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Abstract

Deep Gaussian Processes (DGPs) enhance Gaussian Processes (GPs) in function1

approximation through multi-layer stacking. However, the inference of DGPs2

presents challenges as it has no closed-form solution. Existing methods approxi-3

mate the posterior of DGPs through independent sampling and variational inference.4

These approaches overlook the samples’ correlations and face substantial compu-5

tational overhead as layers increase, hindering performance improvements. We6

present Efficient Deep Gaussian Processes (EDGPs) that enable efficient sampling7

between inner layers while maintaining full covariance characteristics. Unlike ex-8

isting methods that compromise accuracy for speed, EDGP achieves high efficiency9

without sacrificing precision. Experiments show that EDGP has comparable, or10

even better performance than state-of-the-art Doubly Stochastic Deep Gaussian11

Processes (DSDGPs) while training is almost as efficient as basic neural networks.12

1 Introduction13

Gaussian Processes (GPs) are versatile tools for data analysis, offering robust modeling capabilities,14

broad applicability, and significant research value [1, 2, 3, 4]. A GP is primarily defined by its15

kernel functions, through which prior knowledge can be embedded via kernel design to enhance16

model performance. For instance, kernel functions can encode structural information such as periodic17

patterns [5], change-points in time series [6], or simulator priors for robotics [7], enabling GPs to18

make effective use of domain knowledge. However, the expressive power of single-layer GPs is19

constrained by the kernel function’s accuracy in capturing data correlations. Traditional approaches20

often rely on handcrafted composite kernels, which require extensive design and optimization while21

offering limited general utility across tasks [8, 9]. An alternative paradigm seeks to parameterize22

kernel representations within Reproducing Kernel Hilbert Spaces (RKHS), or to use neural networks23

as kernel functions [10, 11]. Although these data-driven kernel learning methods aim to automate24

feature extraction, they incur additional computational costs during inference, and increase the risk of25

overfitting. Addressing these challenges demands careful optimization strategies, architectural refine-26

ments, or advanced regularization techniques, requiring a delicate balance between expressiveness27

and practical efficiency [12, 13].28

Deep Gaussian Processes (DGPs) are a multi-layer generalization of GPs that overcome the expressive29

limitations while maintaining the advantages [14]. A GP can be viewed as a single-layer neural30

network with an infinite number of hidden units, and the way DGPs enhance GPs’ performance31

through nested kernel modeling between layers is analogous to how deep neural networks improve32

performance via stacked nonlinear feature extraction [4, 15]. Furthermore, DGPs refine the covari-33

ance characteristics of the input at each inner layer, enabling a more accurate representation and34

automatically learning to construct an optimal kernel tailored to the data at hand.35
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Training DGPs presents significant challenges due to the absence of a closed-form solution for36

their posterior distribution [16, 17]. Early attempts to address this relied on mean-field variational37

approaches, which impose strong independence and Gaussianity assumptions across layers [15, 16,38

17]. These restrictive assumptions severely underestimate the correlations of the posterior between39

layers, limiting the model’s ability to capture complex hierarchical dependencies [12]. Doubly40

stochastic methods have emerged as a practical alternative, leveraging numerical approximations to41

estimate the true posterior and log-likelihood during training [12, 18, 19, 20]. Doubly Stochastic42

Deep Gaussian Processes (DSDGPs) employ diagonal approximations during inner-layer sampling to43

reduce computational complexity from O(N3) to O(N). This trade-off sacrifices numerical precision44

for efficiency, and the computational overhead remains substantial, growing markedly with number of45

stacked layer increases. There are also approaches that modify the DGP prior and perform inference46

within a parametric model; these methods introduce additional approximations to ensure tractable47

inference [21, 22]. The spectral-based DGP methods are closely related to ours [23, 22, 24, 25],48

but we do not focus on posterior approximation via spectral properties, as the spectral methods are49

limited to stationary conditions [26, 27, 28]. A known pathology in DGPs using zero mean functions50

for inner layers has been reported in Duvenaud et al. [29]. Therefore, all methods used in this paper51

employ a linear mean function.52

In this paper, we present Efficient Deep Gaussian Processes (EDGPs) that eliminate the need for53

compromising between efficiency and precision during inner-layer sampling. In common with many54

state-of-the-art GPs’ approximation schemes, we start by constructing single-layer variational GPs55

using the Variational Free Energy (VFE) [30] approximation method, which ensures computational56

tractability within each layer [31]. We obtain a DGP architecture by stacking multiple such VFE-57

based GPs hierarchically, where the output of one layer serves as the input to the next. At this point,58

the posterior distributions of all but the first layer become intractable due to the integrals over the59

kernel’s input. EDGPs overcome this hurdle by approximating the true marginal posterior through60

sampling from tractable conditional (on input locations) posteriors, enabling efficient inference and61

training. EDGPs adopt a weight-space perspective that evaluates basis functions to represent the prior62

distributions rather than sampling directly like other doubly stochastic methods [5, 32]. These priors63

will be updated to approximate the posterior distributions according to the observations (variational64

distributions in VFE case), thereby completing the inference propagation. This design ensures that65

when input locations change, which is a common scenario in most layers, only function updating is66

required, eliminating the need for resampling, as illustrated in Figure 1. By avoiding recomputation67

of inner-layer posterior means and covariances, this approach achieves a significant reduction in68

computational overhead. Moreover, since EDGPs avoid diagonal approximations to reduce sampling69

complexity, they preserve both the full covariance structure of samples and the posterior distribution70

correlation across layers, thereby improving modeling accuracy and theoretical rigor.71

2 Background72

2.1 Single-layer Gaussian Processes73

A GP involves inferring a stochastic function f : Rd → R based on a set of N observations74

y = (y1, . . . , yN )⊤ at designed locations X = (x1, . . . ,xN )⊤. We use f = f(X) as the latent75

function values of the observations y = f + η, η ∼ N (0, σ2I). The prior is defined by the mean76

and kernel p(f ;X) ∼ N
(
m(X), k(X,X)

)
. The likelihood p(y|f) and the prior p(f ;X) have linked77

the observations, the input coordinates, and the random variable f together, allowing for the inference78

of the posterior. Note that a semicolon is used to distinguish between coordinate and non-coordinate79

random variables. To circumvent the O(N3) matrix inversion in GP inference, a series of inducing80

points are introduced as anchor points to reduce the computational overhead. These inducing points81

essentially transform the GP from the original "input → output" mapping into a two-step process:82

"input → inducing points → output," thereby shifting the bottleneck to the size of the inducing83

sets M . VFE provides an expressive and robust sparse GP method and forms the foundation of the84

state-of-the-art research. We use the notation consistent with Salimbeni et al. [12], where u = f(Z)85

represents the function values at the M inducing locations Z = (z1, . . . , zM ). By the definition of a86

GP, the covariance features are described by the kernel function at each pair of inputs, k(xi, zj). The87

joint probability distribution is,88

p(y, f ,u) = p(y|f)p(f |u;Z,X)p(u;Z), (1)
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Figure 1: Illustration of two sampling approaches from a Gaussian distribution N (m(x), k(x, x)).
(a) Sampling via a weighted sum of basis functions, where the stochasticity comes from the weights
and basis functions; when the input shifts, outputs at new locations can be obtained simply by
re-evaluating the basis functions. (b) Direct sampling from the distribution, requires recomputing
the Cholesky decomposition of the updated covariance to maintain the stochastic behavior when the
input shifts.

where the prior p(u;Z) is defined as a Gaussian distribution with mean m(Z) and covariance k(Z,Z).89

The conditional p(f |u;Z,X) = N (f |µ,Σ) can be computed as a posterior using the priors p(f ;X)90

and p(u;Z),91

µ = m(X) + k(X,Z)k(Z,Z)−1
(
u−m(Z)

)
,

Σ = k(X,X)− k(X,Z)k(Z,Z)−1k(Z,X).
(2)

VFE addresses sparse GPs using a variational technique. The joint probability distribution of y, f ,92

and u is converted into the Evidence Lower Bound (ELBO) of the marginal log-likelihood objective93

by minimizing the Kullback-Leibler (KL) divergence between the variational posterior q and the94

true posterior p. Define q(f ,u) = p(f |u;Z,X)q(u) as the factorized posterior approximation of95

p(f ,u|y), and q(u) = N (u|m,S) as the approximation of p(u|y). The VFE inference solution at96

location X is given by,97

q(f ;Z,X) =

∫
p(f |u;Z,X)q(u)du = N (f |µ̃, Σ̃), (3)

where the mean and covariance are,98

µ̃ = m(X) + k(X,Z)k(Z,Z)−1
(
m−m(Z)

)
,

Σ̃ = k(X,X)− k(X,Z)k(Z,Z)−1
[
k(Z,Z)− S

]
k(Z,Z)−1k(Z,X).

(4)

The corresponding ELBO can be obtained through simple transformation [30],99

L = Eq(f ;Z,X)

[
log p(y|f)

]
− KL

[
q(u)||p(u;Z)

]
. (5)

The optimization in Equation 5 and the inference in Equation 4 jointly constitute the VFE workflow.100

2.2 Doubly Stochastic Deep Gaussian Processes101

DGPs extend the single-layer VFE by using the output of one GP layer as the input coordinates for102

the next, enabling the modeling of complex nonlinear features. Since the inputs in DGPs are not103

fixed locations but rather random variables drawn from the previous GP layer’s output, the inference104

in Equation 3 involves an integral over the kernel function’s input, thereby rendering the problem105

intractable,106

q(f2;Z2,Z1, f0) =

∫
p(f2|u2;Z2, f1)q(u2)p(f1|u1;Z1, f0)q(u1)du2du1df1, (6)

where we present a two-layer example with f0 being the input location X.107
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The original DGP’s formulation trivially follows the VFE structure, introducing variational techniques108

not only in the inducing variables but also in the noisy corruptions of the output yl at each GP layer.109

This parameterization helps avoid the intractable integrals in the ELBO, providing a closed-form110

training solution. However, this design forces the inputs to each layer to be independent of the outputs111

from the previous layer. The variational noisy corruptions are determined separately during training,112

and such overly factorized DGPs essentially degenerate into single-layer GPs with independent113

inputs.114

DSDGPs link the output of each GP layer to the input of the next. This method ensures the transfer115

of input information across layers, but it also makes the model intractable. A L-layer DSDGP116

approximates the true ELBO and inference by sampling an unbiased estimate f̂L of the posterior, i.e.,117

to transform from integrating Equation 7,118

q(fL;ZL, . . . ,Z1, f0) =

∫ L∏
l=1

q(f l;Zl, f l−1)df l−1, (7)

to recursively performing Equation 8,119

f̂ l = DiagSample[q(f l;Zl, f̂ l−1)], (8)

where DiagSample conduct independently sample from a Gaussian N (a,A) as a+ ϵ⊙
√

diag(A),120

ϵ ∼ N (0, I), and q(f l;Zl, f̂ l−1) can be tractably solved within each layer as Equation 3.121

DSDGP avoids the cubic computational cost of Cholesky decomposition of covariance by employing122

a diagonal approximation when sampling from each layer’s GP output distribution, and thus does not123

effectively utilize the covariance to model complex correlation characteristics. From this perspective,124

DSDGP can be seen as a diagonal, noisy-corrupted deep orthogonal projection network [33].125

The core idea behind the DGP framework lies in exploring the nesting property. The output of the126

preceding GP will be adjusted by its second-order moment and then serve as the input to the kernel127

function of the following GP, thereby having a recursive influence on the output. This fundamental128

objective has yet to be realized in existing DGP methods. The EDGP proposed in this paper addresses129

this gap. By replacing the resampling step DiagSample in each layer of DSDGP with a re-evaluation,130

EDGP has achieved a significant reduction in computational cost while allowing a full approximation131

of the nested kernel.132

2.3 Weight Space view of Gaussian Processes133

The aforementioned methods treat f as a function value whose stochasticity is governed by the134

distributional hyperparameters. An alternative perspective is to view f in the weight space as135

a weighted sum of basis functions. The connection between these two perspectives lies in the136

interpretation of the kernel function k(·, ·) as the inner product between evaluation functions in an137

RKHS.138

Random Fourier Features (RFFs) are widely adopted in training large-scale kernel machines. It serves139

as a basis functions that accelerate computation by mapping input data into a random low-dimensional140

feature space. The RFF representation in the weight-space GP is ϕi(X) =
√
2/b cos(θiX

⊤ + τi),141

where θi are sampled from N (0, I) and τi are sampled from U(0, 2π).142

We impose a GP prior on f corresponding to a standard RBF kernel by defining the following143

Bayesian linear model,144

f =

b∑
i=1

wiϕ
⊤
i (X) wi ∼ N (0, 1). (9)

Notably, in this formulation, the stochasticity of f is determined directly by the weights w and ϕ,145

rather than indirectly through the location X affecting the kernel matrix, as in the function-space146

view. The weight-space and function-space views of Gaussian processes are equivalent, and both the147

sparse approximation techniques and the hierarchical structures discussed earlier can be reinterpreted148

under the weight-space framework. However, RFF-based weighted sums cannot faithfully recover the149

true posterior, as the true posterior covariance is often non-stationary, while RFFs can only capture150
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Figure 2: Validation of the effectiveness of the weight-space sampling method. The method is
evaluated by comparing the difference between the sample covariance matrix obtained using basis
functions at different inputs x1 and x2 and the covariance computed directly from the standard RBF
kernel. The number of samples is 20000, and the number of basis functions is 2048.

stationary properties. This limitation has hindered the broader application of RFFs in deep Gaussian151

processes.152

EDGP not only leverages the computational efficiency of RFFs but also overcomes their inability to153

model non-stationary posteriors. By successfully incorporating RFFs into a nested structure, EDGP154

achieves a win-win outcome of reducing computational complexity while also enhancing model155

performance.156

3 Efficient Deep Gaussian Processes157

EDGP adopts the VFE structure and features two key characteristics: first, it maintains the exact158

model by preserving the conditional distribution within each layer; second, it assumes that the159

variational distribution q(ul) at each layer is a Gaussian parameterized by a mean ml and covariance160

Sl. Therefore, the joint posterior can be written in the following factorized form:161

q({f l,ul}Ll=1) =

L∏
l=1

p(f l|ul;Zl, f l−1)q(ul). (10)

Note that aside from replacing the fixed input with random variables, EDGP retains the VFE structure162

within each layer. Thus, following Equation 3, the inducing variables in each layer can still be163

marginalized analytically. Say that q(f l;Zl, f l−1) =
∫
p(f l|ul;Zl, f l−1)q(ul)dul = N (f l|µ̃l, Σ̃l)164

we have,165

µ̃l = m(f l−1) + k(f l−1,Zl)k(Zl,Zl)−1
(
ml −m(Zl)

)
,

Σ̃l = k(f l−1, f l−1)− k(f l−1,Zl)k(Zl,Zl)−1
[
k(Zl,Zl)− Sl

]
k(Zl,Zl)−1k(Zl, f l−1).

(11)

EDGP approximates the marginal posterior distribution via sampling, with its core mechanism being166

a recursive sample across layers. Specifically, to approximate the marginal posterior at the l-th layer,167

one must first obtain samples from the posterior of the preceding layer f̂ l−1, as Equation 11 suggests.168

This sampling-based approximation presents two main challenges. First, even when the distributional169

form is clear, sampling incurs a time cost of O(N3). Second, whenever the output of the previous170

GP layer changes due to updates, the subsequent GP layer resamples accordingly, increasing the171

computational overhead.172

Proposition 1 Let f̂ lq , f̂ lp, ûl
q and ûl

p denote samples respectively drawn from the marginal posterior173

q(f l;Zl, f l−1), prior p(f l; f l−1), variational distribution q(ul), and prior p(ul;Zl) . Then f̂ lq can be174

substituted with f̃ l defined as follows:175

f̃ l
def
= f̂ lp + k(f l−1,Zl)k(Zl,Zl)−1(ûl

q − ûl
p). (12)
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Proof 1 Proof is provided in Appendix A.176

Proposition 1 offers a novel perspective on the inference propagation: rather than sampling directly177

from the distribution, one can sample from the prior and apply a correction based on observations.178

This approach shifts the focus from studying the non-stationary posterior to sampling with a stationary179

prior, where weight-space methods can be employed for efficient learning.180

Proposition 2 Let f̂ lp be the sample drawn from the prior p(f l; f l−1) = N
(
m(f l−1), k(f l−1, f l−1)

)
.181

Then f̂ lp can be substituted with the following expression:182

b∑
i=1

wiϕ
⊤
i (f

l−1) +m(f l−1). (13)

Proof 2 Proof is provided in Appendix B.183

Sample from the marginal posterior By incorporating Proposition 2 and Proposition 1, the184

recursive computation of EDGP’s marginal posterior distribution can thus be summarized as follows:185

first, use RFF to sample from both the f and u prior in the weight space; then, adjust the prior samples186

based on observations to approximate posterior samples; finally, feed these posterior samples as input187

locations into the next-layer GP to determine its prior covariance. The sample procedure is listed in188

Algorithm 1.189

Algorithm 1 Sample from the marginal posterior
1: Input: input locations X.
2: Compute: f̃ l for each layer.
3: Initialize: f0 is set to X, initialize kernel k(·, ·).
4: for l = 1, . . . , L− 1 do
5: Sample f̂ lp =

∑b
i=1 wiϕ

⊤
i (f

l−1) +m(f l−1), ûl
p =

∑b
i=1 wiϕ

⊤
i (Z

l) +m(Zl).
6: Sample ûl

q ∼ q(ul).
7: Compute: f̃ l = f̂ lp + k(f l−1,Zl)k(Zl,Zl)−1(ûl

q − ûl
p).

8: Set: f l = f̃ l.
9: end for

Computation of the ELBO We compute the objective of EDGP in the same manner as VFE; the190

ELBO can be obtained through Jensen’s inequality on the marginal log-likelihood,191

L = Eq({f l,ul}L
l=1)

log

[
p(y|fL)

∏L
l=1 p(f

l|ul;Zl, f l−1)p(ul)

q({f l,ul}Ll=1)

]
. (14)

After simplifying and consolidating terms, the final expression for Equation 14 is obtained:192

L =

N∑
i=1

Eq(fLi ;ZL,f̃L−1)[log p(yi|fLi )]−
L∑

l=1

KL[q(ul)||p(ul;Zl)], (15)

where subscript i denotes the ith component.193

Comparison with DSDGP Although EDGP and DSDGP share the same theoretical computational194

complexity due to their common variational inference framework, EDGP demonstrates significantly195

faster empirical performance. This efficiency stems from EDGP’s compact computational structure,196

where with one-step computation (Equation 12) it captures both the posterior mean and covariance197

during sampling. In contrast, DSDGP requires explicit computation of the bias term and covariance,198

incurring substantial additional overhead that slows down computation.199

More importantly, DSDGP achieves the same theoretical computational complexity as EDGP only200

under a diagonal approximation. If DSDGP attempts to restore full covariance during posterior201

sampling, its complexity escalates to O(N3). In comparison, EDGP constructs an efficient DGP202

that retains the full covariance characteristics without compromising on structural assumptions or203

predictive performance, addressing a long-standing challenge in this field.204
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Figure 3: Runtime comparison of all methods across the four datasets.

Figure 4: Performance comparison of all methods across the four datasets on MSE metric. GPR and
VFE are aligned for comparison using a linear mapping m(X) = XW as their prior mean.

4 Experiments and Analysis205

4.1 Experiments Setup206

We evaluate EDGP on four mainstream regression benchmark datasets. The ETTh [34] dataset207

consists of hourly load and oil temperature data from electricity transformers collected between July208

2016 and July 2018. The Exchange [35] dataset records daily exchange rates for eight countries209

from 1990 to 2016. The SRU [36] dataset captures residual SO2 concentrations in tail gas emissions210

during the oxidative removal of H2S at a large industrial refinery. The Debutanizer [36] dataset211

contains butane concentration measurements from a debutanizer column in naphtha separation units212

within petroleum production. These datasets span common real-world regression scenarios and vary213

in modeling difficulty: ETT and Debutanizer are more challenging with lower reported accuracies,214

while Exchange and SRU are relatively easier and have higher existing fit precision.215

We aim to compare EDGP’s performance and speed against DSDGP and classic GP models, including216

traditional full GP and variational sparse GP. We aim to show how EDGP achieves both faster217

computation and higher predictive accuracy. To strengthen the comparison, we also include two well-218

established neural regression models, Long Short-Term Memory (LSTM) [37] and Fully Connected219

Network (FCN).220

We record detailed results for EDGP and DSDGP with GP layer depths set to 2, 3, and 4. For221

the neural network baselines, we use 3 layers, striking a balance between avoiding overfitting and222

retaining sufficient feature extraction capacity. All other experimental hyperparameters are held223

constant across models. Inputs are preprocessed as a moving-average model of order 16 [38], which224

corresponds to a sequence length of 16 for LSTM models. Hidden dimensions across all layers are225

fixed at 64, and the RBF kernel is used uniformly for all GP layers and models. Both EDGP and226

DSDGP propagate 20 samples at each inner layer. The best validation performance is recorded on the227

last 800 data points for all methods and datasets. The number of inducing points is set to 256 for all228

datasets. The number of basis function is set to 2048 for EDGP. All experiments are conducted on a229

workstation with an AMD R7-5800 CPU and an NVIDIA RTX 3060 GPU.230
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Table 1: Regression MSE and MAE results
Datasets Exchange ETTh SRU Debutanizer

Models Layers MSE MAE MSE MAE MSE MAE MSE MAE
FCN 3 0.0795 0.2261 0.2142 0.3694 0.6280 0.5817 1.2202 0.8486

LSTM 3 0.0388 0.1600 0.1572 0.3013 0.2354 0.3517 1.4549 0.8641
GPR N/A† 0.0815 0.2603 0.1910 0.3499 0.5847 0.5192 1.0311 0.7808
VFE N/A† 0.0440 0.1666 0.1598 0.3141 0.3143 0.4012 1.0600 0.8005

DSDGP 2 0.0334 0.1469 0.1543 0.3103 0.2117 0.3588 0.9807 0.7786
DSDGP 3 0.0276 0.1233 0.1555 0.3119 0.1673 0.3176 0.9294 0.7542
DSDGP 4 0.0347 0.1364 0.1569 0.3135 0.1580 0.3133 0.9404 0.7599
EDGP 2 0.0318 0.1432 0.1511 0.3079 0.2009 0.3479 0.8837 0.7289
EDGP 3 0.0236 0.1193 0.1498 0.3086 0.1882 0.3391 0.8225 0.6952
EDGP 4 0.0229 0.1151 0.1502 0.3100 0.1795 0.3360 0.8151 0.6907
† N/A stands for Not Accessible, meaning such methods have no attribute of stacked layers. VFE can be viewed as a 1-layer DSDGP/EDGP.

4.2 Result Analysis231

We first present a comparison of the runtime efficiency of EDGP with that of other baseline methods.232

To this end, we record the duration required for each model to train an epoch over the dataset and233

report the mean and standard deviation across 20 runs in Figure 3.234

Both DSDGP and EDGP employ an unbiased mini-batch training technique to achieve scalability.235

Despite their O(N) computational complexity making batch size theoretically irrelevant to the236

comparative results, we still choose a relatively large batch size. Note that the VFE method is not237

originally proposed as an observation-factorized approach (Equation 16 in [30]). However, for a fair238

comparison with EDGP and DSDGP, we apply the same sub-sampling strategy to convert VFE into239

a factorized parametric method (Equation 13 in [30]). Since VFE also has O(N) complexity, this240

adjustment does not affect the validity of the comparison. All models (LSTM, FCN, EDGP, DSDGP,241

and VFE) are trained with a batch size of 1024, while GPR is updated using the entire dataset.242

Experiments show that GPR requires significantly more training time than VFE and EDGP, especially243

on large datasets, which is a reasonable outcome given GPR’s cubic computational complexity. What244

stands out is that DSDGP, despite being a O(N) method, exhibits a runtime comparable (or even245

higher) to GPR across all datasets. Even on smaller datasets, Debutanizer, the 4-layer DSDGP246

incurs almost 20 times higher training overhead compared to other methods. Despite using diagonal247

approximation techniques to reduce the computational burden, DSDGP’s runtime increases sharply248

with depth. Across all datasets, the jump in training time from 3 to 4 layers is particularly steep,249

suggesting that very deep DSDGP models may not be practically usable. In contrast, EDGP’s training250

durations maintain stable behaviour: not only is its computational cost moderate, but the additional251

overhead from increasing the number of layers appears to grow linearly.252

Furthermore, DSDGP’s significant computational cost does not translate into equivalent better253

performance. Figure 4 shows the mean and standard deviation of MSE loss over 20 independent trials254

for each method on every dataset.255

Note that for DSDGP, the VFE can be viewed as its single-layer variant. While stacking more layers256

generally improves performance, the gains are relatively modest compared to the significant increase257

in training time. This suggests that DSDGP is not well-suited for deep architectures.258

In contrast, EDGP demonstrates a clear advantage in constructing deep frameworks. As shown in259

Figure 4, EDGP consistently outperforms DSDGP in most scenarios and benefits more noticeably260

from deeper architectures, without showing signs of overfitting as DSDGP does. Meanwhile, EDGP261

also requires substantially less training time than DSDGP, making it more practical in real-world262

applications.263

We would like to highlight why GPR and VFE exhibit stochasticity in Figure 4. Note that264

DSDGP and EDGP do not adopt the traditional zero-mean prior; therefore, GPR and VFE are aligned265
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for comparison using a linear mapping m(X) = XW as their prior mean. This linear mapping is266

randomly initialized following the Kaiming initialization method [39], introducing stochasticity into267

the models. Additionally, since VFE’s ELBO is obtained by log-likelihood minus KL divergence,268

this also contributes to its stochasticity.269

Beyond the visual comparisons in Figures 3 and 4, Table 1 presents the quantitative performance270

of all models. It is worth noting that EDGP tends to achieve its best performance at a depth of 4271

layers, while the performance of 4-layer DSDGP models is often worse than that of their shallow272

counterparts. This further supports the claim that EDGP is better suited for deep architectures. When273

comparing the best performance of EDGP with the best results from competing methods, we observe274

substantial improvements. For example, on the Exchange dataset, the best EDGP MSE is 0.0229275

with 4 layers, representing a 17.03% improvement over the second-best DSDGP (3 layers) with an276

MSE of 0.0276. On the ETTh dataset, the best EDGP result is 0.1498 (3 layers), improving upon277

the second-best DSDGP (2 layers) at 0.1543 by 2.92%. On the SRU dataset, EDGP with 4 layers278

achieves an MSE of 0.1795, which is slightly worse than DSDGP’s 0.1580 with the same depth. On279

the Debutanizer dataset, EDGP (4 layers) reaches an MSE of 0.8151, significantly outperforming the280

second-best DSDGP (3 layers) at 0.9294, by 12.30%.281

As for why EDGP underperforms DSDGP on the SRU dataset, we provide a conjecture in Section282

5. Nevertheless, the overall results strongly validate the effectiveness of EDGP and highlight its283

contribution to advancing Gaussian process research.284

5 Discussion and Limitation285

Experiments demonstrate that EDGP is effective and performs well across a range of datasets. While286

DSDGP gains only modest benefits from additional layers due to increased computational costs,287

EDGP shows clear and significant advantages as the depth increases.288

We would like to discuss why EDGP does not vastly outperform DSDGP in all scenarios and offer a289

conjecture. The essence of GPs lies in the assumption that the correlation between input locations290

reflects the correlation between target outputs, i.e., closer inputs yield more similar outputs. The key291

difference between EDGP and DSDGP lies in how the inner layers are handled: DSDGP computes292

the posterior mean but ignores the posterior covariance in subsequent inference, thus preserving the293

original input correlation characteristic. In contrast, EDGP refines this structure by incorporating the294

posterior covariance to adjust the inputs to the next layer. Therefore, on datasets where the correlation295

structure between inputs and outputs is well-aligned (i.e., easier datasets like SRU), DSDGP can296

match or even slightly outperform EDGP. However, on more challenging datasets with possible297

misaligned correlations, e.g., Debutanizer, DSDGP falls short, whereas EDGP’s additional adjustment298

yields significantly better performance.299

While EDGP demonstrates clear advantages in accuracy and efficiency, these gains come at the300

cost of kernel flexibility. At its core, EDGP transforms function-space sampling into weight-space301

sampling, where weights follow independent Gaussian distributions, allowing for efficient linear-time302

complexity. However, this transformation inherently limits the method to RBF kernels. While303

extensions to other stationary kernels are theoretically possible, the resulting weight distributions may304

not allow equally efficient sampling. For non-stationary kernels, EDGP is not directly applicable.305

6 Conclusion306

We have presented a novel DGP method termed EDGP which performs efficient and effective307

inference. Both theoretical and empirical analyses show that EDGP addresses the fundamental308

trade-off in DGPs between computational efficiency and inference accuracy. Experiment results309

demonstrate that EDGP significantly outperforms DSDGP in runtime while achieving equal or310

better predictive performance. This advantage arises from replacing inner-layer sampling with basis-311

function decomposition and posterior correction, thus retaining full covariance structure without312

additional overhead.313
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A Proof of Proposition 1429

To prove that f̂ lq can be substituted by f̃ l, we only need to focus on whether these two have same430

mean and covariance. To facilitate the proof, we would like to pre-define the following notations,431

Ex[a]
def
=

∫
ap(x)dx,

EyEx|y[a]
def
=

∫ (∫
ap(x|y)dx

)
p(y)dy = Ex[a],

Dx|y(a)
def
= Ex|y

[
(a− Ex|y[a])(a− Ex|y[a])

⊤] .
(16)

For clarity demonstration we rewrite Equation 12 in the following,432

f̃ l
def
= f̂ lp + k(f l−1,Zl)k(Zl,Zl)−1(ûl

q − ûl
p).

It is straightforward to see that f̂ lq shares the same mean with f̃ l. We omit the hat superscript to433

transform the notation from samples to random variables. f̃ l is also now seen as a complex random434

variable instead of a sample. The expectation of f̃ l is computed through p(f l), q(ul), and p(ul) from435

which the µ̃l (from Equation 11) is restored, therefore is validated.436

Ef̃ l [f̃
l] = Ef lp

[f lp] + k(f̃ l−1,Zl)k(Zl,Zl)−1(Eul
q
[ul

q]− Eul
p
[ul

p]). (17)

To pave the way for the proof of f̃ l covariance, we need to prove the following intermediate result.437

Dx(x) = Ey[Dx|y(x)] + Dy(Ex|y[x]). (18)

We present the proof in the following Equation 19,438

Ex

[
(x− Ex[x])(x− Ex[x])

⊤]
= EyEx|y

[
(x− Ex|y[x] + Ex|y[x]− Ex[x])(x− Ex|y[x] + Ex|y[x]− Ex[x])

⊤]
= EyEx|y

[
(x− Ex|y[x])(x− Ex|y[x])

⊤ + (x− Ex|y[x])(Ex|y[x]− Ex[x])
⊤]+

EyEx|y
[
(Ex|y[x]− Ex[x])(x− Ex|y[x])

⊤ + (Ex|y[x]− Ex[x])(Ex|y[x]− Ex[x])
⊤]

= EyEx|y
[
(x− Ex|y[x])(x− Ex|y[x])

⊤ + (Ex|y[x]− Ex[x])(Ex|y[x]− Ex[x])
⊤]

= Ey[Dx|y(x)] + Dy(Ex|y[x])

= Dx(x),

(19)

where the first and second equality come from the formula expansion, the third equality comes439

from the fact that EyEx|y
[
(Ex|y[x]− Ex[x])(x− Ex|y[x])

⊤] = 0 as Ex|y[(x − Ex|y[x])] = 0 and440

(Ex|y[x] − Ex[x]) is independent of x, the fourth equality comes from Equation 16, and the fifth441

equality comes from the definition.442

Through Equation 18 we can compute the covariance of f̃ l by the following,443

Df̃ l(f̃
l)

= Eul
q
[Df̃ l|ul

q
(f̃ l)] + Dul

q
(Ef̃ l|ul

q
[f̃ l])

= Eul
q

[
Eul

p
[Df̃ l|ul

q,u
l
p
(f̃ l)] + Dul

p
(Ef̃ l|ul

q,u
l
p
[f̃ l])

]
+ Dul

q
(Ef̃ l|ul

q
[f̃ l]).

(20)

For the last term of Equation 20 Dul
q
(Ef̃ l|ul

q
[f̃ l]) we have,444

Dul
q
(Ef̃ l|ul

q
[f̃ l])

= Dul
q

(
m(f l−1) + k(f̃ l−1,Zl)k(Zl,Zl)−1(ul

q −m(Zl))
)

= k(f̃ l−1,Zl)k(Zl,Zl)−1Slk(Zl,Zl)−1k(Zl, f̃ l−1).

(21)
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For the second term of Equation 20 Dul
p
(Ef̃ l|ul

q,u
l
p
[f̃ l]) we have,445

Dul
p
(Ef̃ l|ul

q,u
l
p
[f̃ l])

= Dul
p

(
m(f̃ l−1) + k(f̃ l−1,Zl)k(Zl,Zl)−1

(
ul
p −m(Zl)

)
+ k(f̃ l−1,Zl)k(Zl,Zl)−1(ul

q − ul
p)
)

= Dul
p

(
m(f̃ l−1) + k(f̃ l−1,Zl)k(Zl,Zl)−1

(
ul
q −m(Zl)

))
= 0,

(22)
where we use the mean property of p(f lp|ul

p,Z
l, f̃ l−1) from Equation 2 in the first equality, and the446

second and third equality come from the fact that a constant has zero covariance.447

For the first term of Equation 20 Eul
p

[
Df̃ l|ul

q,u
l
p
(f̃ l)

]
we have,448

Eul
p

[
Df̃ l|ul

q,u
l
p
(f̃ l)

]
= Eul

p

[
k(f̃ l−1, f̃ l−1)− k(f̃ l−1,Zl)k(Zl,Zl)−1k(Zl, f̃ l−1)

]
= k(f̃ l−1, f̃ l−1)− k(f̃ l−1,Zl)k(Zl,Zl)−1k(Zl, f̃ l−1),

(23)

where the first equality comes from the fact that the covariance of p(f lp|ul
p,Z

l, f̃ l−1) is independent449

of the observation/realization of ul
p.450

The key to the above derivation is to recognize the difference between conditioning on ul
p and451

conditioning on ul
q: the former changes the distribution of f̃ l while the latter does not. Combining452

these three parts, we restore the Σ̃
l

from Equation 11, therefore completing the proof.453

B Proof of Proposition 2454

The key to efficient sampling from the prior lies in restoring the correct covariance structure. There-455

fore, we would like to show that the sample covariance obtained from Equation 9 converges in456

probability to the target kernel k(·, ·). This paper focuses on stationary kernels and follows the457

approach of RFF, which uses Fourier transforms to approximate kernel behavior [40].458

Bochner’s theorem ensures that the Fourier transform of any positive definite, shift-invariant kernel is459

a non-negative measure. If the kernel is properly scaled, its Fourier transform p(θ) becomes a valid460

probability distribution [40]:461

k(x, y) = k(x− y) =

∫
p(θ)ejθ(x−y)dθ = Eθ

[
ζθ(x)ζθ(y)

∗], (24)

where ζθ(x) is defined as ejθx, and ζθ(x)ζθ(y)
∗ is an unbiased estimator of k(x, y) when θ is drawn462

from p(θ).463

Since all inputs and outputs are real-valued, only the real part of ζθ(x) contributes to the computation.464

Thus, ejθ(x−y) can be simplified to cos
(
θ(x− y)

)
. To recover an inner product structure similar to465

ζθ(x)ζθ(y)
∗, we introduce an additional random variable b and apply the following transformation:466

2 cos (θx+ b) cos (θy + b)

= cos
(
(θx+ b)− (θy + b)

)
+ cos

(
(θx+ b) + (θy + b)

)
= cos

(
θ(x− y)

)
+ cos

(
θ(x+ y) + 2b

)
.

(25)

This allows the kernel k(x, y) to be approximated in probability by using basis functions467 √
2 cos (θx+ b), provided that the term cos (θ(x+ y) + 2b) can be canceled out when b is uni-468

formaly sampled from U(0, 2π), thus effectively restoring the kernel structure.469
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Figure 5: Validation of the effectiveness of the weight-space sampling method on hyperparameter
adjusting. The method is evaluated by comparing the difference between the sample covariance
matrix obtained using basis functions at different lengthscale settings, 1.0 and 4.0, and the target
covariance is computed directly from the standard RBF kernel with lengthscale set to 1/4. The
number of samples is 20000, and the number of basis functions is 2048.

Figure 6: Validation of the effectiveness of the weight-space sampling method on different sample
sizes. The method is evaluated by comparing the difference between the sample covariance matrix
obtained using Proposition 1 at sample size of 50 and 1000, and the target covariance is computed
through the integration

∫
p(f |u)q(u)du. The number of basis functions is 2048.

∫ ∫ 2π

0

1

2π
p(θ)

√
2 cos (θx+ b)

√
2 cos (θy + b)dθdb

=

∫ ∫ 2π

0

1

2π
p(θ)

[
cos

(
θ(x− y)

)
+ cos

(
θ(x+ y) + 2b

)]
dθdb

= k(x, y) +

∫ ∫ 2π

0

1

2π
p(θ) cos(θ(x+ y) + 2b)dθdb

= k(x, y).

(26)

This basis function transformation is known as RFF. The core idea is to replace direct sampling from470

the covariance with sampling via basis functions, where the choice of distribution for θ depends on471

the Fourier transform of the kernel. For the RBF kernel, θ follows a standard Gaussian distribution,472

which leads to efficient computation.473
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C Feasibility Validation of the Sampling Technique474

Although Propositions 1 and 2 provide rigorous mathematical foundations for EDGP, visualizations475

can further enhance the model’s confidence. In this section, we present a set of validation experiments476

to support the proposed method’s feasibility and analyze the impact of its hyperparameters.477

We first focus on validating Proposition 2, which concerns whether sampling based on its formulation478

can successfully restore the covariance structure of the kernel. A related and equally important issue479

is how to optimize kernel hyperparameters, since Proposition 2 only analyzes the standard RBF kernel480

without addressing how the associated basis functions adapt when parameters like the lengthscale481

(LS) change.482

Figure 5 addresses this concern. The first row shows a large error, indicating that changes in LS483

indeed affect the precision of covariance restoration. For example, if the kernel’s LS is updated from484

1.0 to 0.25 while the LS of the prior p(θ) remains fixed at 1.0, the sampling method breaks down.485

This is because the LS of the kernel and that of the prior are reciprocal, as supported by the scaling486

property of Fourier transform f(at)
F→ 1

|a|F (ωa ).487

Maintaining this reciprocal relationship during training ensures that the sampling remains valid at all488

times, as demonstrated in the second row of Figure 5.489

Next, we verify Proposition 1, which states that this sampling approach should also recover the490

posterior distribution’s covariance. We are particularly interested in how the sampling accuracy491

depends on the number of samples, since this directly affects computational cost. The goal is to492

achieve high accuracy with as few samples as possible.493

Figure 6 illustrates this relationship. While the restoration accuracy is already quite good with 50494

samples, increasing the number to 1000 further reduces the error between the restored covariance and495

the integrated (ground truth) covariance. Nonetheless, using a smaller number of samples remains a496

practical and effective choice.497

D Derivation of the ELBO498

In this section, we derive the ELBO (Equation 15) and show that EDGP, like DSDGP, achieves499

scalability through data sub-sampling, making it suitable for extremely large datasets. The derivation500

can begin by minimizing the KL divergence and showing that the sum of the ELBO and the KL501

divergence equals the marginal log-likelihood. This implies that maximizing the ELBO is equivalent502

to minimizing the KL divergence. However, in this paper we follow the VFE tradition that directly503

applies Jensen’s inequality to lower-bound the marginal log-likelihood, yielding the ELBO as:504

log p(y)

= log

{∫ [
q({f l,ul}Ll=1)

p(y|fL)
∏L

l=1 p(f
l|ul;Zl, f l−1)p(ul)

q({f l,ul}Ll=1)

]
dfLduL . . .

}

≥
∫

q({f l,ul}Ll=1) log
p(y|fL)

∏L
l=1 p(f

l|ul;Zl, f l−1)p(ul)

q({f l,ul}Ll=1)
dfLduL . . .,

(27)

where in VFE, the first term
∫ {

q({f l,ul}Ll=1) log p(y|fL)dfL
}

is analyzed to obtain a closed-form505

solution, and the optimal variational distribution is derived via functional optimization. This has506

the advantage of introducing a diagonal regularization term into the objective, which helps prevent507

overfitting.508

EDGP, in contrast, does not yield a closed-form solution and instead relies on sampling to compute509

an unbiased estimator of the objective. Equation 27 can thus be rewritten as:510

L = Eq(fL;ZL,f̃L−1)[log p(y|f
L)]−

L∑
l=1

KL[q(ul)||p(ul;Zl)]. (28)

Since the likelihood term log p(y|fL) factorizes over the data, the estimator can be expressed as:511
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L =

N∑
i=1

Eq(fLi ;ZL,f̃L−1)[log p(yi|fLi )]−
L∑

l=1

KL[q(ul)||p(ul;Zl)]. (29)

This form allows the model to be trained incrementally via dataset sub-sampling, much like standard512

neural networks, significantly expanding the range of scenarios where EDGP can be applied. As513

shown in the experimental results in Section 4.2, EDGP achieves training efficiency nearly on par514

with neural baselines like FCN and LSTM.515
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NeurIPS Paper Checklist516

1. Claims517

Question: Do the main claims made in the abstract and introduction accurately reflect the518

paper’s contributions and scope?519

Answer: [Yes]520

Justification: The main contribution of this paper is to improve the existing doubly stochastic521

deep gaussian processes methods. The EDGP proposed in this paper is quicker, and more522

rigorous and accurate.523

Guidelines:524

• The answer NA means that the abstract and introduction do not include the claims525

made in the paper.526

• The abstract and/or introduction should clearly state the claims made, including the527

contributions made in the paper and important assumptions and limitations. A No or528

NA answer to this question will not be perceived well by the reviewers.529

• The claims made should match theoretical and experimental results, and reflect how530

much the results can be expected to generalize to other settings.531

• It is fine to include aspirational goals as motivation as long as it is clear that these goals532

are not attained by the paper.533

2. Limitations534

Question: Does the paper discuss the limitations of the work performed by the authors?535

Answer: [Yes]536

Justification: We have provided such information in the Discussion and Limitations section537

5. The main limiration of EDGP is its flexibility in choosing kernel.538

Guidelines:539

• The answer NA means that the paper has no limitation while the answer No means that540

the paper has limitations, but those are not discussed in the paper.541

• The authors are encouraged to create a separate "Limitations" section in their paper.542

• The paper should point out any strong assumptions and how robust the results are to543

violations of these assumptions (e.g., independence assumptions, noiseless settings,544

model well-specification, asymptotic approximations only holding locally). The authors545

should reflect on how these assumptions might be violated in practice and what the546

implications would be.547

• The authors should reflect on the scope of the claims made, e.g., if the approach was548

only tested on a few datasets or with a few runs. In general, empirical results often549

depend on implicit assumptions, which should be articulated.550

• The authors should reflect on the factors that influence the performance of the approach.551

For example, a facial recognition algorithm may perform poorly when image resolution552

is low or images are taken in low lighting. Or a speech-to-text system might not be553

used reliably to provide closed captions for online lectures because it fails to handle554

technical jargon.555

• The authors should discuss the computational efficiency of the proposed algorithms556

and how they scale with dataset size.557

• If applicable, the authors should discuss possible limitations of their approach to558

address problems of privacy and fairness.559

• While the authors might fear that complete honesty about limitations might be used by560

reviewers as grounds for rejection, a worse outcome might be that reviewers discover561

limitations that aren’t acknowledged in the paper. The authors should use their best562

judgment and recognize that individual actions in favor of transparency play an impor-563

tant role in developing norms that preserve the integrity of the community. Reviewers564

will be specifically instructed to not penalize honesty concerning limitations.565

3. Theory assumptions and proofs566

Question: For each theoretical result, does the paper provide the full set of assumptions and567

a complete (and correct) proof?568
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Answer: [Yes]569

Justification: The proof is provided in appendix A and B.570

Guidelines:571

• The answer NA means that the paper does not include theoretical results.572

• All the theorems, formulas, and proofs in the paper should be numbered and cross-573

referenced.574

• All assumptions should be clearly stated or referenced in the statement of any theorems.575

• The proofs can either appear in the main paper or the supplemental material, but if576

they appear in the supplemental material, the authors are encouraged to provide a short577

proof sketch to provide intuition.578

• Inversely, any informal proof provided in the core of the paper should be complemented579

by formal proofs provided in appendix or supplemental material.580

• Theorems and Lemmas that the proof relies upon should be properly referenced.581

4. Experimental result reproducibility582

Question: Does the paper fully disclose all the information needed to reproduce the main ex-583

perimental results of the paper to the extent that it affects the main claims and/or conclusions584

of the paper (regardless of whether the code and data are provided or not)?585

Answer: [Yes]586

Justification: All experiment details have been disclosed in section 4587

Guidelines:588

• The answer NA means that the paper does not include experiments.589

• If the paper includes experiments, a No answer to this question will not be perceived590

well by the reviewers: Making the paper reproducible is important, regardless of591

whether the code and data are provided or not.592

• If the contribution is a dataset and/or model, the authors should describe the steps taken593

to make their results reproducible or verifiable.594

• Depending on the contribution, reproducibility can be accomplished in various ways.595

For example, if the contribution is a novel architecture, describing the architecture fully596

might suffice, or if the contribution is a specific model and empirical evaluation, it may597

be necessary to either make it possible for others to replicate the model with the same598

dataset, or provide access to the model. In general. releasing code and data is often599

one good way to accomplish this, but reproducibility can also be provided via detailed600

instructions for how to replicate the results, access to a hosted model (e.g., in the case601

of a large language model), releasing of a model checkpoint, or other means that are602

appropriate to the research performed.603

• While NeurIPS does not require releasing code, the conference does require all submis-604

sions to provide some reasonable avenue for reproducibility, which may depend on the605

nature of the contribution. For example606

(a) If the contribution is primarily a new algorithm, the paper should make it clear how607

to reproduce that algorithm.608

(b) If the contribution is primarily a new model architecture, the paper should describe609

the architecture clearly and fully.610

(c) If the contribution is a new model (e.g., a large language model), then there should611

either be a way to access this model for reproducing the results or a way to reproduce612

the model (e.g., with an open-source dataset or instructions for how to construct613

the dataset).614

(d) We recognize that reproducibility may be tricky in some cases, in which case615

authors are welcome to describe the particular way they provide for reproducibility.616

In the case of closed-source models, it may be that access to the model is limited in617

some way (e.g., to registered users), but it should be possible for other researchers618

to have some path to reproducing or verifying the results.619

5. Open access to data and code620
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Question: Does the paper provide open access to the data and code, with sufficient instruc-621

tions to faithfully reproduce the main experimental results, as described in supplemental622

material?623

Answer: [Yes]624

Justification: The implementation code of EDGP and DSDGP is in the supplementary625

material as a zip file. After review, we will provide the GitHub URL.626

Guidelines:627

• The answer NA means that paper does not include experiments requiring code.628

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/629

public/guides/CodeSubmissionPolicy) for more details.630

• While we encourage the release of code and data, we understand that this might not be631

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not632

including code, unless this is central to the contribution (e.g., for a new open-source633

benchmark).634

• The instructions should contain the exact command and environment needed to run to635

reproduce the results. See the NeurIPS code and data submission guidelines (https:636

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.637

• The authors should provide instructions on data access and preparation, including how638

to access the raw data, preprocessed data, intermediate data, and generated data, etc.639

• The authors should provide scripts to reproduce all experimental results for the new640

proposed method and baselines. If only a subset of experiments are reproducible, they641

should state which ones are omitted from the script and why.642

• At submission time, to preserve anonymity, the authors should release anonymized643

versions (if applicable).644

• Providing as much information as possible in supplemental material (appended to the645

paper) is recommended, but including URLs to data and code is permitted.646

6. Experimental setting/details647

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-648

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the649

results?650

Answer: [Yes]651

Justification: All experiment details have been disclosed in section 4.652

Guidelines:653

• The answer NA means that the paper does not include experiments.654

• The experimental setting should be presented in the core of the paper to a level of detail655

that is necessary to appreciate the results and make sense of them.656

• The full details can be provided either with the code, in appendix, or as supplemental657

material.658

7. Experiment statistical significance659

Question: Does the paper report error bars suitably and correctly defined or other appropriate660

information about the statistical significance of the experiments?661

Answer: [Yes]662

Justification: All experimental results were obtained after 20 repetitions. The standard663

deviation is also presented in section 4 to ensure that the results are significant.664

Guidelines:665

• The answer NA means that the paper does not include experiments.666

• The authors should answer "Yes" if the results are accompanied by error bars, confi-667

dence intervals, or statistical significance tests, at least for the experiments that support668

the main claims of the paper.669

• The factors of variability that the error bars are capturing should be clearly stated (for670

example, train/test split, initialization, random drawing of some parameter, or overall671

run with given experimental conditions).672

20

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• The method for calculating the error bars should be explained (closed form formula,673

call to a library function, bootstrap, etc.)674

• The assumptions made should be given (e.g., Normally distributed errors).675

• It should be clear whether the error bar is the standard deviation or the standard error676

of the mean.677

• It is OK to report 1-sigma error bars, but one should state it. The authors should678

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis679

of Normality of errors is not verified.680

• For asymmetric distributions, the authors should be careful not to show in tables or681

figures symmetric error bars that would yield results that are out of range (e.g. negative682

error rates).683

• If error bars are reported in tables or plots, The authors should explain in the text how684

they were calculated and reference the corresponding figures or tables in the text.685

8. Experiments compute resources686

Question: For each experiment, does the paper provide sufficient information on the com-687

puter resources (type of compute workers, memory, time of execution) needed to reproduce688

the experiments?689

Answer: [Yes]690

Justification: Computer information are disclosed in section 4.691

Guidelines:692

• The answer NA means that the paper does not include experiments.693

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,694

or cloud provider, including relevant memory and storage.695

• The paper should provide the amount of compute required for each of the individual696

experimental runs as well as estimate the total compute.697

• The paper should disclose whether the full research project required more compute698

than the experiments reported in the paper (e.g., preliminary or failed experiments that699

didn’t make it into the paper).700

9. Code of ethics701

Question: Does the research conducted in the paper conform, in every respect, with the702

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?703

Answer: [Yes]704

Justification: This paper conforms the Code of Ethics.705

Guidelines:706

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.707

• If the authors answer No, they should explain the special circumstances that require a708

deviation from the Code of Ethics.709

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-710

eration due to laws or regulations in their jurisdiction).711

10. Broader impacts712

Question: Does the paper discuss both potential positive societal impacts and negative713

societal impacts of the work performed?714

Answer: [NA]715

Justification: There is no societal impact of the work performed.716

Guidelines:717

• The answer NA means that there is no societal impact of the work performed.718

• If the authors answer NA or No, they should explain why their work has no societal719

impact or why the paper does not address societal impact.720

• Examples of negative societal impacts include potential malicious or unintended uses721

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations722

(e.g., deployment of technologies that could make decisions that unfairly impact specific723

groups), privacy considerations, and security considerations.724
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• The conference expects that many papers will be foundational research and not tied725

to particular applications, let alone deployments. However, if there is a direct path to726

any negative applications, the authors should point it out. For example, it is legitimate727

to point out that an improvement in the quality of generative models could be used to728

generate deepfakes for disinformation. On the other hand, it is not needed to point out729

that a generic algorithm for optimizing neural networks could enable people to train730

models that generate Deepfakes faster.731

• The authors should consider possible harms that could arise when the technology is732

being used as intended and functioning correctly, harms that could arise when the733

technology is being used as intended but gives incorrect results, and harms following734

from (intentional or unintentional) misuse of the technology.735

• If there are negative societal impacts, the authors could also discuss possible mitigation736

strategies (e.g., gated release of models, providing defenses in addition to attacks,737

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from738

feedback over time, improving the efficiency and accessibility of ML).739

11. Safeguards740

Question: Does the paper describe safeguards that have been put in place for responsible741

release of data or models that have a high risk for misuse (e.g., pretrained language models,742

image generators, or scraped datasets)?743

Answer: [NA]744

Justification: The paper poses no such risks.745

Guidelines:746

• The answer NA means that the paper poses no such risks.747

• Released models that have a high risk for misuse or dual-use should be released with748

necessary safeguards to allow for controlled use of the model, for example by requiring749

that users adhere to usage guidelines or restrictions to access the model or implementing750

safety filters.751

• Datasets that have been scraped from the Internet could pose safety risks. The authors752

should describe how they avoided releasing unsafe images.753

• We recognize that providing effective safeguards is challenging, and many papers do754

not require this, but we encourage authors to take this into account and make a best755

faith effort.756

12. Licenses for existing assets757

Question: Are the creators or original owners of assets (e.g., code, data, models), used in758

the paper, properly credited and are the license and terms of use explicitly mentioned and759

properly respected?760

Answer: [Yes]761

Justification: This paper have used the existing code repository: DSDGP; and dataset: ETTh,762

Exchange, Debutanizer, SRU, and we have cited the original paper.763

Guidelines:764

• The answer NA means that the paper does not use existing assets.765

• The authors should cite the original paper that produced the code package or dataset.766

• The authors should state which version of the asset is used and, if possible, include a767

URL.768

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.769

• For scraped data from a particular source (e.g., website), the copyright and terms of770

service of that source should be provided.771

• If assets are released, the license, copyright information, and terms of use in the772

package should be provided. For popular datasets, paperswithcode.com/datasets773

has curated licenses for some datasets. Their licensing guide can help determine the774

license of a dataset.775

• For existing datasets that are re-packaged, both the original license and the license of776

the derived asset (if it has changed) should be provided.777
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• If this information is not available online, the authors are encouraged to reach out to778

the asset’s creators.779

13. New assets780

Question: Are new assets introduced in the paper well documented and is the documentation781

provided alongside the assets?782

Answer: [NA]783

Justification: This paper does not release new assets.784

Guidelines:785

• The answer NA means that the paper does not release new assets.786

• Researchers should communicate the details of the dataset/code/model as part of their787

submissions via structured templates. This includes details about training, license,788

limitations, etc.789

• The paper should discuss whether and how consent was obtained from people whose790

asset is used.791

• At submission time, remember to anonymize your assets (if applicable). You can either792

create an anonymized URL or include an anonymized zip file.793

14. Crowdsourcing and research with human subjects794

Question: For crowdsourcing experiments and research with human subjects, does the paper795

include the full text of instructions given to participants and screenshots, if applicable, as796

well as details about compensation (if any)?797

Answer: [NA]798

Justification: The paper does not involve crowdsourcing nor research with human subjects.799

Guidelines:800

• The answer NA means that the paper does not involve crowdsourcing nor research with801

human subjects.802

• Including this information in the supplemental material is fine, but if the main contribu-803

tion of the paper involves human subjects, then as much detail as possible should be804

included in the main paper.805

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,806

or other labor should be paid at least the minimum wage in the country of the data807

collector.808

15. Institutional review board (IRB) approvals or equivalent for research with human809

subjects810

Question: Does the paper describe potential risks incurred by study participants, whether811

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)812

approvals (or an equivalent approval/review based on the requirements of your country or813

institution) were obtained?814

Answer: [NA]815

Justification: The paper does not involve crowdsourcing nor research with human subjects.816

Guidelines:817

• The answer NA means that the paper does not involve crowdsourcing nor research with818

human subjects.819

• Depending on the country in which research is conducted, IRB approval (or equivalent)820

may be required for any human subjects research. If you obtained IRB approval, you821

should clearly state this in the paper.822

• We recognize that the procedures for this may vary significantly between institutions823

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the824

guidelines for their institution.825

• For initial submissions, do not include any information that would break anonymity (if826

applicable), such as the institution conducting the review.827

16. Declaration of LLM usage828
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Question: Does the paper describe the usage of LLMs if it is an important, original, or829

non-standard component of the core methods in this research? Note that if the LLM is used830

only for writing, editing, or formatting purposes and does not impact the core methodology,831

scientific rigorousness, or originality of the research, declaration is not required.832

Answer: [NA]833

Justification: The core method development in this research does not involve LLMs as any834

important, original, or non-standard components.835

Guidelines:836

• The answer NA means that the core method development in this research does not837

involve LLMs as any important, original, or non-standard components.838

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)839

for what should or should not be described.840
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