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Abstract

Deep Gaussian Processes (DGPs) enhance Gaussian Processes (GPs) in function
approximation through multi-layer stacking. However, the inference of DGPs
presents challenges as it has no closed-form solution. Existing methods approxi-
mate the posterior of DGPs through independent sampling and variational inference.
These approaches overlook the samples’ correlations and face substantial compu-
tational overhead as layers increase, hindering performance improvements. We
present Efficient Deep Gaussian Processes (EDGPs) that enable efficient sampling
between inner layers while maintaining full covariance characteristics. Unlike ex-
isting methods that compromise accuracy for speed, EDGP achieves high efficiency
without sacrificing precision. Experiments show that EDGP has comparable, or
even better performance than state-of-the-art Doubly Stochastic Deep Gaussian
Processes (DSDGPs) while training is almost as efficient as basic neural networks.

1 Introduction

Gaussian Processes (GPs) are versatile tools for data analysis, offering robust modeling capabilities,
broad applicability, and significant research value [1} 2 3, |4]. A GP is primarily defined by its
kernel functions, through which prior knowledge can be embedded via kernel design to enhance
model performance. For instance, kernel functions can encode structural information such as periodic
patterns [S]], change-points in time series [6], or simulator priors for robotics [7], enabling GPs to
make effective use of domain knowledge. However, the expressive power of single-layer GPs is
constrained by the kernel function’s accuracy in capturing data correlations. Traditional approaches
often rely on handcrafted composite kernels, which require extensive design and optimization while
offering limited general utility across tasks [8,9]. An alternative paradigm seeks to parameterize
kernel representations within Reproducing Kernel Hilbert Spaces (RKHS), or to use neural networks
as kernel functions [10, [11]. Although these data-driven kernel learning methods aim to automate
feature extraction, they incur additional computational costs during inference, and increase the risk of
overfitting. Addressing these challenges demands careful optimization strategies, architectural refine-
ments, or advanced regularization techniques, requiring a delicate balance between expressiveness
and practical efficiency [12} [13].

Deep Gaussian Processes (DGPs) are a multi-layer generalization of GPs that overcome the expressive
limitations while maintaining the advantages [14]. A GP can be viewed as a single-layer neural
network with an infinite number of hidden units, and the way DGPs enhance GPs’ performance
through nested kernel modeling between layers is analogous to how deep neural networks improve
performance via stacked nonlinear feature extraction [4,[15]. Furthermore, DGPs refine the covari-
ance characteristics of the input at each inner layer, enabling a more accurate representation and
automatically learning to construct an optimal kernel tailored to the data at hand.
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Training DGPs presents significant challenges due to the absence of a closed-form solution for
their posterior distribution [[16}[17]]. Early attempts to address this relied on mean-field variational
approaches, which impose strong independence and Gaussianity assumptions across layers [[15, |16}
17]. These restrictive assumptions severely underestimate the correlations of the posterior between
layers, limiting the model’s ability to capture complex hierarchical dependencies [12]. Doubly
stochastic methods have emerged as a practical alternative, leveraging numerical approximations to
estimate the true posterior and log-likelihood during training [[12} [18} [19} 20]. Doubly Stochastic
Deep Gaussian Processes (DSDGPs) employ diagonal approximations during inner-layer sampling to
reduce computational complexity from O(N?) to O(N). This trade-off sacrifices numerical precision
for efficiency, and the computational overhead remains substantial, growing markedly with number of
stacked layer increases. There are also approaches that modify the DGP prior and perform inference
within a parametric model; these methods introduce additional approximations to ensure tractable
inference [21) 22]. The spectral-based DGP methods are closely related to ours [23, 22} 24} 23],
but we do not focus on posterior approximation via spectral properties, as the spectral methods are
limited to stationary conditions [26} 27, 28]]. A known pathology in DGPs using zero mean functions
for inner layers has been reported in Duvenaud et al. [29]. Therefore, all methods used in this paper
employ a linear mean function.

In this paper, we present Efficient Deep Gaussian Processes (EDGPs) that eliminate the need for
compromising between efficiency and precision during inner-layer sampling. In common with many
state-of-the-art GPs’ approximation schemes, we start by constructing single-layer variational GPs
using the Variational Free Energy (VFE) [30] approximation method, which ensures computational
tractability within each layer [31]. We obtain a DGP architecture by stacking multiple such VFE-
based GPs hierarchically, where the output of one layer serves as the input to the next. At this point,
the posterior distributions of all but the first layer become intractable due to the integrals over the
kernel’s input. EDGPs overcome this hurdle by approximating the true marginal posterior through
sampling from tractable conditional (on input locations) posteriors, enabling efficient inference and
training. EDGPs adopt a weight-space perspective that evaluates basis functions to represent the prior
distributions rather than sampling directly like other doubly stochastic methods [5} 32]. These priors
will be updated to approximate the posterior distributions according to the observations (variational
distributions in VFE case), thereby completing the inference propagation. This design ensures that
when input locations change, which is a common scenario in most layers, only function updating is
required, eliminating the need for resampling, as illustrated in Figure[I] By avoiding recomputation
of inner-layer posterior means and covariances, this approach achieves a significant reduction in
computational overhead. Moreover, since EDGPs avoid diagonal approximations to reduce sampling
complexity, they preserve both the full covariance structure of samples and the posterior distribution
correlation across layers, thereby improving modeling accuracy and theoretical rigor.

2 Background

2.1 Single-layer Gaussian Processes

A GP involves inferring a stochastic function f : R? — R based on a set of N observations
y = (y1,...,yn) " at designed locations X = (xy,...,xy)". We use f = f(X) as the latent
function values of the observations y = f + 1, n ~ N(0,02I). The prior is defined by the mean
and kernel p(f; X) ~ N (m(X), k(X,X)). The likelihood p(y|f) and the prior p(f; X) have linked
the observations, the input coordinates, and the random variable f together, allowing for the inference
of the posterior. Note that a semicolon is used to distinguish between coordinate and non-coordinate
random variables. To circumvent the O(/N?) matrix inversion in GP inference, a series of inducing
points are introduced as anchor points to reduce the computational overhead. These inducing points
essentially transform the GP from the original "input — output" mapping into a two-step process:
"input — inducing points — output,” thereby shifting the bottleneck to the size of the inducing
sets M. VFE provides an expressive and robust sparse GP method and forms the foundation of the
state-of-the-art research. We use the notation consistent with Salimbeni et al. [12]], where u = f(Z)
represents the function values at the M inducing locations Z = (21, . ..,zs). By the definition of a
GP, the covariance features are described by the kernel function at each pair of inputs, k(x;,z;). The
joint probability distribution is,

p(y, f,u) = p(y|f)p(flu; Z, X)p(u; Z), 1)
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Figure 1: Illustration of two sampling approaches from a Gaussian distribution N (m(z), k(z, x)).
(a) Sampling via a weighted sum of basis functions, where the stochasticity comes from the weights
and basis functions; when the input shifts, outputs at new locations can be obtained simply by
re-evaluating the basis functions. (b) Direct sampling from the distribution, requires recomputing
the Cholesky decomposition of the updated covariance to maintain the stochastic behavior when the
input shifts.

where the prior p(u; Z) is defined as a Gaussian distribution with mean m(Z) and covariance k(Z, Z).
The conditional p(f|u; Z, X) = N (f|p, ) can be computed as a posterior using the priors p(f; X)
and p(u; Z),

p=m(X)+k(X,Z)k(Z,2)"" (u —m(Z)), o

Y =k(X,X) - k(X,Z2)k(Z,Z)" k(Z,X).
VFE addresses sparse GPs using a variational technique. The joint probability distribution of y, f,
and u is converted into the Evidence Lower Bound (ELBO) of the marginal log-likelihood objective
by minimizing the Kullback-Leibler (KL) divergence between the variational posterior ¢ and the
true posterior p. Define ¢(f,u) = p(fju; Z, X)q(u) as the factorized posterior approximation of
p(f,uly), and ¢(u) = M (u|m, S) as the approximation of p(uly). The VFE inference solution at
location X is given by,

q(f;Z2,X) = /P(fIU;Z,X)q(U)du = N(f|f2, ), 3)

where the mean and covariance are,

fp=m(X)+kX,Z)k(Z,Z)"" (m —m(Z)), @
Y =k(X,X) - k(X,Z)k(Z,Z) " [k(Z,Z) — S|k(Z,Z) " k(Z,X).

The corresponding ELBO can be obtained through simple transformation [30]],
L =Eqys,2,x) [ logp(ylf)] — KL[g(w)|[p(u; Z)]. )

The optimization in Equation [5]and the inference in Equation [4]jointly constitute the VFE workflow.

2.2 Doubly Stochastic Deep Gaussian Processes

DGPs extend the single-layer VFE by using the output of one GP layer as the input coordinates for
the next, enabling the modeling of complex nonlinear features. Since the inputs in DGPs are not
fixed locations but rather random variables drawn from the previous GP layer’s output, the inference
in Equation [3]involves an integral over the kernel function’s input, thereby rendering the problem
intractable,

q(f*,2%,2",£°) = /p(fQ\u2;Z2,f1)q(u2)p(f1|u1;Zl,fo)q(ul)duzduldfl, (6)

where we present a two-layer example with f° being the input location X.
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The original DGP’s formulation trivially follows the VFE structure, introducing variational techniques
not only in the inducing variables but also in the noisy corruptions of the output y' at each GP layer.
This parameterization helps avoid the intractable integrals in the ELBO, providing a closed-form
training solution. However, this design forces the inputs to each layer to be independent of the outputs
from the previous layer. The variational noisy corruptions are determined separately during training,
and such overly factorized DGPs essentially degenerate into single-layer GPs with independent
1nputs.

DSDGPs link the output of each GP layer to the input of the next. This method ensures the transfer
of input information across layers, but it also makes the model intractable. A L-layer DSDGP
approximates the true ELBO and inference by sampling an unbiased estimate fL of the posterior, i.e.,
to transform from integrating Equation [7]

L
q(f*2",... 2" 1) = /Hq(fl;zl,fl—l)dfl—l, @)
=1

to recursively performing Equation 8]
f! = DiagSample[q(f'; Z!, f'~1)], ®

where DiagSample conduct independently sample from a Gaussian N '(a, A) as a + € © 4/diag(A),
e ~ N(0,1), and ¢(f'; Z!, £1=1) can be tractably solved within each layer as Equation

DSDGP avoids the cubic computational cost of Cholesky decomposition of covariance by employing
a diagonal approximation when sampling from each layer’s GP output distribution, and thus does not
effectively utilize the covariance to model complex correlation characteristics. From this perspective,
DSDGP can be seen as a diagonal, noisy-corrupted deep orthogonal projection network [33].

The core idea behind the DGP framework lies in exploring the nesting property. The output of the
preceding GP will be adjusted by its second-order moment and then serve as the input to the kernel
function of the following GP, thereby having a recursive influence on the output. This fundamental
objective has yet to be realized in existing DGP methods. The EDGP proposed in this paper addresses
this gap. By replacing the resampling step DiagSample in each layer of DSDGP with a re-evaluation,
EDGP has achieved a significant reduction in computational cost while allowing a full approximation
of the nested kernel.

2.3 Weight Space view of Gaussian Processes

The aforementioned methods treat f as a function value whose stochasticity is governed by the
distributional hyperparameters. An alternative perspective is to view f in the weight space as
a weighted sum of basis functions. The connection between these two perspectives lies in the
interpretation of the kernel function (-, -) as the inner product between evaluation functions in an
RKHS.

Random Fourier Features (RFFs) are widely adopted in training large-scale kernel machines. It serves
as a basis functions that accelerate computation by mapping input data into a random low-dimensional
feature space. The RFF representation in the weight-space GP is ¢;(X) = 1/2/bcos(0; X" + 7;),
where 0, are sampled from A(0, I') and 7; are sampled from U (0, 27).

We impose a GP prior on f corresponding to a standard RBF kernel by defining the following
Bayesian linear model,

b
F=Y we] (X)  wi~N(O1). )
=1

Notably, in this formulation, the stochasticity of f is determined directly by the weights w and ¢,
rather than indirectly through the location X affecting the kernel matrix, as in the function-space
view. The weight-space and function-space views of Gaussian processes are equivalent, and both the
sparse approximation techniques and the hierarchical structures discussed earlier can be reinterpreted
under the weight-space framework. However, RFF-based weighted sums cannot faithfully recover the
true posterior, as the true posterior covariance is often non-stationary, while RFFs can only capture
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Figure 2: Validation of the effectiveness of the weight-space sampling method. The method is
evaluated by comparing the difference between the sample covariance matrix obtained using basis
functions at different inputs x; and x5 and the covariance computed directly from the standard RBF
kernel. The number of samples is 20000, and the number of basis functions is 2048.

stationary properties. This limitation has hindered the broader application of RFFs in deep Gaussian
processes.

EDGP not only leverages the computational efficiency of RFFs but also overcomes their inability to
model non-stationary posteriors. By successfully incorporating RFFs into a nested structure, EDGP
achieves a win-win outcome of reducing computational complexity while also enhancing model
performance.

3 Efficient Deep Gaussian Processes

EDGP adopts the VFE structure and features two key characteristics: first, it maintains the exact
model by preserving the conditional distribution within each layer; second, it assumes that the
variational distribution ¢(u') at each layer is a Gaussian parameterized by a mean m' and covariance

S!. Therefore, the joint posterior can be written in the following factorized form:

L
g({f', u'}e)) = [ p(F s 2 £ g (u). (10)
=1

Note that aside from replacing the fixed input with random variables, EDGP retains the VFE structure
within each layer. Thus, following Equation [3] the inducing variables in each layer can still be

marginalized analytically. Say that ¢(f'; Z!, f'=1) = [ p(f'|u}; Z!, f'~1)g(u')du' = N (f'|i', =0
we have,
fl=m( ) + k(1 ZNK(2Z, 2 (m! - m(Zh)),

i 11)
S =k — k(T ZYR(ZL 2N T [R(2) 2 - ST R(Z 2 T R(Z . (

EDGP approximates the marginal posterior distribution via sampling, with its core mechanism being
a recursive sample across layers. Specifically, to approximate the marginal posterior at the [-th layer,

one must first obtain samples from the posterior of the preceding layer 11, as Equation suggests.
This sampling-based approximation presents two main challenges. First, even when the distributional
form is clear, sampling incurs a time cost of O(NN?3). Second, whenever the output of the previous
GP layer changes due to updates, the subsequent GP layer resamples accordingly, increasing the
computational overhead.

Proposition 1 Ler £l f'zl) ﬁfl and ﬁ]lo denote samples respectively drawn from the marginal posterior
q(fY; Z1 £1=1), prior p(f'; £1=1), variational distribution q(u'), and prior p(u'; Z') . Then fé can be
substituted with f' defined as follows:

PR R, 22, Z) T (@ - dl). (12)
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Proof 1 Proof is provided in Appendix|[A]

Proposition[T] offers a novel perspective on the inference propagation: rather than sampling directly
from the distribution, one can sample from the prior and apply a correction based on observations.
This approach shifts the focus from studying the non-stationary posterior to sampling with a stationary
prior, where weight-space methods can be employed for efficient learning.

Proposition 2 Let fll) be the sample drawn from the prior p(f'; £171) = N (m/(f'=1), k(£ =1, £171)).

Then f'zl) can be substituted with the following expression:

b
> wid] (£171) +m(E1). (13)

i=1
Proof 2 Proof is provided in Appendix|B|

Sample from the marginal posterior By incorporating Proposition 2] and Proposition [I] the
recursive computation of EDGP’s marginal posterior distribution can thus be summarized as follows:
first, use RFF to sample from both the f and u prior in the weight space; then, adjust the prior samples
based on observations to approximate posterior samples; finally, feed these posterior samples as input
locations into the next-layer GP to determine its prior covariance. The sample procedure is listed in
Algorithm T}

Algorithm 1 Sample from the marginal posterior

1: Input: input locations X.
Compute: f' for each layer.
Initialize: fO is set to X, initialize kernel k(-, -).
fori=1,...,L —1do
Sample f! = 5 Jwio] (€7 +m(E), 8, = T wio] (2 + m(2).
Sample ), ~ g(u').
LRl -1 7l U gly=1(5l _ il
Compute.~f =f, + k(' Z2")k(Z",Z") " (b, — ).
Set: f! = f'.
end for

W ;NN

Computation of the ELBO We compute the objective of EDGP in the same manner as VFE; the
ELBO can be obtained through Jensen’s inequality on the marginal log-likelihood,

p(y[f) [T, p(£'[ul; 2!, £~V )p(ul)

L=E_ e yrr ylog (14)
o ) a({F Yy
After simplifying and consolidating terms, the final expression for Equation[I4]is obtained:
E ZE (fL .ZL fL 1)[10gp yz‘f ZKL ||p u Z)] (15)

i=1
where subscript ¢ denotes the ith component.

Comparison with DSDGP  Although EDGP and DSDGP share the same theoretical computational
complexity due to their common variational inference framework, EDGP demonstrates significantly
faster empirical performance. This efficiency stems from EDGP’s compact computational structure,
where with one-step computation (Equation it captures both the posterior mean and covariance
during sampling. In contrast, DSDGP requires explicit computation of the bias term and covariance,
incurring substantial additional overhead that slows down computation.

More importantly, DSDGP achieves the same theoretical computational complexity as EDGP only
under a diagonal approximation. If DSDGP attempts to restore full covariance during posterior
sampling, its complexity escalates to O(N3). In comparison, EDGP constructs an efficient DGP
that retains the full covariance characteristics without compromising on structural assumptions or
predictive performance, addressing a long-standing challenge in this field.
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Figure 3: Runtime comparison of all methods across the four datasets.
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Figure 4: Performance comparison of all methods across the four datasets on MSE metric. GPR and
VEE are aligned for comparison using a linear mapping m(X) = XW as their prior mean.

4 Experiments and Analysis

4.1 Experiments Setup

We evaluate EDGP on four mainstream regression benchmark datasets. The ETTh [34] dataset
consists of hourly load and oil temperature data from electricity transformers collected between July
2016 and July 2018. The Exchange [35] dataset records daily exchange rates for eight countries
from 1990 to 2016. The SRU [36] dataset captures residual SO, concentrations in tail gas emissions
during the oxidative removal of H,S at a large industrial refinery. The Debutanizer [36] dataset
contains butane concentration measurements from a debutanizer column in naphtha separation units
within petroleum production. These datasets span common real-world regression scenarios and vary
in modeling difficulty: ETT and Debutanizer are more challenging with lower reported accuracies,
while Exchange and SRU are relatively easier and have higher existing fit precision.

We aim to compare EDGP’s performance and speed against DSDGP and classic GP models, including
traditional full GP and variational sparse GP. We aim to show how EDGP achieves both faster
computation and higher predictive accuracy. To strengthen the comparison, we also include two well-
established neural regression models, Long Short-Term Memory (LSTM) [37] and Fully Connected
Network (FCN).

We record detailed results for EDGP and DSDGP with GP layer depths set to 2, 3, and 4. For
the neural network baselines, we use 3 layers, striking a balance between avoiding overfitting and
retaining sufficient feature extraction capacity. All other experimental hyperparameters are held
constant across models. Inputs are preprocessed as a moving-average model of order 16 [38]], which
corresponds to a sequence length of 16 for LSTM models. Hidden dimensions across all layers are
fixed at 64, and the RBF kernel is used uniformly for all GP layers and models. Both EDGP and
DSDGP propagate 20 samples at each inner layer. The best validation performance is recorded on the
last 800 data points for all methods and datasets. The number of inducing points is set to 256 for all
datasets. The number of basis function is set to 2048 for EDGP. All experiments are conducted on a
workstation with an AMD R7-5800 CPU and an NVIDIA RTX 3060 GPU.
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Table 1: Regression MSE and MAE results

Datasets Exchange ETTh SRU Debutanizer
Models Layers MSE MAE MSE MAE MSE MAE MSE MAE
FCN 3 0.0795 0.2261 0.2142 0.3694 0.6280 0.5817 1.2202 0.8486

LSTM 3 0.0388 0.1600 0.1572 03013 0.2354 0.3517 1.4549 0.8641
GPR N/AT  0.0815 0.2603 0.1910 0.3499 0.5847 05192 1.0311 0.7808
VFE N/AT  0.0440 0.1666 0.1598 0.3141 0.3143 0.4012 1.0600 0.8005

DSDGP 2 0.0334 0.1469 0.1543 03103 0.2117 0.3588 0.9807 0.7786

DSDGP 3 0.0276  0.1233 0.1555 03119 0.1673 0.3176 0.9294 0.7542
DSDGP 4 0.0347 0.1364 0.1569 0.3135 0.1580 0.3133 0.9404 0.7599
EDGP 2 0.0318 0.1432 0.1511 0.3079 0.2009 0.3479 0.8837 0.7289
EDGP 3 0.0236 0.1193 0.1498 0.3086 0.1882 0.3391 0.8225 0.6952

EDGP 4 0.0229 0.1151 0.1502 0.3100 0.1795 0.3360 0.8151 0.6907

T NJ/A stands for Not Accessible, meaning such methods have no attribute of stacked layers. VFE can be viewed as a 1-layer DSDGP/EDGP.

4.2 Result Analysis

We first present a comparison of the runtime efficiency of EDGP with that of other baseline methods.
To this end, we record the duration required for each model to train an epoch over the dataset and
report the mean and standard deviation across 20 runs in Figure 3]

Both DSDGP and EDGP employ an unbiased mini-batch training technique to achieve scalability.
Despite their O(N) computational complexity making batch size theoretically irrelevant to the
comparative results, we still choose a relatively large batch size. Note that the VFE method is not
originally proposed as an observation-factorized approach (Equation 16 in [30]). However, for a fair
comparison with EDGP and DSDGP, we apply the same sub-sampling strategy to convert VFE into
a factorized parametric method (Equation 13 in [30]). Since VFE also has O(NN) complexity, this
adjustment does not affect the validity of the comparison. All models (LSTM, FCN, EDGP, DSDGP,
and VFE) are trained with a batch size of 1024, while GPR is updated using the entire dataset.

Experiments show that GPR requires significantly more training time than VFE and EDGP, especially
on large datasets, which is a reasonable outcome given GPR’s cubic computational complexity. What
stands out is that DSDGP, despite being a O (V) method, exhibits a runtime comparable (or even
higher) to GPR across all datasets. Even on smaller datasets, Debutanizer, the 4-layer DSDGP
incurs almost 20 times higher training overhead compared to other methods. Despite using diagonal
approximation techniques to reduce the computational burden, DSDGP’s runtime increases sharply
with depth. Across all datasets, the jump in training time from 3 to 4 layers is particularly steep,
suggesting that very deep DSDGP models may not be practically usable. In contrast, EDGP’s training
durations maintain stable behaviour: not only is its computational cost moderate, but the additional
overhead from increasing the number of layers appears to grow linearly.

Furthermore, DSDGP’s significant computational cost does not translate into equivalent better
performance. Figure[d]shows the mean and standard deviation of MSE loss over 20 independent trials
for each method on every dataset.

Note that for DSDGP, the VFE can be viewed as its single-layer variant. While stacking more layers
generally improves performance, the gains are relatively modest compared to the significant increase
in training time. This suggests that DSDGP is not well-suited for deep architectures.

In contrast, EDGP demonstrates a clear advantage in constructing deep frameworks. As shown in
Figure[d] EDGP consistently outperforms DSDGP in most scenarios and benefits more noticeably
from deeper architectures, without showing signs of overfitting as DSDGP does. Meanwhile, EDGP
also requires substantially less training time than DSDGP, making it more practical in real-world
applications.

We would like to highlight why GPR and VFE exhibit stochasticity in Figure [d] Note that
DSDGP and EDGP do not adopt the traditional zero-mean prior; therefore, GPR and VFE are aligned



266
267
268
269

270
271
272
273
274
275
276
277
278
279
280
281

282
283
284

285

286
287
288

289
290
291
292
293
294
295
296
297

299

300
301
302
303
304
305

306

307
308
309
310
311
312
313

for comparison using a linear mapping m(X) = XW as their prior mean. This linear mapping is
randomly initialized following the Kaiming initialization method [39], introducing stochasticity into
the models. Additionally, since VFE’s ELBO is obtained by log-likelihood minus KL divergence,
this also contributes to its stochasticity.

Beyond the visual comparisons in Figures [3|and ] Table [T| presents the quantitative performance
of all models. It is worth noting that EDGP tends to achieve its best performance at a depth of 4
layers, while the performance of 4-layer DSDGP models is often worse than that of their shallow
counterparts. This further supports the claim that EDGP is better suited for deep architectures. When
comparing the best performance of EDGP with the best results from competing methods, we observe
substantial improvements. For example, on the Exchange dataset, the best EDGP MSE is 0.0229
with 4 layers, representing a 17.03% improvement over the second-best DSDGP (3 layers) with an
MSE of 0.0276. On the ETTh dataset, the best EDGP result is 0.1498 (3 layers), improving upon
the second-best DSDGP (2 layers) at 0.1543 by 2.92%. On the SRU dataset, EDGP with 4 layers
achieves an MSE of 0.1795, which is slightly worse than DSDGP’s 0.1580 with the same depth. On
the Debutanizer dataset, EDGP (4 layers) reaches an MSE of 0.8151, significantly outperforming the
second-best DSDGP (3 layers) at 0.9294, by 12.30%.

As for why EDGP underperforms DSDGP on the SRU dataset, we provide a conjecture in Section
[l Nevertheless, the overall results strongly validate the effectiveness of EDGP and highlight its
contribution to advancing Gaussian process research.

5 Discussion and Limitation

Experiments demonstrate that EDGP is effective and performs well across a range of datasets. While
DSDGP gains only modest benefits from additional layers due to increased computational costs,
EDGP shows clear and significant advantages as the depth increases.

We would like to discuss why EDGP does not vastly outperform DSDGP in all scenarios and offer a
conjecture. The essence of GPs lies in the assumption that the correlation between input locations
reflects the correlation between target outputs, i.e., closer inputs yield more similar outputs. The key
difference between EDGP and DSDGP lies in how the inner layers are handled: DSDGP computes
the posterior mean but ignores the posterior covariance in subsequent inference, thus preserving the
original input correlation characteristic. In contrast, EDGP refines this structure by incorporating the
posterior covariance to adjust the inputs to the next layer. Therefore, on datasets where the correlation
structure between inputs and outputs is well-aligned (i.e., easier datasets like SRU), DSDGP can
match or even slightly outperform EDGP. However, on more challenging datasets with possible
misaligned correlations, e.g., Debutanizer, DSDGP falls short, whereas EDGP’s additional adjustment
yields significantly better performance.

While EDGP demonstrates clear advantages in accuracy and efficiency, these gains come at the
cost of kernel flexibility. At its core, EDGP transforms function-space sampling into weight-space
sampling, where weights follow independent Gaussian distributions, allowing for efficient linear-time
complexity. However, this transformation inherently limits the method to RBF kernels. While
extensions to other stationary kernels are theoretically possible, the resulting weight distributions may
not allow equally efficient sampling. For non-stationary kernels, EDGP is not directly applicable.

6 Conclusion

We have presented a novel DGP method termed EDGP which performs efficient and effective
inference. Both theoretical and empirical analyses show that EDGP addresses the fundamental
trade-off in DGPs between computational efficiency and inference accuracy. Experiment results
demonstrate that EDGP significantly outperforms DSDGP in runtime while achieving equal or
better predictive performance. This advantage arises from replacing inner-layer sampling with basis-
function decomposition and posterior correction, thus retaining full covariance structure without
additional overhead.
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A Proof of Proposition I

To prove that fé can be substituted by £, we only need to focus on whether these two have same

mean and covariance. To facilitate the proof, we would like to pre-define the following notations,

E.[a] déf/ap(x)daz,

B Eaplal 2 [ ([ antali)as ot = B, 10 (16)

def
Dw\y(a) = II4::c|y [(a - Ew\y[a])(a - Emly[a])T] .
For clarity demonstration we rewrite Equation|[I2]in the following,

£ E R ZOk(Z!, Z) 7 (@ - ).

It is straightforward to see that f‘é shares the same mean with f'. We omit the hat superscript to

transform the notation from samples to random variables. f! is also now seen as a complex random
variable instead of a sample. The expectation of f' is computed through p(f'), g(u'), and p(u') from
which the [Ll (from Equation is restored, therefore is validated.

g [f'] = Eq [£)] + k(' Z)K(Z, 2') 7 (B [ug] — By [w))]). (17)

q
To pave the way for the proof of f! covariance, we need to prove the following intermediate result.
D, (2) = E, Dy, (2)] + D (Esyyla]). (18)
We present the proof in the following Equation [T9}

=EyEqpy [(2 — Eqjyla] + Egpy[o] — Eofa]) (z — Eqpy [2] + Eqpy[2] — Eq[2]) ]
=EyEqy (2 — xly D(@ = Egpya]) T + (& — Eqyy[2]) (Bppy 2] — Eofa]) '] +
EyEoly [(Exly w])(w—Ex\y[w])TJr(Exw[w]—E [2]) (Eopyl2] = Eola]) 7] (19)
=E,E,, [(z - a:ly (@ = Eppyla]) " + Eapylo] = Eofa]) (Bopyl2] — Eolz]) ]
Ey[Dgyy (z)] + z\y[ x))
= Dm( );

where the first and second equality come from the formula expansion, the third equality comes
from the fact that EyE,,, [(Eyy[2] — Ex[2])(z — Eypy[2]) 7] = 0as Eyy (¢ — B,y [2])] = 0 and
(Egy[z] — Eg[z]) is independent of x, the fourth equality comes from Equation and the fifth
equality comes from the definition.

Through Equation |18l we can compute the covariance of f! by the following,
D (')
= Eqy D ()] + Doy (B [F1]) (20)
= Euy, | By Dyt ()] + D (Bprpug g )] + Doy (B ).
For the last term of Equation 20/ Dy (I, ful [f']) we have,
Dy, (B ')

=Dy (m(fH) + (L ZHR(Z 2D T (Ul - m(zl))) 1)

= k(£ ZYk(Z!, 2 S k(2! ZH T k(2 £ Y.
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For the second term of Equation 20| Dy, (B¢t fut w [f!]) we have,

Doy (B g [F)
=Dy (m(fl—l) + R, ZNE(2 2H 7 (ol — m(ZY) + k(E Y, Zk(Z 2 (u] — u;))
=Dy, (m(EY) + R(E 22,2 () - m(zh))

=0,
(22)
where we use the mean property of p(f!|ul,, Z', £'~1) from Equation|2|in the first equality, and the
second and third equality come from the fact that a constant has zero covariance.

For the first term of Equation Eu; []D)fl ut ! (f‘l)} we have,

Eut [Pty ()]
= Eu [k(f-z—1)tﬁl—1) ~R(E, ZDR(Z, Zl)‘lk;(Zl,f"l‘l)} (23)
= k(E Y — k(Y ZHR(Z 2N T k(2 Y,

where the first equality comes from the fact that the covariance of p(f![ul, Z', ') is independent
of the observation/realization of u;).

The key to the above derivation is to recognize the difference between conditioning on ui, and
conditioning on ué: the former changes the distribution of f! while the latter does not. Combining

these three parts, we restore the 21 from Equation therefore completing the proof.

B Proof of Proposition

The key to efficient sampling from the prior lies in restoring the correct covariance structure. There-
fore, we would like to show that the sample covariance obtained from Equation [9] converges in
probability to the target kernel k(-,-). This paper focuses on stationary kernels and follows the
approach of RFF, which uses Fourier transforms to approximate kernel behavior [40].

Bochner’s theorem ensures that the Fourier transform of any positive definite, shift-invariant kernel is
a non-negative measure. If the kernel is properly scaled, its Fourier transform p(6) becomes a valid
probability distribution [40]:

k(z,y) = k(z —y) = / p(0)e?V)d0 = By [¢o(2)Co(y)*] (24)

where (p () is defined as €79, and Cy(z)Cp(y)* is an unbiased estimator of k(x, i) when 6 is drawn
from p(6).

Since all inputs and outputs are real-valued, only the real part of (y(z) contributes to the computation.
Thus, ¢7%(®=¥) can be simplified to cos (H(x - y)) To recover an inner product structure similar to
Co(x)Cp(y)*, we introduce an additional random variable b and apply the following transformation:
2cos (0 + b) cos (By + b)
= cos ((0z + b) — (0y + b)) + cos ((0z + b) + (By + b)) (25)
= cos (0(x — y)) + cos (6(z +y) + 2b).

This allows the kernel k(x,y) to be approximated in probability by using basis functions

V2 cos (0 + b), provided that the term cos (6(z + y) + 2b) can be canceled out when b is uni-
formaly sampled from U (0, 27 ), thus effectively restoring the kernel structure.
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Figure 5: Validation of the effectiveness of the weight-space sampling method on hyperparameter
adjusting. The method is evaluated by comparing the difference between the sample covariance
matrix obtained using basis functions at different lengthscale settings, 1.0 and 4.0, and the target
covariance is computed directly from the standard RBF kernel with lengthscale set to 1/4. The
number of samples is 20000, and the number of basis functions is 2048.
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Figure 6: Validation of the effectiveness of the weight-space sampling method on different sample
sizes. The method is evaluated by comparing the difference between the sample covariance matrix
obtained using Propos1t10n|1'| at sample size of 50 and 1000, and the target covariance is computed
through the integration [ p(f|u)g(u)du. The number of basis functions is 2048.

27 1
/ / V2 cos (0 4 b)V2 cos (y + b)ddb

2
= // —p(@) {cos (6(z —y)) + cos (6(z + y) + 2b) |dOdb 26)

27
= k(z,y) // 6) cos(f(x + y) + 2b)dodb
= k(x,y).
This basis function transformation is known as RFF. The core idea is to replace direct sampling from
the covariance with sampling via basis functions, where the choice of distribution for § depends on

the Fourier transform of the kernel. For the RBF kernel, 8 follows a standard Gaussian distribution,
which leads to efficient computation.
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C Feasibility Validation of the Sampling Technique

Although Propositions [T and [2] provide rigorous mathematical foundations for EDGP, visualizations
can further enhance the model’s confidence. In this section, we present a set of validation experiments
to support the proposed method’s feasibility and analyze the impact of its hyperparameters.

We first focus on validating Proposition [2] which concerns whether sampling based on its formulation
can successfully restore the covariance structure of the kernel. A related and equally important issue
is how to optimize kernel hyperparameters, since Proposition[2]only analyzes the standard RBF kernel
without addressing how the associated basis functions adapt when parameters like the lengthscale
(LS) change.

Figure [5] addresses this concern. The first row shows a large error, indicating that changes in LS
indeed affect the precision of covariance restoration. For example, if the kernel’s LS is updated from
1.0 to 0.25 while the LS of the prior p(#) remains fixed at 1.0, the sampling method breaks down.
This is because the LS of the kernel and that of the prior are reciprocal, as supported by the scaling

property of Fourier transform f(at) EA LF(2).

lal

Maintaining this reciprocal relationship during training ensures that the sampling remains valid at all
times, as demonstrated in the second row of Figure E}

Next, we verify Proposition |1} which states that this sampling approach should also recover the
posterior distribution’s covariance. We are particularly interested in how the sampling accuracy
depends on the number of samples, since this directly affects computational cost. The goal is to
achieve high accuracy with as few samples as possible.

Figure [0]illustrates this relationship. While the restoration accuracy is already quite good with 50
samples, increasing the number to 1000 further reduces the error between the restored covariance and
the integrated (ground truth) covariance. Nonetheless, using a smaller number of samples remains a
practical and effective choice.

D Derivation of the ELBO

In this section, we derive the ELBO (Equation @ and show that EDGP, like DSDGP, achieves
scalability through data sub-sampling, making it suitable for extremely large datasets. The derivation
can begin by minimizing the KL divergence and showing that the sum of the ELBO and the KL
divergence equals the marginal log-likelihood. This implies that maximizing the ELBO is equivalent
to minimizing the KL divergence. However, in this paper we follow the VFE tradition that directly
applies Jensen’s inequality to lower-bound the marginal log-likelihood, yielding the ELBO as:

log p(y)

_ 1 L p(Y‘fL) HL:1 p(fl|ul§zl>fl_1)p(ul) L. L

= log {/ [q({f ,u' ) lq({fﬂul}lL:l) ] df“du } 27

p(yIf) T2, p(fu’; 24, £ 1)p(u')
Q({fl7ul}lL:1)

where in VFE, the first term [ {q({f', u'}},)log p(y|f¥)df"} is analyzed to obtain a closed-form
solution, and the optimal variational distribution is derived via functional optimization. This has
the advantage of introducing a diagonal regularization term into the objective, which helps prevent
overfitting.

> / g({f' u'}E ) log afFdul . .

EDGTP, in contrast, does not yield a closed-form solution and instead relies on sampling to compute
an unbiased estimator of the objective. Equation[27]can thus be rewritten as:

L
L= ]Eq(fL;zLjL—l) [IOgP(Y‘fL)] - Z KL[Q(UZ)HP(U-I; Zl)}- (28)
1=1
Since the likelihood term log p(y|fL) factorizes over the data, the estimator can be expressed as:

16



512
513
514
515

N
L= ZEq(fL iz fr-1)[10g p( (yilf) Z u')||p(u’; 21). (29)

i=1 =

~

This form allows the model to be trained incrementally via dataset sub-sampling, much like standard
neural networks, significantly expanding the range of scenarios where EDGP can be applied. As
shown in the experimental results in Section .2 EDGP achieves training efficiency nearly on par
with neural baselines like FCN and LSTM.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: The main contribution of this paper is to improve the existing doubly stochastic

deep gaussian processes methods. The EDGP proposed in this paper is quicker, and more
rigorous and accurate.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

 The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It s fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We have provided such information in the Discussion and Limitations section
[5] The main limiration of EDGP is its flexibility in choosing kernel.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

¢ The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: The proof is provided in appendix [A]and [B]
Guidelines:

» The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: All experiment details have been disclosed in section 4]
Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

19



621
622
623

624

625
626

627

628

629
630

631
632
633
634

635
636
637

638
639

640
641
642

643
644

646

647

648
649
650

651

652

653

654

655
656

657
658

659

660
661

662

663
664

665

666

668
669

671
672

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The implementation code of EDGP and DSDGP is in the supplementary
material as a zip file. After review, we will provide the GitHub URL.

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: All experiment details have been disclosed in section 4]
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

 The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: All experimental results were obtained after 20 repetitions. The standard
deviation is also presented in section[d]to ensure that the results are significant.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: Computer information are disclosed in section 4]
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: This paper conforms the Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

o If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
Justification: There is no societal impact of the work performed.
Guidelines:

» The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: This paper have used the existing code repository: DSDGP; and dataset: ETTh,
Exchange, Debutanizer, SRU, and we have cited the original paper.

Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: This paper does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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