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Abstract

In a recent paper, Ling et al. investigated the over-parametrized Deep Equilibrium Model
(DEQ) with ReLU activation. They proved that the gradient descent converges to a globally
optimal solution at a linear convergence rate for the quadratic loss function. This paper
shows that this fact still holds for DEQs with any general activation that has bounded first
and second derivatives. Since the new activation function is generally non-homogeneous,
bounding the least eigenvalue of the Gram matrix of the equilibrium point is particularly
challenging. To accomplish this task, we need to create a novel population Gram matrix
and develop a new form of dual activation with Hermite polynomial expansion.

1 Introduction

Deep learning is a class of machine learning algorithms that uses multiple layers to progressively extract
higher-level features from the raw input. For example, in image processing, lower layers may identify edges,
while higher layers may identify the concepts relevant to a human such as digits or letters or faces. Deep
neural networks have underpinned state of the art empirical results in numerous applied machine learning
tasks (Krizhevsky et al., 2012). Understanding neural network learning, particularly its recent successes,
commonly decomposes into the two main themes: (i) studying generalization capacity of the deep neural
networks and (ii) understanding why efficient algorithms, such as stochastic gradient, find good weights.
Though still far from being complete, previous work provides some understanding on generalization capability
of deep neural networks. However, question (ii) is rather poorly understood. While learning algorithms
succeed in practice, theoretical analysis is overly pessimistic. Direct interpretation of theoretical results
suggests that when going slightly deeper beyond single layer networks, e.g. to depth-two networks with very
few hidden units, it is hard to predict even marginally better than random (Daniely et al., 2013; Kearns &
Valiant, 1994).

The standard approach to develop generalization bounds on deep learning (and machine learning) was
developed in seminal papers by (Vapnik, 1998), and it is based on bounding the difference between the
generalization error and the training error. These bounds are expressed in terms of the so called VC-
dimension of the class. However, these bounds are very loose when the VC-dimension of the class can be
very large, or even infinite. In 1998, several authors (Bartlett & Shawe-Taylor, 1999; Bartlett et al., 1998)
suggested another class of upper bounds on generalization error that are expressed in terms of the empirical
distribution of the margin of the predictor (the classifier). Later, Koltchinskii and Panchenko proposed new
probabilistic upper bounds on generalization error of the combination of many complex classifiers such as
deep neural networks (Koltchinskii & Panchenko, 2002). These bounds were developed based on the general
results of the theory of Gaussian, Rademacher, and empirical processes in terms of general functions of the
margins, satisfying a Lipschitz condition. They improved previously known bounds on generalization error of
convex combination of classifiers. (Truong, 2022a) and Truong (2022b) have recently provided generalization
bounds for learning with Markov dataset based on Rademacher and Gaussian complexity functions. The
development of new symmetrization inequalities and contraction lemmas in high-dimensional probability
for Markov chains is a key element in these works. Several recent works have focused on gradient descent
based PAC-Bayesian algorithms, aiming to minimise a generalisation bound for stochastic classifiers (Biggs
& Guedj, 2021; Dziugaite & Roy., 2017). Most of these studies use a surrogate loss to avoid dealing with
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the zero-gradient of the misclassification loss. There were some other works which use information-theoretic
approach to find PAC-bounds on generalization errors for machine learning (Esposito et al., 2021; Xu &
Raginsky, 2017) and deep learning (Jakubovitz et al., 2018).

Recently, deep equilibrium model (DEQ)(Bai et al., 2019) was introduced as a new approach to modelling
sequential data. In many existing deep sequence models, the hidden layers converge toward some fixed
points. DEQ directly finds these equilibrium points via root-finding of implicit equations. Such a model is
equivalent to an infinite-depth weight-tied model with input-injection. DEQ has emerged as an important
model in various aplications such as computer vision (Bai et al., 2020; Xie et al., 2022), natural language
processing (Bai et al., 2019), and inverse problems (Gilton et al., 2021). This model has been shown
to achieve performance competitive with the state-of-the-art deep networks while using significantly less
memory. Despite of the empirical success of DEQ, theoretical understanding of this model is still limited.
The effectiveness of over-parameterization in optimizing feedforward neural networks has been validated in
many research literature (Arora et al., 2019; Du et al., 2018; Li & Liang, 2018). A recent work (Nguyen,
2021) showed that the convergence of gradient descent (GD) to a global optimum can be guaranteed when
the width of the last hidden layer exceeds the number of training samples. The main idea is to investigate
the property at initialization and bound the traveling distance of GD from the initialization.

However, it remains unknown whether the above results can be directly applied to DEQs. Due to the
implicit weight-sharing, the initial random weights and features are dependent, which causes the standard
concentration approaches in the existing research literature fail in DEQs. Recently, Ling et al. (2022)
investigated the training dynamics of over-parameterized DEQs with ReLU activation. More specifically,
they proposed a novel probabilistic framework to overcome the challenge arising from the weight-sharing and
the infinite depth. By supposing a condition on the initial equilibrium point, they proved that the gradient
descent converges to a globally optimal solution at a linear convergence rate for the quadratic loss function.
To achieve this target, they developed a lower bound on the least eigenvalue of the Gram matrix for the
DEQs with ReLU activation. One interesting open question is whether the gradient descent algorithm still
converge at a linear rate for DEQs with non-linear activation functions? In this paper, we show that this fact
still holds for DEQs with a general activation function which has bounded first and second derivatives. Many
popular activation functions such as 1/(1 + e−x), erf(x), x/

√
1 + x2, sin(x), tanh(x) satisfy the boundedness

requirements. In general, the new activation function does not have homogeneous property as ReLU, hence
a novel population Gram matrix is designed for DEQs with general activations, and a new form of dual
activation with Hermite polynomial expansion is developed in our work.

2 Problem settings

We consider the same model as Ling et al. (2022). However, different from Ling et al. (2022), we assume that
the activation function, φ, satisfies some constraints in the first and second derivatives. These properties can
be observed in many common activation functions. More specifically, we define a vanilla deep equilibrium
model (DEQ) with the transform of the l-th layer as

T(l) = φ(WT(l−1) + UX) (1)

where X = [x1, x2, · · · , xn] ∈ Rd×n denotes the training inputs, U ∈ Rm×d and W ∈ Rm×m are trainable
weight matrices, and T(l) ∈ Rm×n is the output feature at the l-th hidden layer. If we were to repeat
this update an infinite number of times, we would essentially be modeling an infinitely deep network of the
form above. In practice, what we find is that for most “typical” deep layers the valued actually converge
to a fixed point or equilibrium point (Bai et al., 2019). The output of the last hidden layer is defined by
T∗ := liml→∞ T(l). Therefore, instead of running infinitely deep layer-by-layer forward propagation, T∗ can
be calculated by directly solving the equilibrium point of the following equation

T∗ = φ(WT∗ + UX). (2)

Let y = [y1, y2, · · · , yn] ∈ Rn denote the labels, and ŷ(θ) = aT T∗ be the prediction function with a ∈ Rm

being a trainable vector and θ = vec(W, U, a). Our target is to minimize the empirical risk with the
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quadratic loss function:

Φ(θ) = 1
2∥ŷ(θ) − y∥2

2. (3)

To optimize this loss function, we use the gradient descent update θ(τ + 1) = θ(τ) − η∇Φ(θ(τ)), where η is
the learning rate and θ(τ) = vec(W(τ), U(τ), a(τ)). For notational simplicity, we omit the superscript and
denote T to be the equilibrium T∗ when it is clear from the context. Moreover, the Gram matrix of the
equilibrium point is defined by G(τ) := TT (τ)T(τ) and we define its least eigenvalue by λτ = λmin(G(τ)).
In this paper, for brevity we denote by G = G(0).
Definition 1. An activation φ : R → R is L-bounded if it is twice continuously differentiable and
∥φ∥∞, ∥φ′∥∞, ∥φ′′∥∞ ≤ L.

In this paper, we assume that φ(·) is L-bounded. In addition, the following holds:

q :=

√
2√
2π

∫ ∞

−∞
φ2(z) exp

(
− z2

2

)
dz > 0.

Many popular activation functions such as 1/(1 + e−x), erf(x), x/
√

1 + x2, sin(x), tanh(x) satisfy the bound-
edness requirements.
Definition 2. Two vectors a, b ∈ Rn are said to be parallel, denoted a ∥ b, if there exists a scalar κ ∈ R
such that a = κb. If a and b are not parallel, we write a ∦ b.

Besides, we use similar assumptions on the random initialisation and input data as Ling et al. (2022):

• Assumption 1 (Random initialization). Assume that σ2
w < 1

48L2 . In addition, W is initialized
with an m × m matrix with i.i.d. entries Wij ∼ N (0, 2σ2

w/m), U is initialized with an m × d matrix
with i.i.d. entries Uij ∼ N (0, 2/m), and a is initialized with a random vector with i.i.d. entries
∼ N (0, 1/m).

• Assumption 2 (Input data). We assume that (i) ∥xi∥2 =
√

d for all i ∈ [n] and xi ∦ xj for all
i ̸= j; (ii) the labels satisfy |yi| = O(1) for all i ∈ [n].

3 Main Results

In this paper, we show that if the learning rate is small enough, the loss converges to a global minimum at
linear rate. The result is as follows.
Theorem 3. Consider a DEQ. Let δ be a constant such that ∥W(0)∥+δ < 1/L. Denote by ρ̄w = ∥W(0)∥2 +
δ, ρ̄u = ∥U(0)∥2 + δ, ρ̄a = ∥a(0)∥2 + δ and define

ca = Lρ̄u

1 − Lρ̄w
, cu = Lρ̄a

1 − Lρ̄w
, cm = |σ(0)|

√
mn

1 − Lρ̄w
. (4)

In addition, assume at initialization that

λ0 ≥ 4
δ

max
{

cu

(
ca∥X∥F + cm

)
, cu∥X∥F , ca∥X∥F + cm

}
∥ŷ(0) − y∥, (5)

λ
3/2
0 ≥ 4(2 +

√
2)L

(1 − Lρ̄w)

[
cu

(
ca∥X∥F + cm

)2 + cu∥X∥2
F

]
∥ŷ(0) − y∥2, (6)

λ0 ≥ 8
[
c2

u

(
ca∥X∥F + cm

)2 + c2
u∥X∥2

F

]
(7)

where λ0 is the least eigenvalue of G(0) = T(0)T T(0). Then, if the learning rate satisfies

η < min
(

2
λ0

,
2[c2

u(ca∥X∥F + cm)2 + c2
u∥X∥2

F ]
c2

u(ca∥X∥F + cm)2 + c2
u∥X∥2

F + (ca∥X∥F + cm)2

)
,

for every τ ≥ 0, the following hold:
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• ∥W(τ)∥2 ≤ 1/L, i.e., the equilibrium points always exists,

• λτ ≥ 1
2 λ0, and

∥∇θΦ(θ(τ))∥2
2 ≥ λ0Φ(θ(τ)). (8)

• The loss converges to a global minimum as

Φ(θ(τ)) ≤
(

1 − η
λ0

2

)τ

Φ(θ(0)). (9)

The main challenge now is to find some initializations such that λ0 satisfies all the conditions in Theorem 3.
To lower bound λ0, we need to design a population Gram matrix K and compare λ0 with the least eigenvalue
of K Ling et al. (2022). However, since the new activation function, φ, is non-linear in general, bounding
λ0 is more challenging than the ReLU network in Ling et al. (2022). The non-homegeneity of activation
functions causes the techniques to design K in (Ling et al., 2022, Definition 1) can not be applied. For
example, (Ling et al., 2022, Eq. 11) only holds for ReLU.

In Section 4, we propose a new method to create the population Gram matrix K for DEQs with general
Lipschitz activation function. By using our new form of dual activation and Hermite polynomial expansion,
we can prove that K is symmetric positive definite. In addition, we show that with probability at least 1 − t,
λ0 ≥ m

2 λ∗ provided that m = Ω
(

n3

λ2
∗

log n
t

)
where λ∗ is the least eigenvalue of K (cf. Section 7). This fact

indicates that all the conditions of Theorem 3 at least hold for over-parametrized DEQs (or m sufficiently
large) with φ(0) = 0. Hence, by (9) in Theorem 3, the gradient descent algorithm converges to a global
optimum at a linear rate for the over-parametrized DEQs if the number of repetitions in (1) sufficiently
large. This interesting fact is reaffirmed by our numerical experiments on real datasets such as MNIST and
CFAR10 in Section 8.

4 A novel design of the population Gram matrix K

The key approach in lower bounding λ0 is to design a population Gram matrix K in such a way that we can
lower bound λ0 by the least eigenvalue of K and that K is symmetric positive definite. This novel population
Gram matrix is developed through our introduction of a new form of dual activation.

First, we define a new class of dual activation functions Q̃α,β : [−1, 1] → R for all pairs (α, β) ∈ R2
+.

Definition 4. Recall the definition of q in (4). For each pair (α, β), define

Q̃α,β(x) := 1
αβq2E

(a,b)T ∼N

(
0,

[
1 x
x 1

])[
φ(αa)φ(βb)

]
, ∀|x| ≤ 1. (10)

If φ(x) = max{x, 0} (ReLU), then Q̃α,β(x) = Q̄(x) for all (α, β) ∈ R2
+, where

Q̄(x) := E
(a,b)T ∼N

(
0,

[
1 x
x 1

])[φ(a)φ(b)]

is the dual activation defined in (Daniely et al., 2016, Sec. 3.2).

Now, we provide a novel design of the population Gram matrix K based on this new dual activation function.
Definition 5. Given the training input X := [x1, x2, · · · , xn] satisfying Assumption 2. Let

Qij(x) := Q̃√
2
(

σ2
w

m E[Gii]+1
)

,

√
2
(

σ2
w

m E[Gjj ]+1
)(

x
)
, ∀x ∈ R. (11)
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We define the population Gram matrices K(l) of each layer recursively as

ρ
(0)
ij = 0, (12)

ρ
(l)
ii = 2q2σ2

wρ
(l−1)
ii Qii(1) + 1, (13)

ρ
(l)
ij =

√
ρ

(l)
ii ρ

(l)
jj , i ̸= j (14)

K(0) = 0, (15)

ν
(l)
ij =

σ2
wK(l−1)

ij + d−1xT
i xj√(

σ2
wK(l−1)

ii + 1
)(

σ2
wK(l−1)

jj + 1
) (16)

K(l)
ij = 2q2ρ

(l)
ij Qij(ν(l)

ij ) (17)

for all l ≥ 1 and i, j ∈ [n] × [n].

The next result shows that λ0 can be lower bounded via the least eigenvalue of the population matrix K.

Theorem 6. If m = Ω
(

n2

λ2
∗

log n
t

)
, with probability at least 1 − t, it holds that

λ0 ≥ m

2 λ∗. (18)

Finally, the following result shows sufficient conditions such that K is strictly positive definite.
Theorem 7. Assume that there exists a polynomial expansion of Q̃α,α satisfying:

Q̃α,α(x) =
∞∑

r=0
µ2

r,α(φ)xr (19)

for all α > 0 such that sup{r : minα∈[2,2(σ2
wL2+1)] µ2

r,α(φ) > 0} = ∞. Then, K is strictly positive definite
with the least eigenvalue satisfying λ∗ ≥ λ∗

0 for some λ∗
0 > 0 which does not depend on m.

5 Proof of Theorem 6

To prove Theorem 6, we first state some auxiliary results based on the population Gram matrix K in
Definition 5. The proofs of these lemmas and prepositions can be found in Supplement Material.
Lemma 8. Recall the definition of Q̃α,β in Definition 4. Then, the following hold for all α ≥ 1, β ≥ 1 and
x ∈ R: ∣∣Q̃α,β(x)

∣∣ ≤
√

Q̃α,α(1)Q̃β,β(1), (20)∣∣Q̃α,β(x)
∣∣ ≤ 4L2

q2 , ∀|x| ≤ 1. (21)

In addition, Q̃α,β(·) is 2L2

q2 -Lipchitz for any fixed positive pair (α, β).

Lemma 9. (Ling et al., 2022, Proof of Lemma 4) For l ≥ 1, G(l+1)
ij can be reconstructed as G(l+1)

ij =
φ(Mhl+1)T φ(Mh′

l+1) such that

• (i) hT
l+1h′

l+1 = σ2
w

m G(l)
ij + 1

d xT
i xj,

• (ii) M ∈ Rm×(2l+d+2) is a rectangle matrix, and the entries of M are i.i.d. from N (0, 2) conditioning
on previous layers.
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Lemma 10. For the given setting, we have

ρ
(l)
ii = σ2

wK(l−1)
ii + 1, (22)

ρ
(l)
ij ν

(l)
ij = σ2

wK(l−1)
ij + d−1xT

i xj , ∀i, j, (23)

and

ν
(l)
ij =


Qij

(
ν

(l−1)
ij

)
/
√

Qii(1)Qjj(1)
√

(ρ
(l)
ii

−1)(ρ
(l)
jj

−1)+d−1xT
i xj√

ρ
(l)
ii

ρ
(l)
jj

, i ̸= j

1, i = j

. (24)

In addition, we also have ∣∣ν(l)
ij

∣∣ ≤ 1 (25)

for all i, j ∈ [n] × [n] and l ≥ 0.

Proposition 11. Under the Assumptions 1 and 2 we have ∥K − K(l)∥F = O
(
n

(
8L2σ2

w

)l) which implies
that, for l → ∞, K(l) → K with entries

Kij = 2q2Qij(νij)√ρiiρjj (26)

where

νij =

 Qij

(
νij

)
/
√

Qii(1)Qjj(1)
√

(ρii−1)(ρjj−1)+d−1xT
i xj

√
ρiiρjj

, i ̸= j

1, i = j
. (27)

Here,

ρii = 1
1 − 2q2σ2

wQii(1) . (28)

Proposition 12. Under Assumptions 1 and 2 with probability at least 1 − n2 exp(−Ω(m)), it holds that

1
m

∥∥∥∥G − G(l)
∥∥∥∥

F

= O

(
n

(
2L

√
2σw

)l
)

. (29)

Proposition 13. Under Assumptions 1 and 2, with probability at least 1 − n2l exp
{

− Ω(8lL2lσ2l
w mnL2) +

O(l2)
}

, it holds that ∥∥∥∥ 1
m

G(l) − K(l)
∥∥∥∥

F

= O

(
n(2L

√
2σw)l

)
. (30)

By combining Propositions 11–13, we can bound λ0 via the least eigenvalue of the population matrix K as
follows.

Proof of Theorem 6. From Propositions 11–13, with probability at least 1−n2 exp
(
−Ω(m8lL2lσ2l

w )+O(l2)
)
,

it holds that ∥∥∥∥ 1
m

G − K
∥∥∥∥

F

≤ 1
m

∥∥∥∥G − G(l)∥∥
F

+
∥∥∥∥ 1

m
G(l) − K(l)

∥∥∥∥ +
∥∥∥∥K − K(l)

∥∥∥∥
F

= O

(
n

(
2L

√
2σw

)l)
+ O

(
n

(
2L

√
2σw

)l)
+ O

(
n(8L2σ2

w)l

)
= O

(
n

(
2L

√
2σw

)l)
, (31)
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where (31) follows from σ2
w < 1/(8L2).

Next, we fix l to omit the explicit dependence on l. Specifically, let

l = Θ(log(2λ−1
∗ n)/ log(

√
2/(4Lσw)),

then from (31), we have ∥∥∥∥ 1
m

G − K
∥∥∥∥

F

≤ λ∗

2 .

It is easy to prove by induction that K is symmetric. Therefore, by Weyl’s inequality (Ling et al., 2022,
Lemma 5), it holds that

max
i∈[r]

∣∣∣∣λi

(
1
m

G
)

− λi(K)
∣∣∣∣ ≤

∥∥∥∥ 1
m

G − K
∥∥∥∥

2
≤

∥∥∥∥ 1
m

G − K
∥∥∥∥

F

≤ λ∗

2 .

Now, by choosing i0 := arg mini λi(K), we have

λi0(K) = λ∗ (32)

and ∣∣∣∣ 1
m

λmin(G) − λ∗

∣∣∣∣ ≤ λ∗

2 . (33)

It follows from (32) and (33) that

λ0 = λmin(G) ≥ m

2 λ∗.

Consequently, w.p. ≥ 1 − t, we have λ0 ≥ m
2 λ∗ provided that m = Ω

(
n2

λ2
∗

log n
t

)
.

6 Checking the conditions of Theorem 7

In this section, we will show how the condition in Theorem 7 holds for some common activation functions.
We first recall the definition of a traditional dual activation function, say φ̂, associate with φ in (Daniely
et al., 2016, Sect. 4.2):

φ̂(x) = E
(u,v)∼N

(
0,

[
1 x
x 1

])[φ(u)φ(v)].

Then, by using a similar proof as (Daniely et al., 2016, Lemma 11), it can be shown that the new activation
function (see Definition 4) satisfies

Q̃α,α(x) = 1
q2α2

∞∑
n=1

a2
nα2nxn (34)

if φ(x) =
∑∞

n=1 anhn(x) (Hermite polynomial expansion) or φ̂(x) =
∑∞

n=1 a2
nxn.

In the following, we apply (34) and show how the condition in Theorem 7 is fulfilled.
Example 14. Consider the sine activation, φ(x) = sin(ax). By (Daniely et al., 2016, Sect. 8), we have

φ̂(x) = e−a2
sinh(a2x).

By Taylor’s expansion of sinh function, i.e.,

sinh(x) =
∞∑

r=0

1
(2r + 1)!x

2r+1.
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Hence, from (34) we have

Q̃α,α(x) = 1
q2α2 e−a2

∞∑
r=0

a4r+2α4r+2

(2r + 1)! x2r+1,

which leads to

µ2
r,α(φ) =

{
1

q2α2 e−a2 a2rα2r

r! r mod 2 = 1
0 otherwise

.

This means that the condition in Theorem 7 is satisfied.
Example 15. Consider the tanh activation function, φ(x) = ex−e−x

ex+e−x . By (Szego, 1959, Eq. 8.23.4), φ(x)
can be uniquely described in the basis of Hermite polynomials,

φ(x) =
∞∑

n=1
anhn(x)

where

|an| = 1√
π2nn!

Γ
(

n
2 + 1

)
Γ(n + 1) exp

(
− π

√
2n

2

)
.

Hence, from (34), we obtain

Q̃α,α(x) = 1
q2α2

∞∑
n=1

a2
nα2nxn,

so we have

µ2
r,α(φ) = 1

q2α2 a2
nα2n

This means that the condition in Theorem 7 is satisfied.
Example 16. Consider the sigmoid activation function φ(x) = 1

1+e−x . It is known that

φ(x) = 1 + tanh(x/2)
2 .

Hence, by using similar arguments as Example 15, we can prove that the condition in Theorem 7 is also
satisfied.

7 Weight Initialisation Algorithm

Before proposing an algorithm to initialise weights, we introduce some initial results.
Lemma 17. (Vershynin, 2018, Theorem 4.4.5) For a random matrix A ∈ Rn×m with Aij ∼ N (0, 1), it
holds that

∥A∥2 ≤ C(
√

m +
√

n + t) (35)

with probability 1 − 2e−t2 , where C is some constant.
Lemma 18. For any fixed t ∈ R+, it holds that

∥ŷ(0) − y∥ = O(
√

n) (36)

with probability at least 1 − t.
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A weight initialisation algorithm (WIALG) is as follows.

• Initialise: m = 1000, σ2
w = 1

96L2 .

• Step 1:

– Generate a matrix W ∈ Rm×m where Wij ∼ N
(
0,

2σ2
w

m

)
.

– Generate a matrix U ∈ Rm×d where Uij ∼ N
(
0, 2

m

)
.

– Generate a vector a ∈ Rm where ai ∼ N
(
0, 1

m

)
.

• Step 2:
– Find a fixed-point T of the equation T = φ(WT+UX) by using Anderson acceleration method

Walker & Ni (2011).
– Estimate E[Gii]

m by using the Monte-Carlo method. Note that by our Assumption 2, E[Gii] does
not depend on i, so we only need to estimate E[G11]

m .
– Set ŷ(0) = aT T.

• Step 3:
– Recursively construct a sequence K(l) by using (12)–(17) until ∥K(l) − K(l−1)∥F ≤ ε for some

small value ε > 0.
– Estimate the least eigenvalue λ∗ of K(l).

• Step 4: Check the following conditions:
m

2 λ∗ ≥ 4
δ

max
{

cu

(
ca∥X∥F + cm

)
, cu∥X∥F , ca∥X∥F + cm

}
∥ŷ(0) − y∥, (37)(

m

2 λ∗

)3/2
≥ 4(2 +

√
2)L

(1 − Lρ̄w)

[
cu

(
ca∥X∥F + cm

)2 + cu∥X∥2
F

]
∥ŷ(0) − y∥2, (38)

m

2 λ∗ ≥ 8
[
c2

u

(
ca∥X∥F + cm

)2 + c2
u∥X∥2

F

]
, (39)

where cu, ca, cm, ρ̄w are defined in Theorem 3.

• Step 5: If all the conditions (37)–(39) hold, we STOP the initialisation. Otherwise, we increase
m = m + 10 and REPEAT Step 1.

Theorem 19. For DEQs with σ(0) = 0, WIALG will STOP with probability 1 − t at m = Ω
(

n3

(λ∗)2 log n
t

)
.

Proof. By using Theorem 6 and Theorem 7, it holds that λ∗ ≥ λ∗
0 > 0 where λ∗

0 is a function of n only,
which does not depend on m. On the other hand, by Lemmas 17, it holds with probability 1 − exp(−Ω(m))
that

ρ̄w = O(1), ρ̄u = O(1), ρ̄a = O(1),

which implies that

ca = O(1), cu = O(1), cm = 0.

Now, by Theorem 6 and Theorem 7, it holds with probability 1 − t that

0 < λ∗ ≤ 2
m

λ0 ≤ 2
m

tr(G) = 2
m

tr(T(0)T T(0)) ≤ 2nL2, (40)

where (40) follows from the fact that T(0) = φ(WT(0) + UX), so all elements of T(0) is bounded by L.
In addition, by Assumption 2 we have

∥X∥F =
√

nd. (41)

Hence, by combining with Lemma 18, i.e., ∥ŷ(0) − y∥ = O(
√

n), the inequalities (37)-(39) hold with proba-
bility at least 1 − t if m = Ω

(
n3

(λ∗)2 log n
t

)
.

9
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Finally, by combining with Theorem 6, it hold that if m = Ω
(

n3

(λ∗
0)2 log n

t

)
and n sufficiently large, with

probability at least 1 − t, all the conditions (5)-(7) in Theorem 3 hold.

8 Numerical Results

In this section, we implement some experiments to verify Theorem 3. We evaluate the DEQ model on
MNIST and CIFAR-10 datasets. For each dataset, the training dataset is generated by randomly sampling
500 images from the first and second classes. We use Gaussian initialization as Assumption 1 and normalize
each data point as Assumption 2.

In the first experiment, we variate m and plot the training dynamic for MNIST and CIFAR-10 when φ is
the sigmoid function (L = 1). It can be seen from Fig. 1 that as m big enough and τ sufficient large, the
curves become straight lines. This fact re-affirms that (9) holds.
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(a) MNIST
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(b) CIFAR-10

Figure 1: Training dynamics at different values of m.

In the second experiment, we variate the activation function and plot the training dynamic for MNIST and
CIFAR-10 at m = 3000. It can be seen from Fig. 2 that as m big enough and τ sufficient large, the tanh
network converges faster than the sigmoid or ReLU one for both datasets.
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Figure 2: Training dynamics for different activation functions.
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9 Conclusion

In this paper, we proved that the gradient descent converges to a globally optimal solution at a linear
convergence rate for the quadratic loss function for the over-parametrized DEQ with L-bounded activation
functions. This fascinating fact is also re-affirmed by our numerical experiments on MNIST and CFAR-
10 datasets. To overcome new technical challenges caused by the non-linearity of activation functions, a
novel population Gram matrix is introduced and a new form of dual activation with Hermite polynomial
expansion is developed. An interesting future research direction is to study whether the linear convergence
rate property still holds for other classes of activation functions.
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A Appendix

B Proof of Lemma 8

Observe that ∣∣Q̃α,β(x)
∣∣ ≤ 1

αβq2E
(a,b)T ∼N

(
0,

[
1 x
x 1

])∣∣φ(αa)φ(βb)
∣∣

= 1
αβq2E

(u,v)T ∼N

(
0,

[
α2 xαβ

xαβ β2

])∣∣φ(u)φ(v)
∣∣

≤ 1
αβ

√
1
q2Ea∼N (0,α2)[φ2(a)]

√
1
q2Eb∼N (0,β2)[φ2(b)] (42)

=
√

Q̃α,α(1)Q̃β,β(1), (43)

where (42) follows from Cauchy–Schwarz inequality.

In addition, by the L-bounded property of φ, we also have

|φ(αz) − φ(0)| ≤ L|αz|. (44)

Hence, for any α ≥ 1, it holds that

|φ(αz)| ≤ |φ(0)| + L|α||z|
≤ L

(
1 + |α||z|

)
≤ L|α|

√
2(1 + z2). (45)

13



Under review as submission to TMLR

From (45), we obtain

Ea∼N (0,α2)[φ2(a)] =
∫ ∞

−∞

1
α

√
2π

φ2(z) exp
(

− z2

2α2

)
dz

=
∫ ∞

−∞

1√
2π

φ2(αz) exp
(

− z2

2

)
dz

≤ 2L2α2
∫ ∞

−∞

1√
2π

(
1 + z2)

exp
(

− z2

2

)
dz

= 4L2α2. (46)

Similarly, we also have

Eb∼N (0,β2)[φ2(b)] ≤ 4L2β2. (47)

From (42), (46) and (47), we obtain |Q̃α,β(x)| ≤ 4L2/q2 for all α ≥ 1, β ≥ 1, and x ∈ R.

Now, for a fixed pair (α ≥ 1, β ≥ 1), define z := (u, v), ϕ(z) := φ(u)φ(v), and

Σx :=
[

α2 xαβ
xαβ β2

]
. (48)

Then, by (Daniely et al., 2016, Lemma 12) we have

∂Q̃α,β

∂Σx
= − 1

2q2αβ
E(u,v)∼N (0,Σx)

[
∂ϕ2(z)

∂2z
(u, v)

]
. (49)

On the other hand, we note that

∂ϕ2(z)
∂2z

(u, v) =
[

∂2φ(u)
∂u2 φ(v) ∂φ(u)

∂u
∂φ(v)

∂v
∂φ(u)

∂u
∂φ(v)

∂v
∂2φ(v)

∂v2 φ(u)

]
. (50)

Hence, from (49) and (50) we have∥∥∥∥vec
(

∂Q̃α,β

∂Σx

)∥∥∥∥
∞

≤ 1
2q2αβ

max
{
E(u,v)∼N (0,Σx)

[∣∣∣∣∂2φ(u)
∂u2 φ(v)

∣∣∣∣],E(u,v)∼N (0,Σx)

[∣∣∣∣∂φ(u)
∂u

∂φ(v)
∂v

∣∣∣∣],

E(u,v)∼N (0,Σx)

[∣∣∣∣∂2φ(v)
∂v2 φ(u)

∣∣∣∣]}
. (51)

Hence, by the assumption that ∥φ∥∞ ≤ L, ∥φ′′∥∞ ≤ L, from (51) we obtain∥∥∥∥vec
(

∂Q̃α,β

∂Σx

)∥∥∥∥
∞

≤ L2

2q2αβ
. (52)

It follows that ∣∣Q̃α,β(y) − Q̃α,β(x)
∣∣ =

∣∣∣∣ ∫ y

x

dQ̃α,β

dt
dt

∣∣∣∣
=

∣∣∣∣ ∫ y

x

tr
((

∂Q̃α,β

∂Σt

)T
∂Σt

dt

)
dt

∣∣∣∣
≤

∫ y

x

∣∣∣∣tr((
∂Q̃α,β

∂Σt

)T
∂Σt

dt

)∣∣∣∣dt

=
∫ y

x

∣∣∣∣vec
(

∂Q̃α,β

∂Σt

)T
vec

(
∂Σt

dt

)∣∣∣∣dt
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≤ 4
∫ y

x

∥∥∥∥vec
(

∂Q̃α,β

∂Σt

)∥∥∥∥
∞

∥∥∥∥vec
(

∂Σt

dt

)∥∥∥∥
∞

dt

≤ 4L2

2q2αβ

∫ y

x

∥∥∥∥vec
(

∂Σt

dt

)∥∥∥∥
∞

dt

= 4L2

2q2αβ
αβ|y − x|

= 2L2

q2 |y − x|. (53)

C Proof of Lemma 10

From (16) in Definition 5, we have

ν
(l)
ii = σ2

wK(l−1)
ii + d−1xT

i xi

σ2
wK(l−1)

ii + 1
= 1. (54)

From (13) and (17) in Definition 5 and (54), we have

ρ
(l)
ii = σ2

wK(l−1)
ii + 1. (55)

In addition, from (14) and (16) in Definition 5 and (55), we also have

ρ
(l)
ij ν

(l)
ij = σ2

wK(l−1)
ij + d−1xT

i xj , ∀i, j. (56)

Replacing (17) in Definition 5 and (55) to (16) in Definition 5, we obtain for i ̸= j,

|ν(l)
ij | =

∣∣σ2
wK(l−1)

ij + d−1xT
i xj

∣∣√(
σ2

wK(l−1)
ii + 1

)(
σ2

wK(l−1)
jj + 1

)
=

∣∣2q2σ2
wρ

(l−1)
ij Qij

(
ν

(l−1)
ij

)
+ d−1xT

i xj

∣∣√
ρ

(l)
ii ρ

(l)
jj

=

∣∣Qij

(
ν

(l−1)
ij

)
/
√

Qii(1)Qjj(1)
√

(2q2σ2
wρ

(l−1)
ii Qii(1))(2q2σ2

wρ
(l−1)
jj Qjj(1)) + d−1xT

i xj

∣∣√
ρ

(l)
ii ρ

(l)
jj

=

∣∣Qij

(
ν

(l−1)
ij

)
/
√

Qii(1)Qjj(1)
√

(ρ(l)
ii − 1)(ρ(l)

jj − 1) + d−1xT
i xj

∣∣√
ρ

(l)
ii ρ

(l)
jj

≤

√
(ρ(l)

ii − 1)(ρ(l)
jj − 1) +

∣∣d−1xT
i xj

∣∣√
ρ

(l)
ii ρ

(l)
jj

(57)

≤

√
(ρ(l)

ii − 1)(ρ(l)
jj − 1) + 1√

ρ
(l)
ii ρ

(l)
jj

(58)

≤ 1, (59)

where (57) follows from Lemma 8, and (58) follows from d−1|xT
i xj | ≤ d−1∥xi∥2∥xj∥2 = 1.
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D Proof of Proposition 11

For all i, j ∈ [n] × [n], observe that∣∣K(l+1)
ij − K(l)

ij

∣∣
= 2q2∣∣ρ(l+1)

ij Qij(ν(l+1)
ij ) − ρ

(l)
ij Qij(ν(l)

ij )
∣∣

≤ 2q2∣∣ρ(l+1)
ij Qij(ν(l+1)

ij ) − ρ
(l+1)
ij Qij

(
ν

(l)
ij

)∣∣ + 2q2∣∣ρ(l+1)
ij Qij

(
ν

(l)
ij

)
− ρ

(l)
ij Qij(ν(l)

ij )
∣∣, (60)

where (60) follows from the triangle inequality.

Now, we bound each term in (60). First, from Assumption 1 and Lemma 8, we have

2q2σ2
wQii(1) ≤ 8L2σ2

w < 1. (61)

Therefore, from (13) we have

ρ
(l)
ii = 1 − (2q2σ2

wQii(1))l+1

1 − 2q2σ2
wQii(1) , ∀i. (62)

It follows that ∣∣ρ(l)
ii − ρ

(l+1)
ii

∣∣ ≤ O
(
(2q2σ2

wQii(1))l
)
. (63)

Hence, for i ̸= j, we have∣∣ρ(l+1)
ij − ρ

(l)
ij

∣∣ =
∣∣∣∣√ρ

(l+1)
ii ρ

(l+1)
jj −

√
ρ

(l)
ii ρ

(l)
jj

∣∣∣∣
≤

√
ρ

(l+1)
ii

∣∣∣∣√ρ
(l+1)
jj −

√
ρ

(l)
jj

∣∣∣∣ +
√

ρ
(l)
jj

∣∣∣∣√ρ
(l+1)
ii −

√
ρ

(l)
ii

∣∣∣∣
≤ O

(
(2q2σ2

wQii(1))l
)

+ O
(
(2q2σ2

wQjj(1))l
)
, (64)

where (64) follows from (62) and (63).

From (61) and (64), we obtain ∣∣ρ(l)
ij − ρ

(l+1)
ij

∣∣ ≤ O
(
(8L2σ2

w)l
)
, ∀i, j. (65)

Now, we have ∣∣ρ(l+1)
ij Qij(ν(l+1)

ij ) − ρ
(l+1)
ij Qij

(
ν

(l)
ij

)∣∣
=

∣∣∣∣ρ(l+1)
ij Q̃√

2
(

σ2
w

m E[Gii]+1
)

,

√
2
(

σ2
w

m E[Gjj ]+1
)(ν(l+1)

ij )

− ρ
(l+1)
ij Q̃√

2
(

σ2
w

m E[Gii]+1
)

,

√
2
(

σ2
w

m E[Gjj ]+1
)(

ν
(l)
ij

)∣∣∣∣
≤ 2L2

q2

∣∣ρ(l+1)
ij ν

(l+1)
ij − ρ

(l+1)
ij ν

(l)
ij

∣∣ (66)

≤ 2L2

q2

∣∣ρ(l+1)
ij ν

(l+1)
ij − ρ

(l)
ij ν

(l)
ij

∣∣ + 2L2

q2

∣∣ρ(l)
ij − ρ

(l+1)
ij

∣∣|ν(l)
ij |

≤ 2L2

q2

∣∣ρ(l+1)
ij ν

(l+1)
ij − ρ

(l)
ij ν

(l)
ij

∣∣ + 2L2

q2

∣∣ρ(l)
ij − ρ

(l+1)
ij

∣∣ (67)

= 2L2

q2 σ2
w

∣∣K(l)
ij − K(l−1)

ij

∣∣ + 2L2

q2 O
(
(8L2σ2

w)l
)
, (68)
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where (66) follows from Lemma 8, (67) follows from Lemma 10, (68) follows from (23) in Lemma 10 and
(65).

In addition, by using the fact that |Qα,β(x)| ≤ 4L2

q2 for all α ≥ 1, β ≥ 1 in Lemma 8, we have

∣∣ρ(l+1)
ij Qij

(
ν

(l)
ij

)
− ρ

(l)
ij Qij(ν(l)

ij )
∣∣ ≤ 4L2

q2

∣∣ρ(l+1)
ij − ρ

(l)
ij

∣∣
= 4L2

q2 O
(
(8L2σ2

w)l
)
, (69)

where (69) follows from (65).

From (17), (68), and (69) we have∣∣K(l+1)
ij − K(l)

ij

∣∣
= 2q2∣∣ρ(l+1)

ij Qij(ν(l+1)
ij ) − ρ

(l)
ij Qij(ν(l)

ij )
∣∣

≤ 2q2∣∣ρ(l+1)
ij Qij(ν(l+1)

ij ) − ρ
(l+1)
ij Qij(ν(l)

ij )
∣∣ + 2q2∣∣ρ(l+1)

ij Qij(ν(l)
ij ) − ρ

(l)
ij Qij(ν(l)

ij )
∣∣

≤ 2q2
[

2L2

q2 σ2
w

∣∣K(l)
ij − K(l−1)

ij

∣∣ + 2L2

q2 O
(
(8L2σ2

w)l
)]

+ 2q2 × 4L2

q2 O
(
(8L2σ2

w)l
)
. (70)

By using induction, from (70) we have∣∣K(l+1)
ij − K(l)

ij

∣∣ = O
((

4L2σ2
w

)l)
. (71)

Since σ2
w < 1/(8L2), {K(l)

ij }∞
l=1 can be easily shown to be a Cauchy sequence. From the completeness of R,

it holds that

K(l)
ij → Kij (72)

uniformly in i, j ∈ [n] × [n] as l → ∞ for some matrix K. By using the triangle inequality, we have∣∣K(l+1)
ij − K(l)

ij

∣∣ ≥
∣∣K(l)

ij − Kij

∣∣ −
∣∣K(l+1)

ij − Kij

∣∣. (73)

From (71) and (73), we obtain ∣∣K(l)
ij − Kij

∣∣ = O
((

8L2σ2
w

)l)
. (74)

From (74), we obtain ∥∥K(l) − K
∥∥

F
= O

(
n

(
8L2σ2

w

)l)
. (75)

Now, by (17) and (72) we have

K(l)
ij = 2q2ρ

(l)
ij Qij(ν(l)

ij ) (76)

and K(l)
ij → Kij . On the other hand, by (61) we have 2q2σ2

wQii(1) < 1. It follows from (62) that

ρ
(l)
ii → 1

1 − 2q2σ2
wQii(1) (77)

as l → ∞. Hence, it holds that ν
(l)
ij → νij uniformly in i, j ∈ [n] × [n].

Hence, by Lemma 10, we have

νij =

 Qij

(
νij

)
/
√

Qii(1)Qjj(1)
√

(ρii−1)(ρjj−1)+d−1xT
i xj

√
ρiiρjj

, i ̸= j

1, i = j
,

(78)
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where

ρii = 1
1 − 2q2σ2

wQii(1) . (79)

E Proof of Proposition 12

Assume that T(l) = [v(l)
1 , v(l)

2 , · · · , v(l)
n ] where v(l)

i ∈ Rm for all i ∈ [n]. By (1), we have

v(l)
i = φ

(
Wv(l−1)

i + Uxi

)
, ∀i ∈ [n]. (80)

Hence, with probability at least 1 − exp
(

− Ω(m)), we have∥∥v(l+1)
i − v(l)

i

∥∥
2 =

∥∥φ
(
Wv(l)

i + Uxi

)
− φ

(
Wv(l−1)

i + Uxi

)∥∥
2

≤ L
∥∥W

(
v(l)

i − v(l−1)
i

)∥∥
2 (81)

≤ L
∥∥W

∥∥
2

∥∥v(l)
i − v(l−1)

i

∥∥
2

≤ 2L
√

2σw

∥∥v(l)
i − v(l−1)

i

∥∥
2 (82)

where (81) is a consequence of the assumption that φ is L-bounded, and (82) follows from (Tao, 2012,
Sect. (2.3)) .

Therefore, for all l ≥ 2, it holds that∥∥v(l)
i − v(l−1)

i

∥∥
2 ≤

(
2L

√
2σw

)l∥∥v(1)
i − v(0)

i

∥∥
2

=
(
2L

√
2σw

)l∥∥v(1)
i

∥∥
2

≤
(
2L

√
2σw

)l√
mL, (83)

where (83) follows from the fact that ∥∥v(1)
i

∥∥
2 =

∥∥φ(Uxi

)∥∥
2 ≤

√
mL

by the L-boundedness of φ.

Then, for all r > s, with probability at least 1 − exp(−Ω(m)), we have

∥∥v(r)
i − v(s)

i

∥∥ ≤
r∑

l=s+1

∥∥v(l)
i − v(l−1)

i

∥∥
2

≤
√

mL

r∑
l=s+1

(
2L

√
2σw

)l

≤
√

mL
(
2L

√
2σw

)s+1 1
1 − 2L

√
2σw

→ 0 (84)

as s → ∞ since 2L
√

2σw < 1. It follows that {v(l)
i }∞

l=1 is a Cauchy sequence. Since R is complete, hence we
have

∥v(l)
i − vi∥ → 0 (85)

for some vector vi.

Therefore, we have ∥∥v(l−1)
i − vi

∥∥ −
∥∥v(l)

i − vi

∥∥ ≤
∥∥v(l)

i − v(l−1)
i

∥∥
≤

√
mL

(
2L

√
2σw

)l
, ∀l ≥ 2. (86)
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From (86), with probability at least 1 − exp(−Ω(m)) we have

∥∥v(l)
i − vi

∥∥ ≤
√

mL
∥∥ ∞∑

k=l+1

(
2L

√
2σw

)k

=
√

mL

(
2L

√
2σw

)l+1

1 − 2L
√

2σw

. (87)

Consequently, we have ∣∣Gij − G(l)
ij

∣∣ =
∣∣vT

i vj −
(
v(l)

i

)T (
v(l)

j

)∣∣
≤

∣∣vT
i vj − vT

i

(
v(l)

j

)∣∣ +
∣∣vT

i

(
v(l)

j

)
−

(
v(l)

i

)T (
v(l)

j

)∣∣
≤

∥∥vi

∥∥∥∥vj − v(l)
j

∥∥ +
∥∥v(l)

j

∥∥∥∥vi − v(l)
i

∥∥
≤

∥∥vi

∥∥√
mL

(
2L

√
2σw

)l+1

1 − 2L
√

2σw

+
∥∥v(l)

j

∥∥√
mL

(
2L

√
2σw

)l+1

1 − 2L
√

2σw

≤ 2mL

(
2L

√
2σw

)l+1

1 − 2L
√

2σw

, (88)

where (88) follows from the fact that ∥vi∥ ≤
√

mL and ∥v(l)
j ∥ ≤

√
mL by the L-boundedness of φ.

From (88) we obtain

1
m

∣∣Gij − G(l)
ij

∣∣ ≤ 2L

(
2L

√
2σw

)l+1

1 − 2L
√

2σw

. (89)

Finally, we obtain (29) from (89).

F Proof of Proposition 13

Define

Ĝ(l)
ij := E

[
1
m

G(l)
ij

∣∣∣∣hl, h′
l

]
. (90)

Then, by Lemma 9, we have

Ĝ(l)
ij = E

[
1
m

φ(Mhl)T φ(Mh′
l)

∣∣∣∣hl, h′
l

]
= Ew∼N (0,2I)

[
φ(wT hl)φ(wT h′

l)
]
. (91)

Let

Â(l)
ij := hT

l h′
l, Â(l)

ii := ∥hl∥2
2, Â(l)

jj := ∥h′
l∥2

2, (92)

and define

ν̂
(l)
ij :=

Â(l)
ij√

Â(l)
ii Â(l)

jj

. (93)
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Then, we have

Ĝ(l)
ij = E

(u,v)∼N

(
0,2

[
∥hl∥2 hT

l h′
l

hT
l h′

l ∥h′
l∥2

])[
φ(u)φ(v)

]
= E

(u,v)∼N

(
0,

 1 hT
l h′

l

∥hl∥|h′
l
∥

hT
l h′

l

∥hl∥|h′
l
∥ 1

)[
φ(

√
2∥hl∥u)φ(

√
2∥h′

l∥v)
]

= 2q2∥hl∥∥h′
l∥Q̃√

2∥hl∥,
√

2∥h′
l
∥(ν̂(l)

ij )

= 2q2
√

Â(l)
ii Â(l)

jj Q̃√
2∥hl∥,

√
2∥h′

l
∥(ν̂(l)

ij ). (94)

Now, we consider two cases:

• Case 1: i = j.

By Lemma 9, we have

G(l+1)
ii = φ(Mhl+1)T φ(Mhl+1), (95)

where

∥hl+1∥2 = σ2
w

m
G(l)

ii + 1. (96)

Now, for a fixed hl+1, by Beinstein’s inequality and (95), it holds with probability 1 − exp(−Ω(mε2)) that∣∣∣∣ 1
m

G(l+1)
ii − Ĝ(l+1)

ii

∣∣∣∣ ≤ ε/2. (97)

On the other hand, since φ is L-bounded, it holds from (95) that G(l)
ii ∈ [0, mL2] for all l ≥ 1. Hence, from

(96) we have

1 ≤ ∥hl+1∥2 ≤ σ2
wL2 + 1. (98)

This means that the ε-net size for hl+1 is at most exp
{

O
(
l log 1

ε

)}
. Therefore, with probability at least

1 − n2 exp
(

− Ω(mε2) + O(l log 1
ε )

)
we have∣∣∣∣ 1

m
G(l+1)

ii − Ĝ(l+1)
ii

∣∣∣∣ ≤ ε/2. (99)

Now, observe that

Ĝ(l+1)
ii = Ew∼N (0,2I)

[
φ2(wT hl+1)

]
= Eu∼N (0,2∥hl+1∥2

2)[φ2(u)]

= Eu∼N (0,1)[φ2(
√

2∥hl+1∥2u)]
= 2q2∥hl+1∥2

2Q̃√
2∥hl+1∥,

√
2∥hl+1∥(1). (100)

On the other hand, we also have

K(l+1)
ii = 2q2ρ

(l+1)
ii Qii(1)

= 2q2(σ2
wK(l)

ii + 1
)
Qii(1), (101)

where (101) follows from (17) and Lemma 10, and (101) follows from Lemma 10.
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It follows that∣∣∣∣Ĝ(l+1)
ii − K(l+1)

ii

∣∣∣∣
= 2q2

∣∣∣∣∥hl+1∥2
2Q̃√

2∥hl+1∥2,
√

2∥hl+1∥2
(1) −

(
σ2

wK(l)
ii + 1

)
Qii(1)

∣∣∣∣
= 2q2

∣∣∣∣(σ2
w

m
G(l)

ii + 1
)

Q̃√
2∥hl+1∥2,

√
2∥hl+1∥2

(1) −
(
σ2

wK(l)
ii + 1

)
Qii(1)

∣∣∣∣
≤ 2q2

∣∣∣∣(σ2
w

m
G(l)

ii + 1
)

Q̃√
2∥hl+1∥2,

√
2∥hl+1∥2

(1) −
(
σ2

wK(l)
ii + 1

)
Q̃√

2∥hl+1∥,
√

2∥hl+1∥(1)
∣∣∣∣

+ 2q2(
σ2

wK(l)
ii + 1

)∣∣∣∣Q̃√
2∥hl+1∥2,

√
2∥hl+1∥2

(1) − Qii(1)
∣∣∣∣

≤ 2q2σ2
w

∣∣∣∣G(l)
ii

m
− K(l)

ii

∣∣∣∣∣∣Q̃√
2∥hl+1∥2,

√
2∥hl+1∥2

(1)
∣∣

+ 2q2(
σ2

wK(l)
ii + 1

)∣∣∣∣Q̃√
2∥hl+1∥2,

√
2∥hl+1∥2

(1) − Qii(1)
∣∣∣∣

≤ 8L2σ2
w

∣∣∣∣G(l)
ii

m
− K(l)

ii

∣∣∣∣ + 2q2(
σ2

wK(l)
ii + 1

)∣∣∣∣Q̃√
2∥hl+1∥,

√
2∥hl+1∥(1) − Qii(1)

∣∣∣∣, (102)

where (102) follows from Lemma 8.

Now, let

∥h∥2
2 := σ2

w

m
Gii + 1. (103)

Then, we have

∣∣∥hl+1∥2
2 − ∥h∥2

2
∣∣ = σ2

w

m

∣∣G(l)
ii − Gii

∣∣ (104)

= O

((
2L

√
2σw

)l
)

(105)

where (104) follows from (96) and (103), and (105) follows from (89).

Since ∥h∥, ∥hl+1∥ ∈ [1, σ2
wL2 + 1], from (105) we obtain

∣∣∥hl+1∥ − ∥h∥
∣∣ = O

(
n

(
2L

√
2σw

)l
)

. (106)

On the other hand, by (89) it holds with probability at least 1 − exp(−Ω(m) − Ω(mε2)) that∣∣∣∣ 1
m

G(l+1)
ii − Gii

∣∣∣∣ = O

((
2L

√
2σw

)l+1
)

. (107)

Hence, from (97) and (107) with probability at least 1 − exp(−Ω(m) − Ω(mε2)), we have∣∣∣∣Gii

m
− E

[
G(l+1)

ii

m

∣∣∣∣hl+1

]∣∣∣∣ ≤ ε

2 + O

((
2L

√
2σw

)l+1
)

(108)

for any fixed hl+1. Now, observe that

E
[

G(l+1)
ii

m

∣∣∣∣hl+1

]
= E

[∥∥φ(Mhl+1)
∥∥2

m

∣∣∣∣hl+1

]
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is a fixed function of hl+1. Hence, there exists, ĥl+1 such that

ĥl+1 = arg max
hl+1

∣∣∣∣Gii

m
− E

[
G(l+1)

ii

m

∣∣∣∣hl+1

]∣∣∣∣. (109)

Then, with probability at least 1 − exp(−Ω(m) − Ω(mε2)) it holds that∣∣∣∣Gii

m
− E

[
G(l+1)

ii

m

]∣∣∣∣ ≤ E
[∣∣∣∣Gii

m
− E

[
G(l+1)

ii

m

∣∣∣∣hl+1

]∣∣∣∣]
≤

∣∣∣∣Gii

m
− E

[
G(l+1)

ii

m

∣∣∣∣ĥl+1

]∣∣∣∣
≤ ε

2 + O

((
2L

√
2σw

)l+1
)

. (110)

Hence, by taking l → ∞, with probability 1 − exp(−Ω(m) − Ω(mε2)), it holds that∣∣∥h∥2 − E[∥h∥2]
∣∣ ≤ ε, (111)∣∣∥h∥ − E[∥h∥]
∣∣ ≤ ε, (112)

where (112) follows from (111) and the fact that ∥h∥2 ∈ [1, σ2
wL2 + 1] for any h.

From (105), (106), (111), and (112), with probability at least 1 − exp(−Ω(m) − Ω(mε2)) it holds that

∣∣∥hl+1∥2 − E[∥h∥2]
∣∣ = ε + O

((
2L

√
2σw

)l
)

, (113)

∣∣∥hl+1∥ − E[∥h∥]
∣∣ = ε + O

((
2L

√
2σw

)l
)

. (114)

Now, for any a ∈ R note that∣∣∣∣φ2(
√

2∥hl+1∥a) − φ2(
√

2∥h∥a)
∣∣∣∣

=
∣∣∣∣φ(

√
2∥hl+1∥a) − φ(

√
2∥h∥a)

∣∣∣∣∣∣∣∣σ(
√

2∥hl+1∥a) + σ(
√

2∥h∥a)
∣∣∣∣. (115)

On the other hand, we have∣∣∣∣φ(
√

2∥hl+1∥a) − φ(
√

2∥h∥a)
∣∣∣∣ ≤ L

√
2|a|

∣∣∥hl+1∥ − ∥h∥
∣∣, (116)∣∣∣∣φ(

√
2∥hl+1∥a) + φ(

√
2∥h∥a)

∣∣∣∣ ≤ 2L, (117)

where we use the assumption that φ is L-bounded on (117).

From (115), (116), and (117), we obtain∣∣∣∣φ2(
√

2∥hl+1∥a) − φ2(
√

2∥h∥a)
∣∣∣∣ ≤ 2L2√

2|a|
∣∣∥hl+1∥ − ∥h∥

∣∣
= 2L2√

2|a|
[
ε + O

((
2L

√
2σw

)l
)]

, (118)

where (118) follows from (105) and (106).
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From (118), we obtain ∣∣∣∣Ea∼N (0,1)

[
φ2(

√
2∥hl+1∥a)

]
− Ea∼N (0,1)

[
φ2(

√
2∥h∥a)

]∣∣∣∣
≤ 2L2√

2Ea∼N (0,1)[|a|]
[
ε + O

((
2L

√
2σw

)l
)]

= 2L2√
2O

(
ε +

(
2L

√
2σw

)l
)

. (119)

Similarly, by the assumption that φ is L-bounded, we also have

Ea∼N (0,1)

[
φ2(

√
2∥h∥a)

∣∣∣∣] ≤ L2. (120)

It follows that∣∣∣∣Q̃√
2∥hl+1∥,

√
2∥hl+1∥(1) − Qii(1)

∣∣∣∣
=

∣∣∣∣ 1
2q2∥hl+1∥2Ea∼N (0,1)

[
φ2(

√
2∥hl+1∥a)

]
− 1

2q2E[∥h∥2]Ea∼N (0,1)

[
φ2(

√
2E[∥h∥]a)

∣∣∣∣]
≤

∣∣∣∣ 1
2q2∥hl+1∥2Ea∼N (0,1)

[
φ2(

√
2∥hl+1∥a)

]
− 1

2q2∥hl+1∥2Ea∼N (0,1)

[
φ2(

√
2E[∥h∥]a)

∣∣∣∣]
+

∣∣∣∣ 1
2q2∥hl+1∥2Ea∼N (0,1)

[
φ2(

√
2E[∥h∥]a)

]
− 1

2q2E[∥h∥2]Ea∼N (0,1)

[
φ2(

√
2E[∥h∥]a)

∣∣∣∣]
≤ 1

2q2∥hl+1∥2

∣∣∣∣Ea∼N (0,1)

[
φ2(

√
2∥hl+1∥a)

]
− Ea∼N (0,1)

[
φ2(

√
2E[∥h∥]a)

]∣∣∣∣
+ 1

2q2

∣∣∣∣ 1
∥hl+1∥2 − 1

E[∥h∥2]

∣∣∣∣Ea∼N (0,1)

[
φ2(

√
2E[∥h∥]a)

∣∣∣∣]. (121)

By combining (105), (119), and (120), from (121), we obtain∣∣∣∣Q̃√
2∥hl+1∥,

√
2∥hl+1∥(1) − Qi,i(1)

∣∣∣∣ = 2L2O

(
ε +

(
2L

√
2σw

)l
)

(122)

since ∥hl+1∥,E[∥h∥] ∈ [1, σ2
wL2 + 1].

On the other hand, by (74) and the assumption 2L
√

2σw < 1, we have

∥K(l+1)
ii − Kii∥ = O

(
(2L

√
2σw)l+1

)
. (123)

From (122), (123), by setting

ε := O

((
2L

√
2σw

)l+1
)

(124)

from (102), we obtain∣∣∣∣Ĝ(l+1)
ii − K(l+1)

ii

∣∣∣∣ ≤ 8L2σ2
w

∣∣∣∣G(l)
ii

m
− K(l)

ii

∣∣∣∣ + 2L2O

((
2L

√
2σw

)l+1
)

. (125)

It follows from (99) and (125) that with probability at least 1 − exp
{

− Ω(8lL2lσ2l
w m) + O(l2)},∣∣∣∣ 1

m
G(l+1)

ii − K(l+1)
ii

∣∣∣∣ ≤
∣∣∣∣ 1
m

G(l+1)
ii − Ĝ(l+1)

ii

∣∣∣∣ +
∣∣∣∣Ĝ(l+1)

ii − K(l+1)
ii

∣∣∣∣
≤ 8L2σ2

w

∣∣∣∣ 1
m

G(l)
ii − K(l)

ii

∣∣∣∣ + 2L2O

((
2L

√
2σw

)l+1
)

,
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which implies that with probability at least 1 − l exp
{

− Ω(8lL2lσ2l
w m) + O(l2)}, we have∣∣∣∣ 1

m
G(l)

ii − K(l)
ii

∣∣∣∣ = O

((
2L

√
2σw

)l+1
)

. (126)

• Case 2: i ̸= j.

For this case, let

∥h∥2 : = σ2
w

m
Gii + 1, (127)

∥h′∥2 : = σ2
w

m
Gjj + 1. (128)

By (89), with probability at least 1 − exp(−Ω(m)), we have

1
m

∣∣Gii − G(l)
ii

∣∣ = O

((
2L

√
2σw

)l
)

. (129)

In addition, we also have

∥hl+1∥2 = σ2
w

m
G(l)

ii + 1 ≥ 1, (130)

∥h′
l+1∥2 = σ2

w

m
G(l)

jj + 1 ≥ 1. (131)

Hence, we have

|∥hl+1∥ − ∥h∥| = O

(
|∥hl+1∥2 − ∥h∥2|

)
= σ2

w

m

∥∥∥∥G(l)
ii − Gii

∥∥∥∥
= O

((
2L

√
2σw

)l
)

. (132)

Then, it holds that∣∣∣∣Ĝ(l+1)
ij − K(l+1)

ij

∣∣∣∣
= 2q2

∣∣∣∣√Â(l+1)
ii Â(l+1)

jj Q̃√
2∥hl+1∥,

√
2∥h′

l+1∥(ν̂(l+1)
ij ) − ρ

(l+1)
ij Qij(ν(l+1)

ij )
∣∣∣∣

≤ 2q2
∣∣∣∣√Â(l+1)

ii Â(l+1)
jj Q̃√

2∥hl+1∥,
√

2∥h′
l+1∥(ν̂(l+1)

ij ) − ρ
(l+1)
ij Q̃√

2∥hl+1∥,
√

2∥h′
l+1∥(ν(l+1)

ij )
∣∣∣∣

+ 2q2ρ
(l+1)
ij

∣∣∣∣Q̃√
2∥hl+1∥,

√
2∥h′

l+1∥(ν(l+1)
ij ) − Qij(ν(l+1)

ij )
∣∣∣∣. (133)

Now, for all |x| ≤ 1, we have∣∣∣∣Q̃√
2∥hl+1∥,

√
2∥h′

l+1∥(x) − Qij(x)
∣∣∣∣ ≤

∣∣∣∣Q̃√
2∥hl+1∥,

√
2∥h′

l+1∥(x) − Q̃√
2E[∥h∥],

√
2∥h′

l+1∥(x)
∣∣∣∣

+
∣∣∣∣Q̃√

2E[∥h∥],
√

2∥h′
l+1∥(x) − Qij(x)

∣∣∣∣. (134)
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On the other hand, we have∣∣∣∣Q̃√
2E[∥h∥],

√
2∥h′

l+1∥(x) − Qij(x)
∣∣∣∣

=
∣∣∣∣ 1
2q2E[∥h∥]∥h′

l+1∥
E

(a,b)T ∼N

(
0,

[
1 x
x 1

])φ(
√

2E[∥h∥]a)φ(
√

2∥h′
l+1∥b)

− 1
2q2E[∥h∥]E[∥h′∥]E(a,b)T ∼N

(
0,

[
1 x
x 1

])φ(
√

2E[∥h∥]a)φ(
√

2E[∥h′∥]b)
∣∣∣∣

≤
∣∣∣∣ 1
2q2E[∥h∥]∥h′

l+1∥
E

(a,b)T ∼N

(
0,

[
1 x
x 1

])φ(
√

2E[∥h∥]a)φ(
√

2∥h′
l+1∥b)

− 1
2q2E[∥h∥]∥h′

l+1∥
E

(a,b)T ∼N

(
0,

[
1 x
x 1

])φ(
√

2E[∥h∥]a)φ(
√

2E[∥h′∥]b)
∣∣∣∣

+
∣∣∣∣ 1
2q2E[∥h∥]∥h′

l+1∥
E

(a,b)T ∼N

(
0,

[
1 x
x 1

])φ(
√

2E[∥h∥]a)φ(
√

2E[∥h′∥]b)

− 1
2q2E[∥h∥]E[∥h′∥]E(a,b)T ∼N

(
0,

[
1 x
x 1

])φ(
√

2E[∥h∥]a)φ(
√

2E[∥h′∥]b)
∣∣∣∣

≤ 1
2q2E[∥h∥]∥h′

l+1∥
E

(a,b)T ∼N

(
0,

[
1 x
x 1

])∣∣∣∣φ(
√

2E[∥h∥]a)φ(
√

2∥h′
l+1∥b)

− φ(
√

2E[∥h∥]a)φ(
√

2E[∥h′∥]b)
∣∣∣∣

+ 1
2q2E[∥h∥]

∣∣∣∣ 1
∥h′

l+1∥
− 1

E[∥h′∥]

∣∣∣∣E
(a,b)T ∼N

(
0,

[
1 x
x 1

])∣∣∣∣φ(
√

2E[∥h∥]a)φ(
√

2E[∥h′∥]b)
∣∣∣∣. (135)

In addition, by the assumption that φ is L-bounded we have

|φ(
√

2E[∥h∥]a)| ≤ L (136)
|φ(

√
2E[∥h′∥]b)| ≤ L. (137)

It follows that ∣∣∣∣φ(
√

2E[∥h∥]a)φ(
√

2∥h′
l+1∥b) − φ(

√
2E[∥h∥]a)φ(

√
2E[∥h′∥]b)

∣∣∣∣
=

∣∣∣∣φ(
√

2E[∥h∥]a)
∣∣∣∣∣∣∣∣φ(

√
2∥h′

l+1∥b) − φ(
√

2E[∥h′∥]b)
∣∣∣∣

≤ L

∣∣∣∣φ(
√

2∥h′
l+1∥b) − φ(

√
2E[∥h′∥]b)

∣∣∣∣
≤ L2√

2|b|
∣∣∥h′

l+1∥ − E[∥h′∥]
∣∣. (138)

On the other hand, by (112), with probability at least 1 − exp(−Ω(m) − Ω(mε2)), it holds that∣∣∥h′∥ − E[∥h′∥]
∣∣ ≤ ε. (139)
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From (132) and (139), we have

|∥h′
l+1∥ − E[∥h′∥]| ≤

∣∣∥h′
l+1∥ − ∥h′∥

∣∣ +
∣∣∥h′∥ − E[∥h′∥]

∣∣ (140)

≤ ε + O

((
2L

√
2σw

)l
)

. (141)

Now, by setting

ε := O

((
2
√

2σw

)l
)

, (142)

from (141), we obtain

∣∣∥h′
l+1∥ − E[∥h′∥]

∣∣ = O

((
2L

√
2σw

)l
)

. (143)

Similarly, we also have

∣∣∥hl+1∥ − E[∥h∥]
∣∣ = O

((
2L

√
2σw

)l
)

. (144)

From (135), (138), (143) and (144), we obtain∣∣∣∣Q̃√
2E[∥h∥],

√
2∥h′

l+1∥(x) − Qij(x)
∣∣∣∣ = O

((
2L

√
2σw

)l
)

, ∀x : |x| ≤ 1. (145)

Similarly, we can prove that∣∣∣∣Q̃√
2∥hl+1∥,

√
2∥h′

l+1∥(x) − Q̃√
2E[∥h∥],

√
2∥h′

l+1∥(x)
∣∣∣∣ = O

((
2L

√
2σw

)l
)

, ∀x : |x| ≤ 1. (146)

From (134), (145), and (146), we obtain∣∣∣∣Q̃√
2∥hl+1∥,

√
2∥h′

l+1∥(x) − Qij(x)
∣∣∣∣ ≤ O

((
2L

√
2σw

)l
)

, ∀x : |x| ≤ 1. (147)

Next, we aim to upper bound

2q2∣∣√Â(l+1)
ii Â(l+1)

jj Q̃√
2∥hl+1∥,

√
2∥h′

l+1∥(ν̂(l+1)
ij ) − ρ

(l+1)
ij Q̃√

2∥hl+1∥,
√

2∥h′
l+1∥(ν(l+1)

ij )
∣∣.

Observe that with probability at least 1 − n2 exp(−Ω(m)), it holds for all l sufficiently large that

∣∣√Â(l+1)
ii Â(l+1)

jj Q̃√
2∥hl+1∥,

√
2∥h′

l+1∥(ν̂(l+1)
ij ) − ρ

(l+1)
ij Q̃√

2∥hl+1∥,
√

2∥h′
l+1∥(ν(l+1)

ij )
∣∣

≤
∣∣∣∣(√

Â(l+1)
ii Â(l+1)

jj − ρ
(l+1)
ij

)
Q̃√

2∥hl+1∥,
√

2∥h′
l+1∥(ν̂(l+1)

ij )
∣∣∣∣

+
∣∣∣∣ρ(l+1)

ij

(
Q̃√

2∥hl+1∥,
√

2∥h′
l+1∥(ν̂(l+1)

ij ) − Q̃√
2∥hl+1∥,

√
2∥h′

l+1∥(ν(l+1)
ij )

)∣∣∣∣
≤ 4L2

q2

∣∣∣∣√Â(l+1)
ii Â(l+1)

jj − ρ
(l+1)
ij

∣∣∣∣ + ρ
(l+1)
ij

2L2

q2

∣∣ν̂(l+1)
ij − ν

(l+1)
ij

∣∣ (148)

≤ 4L2

q2

[∣∣∣∣√Â(l+1)
ii Â(l+1)

jj − ρ
(l+1)
ij

∣∣∣∣ + ρ
(l+1)
ij

∣∣ν̂(l+1)
ij − ν

(l+1)
ij

∣∣], (149)

where (148) follows from Lemma 8.
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On the other hand, we have∣∣∣∣√Â(l+1)
ii Â(l+1)

jj − ρ
(l+1)
ij

∣∣∣∣ + ρ
(l+1)
ij

∣∣∣∣ν̂(l+1)
ij − ν

(l+1)
ij

∣∣∣∣
=

∣∣∣∣√Â(l+1)
ii Â(l+1)

jj − ρ
(l+1)
ij

∣∣∣∣
+

∣∣∣∣(√
Â(l+1)

ii Â(l+1)
jj + ρ

(l+1)
ij −

√
Â(l+1)

ii Â(l+1)
jj

)
ν̂

(l+1)
ij − ρ

(l+1)
ij ν

(l+1)
ij

∣∣∣∣
≤ 2

∣∣∣∣√Â(l+1)
ii Â(l+1)

jj − ρ
(l+1)
ij

∣∣∣∣ +
∣∣∣∣√Â(l+1)

ii Â(l+1)
jj ν̂

(l+1)
ij − ρ

(l+1)
ij ν

(l+1)
ij

∣∣∣∣, (150)

where (150) follows from |ν̂(l)
ij | ≤ 1.

On the other hand, since ρ
(l+1)
ij =

√
ρ

(l+1)
ii ρ

(l+1)
jj , we also have

∣∣√Â(l+1)
ii Â(l+1)

jj − ρ
(l+1)
ij

∣∣
=

∣∣∣∣
√(

σ2
w

m
G(l)

ii + 1
)(

σ2
w

m
G(l)

jj + 1
)

−
√(

σ2
wK(l)

ii + 1
)(

σ2
wK(l)

jj + 1
)∣∣∣∣

= O

(
(2L

√
2σw)l

)
, (151)

where (151) follows from (126) and the fact that G(l)
ii

m ∈ [0, L2].

Moreover, note that √
Â(l+1)

ii Â(l+1)
jj ν̂

(l+1)
ij = Â(l+1)

ij

= hT
l+1h′

l+1

= σ2
w

m
G(l)

ij + 1
d

xT
i xj (152)

and

ρ
(l+1)
ij ν

(l+1)
ij = ν

(l+1)
ij

√
ρ

(l+1)
ii ρ

(l+1)
jj

= ν
(l+1)
ij

√(
σ2

wK(l)
ii + 1

)(
σ2

wK(l)
jj + 1

)
= σ2

wK(l)
ij + 1

d
xT

i xj . (153)

Thus, it holds that ∣∣∣∣√Â(l+1)
ii Â(l+1)

jj ν̂
(l+1)
ij − ρ

(l+1)
ij ν

(l+1)
ij

∣∣∣∣ = σ2
w

∣∣∣∣ 1
m

G(l)
ij − K(l)

ij

∣∣∣∣. (154)

Thus, with probability at least 1 − l exp
(

− Ω(mε2) + O
(
l log 1/ε

))
, it holds that∣∣∣∣Ĝ(l+1)

ij − K(l+1)
ij

∣∣∣∣ ≤ 8L2σ2
w

∣∣∣∣ 1
m

G(l)
ij − K(l)

ij

∣∣∣∣ + O

((
2L

√
2σw

)l+1
)

. (155)

On the other hand, by Lemma 9, we have

G(l+1)
ij = φ(Mhl+1)T φ(Mh′

l+1). (156)
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Hence, for a fixed vector pair hl+1, h′
l+1, by Beinstein’s inequality, with probability at least 1−exp(−Ω(mε2))

it holds that ∣∣∣∣ 1
m

G(l+1)
ij − Ĝ(l+1)

ij

∣∣∣∣ ≤ ε. (157)

Then, by using ε-net arguments as in Case 1, with probability at least 1 − l exp
(

− Ω(mε2) + O
(
l log 1/ε

))
,

we have ∣∣∣∣ 1
m

G(l+1)
ij − Ĝ(l+1)

ij

∣∣∣∣ ≤ ε. (158)

Consequently, we have∣∣∣∣ 1
m

G(l+1)
ij − K(l+1)

ij

∣∣∣∣ ≤
∣∣∣∣ 1
m

G(l+1)
ij − Ĝ(l+1)

ij

∣∣∣∣ +
∣∣∣∣Ĝ(l+1)

ij − K(l+1)
ij

∣∣
≤ 2O

((
2L

√
2σw

)l+1
)

+ 8L2σ2
w

∣∣∣∣ 1
m

G(l)
ij − K(l)

ij

∣∣∣∣ (159)

where (159) follows from (155) and (158) and the choice of ε in (142).

By applying the induction argument, one can show that for l ≥ 1, it holds with probability at least 1 −
l exp

(
− Ω(mε2) + O

(
l log 1/ε

))
, we have

∣∣∣∣ 1
m

G(l)
ij − K(l)

ij

∣∣∣∣ ≤
2O

((
2L

√
2σw

)l+1
)

1 − 8L2σ2
w

. (160)

By the choice of ε in (142), it holds that with probability at least 1 − l exp
{

− Ω(8lL2lσ2l
w m) + O(l2)

}
, we

have ∣∣∣∣ 1
m

G(l)
ij − K(l)

ij

∣∣∣∣ = O

(
(2L

√
2σw)l

)
. (161)

Finally, from (126) and (162) with probability at least 1 − n2l exp
{

− Ω(8lL2lσ2l
w m) + O(l2)

}
, it holds that∥∥∥∥ 1

m
G(l) − K(l)

∥∥∥∥
F

= O

(
n(2L

√
2σw)l

)
. (162)

G Proof of Theorem 7

Since Uxi is a Gaussian vector with zero-mean and variance depending on ∥xi∥2. On the other hand, by
the Assumption 2, ∥xi∥ =

√
d. Hence, from ti = φ(Wti + Uxi), it is easy to see that E[Gii] = E[∥ti∥2] does

not depend on i ∈ [n]. This means that E[Gii] = E[Gjj ] for all i, j ∈ [n] × [n]. On the other hand, we have
E[∥ti∥2] = E[∥φ(Wti + Uxi)∥2

2] ∈ [0, mL2] by the L-boundedness of the function φ. Hence, we have

0 ≤ E[Gii]
m

≤ L2, ∀i ∈ [m]. (163)

It follows that Qij(x) has the form Q̃α,α(x) for some α ∈ [2, 2(σ2
wL2 + 1)].

Thanks to this fact, from Proposition 11 and the assumption on this theorem, for all (i, j) ∈ [n] × [n], it
holds that

Kij = 2q2Qij(νij)√ρiiρjj

= 2q2√
ρiiρjj

∞∑
r=0

µ2
r,α(φ)νr

ij ,
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where

νij =
Qij

(
νij

)
/
√

Qii(1)Qjj(1)
√

(ρii − 1)(ρjj − 1) + d−1xT
i xj

√
ρiiρjj

. (164)

Here,

ρii = 1
1 − 2q2σ2

wQii(1) . (165)

Now, by Lemma 10, we have |νij | ≤ 1 for all (i, j) ∈ [n] × [n]. Let H = [h1, h2, · · · , hn] where h1, h2, · · · , hn

be unit vectors such that νij = hT
i hj for all (i, j) ∈ [n]× [n]. It is easy to check that [(HT H)⊙r]ij = (hT

i hj)r

holds for all (i, j) ∈ [n] × [n]. Let K̃ be a n × n matrix such that

K̃ij = Kij/
√

ρiiρjj , ∀i, j ∈ [n] × [n]. (166)

Then, K̃ can be written as

K̃ = 2q2
∞∑

r=0
µ2

r,α(φ)
(
HT H

)(⊙r)
. (167)

Now, for any unit vector u = [u1, u2, · · · , un]T ∈ Rn, it holds that

uT
(
HT H

)(⊙r)u =
∑
i,j

uiuj(hT
i hj)r

=
∑

i

u2
i +

∑
i ̸=j

uiujνr
ij

= 1 +
∑
i ̸=j

uiujνr
ij . (168)

Next, we show that |νij | < 1 if i ̸= j. Indeed, assume that there exists i ̸= j such that |νij | ≥ 1. Then, from
(30) in Lemma 10, we have

1 ≤ |νij |

=
∣∣∣∣Qij

(
νij

)
/
√

Qii(1)Qjj(1)
√

(ρii − 1)(ρjj − 1) + d−1xT
i xj

√
ρiiρjj

∣∣∣∣
≤

√
(ρii − 1)(ρjj − 1) +

∣∣d−1xT
i xj

∣∣
√

ρiiρjj
(169)

<

√
(ρii − 1)(ρjj − 1) + 1

√
ρiiρjj

(170)

≤ 1, (171)

where (169) follows from Lemma 8, and (170) follows by the fact that since xi ∦ xj , from Cauchy–Schwarz
inequality and Assumption 2, we have xT

i xj < ∥xi∥2∥xj∥ = d. This is a contradiction. Hence, we have
|β| < 1 where

β := max
i ̸=j

|νij |. (172)
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Now, by taking r > − log(2n)
log β , we have ∣∣∣∣ ∑

i̸=j

uiujνr
ij

∣∣∣∣ ≤
∑
i ̸=j

|ui||uj |βr

≤
( ∑

i

|νi|
)2

βrk

≤ nβr

<
1
2 . (173)

From (168) and (173), we obtain

uT
(
HT H

)(⊙r)u >
1
2 , ∀u,

so
(
HT H

)(⊙r) is positive definite. Following Theorem 7, it holds that minα∈[2,2(σ2
wL2+1)] µ2

r,α(φ) > 0 for
infinitely many values of r. Hence, K̃ is positive definite for all initialisations since 0 ≤ E[Gii]

m ≤ L2.

Now, let Γ = {√
ρiiρjj}i,j be an n × n matrix where the (i, j) element is √

ρiiρjj . Then, we have

K = K̃ ⊙ Γ. (174)

Now, for any vector u = [u1, u2, · · · , un]T , we have

uTΓu =
∑
i,j

uiuj
√

ρiiρjj

=
( ∑

i

ui
√

ρii

)2

≥ 0. (175)

Hence, Γ is positive semi-definite. Now, by applying (Ling et al., 2022, Lemma 6), we have

λmin(K) ≥
(

min
i

ρii

)
λmin(K̃)

≥ λmin(K̃)
≥ min

E[Gii]
m ∈[0,L2],∀i

λmin(K̃) := λ∗
0 > 0,

so K is positive definite with the smallest eigenvalue λ∗ ≥ λ∗
0 > 0, where λ∗

0 is some constant which does not
depend on m.

H Proof of Theorem 3

The following proof follows the same steps as (Ling et al., 2022, Proof of Theorem 1). There are some
changes caused by the new activation function. First, we recall the two important auxiliary lemmas:
Lemma 20. (Horn & Johnson, 1985, Sect. 5.8) Let ∆ = B−A where A and B are square complex matrices.
Then, it holds that

∥B−1∥ ≤ ∥A−1∥
1 − ∥A−1∆∥

. (176)

Lemma 21. (Weyl’s inequality)(Ling et al., 2022, Lemma 5) Let A, B ∈ Rm×n with their singular values
satisfying σ1(A) ≥ σ2(A) ≥ · · · ≥ σr(A) and σ1(B) ≥ σ2(B) ≥ · · · ≥ σr(B) and r = min(m, n). Then,

max
i∈[r]

∣∣σi(A) − σi(B)∥ ≤ ∥A − B∥. (177)
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The equilibrium point of Eq. (2) is the root of the function F (τ) := T(τ) − φ(W(τ)T(τ) + U(τ)X) = 0. Let
J(τ) := ∂vec(F(τ))/∂vec(T(τ)) denote the Jacobian matrix. Then, it is easy to see that

J(τ) = Imn − D(τ)
(
In ⊗ W(τ)

)
,

where D(τ) := diag[vec(φ′(W(τ)T(τ) + U(τ)X))]. Using the Lipschitz property of activation function, it is
easy to check that J(τ) is invertible if ∥W(τ)∥ < 1/L. The gradient of each trainable parameter is given by
the following lemma.
Lemma 22. (Ling et al., 2022, Lemma 2) If J(τ) is invertible, the gradient of the objective function Φ(τ)
w.r.t. each trainable parameters is given by

vec(∇WΦ(τ)) = (T(τ) ⊗ Im)R(τ)T (ŷ(τ) − y)
vec(∇UΦ(τ)) = (X ⊗ Im)R(τ)T (ŷ(τ) − y),

∇aΦ(τ) = T(τ)(ŷ(τ) − y)

where R(τ) = (a(τ) ⊗ In)J(τ)−1D(τ).

Based on these three lemmas, we can prove the following result:
Lemma 23. For each s ∈ [0, τ ], suppose that ∥W(s)∥2 ≤ ρ̄w, ∥U(s)∥2 ≤ ρ̄u and ∥a(s)∥2 ≤ ρ̄a. It holds that

∥T(s)∥F ≤ ca∥X∥F + cm (178)

and

∥∇WΦ(s)∥F ≤ cu

(
ca∥X∥F + cm

)
∥ŷ(s) − y∥2, (179)

∥∇U Φ(s)∥F ≤ cu∥X∥F ∥ŷ(s) − y∥2, (180)
∥∇aΦ(s)∥F ≤

(
ca∥X∥F + cm

)
∥ŷ(s) − y∥2. (181)

Furthermore, for each k, s ∈ [0, τ ], it holds that

∥T(k) − T(s)∥ ≤ L

1 − Lρ̄w

(
ca∥X∥F + cm

)
∥W(k) − W(s)∥2

+ L

1 − Lρ̄w
∥U(k) − U(s)∥2∥X∥F (182)

and

∥ŷ(k) − ŷ(s)∥2

≤ ρ̄a

[
L

1 − Lρ̄w

(
ca∥X∥F + cm

)
∥W(k) − W(s)∥2

+ L

1 − Lρ̄w
∥U(k) − U(s)∥2∥X∥F

]
+

(
ca∥X∥F + cm

)
∥a(k) − a(s)∥2. (183)

Proof. Observe that T(s) = φ(W(s)T(s) + U(s)X). Using the fact that |φ(x) − φ(0)| ≤ L|x| (Lipschitz
condition of φ), we have

∥T(s) − φ(0
¯
)∥F =

∥∥φ(W(s)T(s) + U(s)X) − φ(0
¯
)
∥∥

F

≤ L∥W(s)T(s) + U(s)X)∥F

≤ L

(
∥W(s)∥2∥T(s)∥F + ∥U(s)∥2∥X∥F

)
≤ Lρ̄w∥T(s)∥F + Lρ̄u∥X∥F . (184)

From (184), we have

∥T(s)∥F ≤ ∥φ(0
¯
)∥F + Lρ̄w∥T(s)∥F + Lρ̄u∥X∥F

= |φ(0)|
√

mn + Lρ̄w∥T(s)∥F + Lρ̄u∥X∥F . (185)
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Since ρ̄w < 1/L, from (185), we obtain

∥T(s)∥F ≤ ca∥X∥F + cm. (186)

Now, we prove (179)-(181). By using Lemma 20 with A = Imn, B = J(s),∆ = −D(s)(In ⊗ W(s)), we have

∥J(s)−1∥2 ≤ 1
1 − ∥D(τ)(In ⊗ W(s))∥2

≤ 1
1 − ∥D(s)∥2∥W(s)∥2

. (187)

On the other hand since ∥φ′∥∞ ≤ L, we have

∥D(s)∥2 ≤ L. (188)

Hence, from (187), we have

∥J(s)−1∥2 ≤ 1
1 − Lρ̄w

,

and thus it holds that

∥R(s)∥2 ≤ ∥a(s)∥2∥J(s)−1∥2∥D(s)∥2

≤ Lρ̄a

1 − Lρ̄w
. (189)

Then, we have

∥∇WΦ(s)∥F = ∥vec(∇WΦ(s))∥2

= ∥(T(s) ⊗ Im)R(s)T (ŷ(s) − y)∥2

≤ ∥T(s)∥2∥R(s)∥2∥ŷ(s) − y∥2

≤ Lρ̄a

1 − Lρ̄w
(ca∥X∥F + cm)∥ŷ(s) − y∥2, (190)

∥∇UΦ(s)∥F = ∥vec(∇UΦ(s))∥2

= ∥(X ⊗ Im)R(s)T (ŷ(s) − y)∥2

≤ Lρ̄a

1 − Lρ̄w
∥X∥F ∥ŷ(s) − y∥2, (191)

∥∇aΦ(s)∥F = ∥T(s)(ŷ(s) − y)∥
≤

(
ca∥X∥F + cm

)
∥ŷ(s) − y∥2. (192)

Next, we prove (182). Observe that

∥T(k) − T(s)∥F

= ∥φ(W(k)T(k) + U(k)X) − φ(W(s)T(s) + U(s)X)∥F

≤ L∥W(k)T(k) + U(k)X − W(s)T(s) − U(s)X∥F

≤ L
(
∥W(k)T(k) − W(k)T(s)∥F + ∥W(k)T(s) − W(s)T(s)∥F

+ ∥U(k)X − U(s)X∥F )
≤ L∥W(k)∥2∥T(k) − T(s)∥F + L∥W(k) − W(s)∥2∥T(s)∥F

+ L∥U(k) − U(s)∥2∥X∥F

≤ Lρ̄w∥T(k) − T(s)∥F + L
(
ca∥X∥F + cm

)
∥W(k) − W(s)∥2

+ L∥U(k) − U(s)∥2∥X∥F . (193)
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From (193), we obtain

∥T(k) − T(s)∥F ≤ L

1 − Lρ̄w

(
ca∥X∥F + cm

)
∥W(k) − W(s)∥2

+ L

1 − Lρ̄w
∥U(k) − U(s)∥2∥X∥F . (194)

Finally, we prove (183). Observe that

∥ŷ(k) − ŷ(s)∥F

= ∥a(k)T(k) − a(s)Z(s)∥F

≤ ∥a(k)T(k) − a(k)T(s)∥F + ∥a(k)T(s) − a(s)T(s)∥F

≤ ∥a(k)∥2∥T(k) − T(s)∥F + ∥a(k) − a(s)∥2∥T(s)∥F

≤ ρ̄a

[
L

1 − Lρ̄w

(
ca∥X∥F + cm

)
∥W(k) − W(s)∥2

+ L

1 − Lρ̄w
∥U(k) − U(s)∥2∥X∥F

]
+

(
ca∥X∥F + cm

)
∥a(k) − a(s)∥2. (195)

Now, we return to prove Theorem 3. We prove by induction for every τ > 0,

∥W(s)∥ ≤ ρ̄w, ∥U(s)∥ ≤ ρ̄u, ∥a(s)∥2 ≤ ρ̄a, s ∈ [0, τ ], (196)

λs ≥ λ0

2 , s ∈ [0, τ ], (197)

Φ(s) ≤
(

1 − η
λ0

2

)s

Φ(0), s ∈ [0, τ ]. (198)

For τ = 0, it is clear that (196)-(198) hold. Assume that (196)-(198) holds up to τ iterations. Then, by
using triangle inequality, we have

∥W(τ + 1) − W(0)∥F ≤
τ∑

s=0
∥W(s + 1) − W(s)∥F

=
τ∑

s=0
η∥∇WΦ(s)∥F

≤ η

τ∑
s=0

cu

(
ca∥X∥F + cm

)
∥ŷ(s) − y∥2 (199)

= ηcu

(
ca∥X∥F + cm

) τ∑
s=0

(
1 − η

λ0

2

)s/2
∥ŷ(0) − ŷ∥2, (200)

where (199) follows from Lemma 23. Let u :=
√

1 − ηλ0/2. Then ∥W(τ + 1) − W(0)∥F can be bounded
with

2
λ0

(1 − u2)1 − uτ+1

1 − u
cu

(
ca∥X∥F + cm

)
∥ŷ(0) − y∥

≤ 4
λ0

cu

(
ca∥X∥F + cm

)
∥ŷ(0) − y∥

≤ δ. (201)

Then, we have

∥W(τ + 1)∥ ≤ ∥W(0)∥2 + δ = ρ̄w < 1/L. (202)
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Using the similar technique, one can show that

∥U(τ + 1) − U(0)∥F ≤
τ∑

s=0
∥U(s + 1) − U(s)∥2

=
τ∑

s=0
η∥∇UΦ(s)∥F

≤
τ∑

s=0
ηcu∥X∥F ∥ŷ(s) − y∥2

≤ ηcu∥X∥F

τ∑
s=0

(
1 − η

λ0

2

)s/2
∥ŷ(0) − y∥2

≤ 4
λ0

cu∥X∥F ∥ŷ(0) − y∥2

≤ δ, (203)

∥a(τ + 1) − a(0)∥F ≤
τ∑

s=0
∥a(s + 1) − a(s)∥F

=
τ∑

s=0
η∥∇aΦ(s)∥F

≤ η
(
ca∥X∥F + cm

) τ∑
s=0

∥ŷ(s) − y∥2

≤ η
(
ca∥X∥F + cm

) τ∑
s=0

(
1 − η

λ0

2

)s/2
∥ŷ(0) − y∥2

≤ 4
λ0

(
ca∥X∥F + cm

)
∥ŷ(0) − y∥2

≤ δ. (204)

Finally, using (182), we have

∥T(τ + 1) − T(0)∥ ≤ L

1 − Lρ̄w

(
ca∥X∥F + cm

)
∥W(τ + 1) − W(0)∥2

+ L

1 − Lρ̄w
∥U(τ + 1) − U(0)∥2∥X∥F

≤ L

1 − Lρ̄w

(
ca∥X∥F + cm

) 4
λ0

cu

(
ca∥X∥F + cm

)
∥ŷ(0) − y∥

+ L

1 − Lρ̄w

4
λ0

cu∥X∥F ∥ŷ(0) − y∥2∥X∥F

= 4L

(1 − Lρ̄w)λ0

[
cu

(
ca∥X∥F + cm

)2 + cu∥X∥2
F

]
∥ŷ(0) − y∥2

≤ 2 −
√

2
2

√
λ0 (205)

by (6).

By Wely’s inequality, it implies that the least singular value of T(τ + 1) satisfies σmin(T(τ + 1)) ≥
√

λ0
2 .

Thus, it holds λτ+1 ≥ λ0
2 .

Now, we define g := a(τ + 1)T T(τ) and note that

Φ(τ + 1) − Φ(τ)
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= 1
2∥ŷ(τ + 1) − ŷ(τ)∥2

2 + (ŷ(τ + 1) − g)T (ŷ(τ) − y) + (g − ŷ(τ))T (ŷ(τ) − y). (206)

We bound each term of the RHS of this equation individually. First, using (183), we have

∥ŷ(τ + 1) − ŷ(τ)∥2

≤ ρ̄a

[
L

1 − Lρ̄w

(
ca∥X∥F + cm

)
∥W(τ + 1) − W(τ)∥2

+ L

1 − Lρ̄w
∥U(τ + 1) − U(τ)∥2∥X∥F

]
+

(
ca∥X∥F + cm

)
∥a(τ + 1) − a(τ)∥2

= ρ̄a

[
L

1 − Lρ̄w

(
ca∥X∥F + cm

)
ηcu(ca∥X∥F + cm)∥ŷ(τ) − y∥2

+ L

1 − Lρ̄w
ηcu∥X∥F ∥ŷ(τ) − y∥2∥X∥F

]
+

(
ca∥X∥F + cm

)
η(ca∥X∥F + cm)∥ŷ(τ) − y∥2

= ηC1∥ŷ(τ) − y∥2, (207)

where C1 := c2
u(ca∥X∥F + cm)2 + c2

u∥X∥2
F + (ca∥X∥F + cm)2.

On the other hand, we have

(ŷ(τ + 1) − g)T (ŷ(τ) − y)
= a(τ + 1)T (T(τ + 1) − T(τ))(ŷ(τ) − y)
≤ ∥a(τ + 1)∥2∥T(τ + 1) − T(τ)∥2∥ŷ(τ) − y∥2

≤ ∥a(τ + 1)∥2

[
L

1 − Lρ̄w

(
ca∥X∥F + cm

)
∥W(τ + 1) − W(τ)∥2

+ L

1 − Lρ̄w
∥U(τ + 1) − U(τ)∥2∥X∥F

]
∥ŷ(τ) − y∥2

≤ ρ̄a

[
L

1 − Lρ̄w

(
ca∥X∥F + cm

)
∥ηcu

(
ca∥X∥F + cm

)
∥ŷ(τ) − y∥2

+ L

1 − Lρ̄w
ηcu∥X∥F ∥ŷ(τ) − y∥2∥X∥F

]
∥ŷ(τ) − y∥2

= ηC2∥ŷ(τ) − y∥2
2, (208)

where C2 := c2
u

(
ca∥X∥F + cm

)2 + c2
u∥X∥2

F .

Furthermore, we also have

(g − ŷ(τ))T (ŷ(τ) − y)
= (a(τ + 1) − a(τ))T T(τ)(ŷ(τ) − y)

= −
(
η∇aΦ(τ)

)T T(τ)(ŷ(τ) − y)
= −η(ŷ(τ) − y)T T(τ)T T(τ)(ŷ(τ) − y)

≤ −η
λ0

2 ∥ŷ(τ) − y∥2
2 (209)

where we use induction λτ ≥ λ0
2 .
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From (206)-(209), we obtain

Φ(τ + 1) − Φ(τ)

≤ 1
2η2C2

1 ∥ŷ(τ) − y∥2
2 + ηC2∥ŷ(τ) − y∥2

2 − η
λ0

2 ∥ŷ(τ) − y∥2
2

= 2Φ(τ)
[

1
2η2C2

1 + ηC2 − η
λ0

2

]
= Φ(τ)

[
η2C2

1 + 2ηC2 − ηλ0

]
,

which leads to

Φ(τ + 1) ≤ Φ(τ)
[
1 − η(λ0 − ηC2

1 − 2C2)
]

≤
(
1 − η(λ0 − 4C2)

)
Φ(τ)

≤
(

1 − η
λ0

2

)
Φ(τ). (210)

I Proof of Lemma 18

Observe that

∥ŷ(0) − y∥ ≤ ∥ŷ(0)∥ + ∥y∥. (211)

On the other hand, let v1, v2, · · · , vn be n columns of T(0). Then, we have

∥ŷ(0)∥ =
∥∥aT (0)T∗(0)

∥∥
=

√√√√ n∑
i=1

(aT (0)vi)2. (212)

Now, observe that

P
[ n∑

i=1
(aT (0)vi)2 ≥ n

L2

t

]
≤

E
[ ∑n

i=1(aT (0)vi)2]
n L2

t

= t

nL2

n∑
i=1

E
[
(aT (0)vi)2]

= t

nL2

n∑
i=1

E[∥vi∥2]
m

(213)

≤ t

nL2

n∑
i=1

L2m

m
(214)

= t, (215)

where (213) follows from Assumption 1 that a is initialised with a random vector with i.i.d. entries N (0, 1/m)
and the fact that a(0) is independent of vi, (214) follows from the fact that vi = φ(Wvi + Uxi), so
∥vi∥∞ = ∥φ(Wvi + Uxi)∥∞ ≤ L.

From (215), with probability at least 1 − t it holds that
n∑

i=1
(aT (0)vi)2 ≤ n

L2

t
= O(n),
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which leads to

∥ŷ(0)∥ = O(
√

n) (216)

by (212).

In addition, we have

∥y∥ =

√√√√ n∑
i=1

y2
i

= O(
√

n) (217)

by Assumption 2.

From (211), (216), and (217) we obtain

∥ŷ(0) − y∥ = O(
√

n). (218)
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