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ABSTRACT

In ophthalmic clinical practice, various imaging examinations, such as retinal
fundus photography and OCT imaging, provide ophthalmologists with non-invasive
methods to assess the condition of the retina and highlighting the importance of
multimodal data. The imaging examinations are individually tailored according
to each patient’s clinical condition, resulting in diverse modality combinations.
However, existing multimodal ophthalmic imaging datasets only collected one
combination of multimodal data for single disease detection. Correspondingly,
previous multimodal models were designed to learn from a fixed combination of
modalities, overlooking the personalized nature of clinical examinations and the
variability in modality combinations. As a result, the models often fail to generalize
well to real-world clinical applications. To bridge the gap, this paper proposes (1)
M3Ret, a Mixed Multimodal ophthalmic imaging dataset for personalized Multi-
Retinal disease detection, which consists of scanning laser ophthalmoscopy (SLO)
images and optical coherence tomography (OCT) images and includes various
modality combinations, and (2) PersonNet, a new baseline model for personalized
multimodal multi-retinal disease detection, which can handle samples with various
modality combinations during both training and inference phases, (3) benchmark
results of our PersonNet and 13 existing multimodal learning methods, which
demonstrate the superiority of the proposed PersonNet and highlight substantial
room for improvement remains before clinical application can be achieved.

1 INTRODUCTION

2D retinal images and 3D Optical Coherence Tomography (OCT) provide ophthalmologists with
non-invasive ways to assess the retinal fundus and screen for retinal diseases such as macular edema,
diabetic retinopathy, age-related macular degeneration and glaucoma, and have been widely used
in ophthalmology. To make the retinal disease screening automated and more efficient, several
multimodal ophthalmic imaging datasets (Hassan et al., 2022)) (Wang et al.|[2022b) (Wu et al.| [2023)
(Luo et al.| [2024b) (Luo et al.,2024a) have been released in recent years and significant progress has
been made in multimodal learning to explore the complementary diagnostic information from the
multimodal images for retinal disease detection.

disc OCT containing 200 B-scans UWEF-SLO image size of 3900-by-3072 macular OCT containing 128 B-scans

Figure 1: An example for ultra wide field scanning laser ophthalmoscope (UWF-SLO) image, disc
OCT images and macular OCT images.
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Nevertheless, learning a multimodal retinal disease screening model for real-world clinical settings
remains challenging due to the need for personalized examinations. The major challenges stem from
the gap between recent datasets and real-world ophthalmic clinical applications, which we summarize
as follows: (1) Limited to samples with complete modality: Most existing multimodal datasets
assume complete modality availability for each sample, thereby neglecting the practical scenario of
personalized imaging examinations, where samples may be either modality complete or modality
incomplete, and the modality combinations differ among patients. Consequently, multimodal models
(Zou et al.} 2023; 2024} [Wu et al., |2023)) trained on modality complete samples lack flexibility and
are unable to perform disease detection on modality incomplete samples. (2) Limited to a single
disease focus: currently available datasets were collected targeted for single retinal disease detection
and overlooked the coexistence of multiple diseases. For example, the latest dataset, FairVision (Luo
et al., [2024a)), consists of three subsets, each providing imaging of only a localized retinal structure
associated with a single disease and lacking a broad overview of the retina which is necessary for
detecting other coexisting retinal diseases. Consequently, models trained on this dataset are not
applicable to detect other diseases. To bridge this gap, a new multimodal dataset and a corresponding
learning solution that meet the practical needs of real-world clinical applications for personalized
multi-retinal disease detection are highly desirable.

To mitigate the above two challenges, we introduce M3Ret, a more real-world and large-scale
multimodal dataset with seven modality combinations of high-resolution ultra wide field scanning
laser ophthalmoscope (UWF-SLO) image, macular OCT images and disc OCT images (see Fig. [I)
for the detection of three prevalent retinal diseases: diabetic retinopathy, diabetic macular edema and
glaucoma. Compared to previous multimodal ophthalmic imaging datasets, our M3Ret provides three
distinct contributions to the community: (1) Large-scale and multi-retinal diseases: M3Ret contains
images from 8,558 individual eyes with labels for three prevalent retinal diseases and it is a multi-label
multimodal dataset; (2) Complementary views: High-resolution UWF-SLO images and 3D OCT
images focusing on two local anatomic structures—macula and optic disc—were collected. As shown
in Fig. [I] the former provides a wide-field en face view of the retina, including optic disc, macular,
peripheral lesions, vascular structures, and overall retinal morphology while the latter exhibits the
cross-sectional views of the macula and optic disc, revealing detailed micro-structural changes such
as retinal layer disruptions, and nerve fiber thinning etc. (3) Mixed modality combinations: Following
practical clinical settings, M3Ret collects both modality-complete samples and modality incomplete
samples. In total, seven combinations of modalities are included.

With the new dataset, we propose a baseline method named PersonNet for personalized multi-retinal
disease detection, which can handle both modality-complete and modality-incomplete samples during
both training and inference. Specifically, we propose the personalized missing modality feature
completion module which maintains a memory bank of modality-specific, class-wise prototypes and
synthesizes the missing modality features by weighting the class-wise prototypes in the memory
bank. Additionally, we propose the personalized fusion strategy to fuse the multimodal features to
enhance the disease detection performances.

Finally, we propose a novel incomplete multimodal learning benchmark for personalized multi-retinal
disease detection. The results demonstrate that the proposed PersonNet achieves the best while
current state-of-the-art multimodal learning methods fail to achieve satisfactory performances. As
M3Ret is collected from real-world clinical practice, we hope that it could serve as a new benchmark
for evaluating personalized multimodal multi-retinal disease detection and offer benefits to both the
computer scientists and clinical ophthalmologists. In summary, the contributions of this work can be
concluded as follows:

+ We introduce M3Ret, a Mixed Multimodal ophthalmic imaging dataset for personalized
multi-label Multi-Retinal disease detection. According to the real-world clinic settings, two
tasks are defined. To the best of our knowledge, this is the first dataset that considers diverse
modality combinations and supports personalized multi-retinal disease detection.

* We propose a strong multimodal learning baseline PersonNet for personalized multi-label
multi-retinal disease detection which can adapt to various modality combinations.

» We benchmark current multimodal learning methods on M3Ret with various evaluation
metrics, revealing the limitations of existing state-of-the-art methods in addressing the
missing modality problem.



Under review as a conference paper at ICLR 2026

2 RELATED WORK

Multimodal ophthalmic datasets. As summarized in Table |1} existing ophthalmic multimodal
datasets are diverse in data modalities, scanned anatomical structures, number of individual eyes,
disease types etc. For example, MMC-AMD (Wang et al.,|2022b) and GAMMA (Wu et al.| 2023)
consider the two commonly used modalities in clinic: the 2D color fundus photograph (CFP) captured
using traditional retinal cameras with field of views typically ranging from 30 to 60 degrees and
macular OCT images. Although the CFP provides additional information about other anatomic
structures such as disc and vessels, the sample sizes are small. Besides, MMC-AMD (Wang et al.,
2022b) only collected one B-scan of the OCT images which miss abnormalities exhibited in other
B-scans. Harvard-GDP (Luo et al., [2023) collects the 52-D vector of deviation values of visual fields
and the 2D retinal nerve fiber layer thickness maps which are derived from the disc OCT images
for glaucoma detection. Differently, Harvard-GF [Luo et al.[(2024b) collects the disc OCT images
and derived the RNFLT as two modalities, together with the demographic information about patients
for group fair glaucoma detection. However, Harvard-GDP (Luo et al.,|2023)) and Harvard-GF (Luo
et al.,[2024b) are specifically designed for glaucoma.

More recently, the largest multimodal ophthalmic imaging dataset, FairVision (Luo et al.| 2024al), has
been released. It contains disc/macular-centered SLO and OCT images which are simultaneously
captured by the same device. FairVision (Luo et al.| |2024a) includes three subsets for the detection
of diabetic retinopathy (DR), age-related macular degeneration (AMD), and glaucoma, respectively.
Although macular SLO and macular OCT provide complementary information about the macula,
and disc SLO and disc OCT offer similar benefits for the optic disc, all of these modalities lack
information about other anatomical structures in the retina. This limitation restricts their applicability
to the detection of other retinal diseases.

Multi-modal retinal disease detection. Existing multimodal learning methods, such as MSAN
(He et al., [2021)) and the baseline method (Wu et al.| [2023)) adopt a two-branch architecture to
learn modality-specific features from two different ophthalmic imaging modalities, and then directly
concatenate the high-level modality-specific features for final disease detection. Instead, Wang et al.
(2022a)) and [Wang et al.|(2022a)) fuse the final predictions from each branch via summation for AMD
categorization, while |Luo et al.|(2023)) concatenate the two modalities before feeding them into the
single branch CNN network for glaucoma progression forecasting. Considering that the confidence
of prediction by each modality is different, confidence-aware fusion strategy is proposed in EyeMoSt
(Zou et al.} 2023) and EyeMoSt+ (Zou et al., [2024). Although these multimodal learning methods
have achieved excellent performance in retinal disease detection, their application to real-world clinic
scenarios is limited as they require modality complete samples as input and ignore the modality
incomplete samples.

Multimodal learning for modality missing inference. Methods such as CorrKD (Li et al., [2024)
and PCD (Chen et al.l [2024)) randomly dropout the modalities of modality complete samples to
generate the modality incomplete samples, and then transfer the knowledge from the network trained
with modality complete samples to the network taking modality incomplete samples as input. In this
way, the model allows various modality combinations as inputs in the inference stage. Nevertheless,
the modality incomplete samples are directly overlooked in the training stage.

Incomplete multimodal learning with incomplete modality samples. These methods aim to
make use of modality complete samples and modality incomplete samples to train the multimodal
models. Some try to complete the features for missing modalities. For example, RFNet (Ding
et al} 2021) completes the features of the missing modality with zeros for tumor segmentation.

Dataset Diseases #Devices Modal 1 Modal 2 #Combinations #Eyes Year

MMC-AMD (Wang et al.{[2022b] AMD 2 CFP Macular OCT ;. 2 1,093 2022
GAMMA (Wu et al.[2023] Glaucoma 2 CFP Macular OCT 256 1 300 2023
Harvard-GDP (Luo et al.[[2023] Glaucoma 2 Visual Field (vector) RNFLT 1 1,000 2023
Harvard-GF (Luo et al.[[2024b) Glaucoma 1 RNFLT Disc OCT 200 1 1,000 2023
FairVision-DR (Luo et al.|[2024a) DR 1 Macular SLO Macular OCT 28 1 10,000 2024
FairVision-AMD (Luo et al.|[2024a) AMD 1 Macular SLO Macular OCT 125 1 10,000 2024
FairVision-GL (Luo et al.|[2024a Glaucoma 1 Disc SLO Disc OCT x 200 1 10,000 2024
M3Ret (Ours) DR & DME & Glawcoma 2 Ultra-widefield SLO  Macular OCT iz 7 8558 2025

Disc OCT 200

Table 1: Comparison of multimodal ophthalmic datasets.
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ShaSpec (Wang et al.,[2023)) decomposes the features of each modality into modality-shared features
and modality-specific features, then complete the modality-shared features of the missing modality
with the mean of the modality-shared features of available modalities. Similarly, MCKD (Wang et al.,
2024) completes the features for missing modality with the mean of the available modality features,
then learns the modality importance weight to fuse the available modality features and missing features
within a meta-learning framework. To mitigate the completion for missing modalities, DMRNet (Wei
et al., |2025) and IMDR (Liu et al., [2025) model the multimodal features of different modality
combinations as a probabilistic distribution and sample the fused features from the distribution for
classification while ML A (Zhang et al.,|2024) learns a modality-specific encoder for each modality and
a shared head for classification via alternating unimodal adaption and then integrates the predictions
of available modalities with uncertainty based weights.

3 MS3RET

3.1 DATASET CONSTRUCTION

Dataset overview. M3Ret includes two imaging modalities: 2D ultra-wide-field scanning laser
ophthalmoscopy (UWF-SLO) images and 3D optical coherence tomography (OCT) images, designed
for the detection of three prevalent retinal diseases: macular edema (ME), diabetic retinopathy (DR),
and glaucoma. The data were collected from 8,558 individual eyes of 5,235 patients who visited
the Ophthalmic Outpatient Department at [Anonymization] Hospital in between January 2019 and
December 2022. All data and diagnostic reports were collected, anonymized, and stored securely.
The study including data collection process, anonymization strategy, and storage protocol etc. were
approved by the Medical Ethics Committee of [Anonymization]. All data are protected, and no
personal information has been disclosed. Informed consent was waived due to the retrospective
nature of the study.

Data collection. In M3Ret, UWF-SLO images were captured using the Optos Panoramic 200
scanning laser ophthalmoscope with resolutions of either 3900 x 3072 or 3072 x 3072 pixels. OCT
images were acquired using the CIRRUS HD-OCT 500 device. Each macular OCT scan consists
of 128 B-scans with a spatial resolution of 512 x 1024, covering a 6mm x 6mm area centered on
the macula. Each disc OCT scan consists of 200 B-scans with a spatial resolution of 200 x 1024,
covering a 6mm x 6mm area centered on the optic disc. In total, there are seven different modality
combinations, and the number of samples and the proportion of each combination are summarized
in Table 2] As shown, a total of 71.2% of individual eyes required only one type of examination
(Uni-modal) and 27.4% required two (Bi-modal) while only 1.4% underwent three (Tri-modal) which
reflects the fact that personalized nature of clinical assessments, where the extent of testing is tailored
to the specific needs of each patient.

#Modalities Notations Modality #Eyes (Ratio)
UWF-SLO Macular OCT Disc OCT
Uni-1 v 1,822 (30.0%)
Uni-modal Uni-2 v 2,028 (23.7%) 6,096 (71.2%)
Uni-3 v 2,246 (26.2%)
Bi-1 v v 1,228 (14.3%)
Bi-modal Bi-2 v v 1,052 (12.3%)
Bi-3 v v 64 (0.7%) 2,344 (27.4%)
Tri-modal Tri-1 v v v 118 (1.4%) 118 (1.4%)
#Eyes in each modality 4,220 3,438 3,480 Total: 8,558 (100%)

Table 2: Distribution of eye imaging modality combinations and ratios.

Labeling. For each individual eye sample, labels for ME, DR and glaucoma were determined via
retrieving the electronic medical record system. Labels for ME and DR are binary and the label
for glaucoma is either "glaucoma", "non-glaucoma" or "suspicious". For samples with recorded
diagnosis decisions, we directly assigned labels according to the diagnosis decisions. For samples
whose diagnosis decisions were missing in the system but the detailed medical treatments were
recorded, the disease labels were determined by experienced ophthalmologists according to the

treatment records. Otherwise, the disease labels were marked as "unclear".
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Sub-dataset Labels Modality Sources #Eyes Train  Val Test
UWE-SLO Uni-1 & Bi-2 2,874 1,722 576 576

D ME. DR. Glaucoma Macular OCT Uni-2 & Bi-3 2,092 1,216 406 470

A M UWF-SLO & Macular OCT ~ Bi-1 & Tri-1 1,346 808 269 269

Total 6,312 3,746 1,251 1,315

UWE-SLO Uni-1 & Bi-1 3,050 1,830 610 610

D Glaucoma Disc OCT Uni-3 & Bi-3 2,310 1,344 451 515

B u UWE-SLO & Disc OCT Bi-2 & Tri-1 1,170 700 235 235
Total 6,530 3,874 1,296 1,360

Table 3: Summary of D4 and Dp including sources and data splits for training, validation and test.

Task description and data splits. In clinical practice, UWF-SLO images, macular OCT, and their
paired combinations are commonly used to diagnose macular edema (ME), diabetic retinopathy (DR),
and glaucoma. Specifically, UWF-SLO images and paired UWF-SLO with disc OCT images are
primarily used for diagnosing glaucoma. However, only a limited number of patients undergo all
three examinations or both macular and disc OCT scans, as shown in Table [2] Accordingly, we
define two tasks based on available modality combinations: (1) three-disease detection (ME, DR,
and glaucoma) using three combinations of UWF-SLO and macular OCT images, and (2) glaucoma
detection using three combinations of UWF-SLO and disc OCT images. To fully use of the data for
these tasks, we reorganize it to two sub-datasets as follows:

* D4 used for the detection of ME, DR and glaucoma with following three modality combi-
nations: (1) UWF-SLO images from subsets Uni-1 and Bi-2, (2) macular OCT images in
Uni-2 and Bi-3, and (3) paired UWF-SLO and macular OCT images from Bi-/ and Tri-3. A
total of 6,312 individual eyes are included in this dataset.

* Dp for glaucoma detection with three modality combinations: (1) UWF-SLO images from
subsets Uni-1 and Bi-1, (2) disc OCT images in Uni-3 and Bi-3, and (3) paired UWF-SLO
and disc OCT images from Bi-2 and Tri-3. Totally, 6530 individual eyes are included.

We adopt stratified sampling strategy to split D 4 and Dp into training, validation, and test sets with
an approximate ratio of 6:2:2 and the number of eyes in each subset is shown in Table[3]

Gender distribution of patients Age distribution of patients Distribution af#discas(;/l::x);c
w0 15004 1316 8000 4 (82.8%)
5 2550 (25.1%) 1 sc
(51.2%) (48.7%) . (20.2%) 6000 4
» 2000 4 g 1000 4 693 5
£ g 504 507 (13.2%) 474 £ 4000
2 * 365 (9.6%) (9.7%) (9.1%)
LI 5001 221 ! 1% 1 1307
1000 @ (7.0%) 100 20009 o (153%)
(1.9%) (2.0%)
7 0 T T T T T T T T T 0 T T T
T T 0.1%) (0,10] (10,20](20,301(30,40] (40,50] (50,60] (60,701 (70,801 >80 2 1 0
Female Male Unkown Age group #diseases
(a) Gender distribution (b) Age distribution (c) #Disease distribution

Figure 2: The distributions of gender and age across a cohort of 5,235 patients and distributions of
number of diseases per eye across the 8558 eyes.

3.2 DATASET STATISTICS

Cohort statistics. To analysis the characteristics of M3Ret, we summarize the gender and age
distributions of the 5235 patients in Fig. [2aand Fig. 2b|respectively. Additionally, we report the
distribution of the eyes suffering the number of diseases in Fig. As is shown, 2.0% of eyes suffer
from two diseases while 15.3% of eyes suffer from one disease which indicates that a considerable
number of eyes (2/17.3) have two diseases and they should not be ignored. The disease classification
statistics for patients and eyes are list in Table 4] We observe a rate of 4.59% (240/5235) for ME and
7.07% (370/5235) for DR in our M3Ret dataset, which are close to the reported prevalence rates of
4.07% for ME and 6.17% for DR by [Teo et al.|(2021). The rate of glaucoma is 9.61% (503/5235),
which is also comparable to the reported prevalence rate of 10.12% among the Chinese population
in US (Stein et al.|, 2011). In contrast, FairVision (Luo et al. |[2024a) reports a glaucoma rate of
48.7%, which deviates significantly from the prevalence rate reported by |Stein et al.|(2011)). These
comparisons clearly indicate that our data are derived from real-world clinical practice.
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ME DR Glaucoma Total

ME non-ME unclear DR non-DR unclear glaucoma suspicious non-glaucoma unclear
patients 240 4993 2 370 4861 4 503 161 4350 221 5235
eyes 301 8253 4 589 7964 5 755 301 7076 426 8253

Table 4: Disease classification statistics for patients and eyes

Modality Total ME DR Glaucoma

ME non-ME unclear DR non-DR g I gl
UWF-SLO 2874 65 2807 2 189 2684 1 190 131 2433 120
Macular OCT 2092 130 1960 2 161 1931 0 130 35 1861 66
UWE-SLO & Macular OCT 1346 104 1242 0 225 1117 4 34 13 1281 18
Total 6312 299 6009 4 575 5732 5 354 179 5575 204

Table 5: Classification counts for ME, DR, and Glaucoma on D 4

Modality Total Glaucoma Suspicious Non-glaucoma Unclear
UWF-SLO 3050 53 5 2976 16
Disc OCT 2310 416 127 1543 224
UWF-SLO & Disc OCT 1170 171 139 738 122
Total 6530 640 271 5257 362

Table 6: Glaucoma classification counts on Dp.

Disease statistics in D4 and Dyp. We present the disease statistics for D 4 and Dp in Table |§] and
Table[f] respectively. From these tables, we observe that the three diseases naturally exhibit a long-tail
distribution. The disease distribution of the training, validation and test sets of D4 and Dy can be
found in the supplementary materials.

Evaluation metrics. We follow the previous studies (Wu et al., 2023; Hu et al., 2024) and use the
accuracy (Acc) and Cohen’s Kappa (McHughl [2012)) to evaluate the detection performance for each
disease. As the imbalanced class distribution in collected dataset, F1-score (£'1), as the harmonic
mean of specificity and sensitivity, is used for two-class classification of ME and DR and macro-
F1 (Opitz & Burst, |2021) is applied for three-class glaucoma detection. For overall evaluation, the
mean accuracy (mAcc), mean Cohen’s Kappa (m K appa) and mean Fl-score (mF'1) across diseases
are adopted. Additionally, considering the computation efficiency, we suggest that future work report
the GPU memory usage, the number of parameters for evaluating model capacity, computational
costs in FLOPS, and inference speed (FPS).

4 PERSONNET: PERSONALIZED MULTIMODAL MULTI-DISEASE DETECTION

Framework. Our PersonNet adopts a two-branch multimodal learning framework with personalized
missing modality completion module and personalized multimodal feature fusion module for person-
alized multi-retinal disease detection, as shown in Fig. [3] In detail, we employ ResNet-50 (He et al
2016) pre-trained on ImageNet-21K as the encoder for 2D UWF-SLO modality and 3D ResNet-50
(Hara et al., 2018]) pre-trained on Kinetics-700, Moments-in-Time and STAIR-Actions as the encoder
for 3D OCT modality. To capture the spatial contexts, the SE module (Hu et al., 2018) is inserted
after the 4-th stage in both encoders. For modality complete samples, with the 2D ResNet and 3D
ResNet, we can obtain their features directly, and fuse them for multi-disease detection as shown

xlm] 13
2D
[—> |
ResNet
=
le 2

Missing modality
completion

cls|—¥i i Vi
3D Missing modality — Y
ResNet completion .

(a) Learning with modality complete samples  (b) Learning with OCT missing samples (c) Learning with UWF-SLO missing samples

Figure 3: Framework of PersonNet for personalized multimodal multi-retinal disease detection.
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in Fig. [3[a). For modality incomplete samples, missing modality completion module is required,
then we fuse the completed features and features of the exist modality for multi-disease detection as
shown in Fig. Ekb) and (c). The weights of the two encoders and classifiers are shared across the three
modality combinations. To address the long-tailed distribution of diseases, we adopt a class-balanced
cross-entropy loss:

1— e N
L=- Z Z % Yiter 108(Fite,) ey

where C is the number of categories of the ¢-th disease and ; ., is the ratio of class c; for disease t,
and y; ; ., = 1 if the ground-truth label of sample i regarding disease ¢ is ¢; otherwise y; 4 ., = 0,
and g; ¢+, is the predicted probability belonging to ¢, regarding disease ¢.

Personalized missing modality completion. The most intuitive way is to directly complete the fea-
tures of the missing modality with zeros so that existing multimodal learning methods are applicable.
However, zero completion ignores the correlation between two modalities. Thus, we propose person-
alized missing modality completion module. It maintains a memory bank of class-wise prototypes
for each modality and measuring the similarities between the features of the existing modality and
the class-wise prototypes of the missing modality. Then, these similarities are used as importance
weights to synthesize the features of the missing modality. The technical details can be found in the
supplementary materials.

Personalized multimodal feature fusion. Obviously, the modality-specific features extracted directly
from the input are more discriminative than those synthesized with the prototypes. Thus, it is desired
to fuse modality-specific features from samples with various modality combinations in different
ways. To this end, we propose to separately learn the important weight of each modality-specific
features for each modality combination in a similar way to SKNet (L1 et al.,|2019), then fuse them
for multi-disease classification. The technical details can be found in the supplementary materials.

5 EXPERIMENT

5.1 EXPERIMENTAL SETUPS

Pre-processing and data augmentation. For UWF-SLO images, we rescale them with the short
side of 512. Then, we keep the long side be 640 via random cropping or zero padding for images
with longe sides greater or less than 640. Additionally, we apply random rotations within the
range of —30° to 30°, random horizontal flipping and brightness enhancement within the range
of 0-0.9 to augment the training set. For OCT modality, we downsample macular OCT images to
128 x 128 x 128 and disc OCT images to 200 x 100 x 128, and then pad disc OCT with zeros to
200 x 128 x 128. To augment OCT data, padding and random cropping without altering the data
size is applied. Additionally, random rotation within the range of —15° to 15°, random horizontal
flipping, and scan-wise duplication or discarding are performed.

Implementation details. We conduct experiments on MMPreTrain platform (Contributors), |2023)).
SGD optimizer is adopted to train the multimodal models for 150 epochs, with the learning rate
decaying by a factor of 0.1 at the 120-epoch milestone. Other hyper-parameters include an initial
learning rate of 8 x 10~2 and a batch size of 16. All experiments are conducted using a single
NVIDIA GeForce RTX 3090 GPU with 24 GB of memory.

Baselines for complete multimodal learning. Addition to the baseline for personalized multimodal
learning method we propose, we select four vanilla multimodal learning methods and four recent
state-of-the-art (SOTA) multimodal learning methods with zero completion for the missing modality
as baseline methods. The four vanilla multimodal learning methods include: (1) Combination
specific detector (MultiModel) which separately trains a disease detection model for each modality
combination, and (2) three baseline multimodal fusion methods: feature summation (Sum), feature
concatenation (Concat) and late fusion by logits summation (LateFusion). The four SOTAs are
FiLLM (Perez et al.| 2018), BiGated (Kiela et al.|[2018), MMCNN (Wang et al.,|2019),and LFM (Yang
et al.|[2024). For fair comparisons, all methods use ResNet-50 as the SLO encoder and 3D ResNet-50
as the OCT encoder.
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Baselines for incomplete multimodal learning. We select five incomplete multimodal meth-
ods which support both modality complete samples and modality incomplete samples. They are
LCR (Zhou et al.| 2020), MMANet (Wei et al., 2023)), ShaSpec (Wang et al.| 2023), MLA (Zhang
et al., [2024) and DMRNet (Wei et al.l [2025). For fair comparisons, all methods use ResNet-50 as the
SLO encoder and 3D ResNet-50 as the OCT encoder.

5.2 BENCHMARK RESULTS ON D4 FOR MULTI-RETINAL DISEASE DETECTION

Results of complete multimodal learning methods. We train multi-retinal disease detection models
on the training set of D4 and select the optimal hyperparameters according to the performances
on validation set and report the performances on test set. We first evaluate the performances
of our PersonNet against the compared baselines of complete multimodal methods on D4 and
report them in Tab. Additionally, the GPU memory consumption, the number of parameters,
the floating-point operations per second (FLOPs) and inference speed (FPS) are also reported.
Undoubtedly, equipped with our missing modality completion module and personalized fusion
module, the proposed personalized disease detector consistently outperforms MultiModel and seven
other baseline multimodal learning methods by a considerable margin, achieving the highest mAcc
of 93.38%, mF'1 of 57.03%, and m K appa of 49.21%, surpassing the second-best method by 0.01%,
1.96%, and 2.15%, respectively. However, the recent SOTA method LFM (Yang et al.| 2024), which
integrates unsupervised contrastive learning to align multimodal features and alleviate the modality
imbalance problem, performs the worst in terms of mF'1 and mKappa. A possible reason is that
exploiting complementary semantics from multimodal data is more effective for disease detection
rather than aligning the modality-specific features to the same embedding space. Compared to the
MultiModel which trains three models separately for each modality combination, multimodal learning
methods except for LFM (Yang et al.| 2024) demonstrate superior performance in terms of m F'1 and
mKappa, revealing that exploiting complementary enhances disease detection performances.

Results of incomplete multimodal learning methods. We report the performance of five incomplete
multimodal learning methods in Tab. |7} As shown, the proposed baseline PersonNet outperforms
the second-best method by 0.18% in mAcc, 1.80% in mF'1, and 1.72% in m K appa, respectively.
Although these methods attempt to address the missing modality problem, they do not yield significant
performance improvements over the naive multimodal learning approach, which simply fills in the
missing modality with zeros. Future research in incomplete multimodal learning should focus on
more effective solutions for handling missing modalities and on personalized feature fusion strategies
to achieve better detection performance.

Category Method mAcc mF1 mKappa GPUMem #Params FLOPs FPS
(MB) ™) (sample/s)
Combination specific (MultiModel) 93.3740.13 52.1310.97 43.36+1.23 440.89 69.69 27.34 491
Concat 92.6840.33 54.67+0.85 46.4211.00 440.89 69.69 27.34 491
Sum 92.394+0.45 52.9440.46 45.0741.27 440.84 69.68 27.34 4.98
Complete  LateFusion 92.4840.21 55.0740.84 47.06+1.05 440.89 69.69 27.34 4.85
multimodal FiLM (Perez et al.||2018) 93.074+0.40 54.88+1.05 46.941132 472.85 78.07 27.35 491
learning BiGated (Kiela et al.]2018)  92.5840.33 54.2941.15 46.0941.40 472.85 78.07 27.35 4.84
MMCNN (Wang et al.|2019})  92.9610.42 53.84+1.00 46.00x1.17 47291 78.08 2735 4.95
LFM (Yang et al.[[2024) 93.2640.12  50.9942.14 42.1712.12 440.89 69.69 27.34 4.74
PersonNet(Ours) 93.3810.30 57.0310.96 49.2111.23 462.06 75.21 27.35 4.75
LCR (Zhou et al.||2020) 93.2040.18 54.76+0.71  46.39+0.90 584.96 107.46  27.38 4.74

Incomplete  MMANet (Wei et al.[|2023) 92.51 1020 54.1341.13 45.64411.96 717.72 69.69 54.68 4.67
multimodal ShaSpec (Wang et al.|2023)  90.07+0.42 49.9941.26 40.83+1.57 516.98 88.41 66.20 4.55

learning MLA (Zhang et al.|[2024) 93.1640.30 55.23411.44 474944 43 440.84 69.68 27.34 4.61
DMRNet (Wei et al.{[2025) 90.3141.38 51.041105 41.8110.52 472.85 78.09 27.35 4.81
PersonNet(Ours) 93.38.0.30 57.031006 49.2117123 462.06 75.21 27.35 4.75

Table 7: Overall performances of the proposed PersonNet and 13 baseline methods on D4 for
multi-retinal disease detection. Means and standard deviations over five trials are reported.

5.3 BENCHMARK RESULTS ON Dy FOR GLAUCOMA DETECTION

Results of complete multimodal learning methods. Similarly, we train the complete multimodal
learning models for glaucoma detection on the training set of Dp and select the optimal hyperparam-
eters according to the performances on the validation set and report the detection performances on
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Category Method mAcc mF1 mKappa GPU Mem (MB) #Params (M) FLOPs FPS (Img/s)
Combination specific (MultiModel) 87.63 1040 60.19 1210 5117 1157 502.48 69.69 27.55 4.46
Concat 88.38 1080 6250 +1.80 5538 1206 502.48 69.69 27.55 4.46
Sum 87.44 1046 5853 1070 5273 1155 502.42 69.68 27.55 4.38
Complete  LateFusion 87.82 1026 5947 1149 53.02 1181 502.48 69.69 2755 439
multimodal ~ FiLM (Perez et al.|2018) 88.54 1022 62.56 1150 55.99 10.90 534.44 78.07 27.55 4.24
learning BiGated (Kiela et al.|[2018] 87.61 1976 61.22 1059 5523 1111 534.44 78.07 27.55 4.15
MMCNN (Wang et al.[[2019)  88.44 1969 61.66 1210 53.85 42,29 534.49 78.08 27.55 4.46
LFM (Yang et al.|[2024] 88.97 1051 5931 2384  52.05 1307 502.48 69.69 27.55 4.26
PersonNet(Ours) 89.12 045 65.60 1100 58.09 1560 523.64 75.21 27.56 423
LCR (Zhou et al.] 2020} 88.67 1053 6336 1104 5483 4108 646.54 107.46 27.58 4.16
Incomplete  MMANet (Wei et al.|[2023) 88.08 1044 60.66 1214 5373 1155 779.68 69.69 55.09 4.10
multimodal ~ ShaSpec (Wang et al.[[2023)  86.08 1137 60.18 +150 52.38 1311 522.06 88.43 66.23 4.13
learning MLA (Zhang et al.|[2024] 8749 1045 57921130 4946 1108 502.42 69.68 2755 4.15
DMRNet (Wer et al.|[2025) 87.26 1102 60.72 1140 55.03 1236 534.43 78.09 27.55 4.24
PersonNet(Ours) 89.12 1945 65.60 1109 58.09 1540 523.64 75.21 27.56 4.23

Table 8: Overall performances of the proposed PersonNet and 13 baseline methods on Dp for
glaucoma detection. Means and standard deviations over five trials are reported.

test set in Tab. [8] As shown, our PersonNet achieves the best performances with m Acc of 89.12%,
mF1 of 65.60%, and m K appa of 58.09%, surpassing the second-best by 0.15%, 3.04% and 2.10%,
respectively. Similarly, we observe that the latest complete multimodal learning method does not
exhibits its superiority in glaucoma detection in mF'1 and mKappa compared to the most naive
baselines e.g. Concat and LateFusing while fusion the modality-specific features via Feature-wise
Linear Modulation, i.e, FiLM (Perez et al.| |2018)) enhances the detection performances, achieving the
second best in terms of mF'1 and m K appa. This also demonstrates that exploiting complementary
information from multimodal data e.g. FiLM (Perez et al.,[2018) leads to better performances than
aligning the modality-specific features like LFM (Yang et al., 2024)).

Results incomplete multimodal learning methods. We then report the performances of the five
incomplete multimodal learning methods in Tab. [8| As shown, our PersonNet surpasses the second-
best by 0.45% in mAcc, 2.24% in mF'1 and 3.06% in m K appa. Similarly, for the other five baselines,
we observe that they do not exhibit superiority to most of the complete multimodal learning methods
with zero completion for missing modality. This reveals that glaucoma detection performance on
Dp still has significant room for improvement, and novel methods addressing missing modality
completion and personalized feature fusion are encouraged to enhance detection performance.

5.4 LIMITATIONS

Far from reaching a satisfactory level of agreement with clinical diagnosis. To further analysis
the disease detection performances of our PersonNet and baselines of both complete and incomplete
multimodal learning methods, we report the performances of each disease in the supplementary.
Although PersonNet achieves better performance than the compared methods, there is still substantial
room for improvement to reach a satisfactory level of agreement which requires Kappa € [0.81, 1.00)
for clinical applicability. In detail, the kappa by PersonNet on D 4 for ME, DR and glaucoma are
48.42%, 66.13% and 33.08% respectively (see supplementary for details ) while the glaucoma
detection on Dp is 58.09%. According to the guidelines for the strength of agreement indicated
with Kappa (Landis & Koch, |1977; [Kundel & Polanskyl, [2003), only the detection of DR on D 4
reaches to the level of substantial agreement (K appa € [0.61,0.80]) while the detection of ME on
D4 and glaucoma on Dp reaches to the level of moderate agreement (Kappa € [0.41, 0.60]) and
the detection of glaucoma on D4 only reaches to the level of fair agreement (K appa € [0.21,0.40)).
Thus, numerous efforts are needed to improve the performances to reach a satisfactory level of
agreement.

6 CONCLUSION

We introduce (1) M3Ret, the first dataset that considers diverse modality combinations, and (2)
PersonNet a strong baseline which can adapt to various modality combinations, and (3) a benchmark
for personalized disease detection. Benchmark results show that our PersonNet achieves best
performances in personalized multi-retinal disease detection and there exists a large room to reach a
satisfactory level of agreement with clinical diagnosis for retinal disease detection.
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Reproducibility Statement. The dataset can be found at https://drive.google.com/
drive/folders/1mskJIMpOQC—-a2PAPXIHsAcl j4uOFUUWpV2?usp=drive_link| and
code can be found at https://anonymous.4open.science/r/PersonNet-Cl12A/
README . md.

Ethics Statement. This study including data collection process, anonymization strategy, and storage
protocol, data sharing protocol etc. was approved by the Medical Ethics Committee of [Anonymiza-
tion].

The Use of LLM. LLM is used to polish writing and generate the latex codes for tables in this
submission.

REFERENCES

Mengxi Chen, Fei Zhang, Zihua Zhao, Jiangchao Yao, Ya Zhang, and Yanfeng Wang. Probabilistic
conformal distillation for enhancing missing modality robustness. In The Thirty-eighth Annual
Conference on Neural Information Processing Systems, 2024. URL |https://openreview.
net/forum?id=AVrGtVrx10.

MMPreTrain Contributors. Openmmlab’s pre-training toolbox and benchmark. https://github,
com/open—-mmlab/mmpretrain, 2023.

Yuhang Ding, Xin Yu, and Yi Yang. Rfnet: Region-aware fusion network for incomplete multi-modal
brain tumor segmentation. In Proceedings of the IEEE/CVF International Conference on Computer
Vision (ICCV), pp. 3975-3984, October 2021.

Kensho Hara, Hirokatsu Kataoka, and Yutaka Satoh. Can spatiotemporal 3d cnns retrace the history
of 2d cnns and imagenet? In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), June 2018.

Taimur Hassan, Hina Raja, Bilal Hassan, Muhammad Usman Akram, Jorge Dias, and Naoufel Werghi.
A composite retinal fundus and oct dataset to grade macular and glaucomatous disorders. In 2022
2nd International Conference on Digital Futures and Transformative Technologies (ICoDT2), pp.
1-6, 2022. doi: 10.1109/1CoDT255437.2022.9787482.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), June 2016.

Xingxin He, Ying Deng, Leyuan Fang, and Qinghua Peng. Multi-modal retinal image classification
with modality-specific attention network. IEEE Transactions on Medical Imaging, 40(6):1591—
1602, 2021. doi: 10.1109/TM1.2021.3059956.

Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation networks. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), June 2018.

Yichen Hu, Chao Wang, Weitao Song, Aleksei Tiulpin, and Qing Liu. A scanning laser ophthal-
moscopy image database and trustworthy retinal disease detection method. In Medical Image
Computing and Computer Assisted Intervention — MICCAI 2024, pp. 46-56, Cham, 2024. Springer
Nature Switzerland. ISBN 978-3-031-72086-4.

Douwe Kiela, Edouard Grave, Armand Joulin, and Tomas Mikolov. Efficient large-scale multi-modal
classification. In Proceedings of the AAAI conference on artificial intelligence, volume 32, 2018.

Harold L Kundel and Marcia Polansky. Measurement of observer agreement. Radiology, 228(2):
303-308, 2003.

J Richard Landis and Gary G Koch. The measurement of observer agreement for categorical data.
biometrics, pp. 159-174, 1977.

Mingcheng Li, Dingkang Yang, Xiao Zhao, Shuaibing Wang, Yan Wang, Kun Yang, Mingyang Sun,
Dongliang Kou, Ziyun Qian, and Lihua Zhang. Correlation-decoupled knowledge distillation
for multimodal sentiment analysis with incomplete modalities. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 12458-12468, June 2024.

10


https://drive.google.com/drive/folders/1mskJMpOQC-a2PAPXIHsAc1j4uOFUUWpV?usp=drive_link
https://drive.google.com/drive/folders/1mskJMpOQC-a2PAPXIHsAc1j4uOFUUWpV?usp=drive_link
https://anonymous.4open.science/r/PersonNet-C12A/README.md
https://anonymous.4open.science/r/PersonNet-C12A/README.md
https://openreview.net/forum?id=AVrGtVrx10
https://openreview.net/forum?id=AVrGtVrx10
https://github.com/open-mmlab/mmpretrain
https://github.com/open-mmlab/mmpretrain

Under review as a conference paper at ICLR 2026

Xiang Li, Wenhai Wang, Xiaolin Hu, and Jian Yang. Selective Kernel Networks . In 2019 IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 510-519, Los Alamitos, CA, USA,
June 2019. IEEE Computer Society.

Chengzhi Liu, Zile Huang, Zhe Chen, Feilong Tang, Yu Tian, Zhongxing Xu, Zihong Luo, Yalin
Zheng, and Yanda Meng. Incomplete modality disentangled representation for ophthalmic disease
grading and diagnosis. In Proceedings of the AAAI Conference on Artificial Intelligence, 2025.

Yan Luo, Min Shi, Yu Tian, Tobias Elze, and Mengyu Wang. Harvard glaucoma detection and pro-
gression: A multimodal multitask dataset and generalization-reinforced semi-supervised learning.
In 2023 IEEE/CVF International Conference on Computer Vision, pp. 20414-20425, 2023. doi:
10.1109/ICCV51070.2023.01872.

Yan Luo, Yu Tian, Min Shi, Tobias Elze, and Mengyu Wang. Fairvision: equitable deep learning for
eye disease screening via fair identity scaling. arXiv preprint arXiv:2310.02492, 2024a.

Yan Luo, Yu Tian, Min Shi, Louis R. Pasquale, Lucy Q. Shen, Nazlee Zebardast, Tobias Elze, and
Mengyu Wang. Harvard glaucoma fairness: A retinal nerve disease dataset for fairness learning
and fair identity normalization. IEEE Transactions on Medical Imaging, 43(7):2623-2633, 2024b.
doi: 10.1109/TM1.2024.3377552.

Mary L McHugh. Interrater reliability: the kappa statistic. Biochemia medica, 22(3):276-282, 2012.

Juri Opitz and Sebastian Burst. Macro f1 and macro f1, 2021. URL https://arxiv.org/abs/
1911.03347.

Ethan Perez, Florian Strub, Harm de Vries, Vincent Dumoulin, and Aaron C. Courville. Film: Visual
reasoning with a general conditioning layer. In Proceedings of the AAAI conference on artificial
intelligence, volume 32, 2018.

Joshua D. Stein, Denise S. Kim, Leslie M. Niziol, Nidhi Talwar, Bin Nan, David C. Musch, and Julia E.
Richards. Differences in rates of glaucoma among asian americans and other racial groups, and
among various asian ethnic groups. Ophthalmology, 118(6):1031-1037, 2011. ISSN 0161-6420.
doi: https://doi.org/10.1016/j.0phtha.2010.10.024. URL https://www.sciencedirect,
com/science/article/pii/S0161642010011000.

Zhen Ling Teo, Yih-Chung Tham, Marco Yu, Miao Li Chee, Tyler Hyungtaek Rim, Ning Cheung,
Mukharram M. Bikbov, Ya Xing Wang, Yating Tang, Yi Lu, Ian Y. Wong, Daniel Shu Wei Ting,
Gavin Siew Wei Tan, Jost B. Jonas, Charumathi Sabanayagam, Tien Yin Wong, and Ching-
Yu Cheng. Global prevalence of diabetic retinopathy and projection of burden through 2045:
Systematic review and meta-analysis. Ophthalmology, 128(11):1580-1591, 2021. ISSN 0161-6420.
doi: https://doi.org/10.1016/j.0phtha.2021.04.027. URL https://www.sciencedirect,
com/science/article/pi11/S0161642021003213.

Hu Wang, Yuanhong Chen, Congbo Ma, Jodie Avery, Louise Hull, and Gustavo Carneiro. Multi-
modal learning with missing modality via shared-specific feature modelling. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 15878-15887,
June 2023.

Hu Wang, Salma Hassan, Yuyuan Liu, Congbo Ma, Yuanhong Chen, Yutong Xie, Mostafa Salem,
Yu Tian, Jodie Avery, Louise Hull, Ian Reid, Mohammad Yaqub, and Gustavo Carneiro. Meta-
learned modality-weighted knowledge distillation for robust multi-modal learning with missing
data, 2024. URL https://arxiv.org/abs/2405.07155.

Weisen Wang, Zhiyan Xu, Weihong Yu, Jianchun Zhao, Jingyuan Yang, Feng He, Zhikun Yang,
Di Chen, Dayong Ding, Youxin Chen, and Xirong Li. Two-stream cnn with loose pair training for
multi-modal amd categorization. In Medical Image Computing and Computer Assisted Intervention
— MICCAI 2019, pp. 156-164, Cham, 2019. Springer International Publishing. ISBN 978-3-030-
32239-7.

Weisen Wang, Xirong Li, Zhiyan Xu, Weihong Yu, Jianchun Zhao, Dayong Ding, and Youxin Chen.
Learning two-stream cnn for multi-modal age-related macular degeneration categorization. /[EEE
Journal of Biomedical and Health Informatics, 26(8):4111-4122, 2022a. doi: 10.1109/JBHI.2022.
3171523.

11


https://arxiv.org/abs/1911.03347
https://arxiv.org/abs/1911.03347
https://www.sciencedirect.com/science/article/pii/S0161642010011000
https://www.sciencedirect.com/science/article/pii/S0161642010011000
https://www.sciencedirect.com/science/article/pii/S0161642021003213
https://www.sciencedirect.com/science/article/pii/S0161642021003213
https://arxiv.org/abs/2405.07155

Under review as a conference paper at ICLR 2026

Weisen Wang, Xirong Li, Zhiyan Xu, Weihong Yu, Jianchun Zhao, Dayong Ding, and Youxin Chen.
Learning two-stream cnn for multi-modal age-related macular degeneration categorization. /EEE
Journal of Biomedical and Health Informatics, 26(8):4111-4122, 2022b.

Shicai Wei, Chunbo Luo, and Yang Luo. Mmanet: Margin-aware distillation and modality-aware
regularization for incomplete multimodal learning. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pp. 20039-20049, June 2023.

Shicai Wei, Yang Luo, Yuji Wang, and Chunbo Luo. Robust multimodal learning via representa-
tion decoupling. In Computer Vision — ECCV 2024, pp. 38-54, Cham, 2025. Springer Nature
Switzerland. ISBN 978-3-031-72946-1.

Junde Wu, Huihui Fang, Fei Li, Huazhu Fu, Fengbin Lin, Jiongcheng Li, Yue Huang, Qinji Yu,
Sifan Song, Xinxing Xu, et al. Gamma challenge: glaucoma grading from multi-modality images.
Medical Image Analysis, 90:102938, 2023.

Yang Yang, Fengqiang Wan, Qing-Yuan Jiang, and Yi Xu. Facilitating multimodal classification via
dynamically learning modality gap. In The Thirty-eighth Annual Conference on Neural Information
Processing Systems, 2024. URL https://openreview.net/forum?id=QbsPz0SnyV.

Xiaohui Zhang, Jachong Yoon, Mohit Bansal, and Huaxiu Yao. Multimodal representation learning
by alternating unimodal adaptation. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 27456-27466, June 2024.

Tongxue Zhou, Stéphane Canu, Pierre Vera, and Su Ruan. Brain tumor segmentation with missing
modalities via latent multi-source correlation representation. In Medical Image Computing and
Computer Assisted Intervention — MICCAI 2020, pp. 533-541, Cham, 2020. Springer International
Publishing. ISBN 978-3-030-59719-1.

Ke Zou, Tian Lin, Xuedong Yuan, Haoyu Chen, Xiaojing Shen, Meng Wang, and Huazhu Fu.
Reliable multimodality eye disease screening via mixture of student’s t distributions. In Medical
Image Computing and Computer Assisted Intervention — MICCAI 2023, pp. 596606, Cham, 2023.
Springer Nature Switzerland. ISBN 978-3-031-43990-2.

Ke Zou, Tian Lin, Zongbo Han, Meng Wang, Xuedong Yuan, Haoyu Chen, Changqing Zhang, Xiao-
jing Shen, and Huazhu Fu. Confidence-aware multi-modality learning for eye disease screening.
Medical Image Analysis, 96:103214, 2024. ISSN 1361-8415. doi: https://doi.org/10.1016/j.media.
2024.103214.

A APPENDIX

A.1 DISEASE STATISTICS IN D4 AND Dp

To make sure the disease class distributions of the training, validation and test sets are same, stratified
sampling strategy is adopted to split D 4 and Dp. In detail, we group the samples with same diseases.
For each group, we divide it into three subsets with the ratio of 6:2:2 and merge the samples in three
subsets into training, validation, and test sets respectively. In this way, the disease class distributions
are enforced to be similar. Tab. [9]and Tab. [T0]show the class distributions of each subset of D4 and
Dp respectively.

Split ME DR Glaucoma

ME non-ME unclear DR non-DR unclear glaucoma suspicious non-glaucoma unclear
Train 181 3561 4 346 3395 5 201 102 3311 132
Validation 59 1192 0 114 1137 0 69 36 1111 35
Test 59 1256 0 115 1200 0 84 41 1153 37
Total 299 6009 4 575 5732 5 354 179 5575 204

Table 9: Number of eyes per disease label across data splits in D 4.
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Split Glaucoma Suspicious Non-glaucoma Unclear
Train 371 156 3123 224
Validation 127 55 1046 68
Test 142 60 1088 70
Total 640 271 5257 362

Table 10: Number of eyes for each glaucoma-related label across splits in Dp.

A.2 TECHNICAL DETAILS ABOUT PersonNet

In this subsection, we will first give the problem formulation for the setting of the personalized
multimodal disease detection, then present the technical details about the newly designed incomplete
multimodal learning framework in particularly the two key modules: Personalized Missing Modality
Completion and Personalized Multimodal Feature Fusion.

A.2.1 PROBLEM FORMULATION

N
70" y;);—, where z7"* and

Formally, suppose we are given the training set D = (z]"* - §;"*, x; i

x;"? represent two different modalities, e.g., UEF-SLO image and OCT image, of the ¢—th sample,
and 6" € {0,1} and §;"* € {0, 1} indicate whether the modality is available. Here, y; = {y; ;}7_,,
T is the number of diseases and y; ; is the ground-truth labels for {—th diseases. We note that
o' = 0;"? = 1if the sample is modality complete; §;"* or §;"? is set to 0 if m4 or mq is missing.
Our goal is to train a multimodal model with D for disease detection so that the model is applicable
to real-world samples with various modality combinations.

Missing modality
completion

H =)
completion -

Missing modality

(a) Learning with modality complete samples (b) Learning with OCT missing samples (c) Learning with UWF-SLO missing samples

Figure 4: Framework of PersonNet for personalized multimodal multi-retinal disease detection. The
2D ResNets in (a) and (b) share the same parameters and the 3D ResNets in (b) and (c) share the
same parameters.
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Figure 5: The pipeline of PersonNet learning with OCT missing samples.
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A.2.2 FRAMEWORK

Overview. To solve the missing modality problem and learn with various modality combinations,
we propose PersonNet. Its framework is illustrated in Fig. 4] PersonNet consists of two modality-
specific encoders, i.e., 2D ResNet and 3D ResNet for modality-specific feature extraction, two
personalized missing modality completion modules and one personalized feature fusion module to
fuse modality-specific features for disease detection. Fig. i) illustrates the pipeline for modality
complete samples, and Fig. [(b) and (c) illustrates the pipeline for modality missing samples. For
three various modality combinations, the parameters within encoders and personalized multimodal
fusion module are shared.

Modality-specific prototype maintenance. For each modality, we maintain a memory bank of
modality-specific, class-wise prototypes. We denote the memory bank for modality m € {m1, mo}
as P™ = {P7}T_| where P!" is the set of prototypes for disease ¢. Suppose the ¢-th disease has C;
classes, then P = {P}* e }c, 1- We dynamically maintain the prototypes during training. In detail,
for each sample ¢ within one batch, with the modality-specific features via f]* = E™(x}") where
m € {m1, my}, we update the prototype P}", regarding disease ¢ and class c; via:

Zf L(yis = 1), )

where « represents the update weights, which increase linearly as training progresses through the
warm-up epochs, and 1(y; , = ¢;) is an indicator function which returns 1 if the sample belongs to
class c; regarding disease ¢ otherwise returns 0, and n., denotes the number of samples belonging to
class c; regarding disease ¢ within the batch.

P =ao-P"

t,ct th 170‘

In what follows, we illustrate the detailed pipeline for addressing the samples without OCT modality,
i.e., mo which is shown in Fig. [5] The pipeline for addressing samples without UWF-SLO image
modality, i.e., mq is similar.

A.2.3 PERSONALIZED MISSING MODALITY COMPLETION

Similarities between feature and prototypes. For a given modality incomplete sample x; ", we
first obtain the modality-specific f""* with the 2D ResNet. Then, we compute the similarity between
f;"* and each prototype P}"., in P"1. The similarity is measured using the cosine similarity:

£ P

t,ce (3)

fml ma — —
S Poe) = e e

tct

Feature synthesis. We then synthesize the features of missing modality data f2 with P™2 using
the previously computed similarity weights. In addition, modality-specific, disease-wise learnable
weights 7r;""? are applied to account for the contribution of each modality to the disease ¢ to get the
synthetic features for 7" diseases via:
T C
B2 =30 w7 P P @

t=1c;=1
A.2.4 PERSONALIZED MULTIMODAL FEATURE FUSION.

Intuitively, the modality-specific features extracted directly from the input are more reliable than
those generated via the proposed personalized feature completion with the prototypes. Thus, it
is desired to fuse modality-specific features from samples with various modality combinations in
different ways. To this end, we propose personalized multimodal feature fusion. In detail, we denote

the modality-specific features of sample ¢ to be fused as:
N N N )
fm2 = §m2 L fm2 (1 - 02) - £

Inspired by SKNet (Li et al.,|2019)), we fuse the two modality-specific feature and obtain a compact
multimodal feature descriptor z via:

= RELU (BN (FCig sy (B + 1)) ) ©6)
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where [6;"", 6;"*] indicates the combination of modalities and F'C/sm1 sm2) represents the full con-
nection layer which is modality combination aware. In other words, samples with the same modality
combination share the same full connection layer while samples with different modality combinations
employ different full connection layers. Then, we learn the channel-wise importance weights for
modality-specific features with the guidance of z; via:

B exp (FC[&Z”I](Z»L))
exp (Fc[agnl](zi)) + exp (FC[(S;W](Zi)) ’

exp (FC[(;?”Q] (zi))

W = ‘ ,
exp (FC[(;ZYH](ZZ')> + exp (FC’[(;:nz](zi)>
where F C 5T and F C s72) represent the full connection layer applied to z; to estimate the impor-
tance for each modality respectlvely Finally, we fuse the modality-specific features according to their

importance weights and obtain the fused multimodal features £/ via:

£ =win o " 4w o] (®)

3

(N

where © is Hadamard product. With fused features £/, we employ a simple multi-label classifier
cls to predict the risks of retinal diseases via:

yi = cls(f"™). 9

A.3 DETECTION PERFORMANCES FOR EACH DISEASE ON Dy

In this subsection, we provide the class-wise performances on D4 in Table[TT] We can observe that in
terms of the balanced evaluation metrics F'1 and K appa, our proposed baseline PersonNet achieves
best consistently on the three diseases. Although the number of positive samples for glaucoma in D 4
is higher than that for macular edema (ME), the Kappa score for glaucoma detection is significantly
lower (33.08%) compared to that for ME detection (48.42%). This indicates that glaucoma detection
is more challenging than ME detection, which aligns with observations from clinical practice.

Nt Acc F1 Kappa
ME DR GL mAce ME DR GL mF1 ME DR GL mKappa
MultiModel ~ 95.49+022 9431039 90.30+046  93.37x013  43.88+a1s  65.89+10s 46.61+x142 52131007 41.54428  62.79+214  25.74+314  43.36+123

Concat 95.53+026  94.52:034  87.99+0s6 92.68+033 48341162 67.21+130 4846086 54.67x085 46.0lx17m1 64.22+147  29.03+001  46.42+100
Sum 95.32+028  94.15:039  87.69+136  92.39:+045  45.04+360 65.63+166 48.141240 52941046 42.604374  62.43:157  30.17+354  45.07+127

LF 95.78+046  94.35:x057  87.31x0s9 9248021 49.97:27  66.26+258 48994099  55.07+0ss  47.784200  63.18+288  30.21x284  47.06+105
FiLM 95.57+025  94.32:0s6  89.33+0s4  93.07+040 47.80+179 66.51+252  50.33:101  54.88+105 45494186 6341279 31924168 46.94413:
BiGated 95.47+023  94.52:026  87.74+080  92.58+033 45394373 67.81+099  49.67+14s  54.29+115  43.03+37 6482115 30431157 46.09+140

MMCNN  95.57+032 94.44202:2 88.86+130 92.96+042 46.24+397 65.73x176  49.57+277  53.84+100 43.931408 62.71x186  31.35+370 46.00+117
LFM 95.86+030 94.21x034  89.71+041 93264012 42344537 63.59+167  47.04:220 50.99:+214  40.25+548 6046184 25811204 42.174212

PersonNet  95.50+066 94.88x024 89.77x0s4  93.38:030 50.74:201  68.92:+121  51.42=168  57.03:00s 48.42+225 6613131 33.08:1246  49.21:x123

LCR 95.58040  94.60:03+ 89431051 93201018  46.69+256 67.20+251 50411201 54.76+0m  44.39+275 64271268 30.50+355  46.39+090
MMANet  95.30+035 94.23:030 88.01+052 92.51+022 46.89+216 66.50+190 49.02+196 54.13+1.13 44.44423 63341220 29.15+206  45.64+126
ShaSpec 94814045  92.742040 85.35+111 90.97x042  42.59:237  60.47+107 46.92+152 49991126 39911243 56.53t120 26.14x281  40.83+1s7

MLA 95.83+033  94.45+021  89.21x047  93.16x030 47.70+342  67.67+120 50332070 55231144 45541348 64.641130 32.29+260 47491143
DMRNet 93914086 92.55+080 84.46+278 90.31x138 44.12x122 60.88+1s1  48.13+174  51.04x10s  41.17+132 56.95+1s¢  27.31x177 41.81x0s

PersonNet ~ 95.50+066 94.88+021  89.77+05s  93.38:030 50.74:201  68.92:121 51.42:+168  57.03:006 48421225  66.13+131  33.081246  49.21+123

Table 11: Performances for each disease of our PersonNet and the compared 13 baselines on the
test set of D4. "ME", "DR", and "GL" represent macular edema, diabetic retinopathy and glaucoma
respectively. Means and standard deviations over five trials are reported.

A.4 ABLATION STUDIES

Ablation Study on Different Design Choices. We first conducted ablation studies on the validation
set of D4 to investigate how the proposed personalized missing modality completion module and
personalized multimodal feature fusion module contribute to the performance. The results are reported
in the table below. The performances on all samples in the validation set are shown in Tab. [12] We
observe that: (1) with the proposed completion module, mAcc, mF'1 and mKappa consistently
increase compared to the baseline; (2) the proposed fusion module also leads to performance gains;
(3) combined together, our PersonNet substantially outperforms the baseline.
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Method mAcc (%) mF1 (%) mKappa (%)
Baseline 93.19£0.40 53.47+210 44.96+2.84
+ Personalized Missing Modality Completion  93.47 +0.19 54.70 £1.68 46.79 £ 2.05
+ Personalized Multimodal Fusion 93.40+0.14 53.75+0.60 46.59 £0.77
+ Both (PersonNet) 93.93£0.12 56.27+1.75 49.32£2.02
Table 12: Performances on all samples in the validation set of D 4.
Method mAcc (%) mF1 (%) mKappa (%)
Baseline 93.19£0.40 53.47+210 44.96+2.84
+ Personalized Missing Modality Completion 94.63 +0.30 49.37 +2.70 44.15 £ 2.38
+ Personalized Multimodal Fusion 93.40+£0.14 53.75+0.60 46.59 £ 0.77
+ Both (PersonNet) 93.93£0.12 56.27+1.75 49.32£2.02

Table 13: Performances on samples with only UWF-SLO in the validation set of D 4.

Method mAcc (%) mF1 (%) mKappa (%)
Baseline 89.73+0.50 53.89+0.79 44.06 + 0.67
+ Personalized Missing Modality Completion 90.69 +0.44 54.31 +1.91 44.69 & 2.68
+ Personalized Multimodal Fusion 90.51 £0.37 53.65+1.01 45.08+£1.23
+ Both (PersonNet) 91.21 £0.41 53.744+1.97 45.18 +2.38

Table 14: Performances on samples with only Macular OCT in the validation set of D 4.

Method mAcc (%) mF1 (%) mKappa (%)
Baseline 93.09 £0.68 51.41+£5.61 37.92+4.19
+ Personalized Missing Modality Completion 93.22 +0.37 51.93+3.30 40.33 £ 2.66
+ Personalized Multimodal Fusion 93.08 +£0.28 49.48+1.39 38.14+£3.00
+ Both (PersonNet) 93.49+£0.40 51.67+1.56 39.36 & 1.45

Table 15: Performances on samples with UWF-SLO and Macular OCT in the validation set of D 4.

To investigate how the two proposed modules contribute to performance improvements, we report the
results on samples with only UWF-SLO images, samples with only macular OCT, and samples with
both modalities in the validation set of D 4, as shown in Tab. [T3] Tab. [T4] and Tab. [T3] respectively.
From these results, we observe that:

* Compared to the baseline, the Personalized Missing Modality Completion module improves
performance on samples with macular OCT and those with both modalities across all three
metrics, but slightly degrades mF'1 and m K appa on samples with only UWF-SLO;

* Compared to the baseline, the Personalized Multimodal Fusion module improves perfor-
mance on samples with only UWF-SLO, achieves comparable performance on samples with
only macular OCT, but slightly degrades performance on samples with both modalities;

* With both modules, our PersonNet outperforms the baseline in most cases, except for mF'1
on samples with only macular OCT.

A.5 WHY INCOMPLETE MULTIMODAL LEARNING?

To demonstrate that missing multimodal learning provides meaningful advantages over single-modal
and complete multimodal learning approaches, we conduct fundamental premise validation. As
shown in Tab. 3} in the training set of D 4, there are 1,722 samples with only UWF-SLO images,
1,216 samples with macular OCT images, and 808 samples with two modalities to separately train
three models. Thus, we can use the UWF-SLO images from 2,530 samples (1,722 + 808), macular
OCT images from 2,024 samples (1,216 + 808), and paired UWK-SLO and macular OCT images
from 808 samples to seperately train two single-modality model and one complete-modality model
for retinal disease detection. We denote them as UWF-SLO-model, Macular-OCT-model, UWF-
SLO & OCT-model and compare the performances in Tab. As shown, PersonNet consistently
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outperforms the two single-modality and complete-modality models across all subsets, demonstrating
the effectiveness of our personalized missing modality learning approach. This also indicates that
leveraging both modality-complete and modality-incomplete samples during training contributes to
improved performances.

Sample Type PersonNet UWF-SLO-model Macular OCT-model UWEF-SLO & OCT-model
Only UWEF-SLO 49.45 £2.16 46.75 £ 2.16 N.A. N.A.

Only Macular OCT  43.40 + 2.15 N.A. 37.92+4.14 N.A.
UWF-SLO & OCT  48.36 + 2.57 N.A. N.A. 37.64 £2.27

Table 16: Comparison of mK appa for PersonNet and Single-/Multimodal Models on D 4.

Similarly, as shown in Tab. [3| in the training set of dataset Dp, there are 1,830 eyes with only
UWF-SLO images, 1,344 eyes with only disc OCT images and 700 eyes with both modalities.
Thus, we separately train two single-modality models using the UWF-SLO images from 2530 eyes
(1,830+700) and the disc OCT images from 2,044 eyes (1,344+700), and train a complete-modality
model using the paired UWF-SLO and disc OCT images from 700 eyes. We denote these three
models as UWF-SLO-model, Disc-OCT-model and UWF-SLO & OCT-model respectively. The
performances are reported in Tab. which again confirm the superior performance of PersonNet
across most settings.

Sample Type PersonNet UWF-SLO-model Disc OCT-model UWEF-SLO & OCT-model
Only UWE-SLO 29.09 £ 6.09 31.19 £ 3.23 N.A. N.A.

Only Disc OCT 56.54 £ 2.62 N.A. 55.05 £ 1.73 N.A.
UWF-SLO & OCT  50.66 + 3.82 N.A. N.A. 38.28 £+ 3.59

Table 17: Comparison of K appa for PersonNet and Single-/Multimodal Models on Dj.

A.6 IS PersonNet FAIR TO DIFFERENT DEMOGRAPHIC SUBGROUPS?

To explore whether PersonNet is fair to different demographic subgroups, we categorize samples into
three subgroups regarding their age: (0, 40], (40, 70], and over 70. Tab. @]reports performances of
PersonNet and the baseline on Dp. We observe that there is a noticeable performance gap regarding
F'1 and Kappa across the three subgroups. Therefore, developing fair multimodal learning methods
is critical to improve fairness across diverse age subgroups.

A Acc F1 Kappa
ge Group

PersonNet  Baseline-Concat  PersonNet  Baseline-Concat  PersonNet  Baseline-Concat
(0, 40] 89.72 +0.73 89.04 +0.94 62.96 + 2.47 60.14 +2.15 46.39 +2.55 43.64 +2.71
(40, 70] 90.05 + 0.69 89.39 + 0.64 65.48 + 2.67 62.51 +2.41 63.22 +3.43 60.50 + 2.40
> 70 79.33 + 1.90 77.65 + 1.42 48.85 + 1.60 47.68 +1.16 47.16 = 4.77 4349 + 3.16

Table 18: Performances of different age subgroups for PersonNet and Baseline on Dp.

Similarly, we report performances on each gender group in Tab. [T9] Although the gender distribution
in M3Ret is nearly balanced, a noticeable performance gap regarding F'1 and K appa remains. This
again highlights the need for fair multimodal learning.

Acc F1 Kappa

PersonNet  Baseline-Concat  PersonNet  Baseline-Concat  PersonNet  Baseline-Concat
Female 88.41 +0.92 87.90 + 0.90 62.27 + 1.46 59.63 + 1.95 49.70 +4.19 48.03 £ 1.90
Male 89.80 +0.18 88.82 + 0.90 68.26 £+ 1.00 64.86 +2.23 64.55 £+ 2.63 61.05 + 3.63

Gender

Table 19: Performances of different gender subgroups for PersonNet and Baseline on Dp.
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