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ABSTRACT

In ophthalmic clinical practice, various imaging examinations, such as retinal
fundus photography and OCT imaging, provide ophthalmologists with non-invasive
methods to assess the condition of the retina and highlighting the importance of
multimodal data. The imaging examinations are individually tailored according
to each patient’s clinical condition, resulting in diverse modality combinations.
However, existing multimodal ophthalmic imaging datasets only collected one
combination of multimodal data for single disease detection. Correspondingly,
previous multimodal models were designed to learn from a fixed combination of
modalities, overlooking the personalized nature of clinical examinations and the
variability in modality combinations. As a result, the models often fail to generalize
well to real-world clinical applications. To bridge the gap, this paper proposes (1)
M3Ret, a Mixed Multimodal ophthalmic imaging dataset for personalized Multi-
Retinal disease detection, which consists of scanning laser ophthalmoscopy (SLO)
images and optical coherence tomography (OCT) images and includes various
modality combinations, and (2) PersonNet, a new baseline model for personalized
multimodal multi-retinal disease detection, which can handle samples with various
modality combinations during both training and inference phases, (3) benchmark
results of our PersonNet and 13 existing multimodal learning methods, which
demonstrate the superiority of the proposed PersonNet and highlight substantial
room for improvement remains before clinical application can be achieved.

1 INTRODUCTION

2D retinal images and 3D Optical Coherence Tomography (OCT) provide ophthalmologists with
non-invasive ways to assess the retinal fundus and screen for retinal diseases such as macular edema,
diabetic retinopathy, age-related macular degeneration and glaucoma, and have been widely used
in ophthalmology. To make the retinal disease screening automated and more efficient, several
multimodal ophthalmic imaging datasets (Hassan et al., 2022) (Wang et al., 2022b) (Wu et al., 2023)
(Luo et al., 2024b) (Luo et al., 2024a) have been released in recent years and significant progress has
been made in multimodal learning to explore the complementary diagnostic information from the
multimodal images for retinal disease detection.
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Figure 1: An example for ultra wide field scanning laser ophthalmoscope (UWF-SLO) image, disc
OCT images and macular OCT images.
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Nevertheless, learning a multimodal retinal disease screening model for real-world clinical settings
remains challenging due to the need for personalized examinations. The major challenges stem from
the gap between recent datasets and real-world ophthalmic clinical applications, which we summarize
as follows: (1) Limited to samples with complete modality: Most existing multimodal datasets
assume complete modality availability for each sample, thereby neglecting the practical scenario of
personalized imaging examinations, where samples may be either modality complete or modality
incomplete, and the modality combinations differ among patients. Consequently, multimodal models
(Zou et al., 2023; 2024; Wu et al., 2023) trained on modality complete samples lack flexibility and
are unable to perform disease detection on modality incomplete samples. (2) Limited to a single
disease focus: currently available datasets were collected targeted for single retinal disease detection
and overlooked the coexistence of multiple diseases. For example, the latest dataset, FairVision (Luo
et al., 2024a), consists of three subsets, each providing imaging of only a localized retinal structure
associated with a single disease and lacking a broad overview of the retina which is necessary for
detecting other coexisting retinal diseases. Consequently, models trained on this dataset are not
applicable to detect other diseases. To bridge this gap, a new multimodal dataset and a corresponding
learning solution that meet the practical needs of real-world clinical applications for personalized
multi-retinal disease detection are highly desirable.

To mitigate the above two challenges, we introduce M3Ret, a more real-world and large-scale
multimodal dataset with seven modality combinations of high-resolution ultra wide field scanning
laser ophthalmoscope (UWF-SLO) image, macular OCT images and disc OCT images (see Fig. 1)
for the detection of three prevalent retinal diseases: diabetic retinopathy, diabetic macular edema and
glaucoma. Compared to previous multimodal ophthalmic imaging datasets, our M3Ret provides three
distinct contributions to the community: (1) Large-scale and multi-retinal diseases: M3Ret contains
images from 8,558 individual eyes with labels for three prevalent retinal diseases and it is a multi-label
multimodal dataset; (2) Complementary views: High-resolution UWF-SLO images and 3D OCT
images focusing on two local anatomic structures—macula and optic disc—were collected. As shown
in Fig. 1, the former provides a wide-field en face view of the retina, including optic disc, macular,
peripheral lesions, vascular structures, and overall retinal morphology while the latter exhibits the
cross-sectional views of the macula and optic disc, revealing detailed micro-structural changes such
as retinal layer disruptions, and nerve fiber thinning etc. (3) Mixed modality combinations: Following
practical clinical settings, M3Ret collects both modality-complete samples and modality incomplete
samples. In total, seven combinations of modalities are included.

With the new dataset, we propose a baseline method named PersonNet for personalized multi-retinal
disease detection, which can handle both modality-complete and modality-incomplete samples during
both training and inference. Specifically, we propose the personalized missing modality feature
completion module which maintains a memory bank of modality-specific, class-wise prototypes and
synthesizes the missing modality features by weighting the class-wise prototypes in the memory
bank. Additionally, we propose the personalized fusion strategy to fuse the multimodal features to
enhance the disease detection performances.

Finally, we propose a novel incomplete multimodal learning benchmark for personalized multi-retinal
disease detection. The results demonstrate that the proposed PersonNet achieves the best while
current state-of-the-art multimodal learning methods fail to achieve satisfactory performances. As
M3Ret is collected from real-world clinical practice, we hope that it could serve as a new benchmark
for evaluating personalized multimodal multi-retinal disease detection and offer benefits to both the
computer scientists and clinical ophthalmologists. In summary, the contributions of this work can be
concluded as follows:

• We introduce M3Ret, a Mixed Multimodal ophthalmic imaging dataset for personalized
multi-label Multi-Retinal disease detection. According to the real-world clinic settings, two
tasks are defined. To the best of our knowledge, this is the first dataset that considers diverse
modality combinations and supports personalized multi-retinal disease detection.

• We propose a strong multimodal learning baseline PersonNet for personalized multi-label
multi-retinal disease detection which can adapt to various modality combinations.

• We benchmark current multimodal learning methods on M3Ret with various evaluation
metrics, revealing the limitations of existing state-of-the-art methods in addressing the
missing modality problem.
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2 RELATED WORK

Multimodal ophthalmic datasets. As summarized in Table 1, existing ophthalmic multimodal
datasets are diverse in data modalities, scanned anatomical structures, number of individual eyes,
disease types etc. For example, MMC-AMD (Wang et al., 2022b) and GAMMA (Wu et al., 2023)
consider the two commonly used modalities in clinic: the 2D color fundus photograph (CFP) captured
using traditional retinal cameras with field of views typically ranging from 30 to 60 degrees and
macular OCT images. Although the CFP provides additional information about other anatomic
structures such as disc and vessels, the sample sizes are small. Besides, MMC-AMD (Wang et al.,
2022b) only collected one B-scan of the OCT images which miss abnormalities exhibited in other
B-scans. Harvard-GDP (Luo et al., 2023) collects the 52-D vector of deviation values of visual fields
and the 2D retinal nerve fiber layer thickness maps which are derived from the disc OCT images
for glaucoma detection. Differently, Harvard-GF Luo et al. (2024b) collects the disc OCT images
and derived the RNFLT as two modalities, together with the demographic information about patients
for group fair glaucoma detection. However, Harvard-GDP (Luo et al., 2023) and Harvard-GF (Luo
et al., 2024b) are specifically designed for glaucoma.

More recently, the largest multimodal ophthalmic imaging dataset, FairVision (Luo et al., 2024a), has
been released. It contains disc/macular-centered SLO and OCT images which are simultaneously
captured by the same device. FairVision (Luo et al., 2024a) includes three subsets for the detection
of diabetic retinopathy (DR), age-related macular degeneration (AMD), and glaucoma, respectively.
Although macular SLO and macular OCT provide complementary information about the macula,
and disc SLO and disc OCT offer similar benefits for the optic disc, all of these modalities lack
information about other anatomical structures in the retina. This limitation restricts their applicability
to the detection of other retinal diseases.

Multi-modal retinal disease detection. Existing multimodal learning methods, such as MSAN
(He et al., 2021) and the baseline method (Wu et al., 2023) adopt a two-branch architecture to
learn modality-specific features from two different ophthalmic imaging modalities, and then directly
concatenate the high-level modality-specific features for final disease detection. Instead, Wang et al.
(2022a) and Wang et al. (2022a) fuse the final predictions from each branch via summation for AMD
categorization, while Luo et al. (2023) concatenate the two modalities before feeding them into the
single branch CNN network for glaucoma progression forecasting. Considering that the confidence
of prediction by each modality is different, confidence-aware fusion strategy is proposed in EyeMoSt
(Zou et al., 2023) and EyeMoSt+ (Zou et al., 2024). Although these multimodal learning methods
have achieved excellent performance in retinal disease detection, their application to real-world clinic
scenarios is limited as they require modality complete samples as input and ignore the modality
incomplete samples.

Multimodal learning for modality missing inference. Methods such as CorrKD (Li et al., 2024)
and PCD (Chen et al., 2024) randomly dropout the modalities of modality complete samples to
generate the modality incomplete samples, and then transfer the knowledge from the network trained
with modality complete samples to the network taking modality incomplete samples as input. In this
way, the model allows various modality combinations as inputs in the inference stage. Nevertheless,
the modality incomplete samples are directly overlooked in the training stage.

Incomplete multimodal learning with incomplete modality samples. These methods aim to
make use of modality complete samples and modality incomplete samples to train the multimodal
models. Some try to complete the features for missing modalities. For example, RFNet (Ding
et al., 2021) completes the features of the missing modality with zeros for tumor segmentation.

Dataset Diseases #Devices Modal 1 Modal 2 #Combinations #Eyes Year
MMC-AMD (Wang et al., 2022b) AMD 2 CFP Macular OCT×1 2 1,093 2022

GAMMA (Wu et al., 2023) Glaucoma 2 CFP Macular OCT×256 1 300 2023
Harvard-GDP (Luo et al., 2023) Glaucoma 2 Visual Field (vector) RNFLT 1 1,000 2023
Harvard-GF (Luo et al., 2024b) Glaucoma 1 RNFLT Disc OCT×200 1 1,000 2023

FairVision-DR (Luo et al., 2024a) DR 1 Macular SLO Macular OCT×128 1 10,000 2024
FairVision-AMD (Luo et al., 2024a) AMD 1 Macular SLO Macular OCT×128 1 10,000 2024

FairVision-GL (Luo et al., 2024a) Glaucoma 1 Disc SLO Disc OCT×200 1 10,000 2024

M3Ret (Ours) DR & DME & Glaucoma 2 Ultra-widefield SLO Macular OCT×128

Disc OCT×200
7 8,558 2025

Table 1: Comparison of multimodal ophthalmic datasets.
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ShaSpec (Wang et al., 2023) decomposes the features of each modality into modality-shared features
and modality-specific features, then complete the modality-shared features of the missing modality
with the mean of the modality-shared features of available modalities. Similarly, MCKD (Wang et al.,
2024) completes the features for missing modality with the mean of the available modality features,
then learns the modality importance weight to fuse the available modality features and missing features
within a meta-learning framework. To mitigate the completion for missing modalities, DMRNet (Wei
et al., 2025) and IMDR (Liu et al., 2025) model the multimodal features of different modality
combinations as a probabilistic distribution and sample the fused features from the distribution for
classification while MLA (Zhang et al., 2024) learns a modality-specific encoder for each modality and
a shared head for classification via alternating unimodal adaption and then integrates the predictions
of available modalities with uncertainty based weights.

3 M3RET

3.1 DATASET CONSTRUCTION

Dataset overview. M3Ret includes two imaging modalities: 2D ultra-wide-field scanning laser
ophthalmoscopy (UWF-SLO) images and 3D optical coherence tomography (OCT) images, designed
for the detection of three prevalent retinal diseases: macular edema (ME), diabetic retinopathy (DR),
and glaucoma. The data were collected from 8,558 individual eyes of 5,235 patients who visited
the Ophthalmic Outpatient Department at [Anonymization] Hospital in between January 2019 and
December 2022. All data and diagnostic reports were collected, anonymized, and stored securely.
The study including data collection process, anonymization strategy, and storage protocol etc. were
approved by the Medical Ethics Committee of [Anonymization]. All data are protected, and no
personal information has been disclosed. Informed consent was waived due to the retrospective
nature of the study.

Data collection. In M3Ret, UWF-SLO images were captured using the Optos Panoramic 200
scanning laser ophthalmoscope with resolutions of either 3900× 3072 or 3072× 3072 pixels. OCT
images were acquired using the CIRRUS HD-OCT 500 device. Each macular OCT scan consists
of 128 B-scans with a spatial resolution of 512× 1024, covering a 6mm× 6mm area centered on
the macula. Each disc OCT scan consists of 200 B-scans with a spatial resolution of 200 × 1024,
covering a 6mm× 6mm area centered on the optic disc. In total, there are seven different modality
combinations, and the number of samples and the proportion of each combination are summarized
in Table 2. As shown, a total of 71.2% of individual eyes required only one type of examination
(Uni-modal) and 27.4% required two (Bi-modal) while only 1.4% underwent three (Tri-modal) which
reflects the fact that personalized nature of clinical assessments, where the extent of testing is tailored
to the specific needs of each patient.

#Modalities Notations Modality #Eyes (Ratio)
UWF-SLO Macular OCT Disc OCT

Uni-modal
Uni-1 ✓ 1,822 (30.0%)

6,096 (71.2%)Uni-2 ✓ 2,028 (23.7%)
Uni-3 ✓ 2,246 (26.2%)

Bi-modal
Bi-1 ✓ ✓ 1,228 (14.3%)
Bi-2 ✓ ✓ 1,052 (12.3%)

2,344 (27.4%)Bi-3 ✓ ✓ 64 (0.7%)

Tri-modal Tri-1 ✓ ✓ ✓ 118 (1.4%) 118 (1.4%)

#Eyes in each modality 4,220 3,438 3,480 Total: 8,558 (100%)

Table 2: Distribution of eye imaging modality combinations and ratios.

Labeling. For each individual eye sample, labels for ME, DR and glaucoma were determined via
retrieving the electronic medical record system. Labels for ME and DR are binary and the label
for glaucoma is either "glaucoma", "non-glaucoma" or "suspicious". For samples with recorded
diagnosis decisions, we directly assigned labels according to the diagnosis decisions. For samples
whose diagnosis decisions were missing in the system but the detailed medical treatments were
recorded, the disease labels were determined by experienced ophthalmologists according to the
treatment records. Otherwise, the disease labels were marked as "unclear".
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Sub-dataset Labels Modality Sources #Eyes Train Val Test

DA ME, DR, Glaucoma

UWF-SLO Uni-1 & Bi-2 2,874 1,722 576 576
Macular OCT Uni-2 & Bi-3 2,092 1,216 406 470

UWF-SLO & Macular OCT Bi-1 & Tri-1 1,346 808 269 269

Total 6,312 3,746 1,251 1,315

DB Glaucoma

UWF-SLO Uni-1 & Bi-1 3,050 1,830 610 610
Disc OCT Uni-3 & Bi-3 2,310 1,344 451 515

UWF-SLO & Disc OCT Bi-2 & Tri-1 1,170 700 235 235

Total 6,530 3,874 1,296 1,360

Table 3: Summary of DA and DB including sources and data splits for training, validation and test.

Task description and data splits. In clinical practice, UWF-SLO images, macular OCT, and their
paired combinations are commonly used to diagnose macular edema (ME), diabetic retinopathy (DR),
and glaucoma. Specifically, UWF-SLO images and paired UWF-SLO with disc OCT images are
primarily used for diagnosing glaucoma. However, only a limited number of patients undergo all
three examinations or both macular and disc OCT scans, as shown in Table 2. Accordingly, we
define two tasks based on available modality combinations: (1) three-disease detection (ME, DR,
and glaucoma) using three combinations of UWF-SLO and macular OCT images, and (2) glaucoma
detection using three combinations of UWF-SLO and disc OCT images. To fully use of the data for
these tasks, we reorganize it to two sub-datasets as follows:

• DA used for the detection of ME, DR and glaucoma with following three modality combi-
nations: (1) UWF-SLO images from subsets Uni-1 and Bi-2, (2) macular OCT images in
Uni-2 and Bi-3, and (3) paired UWF-SLO and macular OCT images from Bi-1 and Tri-3. A
total of 6,312 individual eyes are included in this dataset.

• DB for glaucoma detection with three modality combinations: (1) UWF-SLO images from
subsets Uni-1 and Bi-1, (2) disc OCT images in Uni-3 and Bi-3, and (3) paired UWF-SLO
and disc OCT images from Bi-2 and Tri-3. Totally, 6530 individual eyes are included.

We adopt stratified sampling strategy to split DA and DB into training, validation, and test sets with
an approximate ratio of 6:2:2 and the number of eyes in each subset is shown in Table 3.
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Figure 2: The distributions of gender and age across a cohort of 5,235 patients and distributions of
number of diseases per eye across the 8558 eyes.

3.2 DATASET STATISTICS

Cohort statistics. To analysis the characteristics of M3Ret, we summarize the gender and age
distributions of the 5235 patients in Fig. 2a and Fig. 2b respectively. Additionally, we report the
distribution of the eyes suffering the number of diseases in Fig. 2c. As is shown, 2.0% of eyes suffer
from two diseases while 15.3% of eyes suffer from one disease which indicates that a considerable
number of eyes (2/17.3) have two diseases and they should not be ignored. The disease classification
statistics for patients and eyes are list in Table 4. We observe a rate of 4.59% (240/5235) for ME and
7.07% (370/5235) for DR in our M3Ret dataset, which are close to the reported prevalence rates of
4.07% for ME and 6.17% for DR by Teo et al. (2021). The rate of glaucoma is 9.61% (503/5235),
which is also comparable to the reported prevalence rate of 10.12% among the Chinese population
in US (Stein et al., 2011). In contrast, FairVision (Luo et al., 2024a) reports a glaucoma rate of
48.7%, which deviates significantly from the prevalence rate reported by Stein et al. (2011). These
comparisons clearly indicate that our data are derived from real-world clinical practice.
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ME DR Glaucoma Total
ME non-ME unclear DR non-DR unclear glaucoma suspicious non-glaucoma unclear

patients 240 4993 2 370 4861 4 503 161 4350 221 5235
eyes 301 8253 4 589 7964 5 755 301 7076 426 8253

Table 4: Disease classification statistics for patients and eyes

Modality Total ME DR Glaucoma
ME non-ME unclear DR non-DR unclear glaucoma suspicious non-glaucoma unclear

UWF-SLO 2874 65 2807 2 189 2684 1 190 131 2433 120
Macular OCT 2092 130 1960 2 161 1931 0 130 35 1861 66
UWF-SLO & Macular OCT 1346 104 1242 0 225 1117 4 34 13 1281 18

Total 6312 299 6009 4 575 5732 5 354 179 5575 204

Table 5: Classification counts for ME, DR, and Glaucoma on DA

Modality Total Glaucoma Suspicious Non-glaucoma Unclear
UWF-SLO 3050 53 5 2976 16
Disc OCT 2310 416 127 1543 224
UWF-SLO & Disc OCT 1170 171 139 738 122

Total 6530 640 271 5257 362

Table 6: Glaucoma classification counts on DB .

Disease statistics in DA and DB . We present the disease statistics for DA and DB in Table 5 and
Table 6, respectively. From these tables, we observe that the three diseases naturally exhibit a long-tail
distribution. The disease distribution of the training, validation and test sets of DA and DB can be
found in the supplementary materials.

Evaluation metrics. We follow the previous studies (Wu et al., 2023; Hu et al., 2024) and use the
accuracy (Acc) and Cohen’s Kappa (McHugh, 2012) to evaluate the detection performance for each
disease. As the imbalanced class distribution in collected dataset, F1-score (F1), as the harmonic
mean of specificity and sensitivity, is used for two-class classification of ME and DR and macro-
F1 (Opitz & Burst, 2021) is applied for three-class glaucoma detection. For overall evaluation, the
mean accuracy (mAcc), mean Cohen’s Kappa (mKappa) and mean F1-score (mF1) across diseases
are adopted. Additionally, considering the computation efficiency, we suggest that future work report
the GPU memory usage, the number of parameters for evaluating model capacity, computational
costs in FLOPS, and inference speed (FPS).

4 PERSONNET: PERSONALIZED MULTIMODAL MULTI-DISEASE DETECTION

Framework. Our PersonNet adopts a two-branch multimodal learning framework with personalized
missing modality completion module and personalized multimodal feature fusion module for person-
alized multi-retinal disease detection, as shown in Fig. 3. In detail, we employ ResNet-50 (He et al.,
2016) pre-trained on ImageNet-21K as the encoder for 2D UWF-SLO modality and 3D ResNet-50
(Hara et al., 2018) pre-trained on Kinetics-700, Moments-in-Time and STAIR-Actions as the encoder
for 3D OCT modality. To capture the spatial contexts, the SE module (Hu et al., 2018) is inserted
after the 4-th stage in both encoders. For modality complete samples, with the 2D ResNet and 3D
ResNet, we can obtain their features directly, and fuse them for multi-disease detection as shown

2D 

ResNet

Missing modality 

completion

fusion

𝑥𝑖
m1

2D 

ResNet

3D 

ResNet

fusion cls ෝ𝒚𝒊

𝑥𝑖
m1

𝑥𝑖
m2

Missing modality 

completion

fusion
3D 

ResNet

𝑥𝑖
m2

cls ෝ𝒚𝒊cls ෝ𝒚𝒊

(a) Learning with modality complete samples (b) Learning with OCT missing samples (c) Learning with UWF-SLO missing samples

Figure 3: Framework of PersonNet for personalized multimodal multi-retinal disease detection.
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in Fig. 3(a). For modality incomplete samples, missing modality completion module is required,
then we fuse the completed features and features of the exist modality for multi-disease detection as
shown in Fig. 3(b) and (c). The weights of the two encoders and classifiers are shared across the three
modality combinations. To address the long-tailed distribution of diseases, we adopt a class-balanced
cross-entropy loss:

L = −
T∑

t=1

Ct∑
ct=1

1− γt,ct
Ct − 1

· yi,t,ct · log(ŷi,t,ct) , (1)

where Ct is the number of categories of the t-th disease and γt,ct is the ratio of class ct for disease t,
and yi,t,ct = 1 if the ground-truth label of sample i regarding disease t is ct otherwise yi,t,ct = 0,
and ŷi,t,ct is the predicted probability belonging to ct regarding disease t.

Personalized missing modality completion. The most intuitive way is to directly complete the fea-
tures of the missing modality with zeros so that existing multimodal learning methods are applicable.
However, zero completion ignores the correlation between two modalities. Thus, we propose person-
alized missing modality completion module. It maintains a memory bank of class-wise prototypes
for each modality and measuring the similarities between the features of the existing modality and
the class-wise prototypes of the missing modality. Then, these similarities are used as importance
weights to synthesize the features of the missing modality. The technical details can be found in the
supplementary materials.

Personalized multimodal feature fusion. Obviously, the modality-specific features extracted directly
from the input are more discriminative than those synthesized with the prototypes. Thus, it is desired
to fuse modality-specific features from samples with various modality combinations in different
ways. To this end, we propose to separately learn the important weight of each modality-specific
features for each modality combination in a similar way to SKNet (Li et al., 2019), then fuse them
for multi-disease classification. The technical details can be found in the supplementary materials.

5 EXPERIMENT

5.1 EXPERIMENTAL SETUPS

Pre-processing and data augmentation. For UWF-SLO images, we rescale them with the short
side of 512. Then, we keep the long side be 640 via random cropping or zero padding for images
with longe sides greater or less than 640. Additionally, we apply random rotations within the
range of −30◦ to 30◦, random horizontal flipping and brightness enhancement within the range
of 0-0.9 to augment the training set. For OCT modality, we downsample macular OCT images to
128× 128× 128 and disc OCT images to 200× 100× 128, and then pad disc OCT with zeros to
200 × 128 × 128. To augment OCT data, padding and random cropping without altering the data
size is applied. Additionally, random rotation within the range of −15◦ to 15◦, random horizontal
flipping, and scan-wise duplication or discarding are performed.

Implementation details. We conduct experiments on MMPreTrain platform (Contributors, 2023).
SGD optimizer is adopted to train the multimodal models for 150 epochs, with the learning rate
decaying by a factor of 0.1 at the 120-epoch milestone. Other hyper-parameters include an initial
learning rate of 8 × 10−3 and a batch size of 16. All experiments are conducted using a single
NVIDIA GeForce RTX 3090 GPU with 24 GB of memory.

Baselines for complete multimodal learning. Addition to the baseline for personalized multimodal
learning method we propose, we select four vanilla multimodal learning methods and four recent
state-of-the-art (SOTA) multimodal learning methods with zero completion for the missing modality
as baseline methods. The four vanilla multimodal learning methods include: (1) Combination
specific detector (MultiModel) which separately trains a disease detection model for each modality
combination, and (2) three baseline multimodal fusion methods: feature summation (Sum), feature
concatenation (Concat) and late fusion by logits summation (LateFusion). The four SOTAs are
FiLM (Perez et al., 2018), BiGated (Kiela et al., 2018), MMCNN (Wang et al., 2019),and LFM (Yang
et al., 2024). For fair comparisons, all methods use ResNet-50 as the SLO encoder and 3D ResNet-50
as the OCT encoder.
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Baselines for incomplete multimodal learning. We select five incomplete multimodal meth-
ods which support both modality complete samples and modality incomplete samples. They are
LCR (Zhou et al., 2020), MMANet (Wei et al., 2023), ShaSpec (Wang et al., 2023), MLA (Zhang
et al., 2024) and DMRNet (Wei et al., 2025). For fair comparisons, all methods use ResNet-50 as the
SLO encoder and 3D ResNet-50 as the OCT encoder.

5.2 BENCHMARK RESULTS ON DA FOR MULTI-RETINAL DISEASE DETECTION

Results of complete multimodal learning methods. We train multi-retinal disease detection models
on the training set of DA and select the optimal hyperparameters according to the performances
on validation set and report the performances on test set. We first evaluate the performances
of our PersonNet against the compared baselines of complete multimodal methods on DA and
report them in Tab. 7. Additionally, the GPU memory consumption, the number of parameters,
the floating-point operations per second (FLOPs) and inference speed (FPS) are also reported.
Undoubtedly, equipped with our missing modality completion module and personalized fusion
module, the proposed personalized disease detector consistently outperforms MultiModel and seven
other baseline multimodal learning methods by a considerable margin, achieving the highest mAcc
of 93.38%, mF1 of 57.03%, and mKappa of 49.21%, surpassing the second-best method by 0.01%,
1.96%, and 2.15%, respectively. However, the recent SOTA method LFM (Yang et al., 2024), which
integrates unsupervised contrastive learning to align multimodal features and alleviate the modality
imbalance problem, performs the worst in terms of mF1 and mKappa. A possible reason is that
exploiting complementary semantics from multimodal data is more effective for disease detection
rather than aligning the modality-specific features to the same embedding space. Compared to the
MultiModel which trains three models separately for each modality combination, multimodal learning
methods except for LFM (Yang et al., 2024) demonstrate superior performance in terms of mF1 and
mKappa, revealing that exploiting complementary enhances disease detection performances.

Results of incomplete multimodal learning methods. We report the performance of five incomplete
multimodal learning methods in Tab. 7. As shown, the proposed baseline PersonNet outperforms
the second-best method by 0.18% in mAcc, 1.80% in mF1, and 1.72% in mKappa, respectively.
Although these methods attempt to address the missing modality problem, they do not yield significant
performance improvements over the naive multimodal learning approach, which simply fills in the
missing modality with zeros. Future research in incomplete multimodal learning should focus on
more effective solutions for handling missing modalities and on personalized feature fusion strategies
to achieve better detection performance.

Category Method mAcc mF1 mKappa GPU Mem #Params FLOPs FPS
(MB) (M) (sample/s)

Combination specific (MultiModel) 93.37±0.13 52.13±0.97 43.36±1.23 440.89 69.69 27.34 4.91

Concat 92.68±0.33 54.67±0.85 46.42±1.00 440.89 69.69 27.34 4.91
Sum 92.39±0.45 52.94±0.46 45.07±1.27 440.84 69.68 27.34 4.98

Complete LateFusion 92.48±0.21 55.07±0.84 47.06±1.05 440.89 69.69 27.34 4.85
multimodal FiLM (Perez et al., 2018) 93.07±0.40 54.88±1.05 46.94±1.32 472.85 78.07 27.35 4.91
learning BiGated (Kiela et al., 2018) 92.58±0.33 54.29±1.15 46.09±1.40 472.85 78.07 27.35 4.84

MMCNN (Wang et al., 2019) 92.96±0.42 53.84±1.09 46.00±1.17 472.91 78.08 27.35 4.95
LFM (Yang et al., 2024) 93.26±0.12 50.99±2.14 42.17±2.12 440.89 69.69 27.34 4.74

PersonNet(Ours) 93.38±0.30 57.03±0.96 49.21±1.23 462.06 75.21 27.35 4.75

LCR (Zhou et al., 2020) 93.20±0.18 54.76±0.71 46.39±0.90 584.96 107.46 27.38 4.74
Incomplete MMANet (Wei et al., 2023) 92.51±0.22 54.13±1.13 45.64±1.26 717.72 69.69 54.68 4.67
multimodal ShaSpec (Wang et al., 2023) 90.07±0.42 49.99±1.26 40.83±1.57 516.98 88.41 66.20 4.55
learning MLA (Zhang et al., 2024) 93.16±0.30 55.23±1.44 47.49±1.43 440.84 69.68 27.34 4.61

DMRNet (Wei et al., 2025) 90.31±1.38 51.04±1.05 41.81±0.82 472.85 78.09 27.35 4.81

PersonNet(Ours) 93.38±0.30 57.03±0.96 49.21±1.23 462.06 75.21 27.35 4.75

Table 7: Overall performances of the proposed PersonNet and 13 baseline methods on DA for
multi-retinal disease detection. Means and standard deviations over five trials are reported.

5.3 BENCHMARK RESULTS ON DB FOR GLAUCOMA DETECTION

Results of complete multimodal learning methods. Similarly, we train the complete multimodal
learning models for glaucoma detection on the training set of DB and select the optimal hyperparam-
eters according to the performances on the validation set and report the detection performances on

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Category Method mAcc mF1 mKappa GPU Mem (MB) #Params (M) FLOPs FPS (Img/s)
Combination specific (MultiModel) 87.63 ±0.40 60.19 ±2.10 51.17 ±1.57 502.48 69.69 27.55 4.46

Concat 88.38 ±0.80 62.50 ±1.80 55.38 ±2.06 502.48 69.69 27.55 4.46
Sum 87.44 ±0.46 58.53 ±0.70 52.73 ±1.55 502.42 69.68 27.55 4.38

Complete LateFusion 87.82 ±0.26 59.47 ±1.49 53.02 ±1.81 502.48 69.69 27.55 4.39
multimodal FiLM (Perez et al., 2018) 88.54 ±0.22 62.56 ±1.50 55.99 ±0.90 534.44 78.07 27.55 4.24
learning BiGated (Kiela et al., 2018) 87.61 ±0.76 61.22 ±2.20 55.23 ±1.11 534.44 78.07 27.55 4.15

MMCNN (Wang et al., 2019) 88.44 ±0.69 61.66 ±2.10 53.85 ±2.29 534.49 78.08 27.55 4.46
LFM (Yang et al., 2024) 88.97 ±0.51 59.31 ±3.84 52.05 ±3.07 502.48 69.69 27.55 4.26

PersonNet(Ours) 89.12 ±0.45 65.60 ±1.09 58.09 ±2.62 523.64 75.21 27.56 4.23

LCR (Zhou et al., 2020) 88.67 ±0.53 63.36 ±1.94 54.83 ±1.98 646.54 107.46 27.58 4.16
Incomplete MMANet (Wei et al., 2023) 88.08 ±0.44 60.66 ±2.14 53.73 ±1.55 779.68 69.69 55.09 4.10
multimodal ShaSpec (Wang et al., 2023) 86.08 ±1.37 60.18 ±1.50 52.38 ±3.11 522.06 88.43 66.23 4.13
learning MLA (Zhang et al., 2024) 87.49 ±0.45 57.92 ±1.30 49.46 ±1.28 502.42 69.68 27.55 4.15

DMRNet (Wei et al., 2025) 87.26 ±1.02 60.72 ±1.40 55.03 ±2.36 534.43 78.09 27.55 4.24

PersonNet(Ours) 89.12 ±0.45 65.60 ±1.09 58.09 ±2.62 523.64 75.21 27.56 4.23

Table 8: Overall performances of the proposed PersonNet and 13 baseline methods on DB for
glaucoma detection. Means and standard deviations over five trials are reported.

test set in Tab. 8. As shown, our PersonNet achieves the best performances with mAcc of 89.12%,
mF1 of 65.60%, and mKappa of 58.09%, surpassing the second-best by 0.15%, 3.04% and 2.10%,
respectively. Similarly, we observe that the latest complete multimodal learning method does not
exhibits its superiority in glaucoma detection in mF1 and mKappa compared to the most naive
baselines e.g. Concat and LateFusing while fusion the modality-specific features via Feature-wise
Linear Modulation, i.e, FiLM (Perez et al., 2018) enhances the detection performances, achieving the
second best in terms of mF1 and mKappa. This also demonstrates that exploiting complementary
information from multimodal data e.g. FiLM (Perez et al., 2018) leads to better performances than
aligning the modality-specific features like LFM (Yang et al., 2024).

Results incomplete multimodal learning methods. We then report the performances of the five
incomplete multimodal learning methods in Tab. 8. As shown, our PersonNet surpasses the second-
best by 0.45% in mAcc, 2.24% in mF1 and 3.06% in mKappa. Similarly, for the other five baselines,
we observe that they do not exhibit superiority to most of the complete multimodal learning methods
with zero completion for missing modality. This reveals that glaucoma detection performance on
DB still has significant room for improvement, and novel methods addressing missing modality
completion and personalized feature fusion are encouraged to enhance detection performance.

5.4 LIMITATIONS

Far from reaching a satisfactory level of agreement with clinical diagnosis. To further analysis
the disease detection performances of our PersonNet and baselines of both complete and incomplete
multimodal learning methods, we report the performances of each disease in the supplementary.
Although PersonNet achieves better performance than the compared methods, there is still substantial
room for improvement to reach a satisfactory level of agreement which requires Kappa ∈ [0.81, 1.00]
for clinical applicability. In detail, the kappa by PersonNet on DA for ME, DR and glaucoma are
48.42%, 66.13% and 33.08% respectively (see supplementary for details ) while the glaucoma
detection on DB is 58.09%. According to the guidelines for the strength of agreement indicated
with Kappa (Landis & Koch, 1977; Kundel & Polansky, 2003), only the detection of DR on DA

reaches to the level of substantial agreement (Kappa ∈ [0.61, 0.80]) while the detection of ME on
DA and glaucoma on DB reaches to the level of moderate agreement (Kappa ∈ [0.41, 0.60]) and
the detection of glaucoma on DA only reaches to the level of fair agreement (Kappa ∈ [0.21, 0.40]).
Thus, numerous efforts are needed to improve the performances to reach a satisfactory level of
agreement.

6 CONCLUSION

We introduce (1) M3Ret, the first dataset that considers diverse modality combinations, and (2)
PersonNet a strong baseline which can adapt to various modality combinations, and (3) a benchmark
for personalized disease detection. Benchmark results show that our PersonNet achieves best
performances in personalized multi-retinal disease detection and there exists a large room to reach a
satisfactory level of agreement with clinical diagnosis for retinal disease detection.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Reproducibility Statement. The dataset can be found at https://drive.google.com/
drive/folders/1mskJMpOQC-a2PAPXIHsAc1j4uOFUUWpV?usp=drive_link and
code can be found at https://anonymous.4open.science/r/PersonNet-C12A/
README.md.

Ethics Statement. This study including data collection process, anonymization strategy, and storage
protocol, data sharing protocol etc. was approved by the Medical Ethics Committee of [Anonymiza-
tion].

The Use of LLM. LLM is used to polish writing and generate the latex codes for tables in this
submission.
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A APPENDIX

A.1 DISEASE STATISTICS IN DA AND DB

To make sure the disease class distributions of the training, validation and test sets are same, stratified
sampling strategy is adopted to split DA and DB . In detail, we group the samples with same diseases.
For each group, we divide it into three subsets with the ratio of 6:2:2 and merge the samples in three
subsets into training, validation, and test sets respectively. In this way, the disease class distributions
are enforced to be similar. Tab. 9 and Tab. 10 show the class distributions of each subset of DA and
DB respectively.

Split ME DR Glaucoma

ME non-ME unclear DR non-DR unclear glaucoma suspicious non-glaucoma unclear
Train 181 3561 4 346 3395 5 201 102 3311 132
Validation 59 1192 0 114 1137 0 69 36 1111 35
Test 59 1256 0 115 1200 0 84 41 1153 37

Total 299 6009 4 575 5732 5 354 179 5575 204

Table 9: Number of eyes per disease label across data splits in DA.
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Split Glaucoma Suspicious Non-glaucoma Unclear
Train 371 156 3123 224
Validation 127 55 1046 68
Test 142 60 1088 70

Total 640 271 5257 362

Table 10: Number of eyes for each glaucoma-related label across splits in DB .

A.2 TECHNICAL DETAILS ABOUT PersonNet

In this subsection, we will first give the problem formulation for the setting of the personalized
multimodal disease detection, then present the technical details about the newly designed incomplete
multimodal learning framework in particularly the two key modules: Personalized Missing Modality
Completion and Personalized Multimodal Feature Fusion.

A.2.1 PROBLEM FORMULATION

Formally, suppose we are given the training set D = (xm1
i · δm1

i , xm2
i · δm2

i ; yi)
N
i=1 where xm1

i and
xm2
i represent two different modalities, e.g., UEF-SLO image and OCT image, of the i−th sample,

and δm1
i ∈ {0, 1} and δm2

i ∈ {0, 1} indicate whether the modality is available. Here, yi = {yi,t}Tt=1,
T is the number of diseases and yi,t is the ground-truth labels for t−th diseases. We note that
δm1
i = δm2

i = 1 if the sample is modality complete; δm1
i or δm2

i is set to 0 if m1 or m2 is missing.
Our goal is to train a multimodal model with D for disease detection so that the model is applicable
to real-world samples with various modality combinations.

2D 

ResNet

Missing modality 

completion

fusion

𝑥𝑖
m1

2D 

ResNet

3D 

ResNet

fusion cls ෝ𝒚𝒊

𝑥𝑖
m1

𝑥𝑖
m2

Missing modality 

completion

fusion
3D 

ResNet

𝑥𝑖
m2

cls ෝ𝒚𝒊cls ෝ𝒚𝒊
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A.2.2 FRAMEWORK

Overview. To solve the missing modality problem and learn with various modality combinations,
we propose PersonNet. Its framework is illustrated in Fig. 4. PersonNet consists of two modality-
specific encoders, i.e., 2D ResNet and 3D ResNet for modality-specific feature extraction, two
personalized missing modality completion modules and one personalized feature fusion module to
fuse modality-specific features for disease detection. Fig. 4(a) illustrates the pipeline for modality
complete samples, and Fig. 4(b) and (c) illustrates the pipeline for modality missing samples. For
three various modality combinations, the parameters within encoders and personalized multimodal
fusion module are shared.

Modality-specific prototype maintenance. For each modality, we maintain a memory bank of
modality-specific, class-wise prototypes. We denote the memory bank for modality m ∈ {m1,m2}
as Pm = {Pm

t }Tt=1 where Pm
t is the set of prototypes for disease t. Suppose the t-th disease has Ct

classes, then Pm
t = {Pm

t,ct}
Ct
ct=1. We dynamically maintain the prototypes during training. In detail,

for each sample i within one batch, with the modality-specific features via fmi = Em(xm
i ) where

m ∈ {m1,m2}, we update the prototype Pm
t,ct regarding disease t and class ct via:

Pm
t,ct = α ·Pm

t,ct + (1− α) · 1

nct

∑
i

fmi · 1(yi,t = ct), (2)

where α represents the update weights, which increase linearly as training progresses through the
warm-up epochs, and 1(yi,t = ct) is an indicator function which returns 1 if the sample belongs to
class ct regarding disease t otherwise returns 0, and nct denotes the number of samples belonging to
class ct regarding disease t within the batch.

In what follows, we illustrate the detailed pipeline for addressing the samples without OCT modality,
i.e., m2 which is shown in Fig. 5. The pipeline for addressing samples without UWF-SLO image
modality, i.e., m1 is similar.

A.2.3 PERSONALIZED MISSING MODALITY COMPLETION

Similarities between feature and prototypes. For a given modality incomplete sample xm1
i , we

first obtain the modality-specific fm1
i with the 2D ResNet. Then, we compute the similarity between

fm1
i and each prototype Pm1

t,ct in Pm1 . The similarity is measured using the cosine similarity:

s(fm1
i ,Pm1

t,ct) =
fm1
i ·Pm1

t,ct

||fm1
i || · ||Pm2

t,ct ||
. (3)

Feature synthesis. We then synthesize the features of missing modality data f̃m2 with Pm2 using
the previously computed similarity weights. In addition, modality-specific, disease-wise learnable
weights πm2

t are applied to account for the contribution of each modality to the disease t to get the
synthetic features for T diseases via:

f̃m2
i =

T∑
t=1

Ct∑
ct=1

πm2
t · s(fm1

i ,Pm1
t,ct) ·P

m2
t,ct . (4)

A.2.4 PERSONALIZED MULTIMODAL FEATURE FUSION.

Intuitively, the modality-specific features extracted directly from the input are more reliable than
those generated via the proposed personalized feature completion with the prototypes. Thus, it
is desired to fuse modality-specific features from samples with various modality combinations in
different ways. To this end, we propose personalized multimodal feature fusion. In detail, we denote
the modality-specific features of sample i to be fused as:

f̄m1
i = δm1

i · fm1
i + (1− δm1

i ) · f̃m1
i ,

f̄m2
i = δm2

i · fm2
i + (1− δm2

i ) · f̃m2
i .

(5)

Inspired by SKNet (Li et al., 2019), we fuse the two modality-specific feature and obtain a compact
multimodal feature descriptor z via:

zi = RELU
(
BN

(
FC[δ

m1
i ,δ

m2
i ]

(
f̄m1
i + f̄m2

i

)))
, (6)
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where [δm1
i , δm2

i ] indicates the combination of modalities and FC[δ
m1
i ,δ

m2
i ] represents the full con-

nection layer which is modality combination aware. In other words, samples with the same modality
combination share the same full connection layer while samples with different modality combinations
employ different full connection layers. Then, we learn the channel-wise importance weights for
modality-specific features with the guidance of zi via:

wm1
i =

exp
(
FC[δ

m1
i ](zi)

)
exp

(
FC[δ

m1
i ](zi)

)
+ exp

(
FC[δ

m2
i ](zi)

) ,
wm2

i =
exp

(
FC[δ

m2
i ](zi)

)
exp

(
FC[δ

m1
i ](zi)

)
+ exp

(
FC[δ

m2
i ](zi)

) ,
(7)

where FC[δ
m1
i ] and FC[δ

m2
i ] represent the full connection layer applied to zi to estimate the impor-

tance for each modality respectively. Finally, we fuse the modality-specific features according to their
importance weights and obtain the fused multimodal features fmm

i via:

fmm
i = wm1

i ⊙ f̄m1
i +wm2

i ⊙ f̄m2
i , (8)

where ⊙ is Hadamard product. With fused features fmm
i , we employ a simple multi-label classifier

cls to predict the risks of retinal diseases via:

ŷi = cls(fmm
i ). (9)

A.3 DETECTION PERFORMANCES FOR EACH DISEASE ON DA

In this subsection, we provide the class-wise performances on DA in Table 11. We can observe that in
terms of the balanced evaluation metrics F1 and Kappa, our proposed baseline PersonNet achieves
best consistently on the three diseases. Although the number of positive samples for glaucoma in DA

is higher than that for macular edema (ME), the Kappa score for glaucoma detection is significantly
lower (33.08%) compared to that for ME detection (48.42%). This indicates that glaucoma detection
is more challenging than ME detection, which aligns with observations from clinical practice.

Methods Acc F1 Kappa

ME DR GL mAcc ME DR GL mF1 ME DR GL mKappa

MultiModel 95.49±0.22 94.31±0.39 90.30±0.46 93.37±0.13 43.88±4.18 65.89±1.94 46.61±1.42 52.13±0.97 41.54±4.28 62.79±2.14 25.74±3.14 43.36±1.23

Concat 95.53±0.26 94.52±0.34 87.99±0.56 92.68±0.33 48.34±1.62 67.21±1.30 48.46±0.86 54.67±0.85 46.01±1.71 64.22±1.47 29.03±0.91 46.42±1.00

Sum 95.32±0.28 94.15±0.39 87.69±1.36 92.39±0.45 45.04±3.60 65.63±1.66 48.14±2.40 52.94±0.46 42.60±3.74 62.43±1.87 30.17±3.54 45.07±1.27

LF 95.78±0.46 94.35±0.57 87.31±0.59 92.48±0.21 49.97±2.72 66.26±2.58 48.99±0.99 55.07±0.84 47.78±2.92 63.18±2.88 30.21±2.84 47.06±1.05

FiLM 95.57±0.25 94.32±0.56 89.33±0.54 93.07±0.40 47.80±1.79 66.51±2.52 50.33±1.91 54.88±1.05 45.49±1.86 63.41±2.79 31.92±1.68 46.94±1.32

BiGated 95.47±0.23 94.52±0.26 87.74±0.89 92.58±0.33 45.39±3.73 67.81±0.99 49.67±1.48 54.29±1.15 43.03±3.78 64.82±1.13 30.43±1.57 46.09±1.40

MMCNN 95.57±0.32 94.44±0.22 88.86±1.30 92.96±0.42 46.24±3.97 65.73±1.76 49.57±2.77 53.84±1.09 43.93±4.08 62.71±1.86 31.35±3.70 46.00±1.17

LFM 95.86±0.30 94.21±0.34 89.71±0.41 93.26±0.12 42.34±5.37 63.59±1.67 47.04±2.20 50.99±2.14 40.25±5.48 60.46±1.84 25.81±2.04 42.17±2.12

PersonNet 95.50±0.66 94.88±0.24 89.77±0.54 93.38±0.30 50.74±2.01 68.92±1.21 51.42±1.68 57.03±0.96 48.42±2.25 66.13±1.31 33.08±2.46 49.21±1.23

LCR 95.58±0.40 94.60±0.34 89.43±0.51 93.20±0.18 46.69±2.56 67.20±2.51 50.41±2.21 54.76±0.71 44.39±2.75 64.27±2.68 30.50±3.55 46.39±0.90

MMANet 95.30±0.35 94.23±0.39 88.01±0.52 92.51±0.22 46.89±2.16 66.50±1.99 49.02±1.96 54.13±1.13 44.44±2.33 63.34±2.20 29.15±2.06 45.64±1.26

ShaSpec 94.81±0.45 92.74±0.40 85.35±1.11 90.97±0.42 42.59±2.37 60.47±1.07 46.92±1.82 49.99±1.26 39.91±2.43 56.53±1.20 26.14±2.81 40.83±1.57

MLA 95.83±0.33 94.45±0.21 89.21±0.47 93.16±0.30 47.70±3.42 67.67±1.20 50.33±0.70 55.23±1.44 45.54±3.48 64.64±1.30 32.29±2.64 47.49±1.43

DMRNet 93.91±0.86 92.55±0.89 84.46±2.78 90.31±1.38 44.12±1.22 60.88±1.51 48.13±1.74 51.04±1.05 41.17±1.32 56.95±1.84 27.31±1.77 41.81±0.82

PersonNet 95.50±0.66 94.88±0.24 89.77±0.54 93.38±0.30 50.74±2.01 68.92±1.21 51.42±1.68 57.03±0.96 48.42±2.25 66.13±1.31 33.08±2.46 49.21±1.23

Table 11: Performances for each disease of our PersonNet and the compared 13 baselines on the
test set of DA. "ME", "DR", and "GL" represent macular edema, diabetic retinopathy and glaucoma
respectively. Means and standard deviations over five trials are reported.

A.4 ABLATION STUDIES

Ablation Study on Different Design Choices. We first conducted ablation studies on the validation
set of DA to investigate how the proposed personalized missing modality completion module and
personalized multimodal feature fusion module contribute to the performance. The results are reported
in the table below. The performances on all samples in the validation set are shown in Tab. 12. We
observe that: (1) with the proposed completion module, mAcc, mF1 and mKappa consistently
increase compared to the baseline; (2) the proposed fusion module also leads to performance gains;
(3) combined together, our PersonNet substantially outperforms the baseline.
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Method mAcc (%) mF1 (%) mKappa (%)
Baseline 93.19± 0.40 53.47± 2.10 44.96± 2.84
+ Personalized Missing Modality Completion 93.47± 0.19 54.70± 1.68 46.79± 2.05
+ Personalized Multimodal Fusion 93.40± 0.14 53.75± 0.60 46.59± 0.77
+ Both (PersonNet) 93.93± 0.12 56.27± 1.75 49.32± 2.02

Table 12: Performances on all samples in the validation set of DA.

Method mAcc (%) mF1 (%) mKappa (%)
Baseline 93.19± 0.40 53.47± 2.10 44.96± 2.84
+ Personalized Missing Modality Completion 94.63± 0.30 49.37± 2.70 44.15± 2.38
+ Personalized Multimodal Fusion 93.40± 0.14 53.75± 0.60 46.59± 0.77
+ Both (PersonNet) 93.93± 0.12 56.27± 1.75 49.32± 2.02

Table 13: Performances on samples with only UWF-SLO in the validation set of DA.

Method mAcc (%) mF1 (%) mKappa (%)
Baseline 89.73± 0.50 53.89± 0.79 44.06± 0.67
+ Personalized Missing Modality Completion 90.69± 0.44 54.31± 1.91 44.69± 2.68
+ Personalized Multimodal Fusion 90.51± 0.37 53.65± 1.01 45.08± 1.23
+ Both (PersonNet) 91.21± 0.41 53.74± 1.97 45.18± 2.38

Table 14: Performances on samples with only Macular OCT in the validation set of DA.

Method mAcc (%) mF1 (%) mKappa (%)
Baseline 93.09± 0.68 51.41± 5.61 37.92± 4.19
+ Personalized Missing Modality Completion 93.22± 0.37 51.93± 3.30 40.33± 2.66
+ Personalized Multimodal Fusion 93.08± 0.28 49.48± 1.39 38.14± 3.00
+ Both (PersonNet) 93.49± 0.40 51.67± 1.56 39.36± 1.45

Table 15: Performances on samples with UWF-SLO and Macular OCT in the validation set of DA.

To investigate how the two proposed modules contribute to performance improvements, we report the
results on samples with only UWF-SLO images, samples with only macular OCT, and samples with
both modalities in the validation set of DA, as shown in Tab. 13, Tab. 14, and Tab. 15, respectively.
From these results, we observe that:

• Compared to the baseline, the Personalized Missing Modality Completion module improves
performance on samples with macular OCT and those with both modalities across all three
metrics, but slightly degrades mF1 and mKappa on samples with only UWF-SLO;

• Compared to the baseline, the Personalized Multimodal Fusion module improves perfor-
mance on samples with only UWF-SLO, achieves comparable performance on samples with
only macular OCT, but slightly degrades performance on samples with both modalities;

• With both modules, our PersonNet outperforms the baseline in most cases, except for mF1
on samples with only macular OCT.

A.5 WHY INCOMPLETE MULTIMODAL LEARNING?

To demonstrate that missing multimodal learning provides meaningful advantages over single-modal
and complete multimodal learning approaches, we conduct fundamental premise validation. As
shown in Tab. 3, in the training set of DA, there are 1,722 samples with only UWF-SLO images,
1,216 samples with macular OCT images, and 808 samples with two modalities to separately train
three models. Thus, we can use the UWF-SLO images from 2,530 samples (1,722 + 808), macular
OCT images from 2,024 samples (1,216 + 808), and paired UWK-SLO and macular OCT images
from 808 samples to seperately train two single-modality model and one complete-modality model
for retinal disease detection. We denote them as UWF-SLO-model, Macular-OCT-model, UWF-
SLO & OCT-model and compare the performances in Tab. 16. As shown, PersonNet consistently
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outperforms the two single-modality and complete-modality models across all subsets, demonstrating
the effectiveness of our personalized missing modality learning approach. This also indicates that
leveraging both modality-complete and modality-incomplete samples during training contributes to
improved performances.

Sample Type PersonNet UWF-SLO-model Macular OCT-model UWF-SLO & OCT-model
Only UWF-SLO 49.45± 2.16 46.75± 2.16 N.A. N.A.
Only Macular OCT 43.40± 2.15 N.A. 37.92± 4.14 N.A.
UWF-SLO & OCT 48.36± 2.57 N.A. N.A. 37.64± 2.27

Table 16: Comparison of mKappa for PersonNet and Single-/Multimodal Models on DA.

Similarly, as shown in Tab. 3, in the training set of dataset DB , there are 1,830 eyes with only
UWF-SLO images, 1,344 eyes with only disc OCT images and 700 eyes with both modalities.
Thus, we separately train two single-modality models using the UWF-SLO images from 2530 eyes
(1,830+700) and the disc OCT images from 2,044 eyes (1,344+700), and train a complete-modality
model using the paired UWF-SLO and disc OCT images from 700 eyes. We denote these three
models as UWF-SLO-model, Disc-OCT-model and UWF-SLO & OCT-model respectively. The
performances are reported in Tab. 17, which again confirm the superior performance of PersonNet
across most settings.

Sample Type PersonNet UWF-SLO-model Disc OCT-model UWF-SLO & OCT-model
Only UWF-SLO 29.09± 6.09 31.19± 3.23 N.A. N.A.
Only Disc OCT 56.54± 2.62 N.A. 55.05± 1.73 N.A.
UWF-SLO & OCT 50.66± 3.82 N.A. N.A. 38.28± 3.59

Table 17: Comparison of Kappa for PersonNet and Single-/Multimodal Models on DB .

A.6 IS PersonNet FAIR TO DIFFERENT DEMOGRAPHIC SUBGROUPS?

To explore whether PersonNet is fair to different demographic subgroups, we categorize samples into
three subgroups regarding their age: (0, 40], (40, 70], and over 70. Tab. 18 reports performances of
PersonNet and the baseline on DB . We observe that there is a noticeable performance gap regarding
F1 and Kappa across the three subgroups. Therefore, developing fair multimodal learning methods
is critical to improve fairness across diverse age subgroups.

Age Group Acc F1 Kappa
PersonNet Baseline-Concat PersonNet Baseline-Concat PersonNet Baseline-Concat

(0, 40] 89.72 ± 0.73 89.04 ± 0.94 62.96 ± 2.47 60.14 ± 2.15 46.39 ± 2.55 43.64 ± 2.71
(40, 70] 90.05 ± 0.69 89.39 ± 0.64 65.48 ± 2.67 62.51 ± 2.41 63.22 ± 3.43 60.50 ± 2.40
> 70 79.33 ± 1.90 77.65 ± 1.42 48.85 ± 1.60 47.68 ± 1.16 47.16 ± 4.77 43.49 ± 3.16

Table 18: Performances of different age subgroups for PersonNet and Baseline on DB .

Similarly, we report performances on each gender group in Tab. 19. Although the gender distribution
in M3Ret is nearly balanced, a noticeable performance gap regarding F1 and Kappa remains. This
again highlights the need for fair multimodal learning.

Gender Acc F1 Kappa
PersonNet Baseline-Concat PersonNet Baseline-Concat PersonNet Baseline-Concat

Female 88.41 ± 0.92 87.90 ± 0.90 62.27 ± 1.46 59.63 ± 1.95 49.70 ± 4.19 48.03 ± 1.90
Male 89.80 ± 0.18 88.82 ± 0.90 68.26 ± 1.00 64.86 ± 2.23 64.55 ± 2.63 61.05 ± 3.63

Table 19: Performances of different gender subgroups for PersonNet and Baseline on DB .
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