spatial understanding. To compare the patterns driven from spatial and temporal reasoning tasks,
we adopt action recognition and spatial perception tasks from Video-MME (Fu et al., 2024). Results
with LLaVA-NeXT-7B-Video-FT are shown in Fig. AF, AG, AH, and AI. When we block the
cross-frame interaction, the action recognition task exhibits a clear and consistent performance drop,
indicating that temporal aggregation is crucial for this setting. In contrast, the spatial perception task
shows a much smaller average degradation and a much larger variance across samples. We conjecture
that this pattern arises because some spatial perception questions incidentally benefits from temporal
information, whereas many others can be answered from static scenes. Therefore, the impact of
blocking cross-frame interaction ranges from almost no change to a significant drop.

F.3 FAILURE CASE ANALYSIS

To offer a mechanistic understanding of why the model makes wrong answers, we extend our analysis
to failure cases. We focus on two aspects: (1) samples where the VideoLLM is highly confident in
false options, and (2) samples when the VideoLLM highly rely on static scene information rather
than temporal reasoning.

To this end, we analyze how the probability of a wrong answer changes in the failure VideoQA
samples. As can be seen in Fig. AK and Fig. AL, the cross-modal flow patterns routing false options
are the same as those with successful samples routing true options, indicating that a root cause
could be in an earlier stage of building video representations. In contrast, when we intervene on
the cross-frame interaction as in Fig. AJ, failed cases split into two patterns. In some examples, the
probability of the incorrect option decreases (green), while in others it increases (pink), and thus no
single consistent behavior emerges.
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(a) Action Antonym (b) Action Sequence (c) Scene Transition (d) Moving Direction (e) Object Count

Figure V: Change in accuracy when gradually disconnecting cross-frame attention edges in each
layer. The green line shows the accuracy change when gradually blocking cross-frame attention from
the first layer up to the lth layer, whereas the pink line shows the accuracy change when blocking
from the lth layer to the last layer.

Table B: Impact of cross-frame attention in the second half layers of VideoLLMs on answer
generation. We block cross-frame attention in the first and second half of the total layers and
measure the resulting accuracy drop (%). While disabling cross-frame attention in the first half layers
significantly degrades accuracy, disabling it in the second half layers barely impact performance.

Case Action
Antonym

Action
Sequence

Scene
Transition

Moving
Direction

Object
Count

First half layers 24.1 20.2 18.0 44.8 60.8
Second half layers 0.5 0.7 0.8 1.7 1.2

We conjecture that, in the first type, the VideoLLM is already overconfident in false options, where
the erroneous signal may come from cross-frame interaction or misaligned between specific video
and language. In the second type, a plausible interpretation is that the model primarily relied on
per-frame static scene information. Thus, when cross-frame interaction is interrupted, the model even
more emphasizes the rationale from static scenes, which in turn reinforces confidence in false options
relevant to those static scenes.

F.4 SIGNAL LEAKAGE CHECK

Our attention knockout setup blocks cross frame interaction within a local layer window, which may
not capture potential residual signal leakage through bypassing pathways. To address this concern,
we extend the intervention in two complementary ways. Instead of blocking cross-frame interaction
only in the first half of the layers, we progressively expand the knockout from the first layer up
to the N -th layer for N = 1, . . . , 32. We also conduct the reverse intervention by blocking from
the last layer backward. This gradual design explicitly check whether auxiliary signals from video
tokens continue to propagate beyond early-to-middle layers, which would contradict the effective
information flow range identified in our analysis. As shown in Fig. V, progressively expanding the
knockout does not lead to any additional significant performance drop unless the intervention overlaps
with early-to-middle layers, the effective cross frame interaction range that we identified. These
results indicate that the cross-frame interaction active occurs in the early-to-middle layer, supporting
the validity of our findings beyond a specific knockout configurations.

F.5 IMPACT OF BLOCKING CROSS-FRAME ATTENTION IN THE SECOND HALF LAYERS OF
VIDEOLLMS

We further examine the impact of blocking cross-frame attention in the second half layers. In Table B,
the accuracy drop is marginal when temporal interactions are blocked in the latter layers, compared
to the earlier layers. This supports our claim that active temporal interaction within video tokens
occurs in early-to-middle layers.
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(a) k = 1 (b) k = 5 (c) k = 9 (d) k = 13

Figure W: Impact of window size k on Attention Knockout. Following Geva et al. (2023), we take
k = 9 as our default choice.

Table C: Coverage of models. We adopt MLLMs with diverse sizes, base vision encoders, and base
LLMs to ensure generalizability.

Model Size Base Vision Encoder Base LLM

Mini-InternVL-4B 4B InternViT-300M-448px Phi-3-mini-128k-instruct
LLaVA-NeXT-7B 7B CLIP-ViT-L-336px Vicuna-7B-v1.5
LLaVA-NeXT-13B 13B CLIP-ViT-L-336px Vicuna-13B-v1.5
VideoLLaMA3-7B 7B siglip-so400m-patch14-384 Qwen2.5-7B

F.6 ROBUSTNESS OF OUR ANALYSES ON CHOICE OF WINDOW SIZE k

We observed the robustness of our analyses when using window sizes with sufficient width, and
therefore chose to follow the k value of 9 as used in (Geva et al., 2023). Specifically, to examine the
robustness of our analyses to the window sizes, we conducted an extended analyses by varying the
window sizes in 1, 5, 9, 13. As shown in Table W, when the window size is extremely small (e.g.,
k=1), the narrow attention block is easily bypassed and VideoLLMs can still transmit information
through remaining effective information pathways. This leads to only marginal probability drops
across the layers. In contrast, with wider windows (k=5,9,13), we observe significant probability
drops, which validates the robustness of our analyses across various choice of window sizes.

G DISCUSSION

Discussion on the probability increases in the last layers. We observe an increase in the true
option probability when attention from the question to the last position is knocked out in later layers
in some cases. Interleaving the attention knockout analysis from question to last (Fig. 3 and B) and
the layerwise prediction probability analysis(Fig. 8 and E) suggests that propagating information
from question tokens to the last token boosts the true option, as this flow consolidates evidence in the
middle layers. Therefore, the belief of VideoLLMs is already stabilized, so keeping this pathway
open mainly acts as a broad amplifier, increasing probabilities for both true and false options. Thus,
blocking the pathway only at the final layers preserves earlier propagated evidence for the true option
in the hidden states while preventing further amplification of false options. There, the true option
probability can rises relative to the false ones and can even increase in absolute terms, matching the
behavior in Fig. 1(b).

Future applications of our findings. We further discuss how our findings can be leveraged in
practice. For training, our analysis suggests that current VideoLLMs rely on a relatively narrow set
of dominant information pathways, so intentionally blocking these pathways during training could
regularize the model to explore alternative pathways, thereby better utilizing the representational
capacity of VideoLLMs. For testing, our identification of effective information flow ranges implies
that tokens beyond these ranges contribute marginally to the final decision, which opens a path
to apply early-exiting strategies (Elbayad et al., 2020; Schuster et al., 2022; Bae et al., 2023) that
adaptively stop computation for such tokens to reduce inference cost while preserving accuracy.
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Table D: List of vocabularies used for semantic concept extraction. Keywords are parsed from
Action Sequence question prompts and converted to lowercase and present tense to avoid interference
from linguistic completion in later layers.

Spatial Keywords bag, bed, blank, book, box, cabinet, camera, clothes, cup, door, floor, food, glass,
laptop, paper, person, phone, sandwich, table

Temporal Keywords close, down, drink, eat, hold, on, open, put, sit, take, throw, tidy, up

Table E: Effective pathway layer ranges for different VideoLLMs. (a) Layer ranges for effective
pathways across different models, determined by selecting 5-layer intervals with significant probabil-
ity drops from Attention Knockout analysis. (b) Detailed knockout results showing probability drops
across layer intervals in Action Antonym task. Significant drops (< −5%) are highlighted in gray;
N/A indicates unavailable layers.

(a) Effective pathway layer ranges

Model Cross-frame Interactions Video-to-Question Question-to-Last

LLaVA-NeXT-7B-Video-FT L6-15 L6-20 L16-25
LLaVA-NeXT-13B-Video-FT L6-15 L6-20 L16-30
Mini-InternVL-4B-Video-FT L6-15 L6-20 L11-30
VideoLLaMA3-7B L1-15 L6-20 L21-28

(b) Attention Knockout results in Action Antonym

Model Interaction L1-5 L6-10 L11-15 L16-20 L21-25 L26-30 L31-35 L36-40

LLaVA-NeXT-7B-Video-FT
Cross-frame -4.2 -11.1 -6.3 -0.2 0 -0.2 -0.2 N/A
Video-to-Question -3.9 -15.1 -21.5 -5.6 -0.2 0 0 N/A
Question-to-Last -0.3 -1.2 -4.5 -19.3 -15.1 0.7 1.1 N/A

LLaVA-NeXT-13B-Video-FT
Cross-frame -0.7 -11.2 -11.1 -2.1 -0.2 -0.2 -0.2 -0.3
Video-to-Question -1.2 -16.7 -29.1 -9.2 -0.3 -0.2 -0.2 -0.2
Question-to-Last -1.8 -2 -4.6 -21.7 -28.4 -5.7 -0.1 -1.9

Mini-InternVL-4B-Video-FT
Cross-frame -2.3 -11.1 -11.5 -3.3 0 0.2 0 N/A
Video-to-Question -2.4 -24.4 -35.0 -15.9 -1.3 -0.3 -0.2 N/A
Question-to-Last 0 -1.3 -5.9 -30.8 -46.8 -14.1 -3.2 N/A

VideoLLaMA3-7B
Cross-frame -65.1 -61.4 -14.9 -5.0 0 0.2 N/A N/A
Video-to-Question -4.3 -7.2 -18.5 -16.3 -2.2 0 N/A N/A
Question-to-Last 2 3.7 1.9 -2.7 -16.2 -19.1 N/A N/A

H IMPLEMENTATION DETAILS

We describe the implementation details for the VideoLLMs and their training setup. Table C shows
the details of the VideoLLMs.

Training setup. Our video instruction tuning data is derived from VideoChat2-IT (Li et al., 2024b),
comprising 874k samples covering tasks such as VideoQA, captioning, reasoning, classification,
and conversation. These samples are from diverse video understanding benchmarks, including
VideoChatGPT-100k (Maaz et al., 2024b), VideoChat-11k (Li et al., 2024a), Webvid (Bain et al.,
2021), YouCook2 (Zhou et al., 2018), TextVR (Wu et al., 2025), NExT-QA (Xiao et al., 2021),
CLEVRER (Yi et al., 2019), TGIF (Li et al., 2016), Ego4D (Grauman et al., 2022), Kinetics-710 (Kay
et al., 2017), and Something Something V2 (Goyal et al., 2017). We freeze the vision encoder
while fully fine-tuning the MLP projector and LLM backbone. Our experiments are conducted with
NVIDIA A6000 GPUs.

• LLaVA-NeXT-7B-Video-FT. During training, we initialize the model with LLaVA-NeXT-
7B (Liu et al., 2024b), which employs CLIP-ViT-L-336px (Radford et al., 2021) as the
vision encoder and Vicuna-7B-v1.5 (Zheng et al., 2023) as the language model. We utilize a
batch size of 128 and train for 3 epochs. The base learning rate is initially set to 2e-5 and
is decayed to 5e-6 using a cosine scheduler, with a warmup ratio of 0.2. For both training
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and inference, we uniformly sample 8 frames as input and resize each frame into 336×336
pixels. These frames are then processed through a vision encoder to extract 8×24×24 patch
embeddings. Next, we use an MLP projector to project these embeddings, followed by
average spatial pooling to generate 8×12×12 video tokens.

• LLaVA-NeXT-13B-Video-FT. Similarly, we initialize the model with LLaVA-NeXT-
13B (Liu et al., 2024b), which utilizes CLIP-ViT-L-336px (Radford et al., 2021) as the
vision encoder and Vicuna-13B-v1.5 (Zheng et al., 2023) for the language model component.
The model is trained for 1 epoch using the same training recipe and video token sampling
strategy as LLaVA-NeXT-7B-Video-FT.

• Mini-InternVL-4B-Video-FT. We start with Mini-InternVL-4B (Gao et al., 2024), which
adopts InternViT-300M-448px as the vision encoder and Phi-3-mini (Abdin et al., 2024) as
the LLM backbone. We use a batch size of 128 with a learning rate of 4e-5, which decays to
zero following a cosine schedule with a warmup ratio of 0.03 for a total of 3 epoch. For both
training and inference, we uniformly sample 8 frames as input and resize each frame into
448×448 pixels. These frames are passed through the vision encoder, producing 8×32×32
patch embeddings. After applying the MLP projection, we put 8×16×16 video tokens as
the input of the language model.

• VideoLLaMA3-7B. VideoLLaMA3-7B (Zhang et al., 2025a) uses SigLIP (Zhai et al., 2023)
as a vision encoder and Qwen2.5-7B (Qwen et al., 2025) as a LLM backbone. We directly
use VideoLLaMA3-7B without fine-tuning and put 8×12×12 video tokens as the input.

Implementation details for Attention Knockout. In VideoQA, a model generates an answer
a from a given video-question pair (v, q), where the question may contain n number of options
o = [o1; o2; ...; on]. We employ Attention Knockout (Geva et al., 2023) to measure the information
flow between different input parts. Specifically, the model initially predicts the answer a with the
highest probability pbase at the last token position of the input sequence. After applying Attention
Knockout as explained in § 2.2, we trace the relative change in probability %pchange = ((pknockout −
pbase)/pbase) × 100, where pknockout is the updated probability for the same answer a derived after
intervention. Unless otherwise stated, we apply Attention Knockout within a window size of k = 9
layers around the lth layer of MLLMs, and trace the probability change for the first tokenized subword
of the complete answer.

Implementation details for Logit Lens. To quantify emergence of spatial and temporal semantic
concepts in video tokens, we employ Logit Lens (nostalgebraist, 2020). We trace top-1 logits by
projecting intermediate representations of all video tokens across layers using the language model
head. We use Action Sequence videos with LLaVA-NeXT-13B-Video-FT. For the vocabulary pool,
we parse spatial and temporal keywords from Action Sequence question prompts (Table D). To
trace initial concept emergence, we convert parsed words to lowercase present tense, as linguistic
completion occurs in later layers and can impact the analysis.

Implementation details for effective pathway analysis. To identify effective pathways, we use
Attention Knockout results from Action Antonym tasks (Table E). We divide layers into 5-layer
intervals, calculate average probability drops, and select intervals with significant drops (< −5%) as
effective layers. We then enable cross-frame interactions, video → question, and question → last
flows only within these effective layers while disabling video → last and last → last connections
across all layers. Additionally, flows to video and question tokens are blocked in late layers as these
tokens are no longer needed (e.g., after layers 20 and 25 respectively in LLaVA-NeXT-7B-Video-FT).

I THE USAGE OF LARGE LANGUAGE MODELS.

In this work, LLMs were used only to polish manuscript clarity, fix grammatical errors, and enhance
readability. Specifically, all initial writing was done by the authors, with LLMs used afterwards for
sentence-level polishing in part of the manuscript. LLMs were not involved in research ideation and
experimental design. All core contributions, methodologies, and findings are the result of the authors’
original work.
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(a) O2E (b) O3O (c) SOS

Figure X: LongVideoBench with 8 frame inputs: Prediction probability change after discon-
necting cross-frame attention edges in VideoLLaMA3-7B. Object-referred Event (O2E), Object
before/after Object (O3O), Scene-referred Object Tracking (SOS) subsets are used.

(a) O2E (b) O3O (c) SOS

Figure Y: LongVideoBench with 8 frame inputs: Prediction probability change when interven-
ing on attention edges between video, question, and last token VideoLLaMA3-7B.

(a) O2E (b) O3O (c) SOS

Figure Z: LongVideoBench with 8 frame inputs: Prediction probability change when intervening
on attention edges from different parts of the question tokens to the last token in VideoLLaMA3-
7B.

(a) O2E (b) O3O (c) SOS

Figure AA: LongVideoBench with 8 frame inputs: Prediction probability change when inter-
vening on attention edges to the true option position in VideoLLaMA3-7B.
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(a) O2E (b) O3O (c) SOS

Figure AB: LongVideoBench with 24 frame inputs: Prediction probability change after discon-
necting cross-frame attention edges in VideoLLaMA3-7B. Object-referred Event (O2E), Object
before/after Object (O3O), Scene-referred Object Tracking (SOS) subsets are used.

(a) O2E (b) O3O (c) SOS

Figure AC: LongVideoBench with 24 frame inputs: Prediction probability change when
intervening on attention edges between video, question, and last token VideoLLaMA3-7B.

(a) O2E (b) O3O (c) SOS

Figure AD: LongVideoBench with 24 frame inputs: Prediction probability change when
intervening on attention edges from different parts of the question tokens to the last token in
VideoLLaMA3-7B.

(a) O2E (b) O3O (c) SOS

Figure AE: LongVideoBench with 24 frame inputs: Prediction probability change when
intervening on attention edges to the true option position in VideoLLaMA3-7B.
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(a) Action Recognition (b) Spatial Perception

Figure AF: Video-MME: Change in the prediction probability when disconnecting cross-frame
attention edges. The spatial perception task shows a much smaller drop, as it contains questions
that can be answered with static scenes.

(a) Action Recognition (b) Spatial Perception

Figure AG: Video-MME: Change in the prediction probability when intervening on attention
edges between video, question, and last token.

(a) Action Recognition (b) Spatial Perception

Figure AH: Video-MME: Change in prediction probability when intervening on attention edges
from different parts of the question tokens to the last token.

(a) Action Recognition (b) Spatial Perception

Figure AI: Video-MME: Change in the prediction probability when intervening on attention
edges to the true option position.
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(a) Action Antonym (b) Moving Direction

Figure AJ: Failure case analysis: Change in the prediction probability when disconnecting
cross-frame attention edges. We observe two distinct patterns in the failure samples. In Case
1 (green), the incorrect option probability decreases after disabling cross-frame attention edges,
suggesting that the erroneous signal carried by these edges was a primary cause of the model’s
misprediction. In Case 2 (pink), the incorrect option probability instead increases, indicating a form
of static bias where the model even more emphasizes unhelpful static information.

(a) Action Antonym (b) Moving Direction

Figure AK: Failure case analysis: Change in the prediction probability when intervening on
attention edges from different parts of the question tokens to the last token. Source ↛ Target
indicates blocking attention edges from source tokens to the target tokens.

(a) Action Antonym (b) Moving Direction

Figure AL: Failure case analysis: Change in the prediction probability when intervening on
attention edges to the false option position. Source ↛ Target indicates blocking attention edges
from source positions to the target positions.
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