
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

AGENT KB: LEVERAGING CROSS-DOMAIN EXPE-
RIENCE FOR AGENTIC PROBLEM SOLVING

Anonymous authors
Paper under double-blind review

ABSTRACT

AI agent frameworks operate in isolation, forcing agents to rediscover solutions
and repeat mistakes across different systems. Despite valuable problem-solving
experiences accumulated by frameworks like smolagents, OpenHands, and OWL,
this knowledge remains trapped within individual systems, preventing collective
intelligence emergence. Current memory systems focus on individual agents or
framework-specific demonstrations, failing to enable cross-architecture knowledge
transfer. We introduce AGENT KB, a universal memory infrastructure enabling
seamless experience sharing across heterogeneous agent frameworks without re-
training. AGENT KB aggregates trajectories into a structured knowledge base
and serves lightweight APIs. At inference time, hybrid retrieval operates through
two stages: planning seeds agents with cross-domain workflows, while feedback
applies targeted diagnostic fixes. A disagreement gate ensures retrieved knowledge
enhances rather than disrupts reasoning, addressing knowledge interference in
cross-framework transfer. We validate AGENT KB across major frameworks on
GAIA, Humanity’s Last Exam, GPQA, and SWE-bench. Results show substantial
improvements across diverse model families: compared to baseline pass@1, smo-
lagents with AGENT KB achieve up to 18.7pp gains at pass@3 (55.2%→ 73.9%),
while OpenHands improves 4.0pp on SWE-bench pass@1 (24.3%→ 28.3%). Simi-
lar improvements are observed across all base model families. Ablations confirm
that hybrid retrieval and feedback stages are essential, with automatically gener-
ated experiences matching manual curation. This establishes the foundation for
collective agent intelligence through shared memory infrastructures.

1 INTRODUCTION

Modern AI agents excel at complex reasoning and tool use (Chan et al., 2023; Hong et al., 2023; Guo
et al., 2024; Liu et al., 2025b; Zhou et al., 2023; 2024b), yet each framework operates in isolation,
unable to leverage solutions discovered by others. Current memory systems strengthen individual
agents (Xu et al., 2025; Packer et al., 2023; Hu & Ying, 2025) or synthesize framework-specific
demonstrations (Zheng et al., 2023; Tan et al., 2025), while cross-task approaches like Learn-by-
Interact (Su et al., 2025) and A-Mem (Xu et al., 2025) remain confined within single frameworks.
This fragmentation forces agents to solve identical problems and make the same mistakes repeatedly.

Enabling cross-framework knowledge sharing requires overcoming three fundamental challenges
that no existing system addresses simultaneously. (1) Representation heterogeneity: different
frameworks organize, encode, and abstract experiences in incompatible ways, which prevents direct
transfer or reuse. (2) Context mismatch: a solution effective in one tool ecosystem may be invalid
or incomplete when transplanted to another, due to differences in available APIs, reasoning protocols,
or execution environments. (3) Knowledge interference: naively injecting external experiences risks
destabilizing the agent’s own reasoning flow, producing incoherent plans or compounding errors.
Addressing these issues is crucial for building the first interoperable layer of shared memory that
enables agents to accumulate and reuse collective intelligence across diverse architectures. Figure 1
contrasts the baseline and AGENT KB-assisted workflows on a representative protein-distance task to
ground these challenges.

We introduce AGENT KB, the first cross-framework plug-and-play knowledge base that enables
seamless experience sharing across heterogeneous agent frameworks without retraining. By distilling

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Figure 1: Agent workflow comparison for PDB distance calculation with and without AGENT KB. (A)
Original pipeline: indiscriminately reads the first two ATOM/HETATM/ANISOU lines, often selecting solvent
records and yielding a spurious O–H distance (0.961 Å). (B) AGENT KB-enhanced agent workflow: applies
experience-driven rules—filter out all ANISOU/HETATM, use only genuine ATOM entries in file order, and
sanity-check against known N–CA bond-length ranges—to correctly extract the backbone N–CA pair and report
the distance of 1.456 Å.

heterogeneous agent trajectories into structured experience units through framework-agnostic ab-
straction, AGENT KB exposes them through lightweight APIs that seamlessly integrate with diverse
frameworks, including smolagents (Zhu et al., 2025), OWL (Hu et al., 2025), SWE-Agent (Yang
et al., 2024), and OpenHands (Wang et al., 2024a). This creates a continuously growing repository of
collective intelligence. To address knowledge interference in cross-framework transfer, we introduce
a novel disagreement gate mechanism that selectively integrates only coherent updates, ensuring
stability and safety during knowledge integration.

Contributions. (1) We present the first cross-framework plug-and-play knowledge base that integrates
with four representative open-source agent frameworks without requiring retraining or architectural
modifications, demonstrating universal applicability across heterogeneous agent ecosystems. (2) We
introduce a novel disagreement gate mechanism that addresses the critical challenge of knowledge
interference in cross-framework transfer, ensuring stable integration of external experiences. (3)
We develop a two-stage retrieval system that enables both planning guidance and feedback-driven
refinement while maintaining framework compatibility. (4) We provide comprehensive empirical
validation across four distinct agent frameworks on GAIA (Mialon et al., 2023), Humanity’s Last
Exam (Bio/Chem)1 (Skarlinski et al., 2025), GPQA (Rein et al., 2024), and SWE-bench (Jimenez et al.,
2023), establishing the first systematic study of cross-framework knowledge transfer effectiveness.

Evaluation across reasoning and software engineering tasks demonstrates that AGENT KB consistently
boosts diverse agent–model combinations. On GAIA, smolagents improve by up to 18.7pp at pass@3
(55.2%→ 73.9%), while on SWE-bench Lite, OpenHands gains 4.0pp at pass@1 (24.3%→ 28.3%).
On HLE, OpenHands outperforms specialized systems (9.5%→ 14.1% at pass@3) and on GPQA,
it improves GPT-4.1 from 62.6% to 72.7%. Similar trends appear for both open-source models
(Qwen, DeepSeek) and proprietary backbones (GPT, Claude), underscoring the broad applicability of
our approach. Ablations further show that automatically distilled experiences perform on par with
hand-curated ones, confirming AGENT KB as a scalable path toward collective agent intelligence.

2 RELATED WORK

2.1 AGENTIC MEMORY SYSTEMS

Memory systems have progressed from simple storage to advanced architectures that support complex
reasoning (Piao et al., 2025; Zeng et al., 2024; Liu et al., 2025b; Du et al., 2025; Wu et al., 2025b;
Zhang et al., 2025), though current systems still struggle with managing large amounts of information
and transferring knowledge (Wang et al., 2024c). Earlier systems embedded knowledge in a latent
space (Wang et al., 2024b), while newer, more organized approaches have adopted graph-based and
hierarchical frameworks (Xu et al., 2025; Anokhin et al., 2024; Packer et al., 2023; Hu & Ying,
2025). Improving retrieval beyond basic RAG (Lewis et al., 2020a;b) includes various innovations for

1https://huggingface.co/datasets/futurehouse/hle-gold-bio-chem2

https://huggingface.co/datasets/futurehouse/hle-gold-bio-chem

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Figure 2: End-to-end workflow of AGENT KB. (a) Construction: heterogeneous agent trajectories and
few-shot human seeds are abstracted into structured experiences and indexed in the AGENT KB. (b) Evolution:
AGENT KB expands across domains through addition, conflict resolution, and timely eviction, maintaining
quality while scaling. (c) Solving tasks: agents apply a two-stage Reason-Retrieve-Refine loop, planning
with retrieved workflows and refining via feedback.

indexing, temporal cues, semantic tagging, and chunking strategies (Huang et al., 2025b; Gutiérrez
et al., 2024; Liu et al., 2025a; Salama et al., 2025; Hu et al., 2024). These methods have also evolved
to incorporate neuroscience inspiration or multi-agent variants (Ye, 2025; Wang et al., 2025; Squire
et al., 2015; Wang et al., 2024d; Zhu et al., 2024; Qiao et al., 2024; Xu et al., 2024; Chen et al.,
2025; Ganguli et al., 2025; Lv et al., 2024; Shuster et al., 2021; Niu et al., 2024; Mala et al., 2025).
Despite improvements, existing approaches face significant limitations: they are primarily tailored
for single agents, retain separate memory systems that prevent shared knowledge, and lack ways to
reuse experiences across different areas, which makes them vulnerable in new or unfamiliar contexts.

2.2 AGENTIC KNOWLEDGE TRANSFER

Alongside memory infrastructures, another research area condenses agent trajectories into workflow
priors that guide future problem solving: retrieval-based systems (Zheng et al., 2023; Zhou et al.,
2024a) stabilize tool use with exemplar traces, mined sub-workflows support reuse across tasks (Wang
et al., 2024d), and templating pipelines refine plans within narrow families (Tan et al., 2025; Liu
et al., 2025e). Knowledge-augmented and collaborative planners extend these ideas with structured
repositories (Zhu et al., 2024; Qiao et al., 2024; Liu et al., 2025c), yet efforts for multi-agent memory
still maintain siloed stores even when coordination leverages in-context learning or RAG (Lu et al.,
2023; Zhong et al., 2024; Glocker et al., 2025). Early evidence shows that cross-agent transfer
depends on experience quality and stronger-to-weaker sharing (Shah et al., 2025; Zhao et al., 2025;
Alakuijala et al., 2025), while visions for lifelong cognition call for AI-native, adaptive, evaluable,
case-based infrastructures that jointly encode problem patterns, workflows, metadata, and relational
structure (Wang et al., 2024c; Wei et al., 2025b; Pink et al., 2025; Hatalis et al., 2025). AGENT
KB abstracts heterogeneous trajectories into hierarchical experience units and couples them with
hybrid retrieval, seeding planning with cross-domain workflows, and injecting feedback corrections
to enable transfer across divergent tasks. Although recent reviews of case-based reasoning for LLM
agents (Hatalis et al., 2025) emphasize the classic Retrieve–Reuse–Revise–Retain cycle, our
framework restructures it as a Reason-Retrieve-Refine loop with write-back across agents. In
parallel, systems such as DSPy (Khattab et al., 2023) offer prompt declarative programming for task
workflows; AGENT KB is complementary, providing a reusable cross-framework memory layer that
can be integrated beneath DSPy or similar pipelines to capture and transfer execution knowledge.

3 METHODOLOGY

3.1 OVERVIEW

AGENT KB enables agents to learn from collective experiences across tasks and frameworks by
capturing execution traces and abstracting them into reusable experiences. When facing new tasks,
agents retrieve relevant past experiences to guide the refinement of planning and execution, transform-
ing individual interactions into shared, cumulative intelligence. Our approach operates through two
key stages: initial solution planning, which utilizes past experiences, and feedback-driven execution

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

improvements, both employing the same Reason-Retrieve-Refine structure but with different query
formulations: the first targeting task descriptions and the other execution feedback patterns.

To ensure framework-agnosticism, AGENT KB standardizes the experience schema and provides
lightweight REST endpoints to submit and retrieve experiences. This enables heterogeneous agents to
contribute and consume the same knowledge base without requiring architectural changes, allowing
the sharing and reuse of high-quality entries that collectively build intelligence across the ecosystem.

3.2 SELF-EVOLVING AGENT KB

Experience Representation. We transform agent execution logs into structured experiences through
human-guided abstraction:

E = ⟨π, γ,S,C⟩ (1)
where π is the task embedding via all-MiniLM-L6-v2 from sentence-transformers, γ encodes
goal constraints as structured predicates, S = {(ai, ri)} stores action–reasoning pairs, and C carries
metadata for cross-framework compatibility. Abstraction is done with few-shot prompting (10–15
human-curated exemplars per domain) and standardized action vocabularies across frameworks
(e.g., smolagents (Zhu et al., 2025), OWL (Hu et al., 2025), SWE-Agent (Yang et al., 2024),
OpenHands (Wang et al., 2024a)). Full construction details appear in Appendix B, while the prompt
templates are compiled in Appendix F with general generation patterns in Appendix F.1 and pipeline
variants in Appendix F.2.

Self-Evolving Memory. The memory evolves through addition, deduplication, and eviction
(Fig. 2b). AGENT KB grows as diverse agent frameworks contribute execution experiences, creating
cumulative intelligence that expands both coverage and generalization capability between domains.
When a candidate is highly similar to existing entries maxπ′∈E cos(π,π

′
) > τ (default τ = 0.8), an

LLM ranker compares reasoning quality, completeness, and transferability to keep the superior entry,
preventing redundancy. Under memory pressure, experiences follow an adaptive eviction policy with
a learned utility score that balances recency, frequency, and cross-framework transferability. Each
experience Ej maintains uj ← uj + η(rj − uj), where rj is the reward signal (e.g., retrieval success
or execution gain) and η is a learning rate. Low-utility entries are evicted, yielding dynamic memory
allocation that preserves high-value cross-domain knowledge.

3.3 EXECUTION VIA Reason-Retrieve-Refine

As shown in Fig. 2c, AGENT KB intercepts reasoning at planning and feedback stages while leaving
the base agent unchanged. Retrieved experiences are adapted through the Reason-Retrieve-Refine
cycle.

Retrieval Pipeline. Retrieval uses two complementary filters: (1) lexical retrieval (BM25) to
shortlist candidates with domain/tool compatibility, and (2) semantic ranking by task similarity via
all-MiniLM-L6-v2 embeddings. We also support a calibrated hybrid fusion (default α = 0.5) of the
two scores:

σhyb
i ← α ⋅ σ̃text

i + (1 − α) ⋅ σ̃
sem
i , α ∈ [0,1].

After reranking, the top-k candidates are deduplicated before refinement.

Planning Stage. The system applies the Reason-Retrieve-Refine cycle to the incoming task
description to generate a preliminary execution plan. In the Reason step, it surfaces key requirements
and potential challenges, producing structured queries that target reusable subroutines or successful
completion patterns. The Retrieve step then selects past experiences via the hybrid similarity scorer,
providing candidate trajectories. Rather than direct reuse, these candidates are adapted in the Refine
step: abstract action patterns are aligned with currently available tools and APIs using metadata C
for cross-framework compatibility. When multiple experiences are retrieved, the system synthesizes
them into a coherent workflow by applying entity mapping, tool substitution, and step reordering
to satisfy domain-specific constraints—enabling cross-framework compatibility without sacrificing
execution fidelity. The final output is an executable plan ρ, which is returned to the agent framework
for execution in its native environment.

Feedback Stage After initial execution, AGENT KB re-engages through a second Reason-Retrieve-
Refine cycle. In the Reason step, it analyzes execution traces to identify errors, bottlenecks, or
unexpected outcomes. The Retrieve step then produces queries derived from these traces, rather than

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

task descriptions, that favor experiences that document successful refinements in similar contexts. In
the Refine step, candidate fixes are adapted to live execution, taking into account domain constraints
and observed errors. To ensure safety, we introduce a disagreement gate:

G(ρ, ρ′) = 1[cos(ϕ(ρ), ϕ(ρ′)) ≥ β] ,

where ρ is the original plan, ρ′ the refined one, ϕ is implemented as all-MiniLM-L6-v2 embeddings,
and β = 0.8 by default. Only refinements with G(ρ, ρ′) = 1 are applied.

4 EXPERIMENT

4.1 SETUP

Dataset We benchmark AGENT KB on four suites covering reasoning and software engineering.
GAIA (Mialon et al., 2023) contributes 165 tasks: 53 Level 1 (factual lookup), 86 Level 2 (multi-step
reasoning), and 26 Level 3 (analysis and synthesis). The cleaned biology & chemistry subset provides
149 tasks needing multimodal reasoning with scientific images and tools. GPQA (Rein et al., 2024)
offers 198 graduate-level MCQs in physics, chemistry, and biology, requiring experts. Both GAIA
and HLE support web browsing, file I/O, and tools within standard limits, whereas GPQA focuses
on reasoning without the use of external tools. Benchmarks are reported with pass@1, pass@2, and
pass@3 accuracy. SWE-bench Lite (Jimenez et al., 2023) comprises 300 GitHub issues across Python
repositories; success is tested with 50- and 100-iteration limits for reproducibility. It restricts network
access and limits operations to those within the repository. These benchmarks show how knowledge
refinement affects reasoning (GAIA, HLE, GPQA) and software engineering (SWE-bench).
AGENT KB Construction. We bootstrap AGENT KB with 80 seed trajectories written by five
computer-science graduate students (60 BrowseComp/HopRAG-style browsing traces and 20 SWE-
Gym-style coding logs). These curated demonstrations are never retrieved directly; instead they
guide automatic rollouts executed by smolagents (Zhu et al., 2025), OWL (Hu et al., 2025), SWE-
Agent (Yang et al., 2024), and OpenHands (Wang et al., 2024a) across BrowseComp (Wei et al.,
2025a), HopRAG (Liu et al., 2025d), HLE2 (Phan et al., 2025), WebWalkerQA (Wu et al., 2025a),
RepoClassBench (Deshpande et al., 2024), SWE-Gym-Raw (Pan et al., 2024), and RepoEval (Zhang
et al., 2023). We normalize both successful and failed runs into structured experience units, yielding
roughly 9k workflow summaries and 7k execution snippets before evaluation. This mix equips the
memory with reusable plans for each modality and the diagnostic traces in later passes (Appendix A).
Model Configurations We attach the same AGENT KB instance to all planners through lightweight
RPC calls so that experiences gathered in one framework are instantly available to the others,
demonstrating true cross-framework knowledge transfer. GAIA experiments use smolagents (backed
by GPT-4o, GPT-4.1, Claude-3.7, Qwen-3 32B, and DeepSeek-R1) and OWL (GPT-4o); SWE-
bench Lite is evaluated with SWE-Agent (GPT-4.1, o3-mini) and OpenHands (GPT-4o, GPT-4.1,
Claude-3.7, Qwen-3 32B, DeepSeek-R1, o3-mini). Each benchmark instance is solved in three
sequential passes: pass@1 retrieves cross-task experiences without exposure to held-out labels,
pass@2 enriches AGENT KB with failure diagnoses from the first attempt, and pass@3 revisits
unresolved cases using the expanded retrieval pool. Unless otherwise stated, we fix the base model to
GPT-4.1, the temperature to 1.0, and the retrieval top-k to 3, mirroring the setting used for Figure 3.
We estimate budget caps assuming OpenAI pricing ($1.36/M prompt, $5.44/M completion tokens);
see Appendix D for detailed cost analysis.

4.2 MAIN RESULTS

Table 1 shows that AGENT KB delivers consistent gains across heterogeneous agent stacks and
model families on GAIA. With smolagents, GPT-4.1 rises from 55.2% to 73.9% pass@3 accuracy
(+18.7), with the largest lift at Level 2 (53.5%→ 73.3%, +19.8). The more capable Claude-3.7
backbone reaches 75.2% pass@3 and adds 19.2 on Level 3 (38.5%→ 57.7%), matching or exceeding
closed-source systems such as h2oGPTe (63.6%). Relative to A-Mem (Xu et al., 2025), which lifts
GPT-4o smolagents to 69.1%, AGENT KB attains 73.9% with the same planner, indicating hybrid
retrieval extracts more value from each pass. OWL with GPT-4o also benefits: accuracy improves by
20.0 overall (43.6%→ 63.6%) and retains gains on the most challenging questions (30.8%→ 38.5%).

On SWE-bench Lite, Table 2b highlights similar trends. GPT-4.1 paired with SWE-Agent im-
proves from 24.3% to 38.0% at 50 iterations and 42.3% under 100 iterations. OpenHands sees

2We deliberately removed the biology & chemistry subset from Humanity’s Last Exam as a test set.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Table 1: Results on GAIA benchmark (val set). We report pass@1 for all standard baselines. For methods that
build on top of a base framework (A-MEM (Xu et al., 2025) and AGENT KB), we present the baseline alongside
the improvements achieved by each enhanced variant.

Method Models Config Average Level 1 Level 2 Level 3

Agentic Model
Search-o1-32B (Li et al., 2025a) Qwen-3 pass@1 39.8 53.8 34.6 16.7
WebThinker-32B-RL (Li et al., 2025b) Qwen-3 pass@1 48.5 56.4 50.0 16.7
Closed-source Frameworks
TraseAgent (Trase, 2024) Claude-3.5 pass@1 70.3 83.0 69.8 46.2
Deep Research (OpenAI, 2024) Unknown pass@1 67.4 74.3 69.1 47.6
h2oGPTe (H2O.ai, 2024) Claude-3.5 pass@1 63.6 67.9 67.4 42.3
Desearch (AI, 2024) GPT-4o pass@1 57.0 71.7 58.1 23.1
Alita (Qiu et al., 2025) Claude-3.7 pass@1 72.7 81.1 75.6 46.2
Open-source Frameworks
OWL (Hu et al., 2025) o3-mini pass@1 60.6 81.1 58.1 26.9
TapeAgents (Bahdanau et al., 2024) Claude-3.7 pass@1 55.8 71.7 53.5 30.8
AutoAgent (Tang et al., 2025) Claude-3.5 pass@1 55.2 71.7 53.4 26.9
Magnetic-1 (Fourney et al., 2024) o1 pass@1 46.1 56.6 46.5 23.1
FRIDAY (Wu et al., 2024b) GPT-4 turbo pass@1 34.6 45.3 34.9 11.5
smolagents (Roucher et al., 2025) GPT-4o pass@1 43.6→ 57.0 ↑13.4 52.8→ 71.7 ↑18.9 41.9→ 57.0 ↑15.1 30.8→ 26.9 ↓3.9

↝ +A-MEM (Xu et al., 2025) pass@2 53.9→ 64.2 ↑10.3 64.2→ 83.0 ↑18.9 53.5→ 64.0 ↑10.5 34.6→ 26.9 ↓7.7

pass@3 57.0→ 69.1 ↑12.1 69.8→ 86.8 ↑17.0 55.8→ 69.8 ↑14.0 34.6→ 30.8 ↓3.8

smolagents (Roucher et al., 2025) GPT-4.1 pass@1 55.2→ 61.2 ↑6.1 67.9→ 79.3 ↑11.3 53.5→ 58.1 ↑4.7 34.6→ 34.6 ↑0.0

↝ +AGENT KB pass@2 61.8→ 67.3 ↑5.5 73.6→ 83.0 ↑9.4 62.8→ 67.4 ↑4.7 34.6→ 34.6 ↑0.0

pass@3 68.5→ 73.9 ↑5.5 77.4→ 84.9 ↑7.6 68.6→ 73.3 ↑4.7 50.0→ 53.9 ↑3.9

smolagents (Roucher et al., 2025) Claude-3.7 pass@1 58.8→ 65.5 ↑6.7 64.2→ 75.5 ↑11.3 61.6→ 66.3 ↑4.7 38.5→ 38.5 ↑0.0

↝ +AGENT KB pass@2 63.6→ 69.7 ↑6.1 77.4→ 79.3 ↑1.9 61.6→ 69.8 ↑8.1 42.3→ 50.0 ↑7.7

pass@3 72.7→ 75.2 ↑2.4 81.1→ 84.9 ↑3.8 74.4→ 74.4 ↑0.0 50.0→ 57.7 ↑7.7

OWL (Hu et al., 2025) GPT-4o pass@1 43.6→ 52.7 ↑9.1 52.8→ 64.2 ↑11.3 41.9→ 54.7 ↑12.8 30.8→ 23.1 ↓7.7

↝ +AGENT KB pass@2 53.9→ 60.6 ↑6.7 64.2→ 75.5 ↑11.3 53.5→ 61.6 ↑8.1 34.6→ 26.9 ↓7.7

pass@3 57.0→ 63.6 ↑6.7 69.8→ 79.3 ↑9.4 55.8→ 61.6 ↑5.8 34.6→ 38.5 ↑3.8

Table 2: Results on multiple benchmarks. We report baseline pass@1 and AGENT KB-enhanced variants.

(a) SWE-bench Lite (Jimenez et al., 2023) (300 in-
stances) with max iterations of 50 and 100.

Method Models Success Rate (%) Budget CapMax Iter 50 Max Iter 100

SWE-agent (Yang et al., 2024)

GPT-4.1

24.3 27.0 $3.0
pass@1 +AGENT KB 31.7 ↑7.4 35.3 ↑8.3 $3.0
pass@2 +AGENT KB 36.7 ↑12.4 38.0 ↑11.0 $3.0
pass@3 +AGENT KB 38.0 ↑13.7 42.3 ↑15.3 $3.0

OpenHands (Wang et al., 2024a)

GPT-4.1

24.3 28.7 $4.5
pass@1 +AGENT KB 28.3 ↑4.0 31.7 ↑3.0 $4.5
pass@2 +AGENT KB 37.3 ↑13.0 42.3 ↑13.7 $4.5
pass@3 +AGENT KB 38.7 ↑14.3 45.7 ↑17.0 $4.5

OpenHands

Claude-3.7

30.0 41.3 $4.5
pass@1 +AGENT KB 46.7 ↑16.7 48.3 ↑7.0 $4.5
pass@2 +AGENT KB 49.7 ↑19.7 51.7 ↑10.3 $4.5
pass@3 +AGENT KB 51.0 ↑21.0 53.3 ↑12.0 $4.5

(b) GAIA (Mialon et al., 2023) (165 instances) with
pass@1 baseline and AGENT KB-enhanced variants.

Method Models Accuracy (%)
Avg L1 L2 L3

OWL (Hu et al., 2025)

GPT-4o

43.6 52.8 41.9 30.8
pass@1 +AGENT KB 52.7 ↑9.1 64.2 ↑11.3 54.7 ↑12.8 23.1 ↓7.7

pass@2 +AGENT KB 60.6 ↑6.7 75.5 ↑11.3 61.6 ↑8.1 26.9 ↓7.7

pass@3 +AGENT KB 63.6 ↑6.7 79.3 ↑9.4 61.6 ↑5.8 38.5 ↑3.8

smolagents (Roucher et al., 2025)

GPT-4.1

55.2 67.9 53.5 34.6
pass@1 +AGENT KB 61.2 ↑6.1 79.3 ↑11.3 58.1 ↑4.7 34.6 ↑0.0

pass@2 +AGENT KB 67.3 ↑5.5 83.0 ↑9.4 67.4 ↑4.7 34.6 ↑0.0

pass@3 +AGENT KB 73.9 ↑5.5 84.9 ↑7.6 73.3 ↑4.7 53.9 ↑3.9

smolagents

Claude-3.7

58.8 64.2 61.6 38.5
pass@1 +AGENT KB 65.5 ↑6.7 75.5 ↑11.3 66.3 ↑4.7 38.5 ↑0.0

pass@2 +AGENT KB 69.7 ↑6.1 79.3 ↑1.9 69.8 ↑8.1 50.0 ↑7.7

pass@3 +AGENT KB 75.2 ↑2.4 84.9 ↑3.8 74.4 ↑0.0 57.7 ↑7.7

(c) Humanity’s Last Exam (Bio/Chem) (Skarlinski
et al., 2025) (149 instances) with pass@1 baseline and
AGENT KB-enhanced variants.

Method Models Accuracy (%)

AutoGen (Wu et al., 2024a) GPT-4.1 7.4
SciMaster (Chai et al., 2025) GPT-4.1 9.5
Biomni (Huang et al., 2025a) GPT-4.1 10.7

OpenHands (Wang et al., 2024a)

GPT-4.1

9.5
pass@1 +AGENT KB 10.1 ↑0.7

pass@2 +AGENT KB 12.1 ↑2.7

pass@3 +AGENT KB 14.1 ↑4.7

(d) GPQA benchmark (Rein et al., 2024) (198 in-
stances) with pass@1 baseline and AGENT KB-
enhanced variants.

Method Models Accuracy (%)

Direct Reasoning
o3-mini 75.0
Claude-3.7 67.4
GPT-4.1 64.6

OpenHands (Wang et al., 2024a)

GPT-4.1

62.6
pass@1 +AGENT KB 67.2 ↑4.6

pass@2 +AGENT KB 70.7 ↑8.1

pass@3 +AGENT KB 72.7 ↑10.1

a 14.4-point increase at 50 iterations (24.3%→ 38.7%) and a 17.0-point gain at 100 iterations
(28.7%→ 45.7%). The strongest backbone, Claude-3.7, achieves the largest jump, adding 21.0 at
50 iterations (30.0%→ 51.0%) and 12.0 at 100 iterations (41.3%→ 53.3%).

Beyond GAIA and SWE-bench, AGENT KB also improves on challenging scientific QA datasets.
On HLE (Table 2c, OpenHands baseline (9.5%) lags behind Biomni (10.7%), but surpasses it once
retrieval is applied (12.1% at pass@2, 14.1% at pass@3). On GPQA (Table 2d), OpenHands with
GPT-4.1 climbs from 62.6% to 72.7%, approaching latest proprietary models. These improve-
ments are achieved without additional fine-tuning or tool customization, underscoring the zero-shot
transferability of the shared experience store across diverse agent architectures.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

GPT-4o
GPT-4.1
o3-mini

Claude-3.7
Qwen-3 32B
DeepSeek-R1

16.3 +4.0+9.0 31.3
24.3 +4.0+9.0 38.0
23.0 +8.7+3.7 37.0

30.0 +16.7 +3.0 51.0
18.3 +2.3+8.0 30.3
24.3 +2.3+4.3 32.7

SWE-Bench Lite

62.3 +3.8+5.7+5.7 77.4
67.9 +11.3 +3.8 84.9

47.2 +5.7+7.5 52.8
64.2 +11.3 +3.8+5.7 84.9

47.2 +17.0 +7.5+3.8 75.5
62.3 +7.6+3.8+5.7 79.2

GAIA Level 1

GPT-4o
GPT-4.1
o3-mini

Claude-3.7
Qwen-3 32B
DeepSeek-R1

45.4 +4.7+3.5 52.3
53.5 +4.6 +9.3 +5.8 73.3

26.7 +4.7+8.1 38.4
61.6 +4.6+3.5+4.7 74.4

38.4 +3.5+3.5 40.7
50.0 +7.0+4.7 61.6

GAIA Level 2

15.4 +26.9 42.3
34.6 +19.2 53.9

19.2 +3.8 23.1
38.5 +19.2 +7.7 57.7

+19.2 +3.8 26.9
23.1 +15.4 +7.7 38.5

GAIA Level 3

Baseline +Agent KB pass@1 +Agent KB pass@2 +Agent KB pass@3

Figure 3: Score improvements (%) across benchmarks for multiple LLMs enhanced with AGENT KB. Results
on SWE-Bench Lite (Jimenez et al., 2023) using OpenHands (Wang et al., 2024a) (left) and GAIA benchmark
(Mialon et al., 2023) using smolagents (Zhu et al., 2025) (right) showing iterative improvement through
progressive knowledge refinement. Red intensity indicates the refinement stage, baseline performance in gray.

The stacked analysis in Figure 3 confirms that every backbone benefits from successive retrieval
passes across reasoning (GAIA, HLE, GPQA) and software engineering (SWE-bench). For example,
GPT-4o gains 15.0 on SWE-bench (16.3%→ 31.3%) and 26.9 on GAIA Level 3 (15.4%→ 42.3%).
GPT-4.1 delivers similarly strong lifts on GAIA Level 2 (53.5%→ 73.3%), while Claude-3.7 records
the largest SWE-bench improvement (30.0%→ 51.0%). Across all settings, pass@1 supplies the
initial boost by importing compatible workflows, while deeper passes (pass@2/pass@3) contribute
targeted refinements, most pronounced on scientific and general reasoning tasks.

Table 3: Ablation study for components of the AGENT KB.

Ablation Setting Avg Level 1 Level 2 Level 3

smolagent 55.15 67.92 53.49 34.62
smolagents +AGENT KB 61.21 79.25 58.14 34.62

w/o Planning Step 59.39 75.47 56.98 34.62
w/o Feedback Step 59.39 73.58 58.14 34.62
w/o Reason Module 60.00 77.36 56.98 34.62
w/o Retrieve Module 57.58 73.58 54.65 34.62
w/o Refine Module 55.15 69.81 53.49 30.77

w/ Raw Workflow 58.18 73.58 55.81 34.62

Representative GAIA and SWE-bench
walkthroughs illustrating these dynamics
appear in Appendix E, with the full exe-
cution trace reproduced in Appendix E.1.

4.3 ABLATION STUDIES

Impact of Retrieval Passes and Rea-
soning Stages. To assess the contribu-
tion of each core component in AGENT
KB, we conduct systematic ablation
studies in Table 3. Details of the ablation
elements can be found in Appendix C.
Removing the Refine stage incurs the largest drop (−6.06), confirming that retrieved workflows must
be adapted rather than replayed. Removing either Retrieve pass caps average pass@1 at 59.39%,
with sharper Level 1 erosion without the feedback stage (79.25%→73.58%) and without the planning
stage (79.25%→75.47%), underscoring their complementary planning/feedback roles. The Refine
stage imposes the largest penalty when ablated (61.21%→55.15% overall; Level 3 34.62%→30.77%),
while dropping Retrieve loses 3.63 and Reason only 1.21, indicating that knowledge grounding and
structured hypothesis drafting together prevent regression even when raw workflow logs (58.18%)
are available. Figure 5a further shows AGENT KB benefit from a disagreement gate in the feedback
stage with a threshold at β ≈ 0.8.

Table 4: Performance of smolagents (GPT-4.1) on GAIA and
SWE-bench with different knowledge types. Baseline uses no
augmentation, HAND CRAFTED uses student-annotated experi-
ences, and AGENT KB uses automatically extracted and refined
experiences.

Knowledge type GAIA SWE-bench
Average Level 1 Level 2 Level 3 Lite

Baseline 55.15 67.92 53.49 34.62 24.33

+ HAND CRAFTED 76.97 84.91 79.07 53.85 55.67
+ AGENT KB 75.15 84.91 74.42 57.69 51.00

Hybrid retrieval outperforms individ-
ual similarity metrics. We compare
three retrieval methods: lexical (BM25),
semantic (embedding), and hybrid. The
hybrid strategy consistently achieves the
highest accuracy across general reason-
ing and software engineering bench-
marks, combining the precision of exact
matches with the broader coverage of se-
mantic similarity. This complementary
fusion proves essential for cross-framework knowledge transfer, as different agent architectures may
require either precise tool matches or conceptual similarity depending on the task context.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

=0.2 =0.4 =0.8
72

74

76

78

80

Pa
ss

@1
 (

%) 77.36
77.36

79.25

77.36

79.25

77.36

(a)
GAIA Level 1

=0.2 =0.4 =0.8
52

54

56

58

60
58.14

56.98
56.98
56.98

56.98
56.98

GAIA Level 2

=0.2 =0.4 =0.8
32

33

34

35

36

34.62

34.62

34.62

34.62

34.62

34.62

GAIA Level 3

=0.2 =0.4 =0.8

24

26

28

30

25.00

24.67

25.33

24.67

28.33

24.67

SWE-bench Lite
Baseline (no-gate) -weighted

k=1 k=3 k=5

70

75

80

85

Pa
ss

@1
 (

%) 79.25

73.58

83.02

69.81

81.13

75.47

(b)
GAIA Level 1

k=1 k=3 k=5
55.0
57.5
60.0
62.5
65.0
67.5
70.0

62.79

58.13

67.44

59.30

66.28

61.63

GAIA Level 2

k=1 k=3 k=5

30.0
32.5
35.0
37.5
40.0 38.46

34.62
34.62
34.62

38.46

30.77

GAIA Level 3

k=1 k=3 k=5
28
30
32
34
36
38
40

34.67

31.00

37.33

34.33

35.33

33.33

SWE-bench Lite
Text Sim. Semantic Sim. Hybrid

100
Examples

500
Examples

Full
Examples

70

75

80

Pa
ss
@1
 (
%)

73.6
77.4

79.2

+7.7%

(c) GAIA Level 1

100
Examples

500
Examples

Full
Examples

50.0
52.5
55.0
57.5
60.0

53.5
54.6

58.1

+8.7%

GAIA Level 2

100
Examples

500
Examples

Full
Examples

32

34

36

38

34.6 34.6 34.6

GAIA Level 3

100
Examples

500
Examples

Full
Examples

22
24
26
28
30

24.7 25.3

28.3

+14.8%

SWE-bench Lite

Figure 5: Ablation analysis of retrieval configuration, knowledge-base size, and feedback weighting. (a) Impact
of confidence weighting hyper-parameter β on feedback integration. (b) Comparison of retrieval strategies across
top-k settings. Text similarity, semantic similarity, and hybrid methods are evaluated on GAIA Levels 1–3 and
SWE-bench Lite. (c) Effect of knowledge-base size on validation performance.

1000 10000 100000
Memory Size

101

102

Me
mo
ry
 U
sa
ge
 (
MB
)

(c)

10 2

10 1

100

101

102

103

104

Re
tr
ie
va
l
Ti
me
 (

s)

A-Mem MemoryBank ReadAgent Agent-KB

Figure 4: Retrieval latency & memory footprint when scaling
different stores. Baselines are taken directly from Xu et al.
(2025).

Figure 5b shows that hybrid retrieval main-
tains robust performance across different
top-k settings, with optimal results at k = 3
where it attains peak accuracy on general
reasoning tasks (83.0% on GAIA Level 1)
while remaining effective across software
engineering benchmarks.

Increasing knowledge base size improves
validation performance. Figure 5c
shows performance degrades gracefully
as AGENT KB shrinks. With 100 ex-
amples, general reasoning and software
benchmarks retain capability, indicating
that small stores offer useful prior trajec-
tories. Expanding to 500 examples yields
consistent gains in reasoning, while soft-
ware tasks benefit greatly, highlighting the
importance of this scale for code repair. Ad-
vanced reasoning tasks remain flat, suggest-
ing that the quality of abstraction is bottlenecked, not the quantity. Larger knowledge bases reliably
improve performance, but supporting complex tasks needs better structuring and retrieval.

Empty General
Reasoning

Software
Engineering

Knowledge Context

GAIA
(smolagents)

SWE-bench
(SWE-Agent)

68.5% 73.9% 56.4%

27.0% 37.0% 42.3%

30

40

50

60

70

Pe
rf

or
ma

nc
e

(%
)

Figure 6: Cross-domain knowledge transfer analysis.
Performance comparison when applying domain-specific
knowledge bases to different task types.

Automatic experience construction matches
manual curation. Table 4 shows that
AGENT KB’s automatically refined knowl-
edge matches hand-crafted experiences (an-
notated by five computer science students)
on GAIA (75.15% vs. 76.97%), surpasses
them on Level 3 (57.69% vs. 53.85%), and
lifts SWE-bench lite accuracy from 24.33% to
51.00%.

Latency and memory overhead remain
modest. Figure 4 compares raw lookup
latency against store size for AGENT KB
and alternatives such as A-Mem (Xu et al.,
2025), MemoryBank (Zhong et al., 2024), and

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Figure 7: The frequency of errors comparing smolagents (Roucher et al., 2025) with and without AGENT KB
on GAIA. The Venn diagrams quantify overlapping and unique failure cases, while the horizontal bar charts
show error counts per category. (a) Results for GPT-4.1. (b) Results for Claude-3.7.

ReadAgent (Lee et al., 2024). AGENT KB maintains competitive latency while occupying a sim-
ilar memory footprint across different store sizes. Alongside the cost accounting in Appendix D,
this indicates that AGENT KB’s construction and inference overhead remains minor relative to the
performance gains.

Domain-specific knowledge bases exhibit asymmetric transferability. Figure 6 compares general
reasoning experiences (e.g., BrowseComp, HopRAG, HLE, and WebWalkerQA) with software engi-
neering experiences (e.g., RepoClassBench, SWE-Gym-Raw, and RepoEval). Reasoning experience
reaches 73.9% in GAIA and still reaches 37.0% in SWE-bench, whereas SWE experience reaches
42.3% in SWE-bench, but drops to 56.4% in GAIA. This asymmetry shows that SWE knowledge
does not generalize to reasoning tasks, while reasoning experience retains partial utility in SWE
domains.

4.4 ERROR ANALYSIS

On the GAIA benchmark, we analyze error distributions under baseline and AGENT KB-augmented
configurations (Figure 7). For GPT-4.1 (Figure 7a), 49 errors are shared across both settings, while
25 are unique to the baseline; AGENT KB introduces only 15 new errors, yielding a net reduction
of 10. For Claude-3.7 (Figure 7b), 46 errors persist in both runs, with 22 baseline-specific errors
corrected and 11 new errors added, giving a net improvement of 11. We manually categorized each
error into six classes: retrieval (incorrect or missing evidence), planning (invalid task decomposition
or step ordering), reasoning (logical inconsistency or unsupported inference), format (violations of
required output schema), perception (failures in image/video understanding or tool grounding), and
execution (extraneous or fabricated steps). Pie charts show the relative prevalence of each type. With
GPT-4.1, retrieval errors decrease from 24 to 20 and planning errors from 13 to 10, reflecting more
consistent query formulation and workflow reuse. Claude-3.7 achieves larger gains in reasoning,
dropping from 13 to 8, alongside fewer retrieval failures (19 to 16). These improvements arise from
AGENT KB’s knowledge base, which encodes search protocols, planning templates, and formatting
conventions, enabling agents to adopt proven strategies rather than improvising from scratch. While
perception errors remain constrained by tool capabilities, AGENT KB mitigates their impact by
reducing unnecessary steps and minimizing context length. Overall, both models benefit from similar
error reductions, with Claude-3.7 excelling in reasoning robustness and GPT-4.1 in perception
alignment, underscoring how AGENT KB complements different model strengths on GAIA.

5 CONCLUSION

We presented AGENT KB, a cross-framework memory layer that abstracts heterogeneous agent
traces into reusable experiences. By coupling hybrid retrieval with a disagreement-gated refinement
stage, it addresses the core challenges of representation heterogeneity, context mismatch, and knowl-
edge interference. Experiments across GAIA, HLE, GPQA, and SWE-bench confirm consistent
improvements, with automatically generated experiences performing comparably to curated ones
and surpassing them on harder tasks. These results suggest that a shared, evolving memory backbone
offers a practical step toward collective agent intelligence, with future work aimed at richer modalities
and longer-horizon reasoning.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

Our work builds on publicly available datasets (GAIA, HLE, GPQA, SWE-bench) and follows their
respective licenses. We do not foresee direct ethical concerns; however, when deploying agent
memory systems in practice, one should carefully consider data privacy, potential bias in retrieved
knowledge, and the risk of misuse in high-stakes domains.

REPRODUCIBILITY STATEMENT

We provide complete details of architectures, configurations, datasets, and evaluation protocols in
the main text and the Appendix. Our code and scripts to reproduce all experiments are available at
https://anonymous.4open.science/r/Agent-KB/.

REFERENCES

Desearch AI. Desearch, 2024. URL https://desearch.ai/.

Minttu Alakuijala, Ya Gao, Georgy Ananov, Samuel Kaski, Pekka Marttinen, Alexander Ilin, and
Harri Valpola. Memento no more: Coaching ai agents to master multiple tasks via hints internal-
ization. arXiv preprint arXiv:2502.01562, 2025.

Petr Anokhin, Nikita Semenov, Artyom Sorokin, Dmitry Evseev, Mikhail Burtsev, and Evgeny
Burnaev. Arigraph: Learning knowledge graph world models with episodic memory for llm agents.
arXiv preprint arXiv:2407.04363, 2024.

Dzmitry Bahdanau, Nicolas Gontier, Gabriel Huang, Ehsan Kamalloo, Rafael Pardinas, Alex Piché,
Torsten Scholak, Oleh Shliazhko, Jordan Prince Tremblay, Karam Ghanem, Soham Parikh, Mi-
tul Tiwari, and Quaizar Vohra. Tapeagents: a holistic framework for agent development and
optimization, 2024. URL https://arxiv.org/abs/2412.08445.

Jingyi Chai, Shuo Tang, Rui Ye, Yuwen Du, Xinyu Zhu, Mengcheng Zhou, Yanfeng Wang, Yuzhi
Zhang, Linfeng Zhang, Siheng Chen, et al. Scimaster: Towards general-purpose scientific ai
agents, part i. x-master as foundation: Can we lead on humanity’s last exam? arXiv preprint
arXiv:2507.05241, 2025.

Chi-Min Chan, Weize Chen, Yusheng Su, Jianxuan Yu, Wei Xue, Shanghang Zhang, Jie Fu, and
Zhiyuan Liu. Chateval: Towards better llm-based evaluators through multi-agent debate. arXiv
preprint arXiv:2308.07201, 2023.

Yongrui Chen, Junhao He, Linbo Fu, Shenyu Zhang, Rihui Jin, Xinbang Dai, Jiaqi Li, Dehai Min,
Nan Hu, Yuxin Zhang, et al. Pandora: A code-driven large language model agent for unified
reasoning across diverse structured knowledge. arXiv preprint arXiv:2504.12734, 2025.

Ajinkya Deshpande, Anmol Agarwal, Shashank Shet, Arun Iyer, Aditya Kanade, Ramakrishna
Bairi, and Suresh Parthasarathy. Class-level code generation from natural language using iterative,
tool-enhanced reasoning over repository. arXiv preprint arXiv:2405.01573, 2024.

Yiming Du, Wenyu Huang, Danna Zheng, Zhaowei Wang, Sebastien Montella, Mirella Lapata,
Kam-Fai Wong, and Jeff Z Pan. Rethinking memory in ai: Taxonomy, operations, topics, and
future directions. arXiv preprint arXiv:2505.00675, 2025.

Adam Fourney, Gagan Bansal, Hussein Mozannar, Cheng Tan, Eduardo Salinas, Friederike Niedtner,
Grace Proebsting, Griffin Bassman, Jack Gerrits, Jacob Alber, et al. Magentic-one: A generalist
multi-agent system for solving complex tasks. arXiv preprint arXiv:2411.04468, 2024.

Anish Ganguli, Prabal Deb, and Debleena Banerjee. Mark: Memory augmented refinement of
knowledge. arXiv preprint arXiv:2505.05177, 2025.

Marc Glocker, Peter Hönig, Matthias Hirschmanner, and Markus Vincze. Llm-empowered em-
bodied agent for memory-augmented task planning in household robotics. arXiv preprint
arXiv:2504.21716, 2025.

10

https://anonymous.4open.science/r/Agent-KB/
https://desearch.ai/
https://arxiv.org/abs/2412.08445

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Taicheng Guo, Xiuying Chen, Yaqi Wang, Ruidi Chang, Shichao Pei, Nitesh V Chawla, Olaf Wiest,
and Xiangliang Zhang. Large language model based multi-agents: A survey of progress and
challenges. arXiv preprint arXiv:2402.01680, 2024.

Bernal Jiménez Gutiérrez, Yiheng Shu, Yu Gu, Michihiro Yasunaga, and Yu Su. Hipporag: Neurobio-
logically inspired long-term memory for large language models. arXiv preprint arXiv:2405.14831,
2024.

H2O.ai. Autonomous agentic ai: execute multi-step workflows autonomously. [Online], 2024.
https://h2o.ai/platform/enterprise-h2ogpte/#AgenticAI.

Kostas Hatalis, Despina Christou, and Vyshnavi Kondapalli. Review of case-based reasoning for
llm agents: Theoretical foundations, architectural components, and cognitive integration. arXiv
preprint arXiv:2504.06943, 2025.

Sirui Hong, Xiawu Zheng, Jonathan Chen, Yuheng Cheng, Jinlin Wang, Ceyao Zhang, Zili Wang,
Steven Ka Shing Yau, Zijuan Lin, Liyang Zhou, et al. Metagpt: Meta programming for multi-agent
collaborative framework. arXiv preprint arXiv:2308.00352, 3(4):6, 2023.

Mengkang Hu, Tianxing Chen, Qiguang Chen, Yao Mu, Wenqi Shao, and Ping Luo. Hiagent: Hier-
archical working memory management for solving long-horizon agent tasks with large language
model. arXiv preprint arXiv:2408.09559, 2024.

Mengkang Hu, Yuhang Zhou, Wendong Fan, Yuzhou Nie, Bowei Xia, Tao Sun, Ziyu Ye, Zhaoxuan
Jin, Yingru Li, Zeyu Zhang, Yifeng Wang, Qianshuo Ye, Ping Luo, and Guohao Li. Owl: Optimized
workforce learning for general multi-agent assistance in real-world task automation, 2025. URL
https://github.com/camel-ai/owl.

Pengbo Hu and Xiang Ying. Unified mind model: Reimagining autonomous agents in the llm era.
arXiv preprint arXiv:2503.03459, 2025.

Kexin Huang, Serena Zhang, Hanchen Wang, Yuanhao Qu, Yingzhou Lu, Yusuf Roohani, Ryan Li,
Lin Qiu, Gavin Li, Junze Zhang, et al. Biomni: A general-purpose biomedical ai agent. biorxiv,
2025a.

Tenghao Huang, Kinjal Basu, Ibrahim Abdelaziz, Pavan Kapanipathi, Jonathan May, and Muhao
Chen. R2d2: Remembering, reflecting and dynamic decision making for web agents. arXiv
preprint arXiv:2501.12485, 2025b.

Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik
Narasimhan. Swe-bench: Can language models resolve real-world github issues? arXiv preprint
arXiv:2310.06770, 2023.

Omar Khattab, Arnav Singhvi, Paridhi Maheshwari, Zhiyuan Zhang, Keshav Santhanam, Sri Vard-
hamanan, Saiful Haq, Ashutosh Sharma, Thomas T Joshi, Hanna Moazam, et al. Dspy: Compiling
declarative language model calls into self-improving pipelines. arXiv preprint arXiv:2310.03714,
2023.

Kuang-Huei Lee, Xinyun Chen, Hiroki Furuta, John Canny, and Ian Fischer. A human-inspired
reading agent with gist memory of very long contexts. arXiv preprint arXiv:2402.09727, 2024.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,
Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, Sebastian Riedel, and Douwe Kiela.
Retrieval-augmented generation for knowledge-intensive NLP tasks. In Proc. NeurIPS, 2020a.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, et al. Retrieval-
augmented generation for knowledge-intensive nlp tasks. arXiv preprint arXiv:2005.11280, 2020b.
URL https://arxiv.org/abs/2005.11280.

Xiaoxi Li, Guanting Dong, Jiajie Jin, Yuyao Zhang, Yujia Zhou, Yutao Zhu, Peitian Zhang, and
Zhicheng Dou. Search-o1: Agentic search-enhanced large reasoning models. arXiv preprint
arXiv:2501.05366, 2025a.

11

https://h2o.ai/platform/enterprise-h2ogpte/#AgenticAI
https://github.com/camel-ai/owl
https://arxiv.org/abs/2005.11280

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Xiaoxi Li, Jiajie Jin, Guanting Dong, Hongjin Qian, Yutao Zhu, Yongkang Wu, Ji-Rong Wen, and
Zhicheng Dou. Webthinker: Empowering large reasoning models with deep research capability.
arXiv preprint arXiv:2504.21776, 2025b.

Baichuan Liu, Chen Li, Ming Tan, Wenqiang Liu, and Yiming Yang. Echo: A large language model
with temporal episodic memory. arXiv preprint arXiv:2502.16090, 2025a.

Bang Liu, Xinfeng Li, Jiayi Zhang, Jinlin Wang, Tanjin He, Sirui Hong, Hongzhang Liu, Shaokun
Zhang, Kaitao Song, Kunlun Zhu, et al. Advances and challenges in foundation agents: From
brain-inspired intelligence to evolutionary, collaborative, and safe systems. arXiv preprint
arXiv:2504.01990, 2025b.

Hanchao Liu, Rongjun Li, Weimin Xiong, Ziyu Zhou, and Wei Peng. Workteam: Constructing
workflows from natural language with multi-agents. arXiv preprint arXiv:2503.22473, 2025c.

Hao Liu, Zhengren Wang, Xi Chen, Zhiyu Li, Feiyu Xiong, Qinhan Yu, and Wentao Zhang.
Hoprag: Multi-hop reasoning for logic-aware retrieval-augmented generation. arXiv preprint
arXiv:2502.12442, 2025d.

Siwei Liu, Jinyuan Fang, Han Zhou, Yingxu Wang, and Zaiqiao Meng. Sew: Self-evolving agentic
workflows for automated code generation. arXiv preprint arXiv:2505.18646, 2025e.

Junru Lu, Siyu An, Mingbao Lin, Gabriele Pergola, Yulan He, Di Yin, Xing Sun, and Yunsheng Wu.
Memochat: Tuning llms to use memos for consistent long-range open-domain conversation. arXiv
preprint arXiv:2308.08239, 2023.

Qitan Lv, Jie Wang, Hanzhu Chen, Bin Li, Yongdong Zhang, and Feng Wu. Coarse-to-fine highlight-
ing: Reducing knowledge hallucination in large language models. arXiv preprint arXiv:2410.15116,
2024.

Chandana Sree Mala, Gizem Gezici, and Fosca Giannotti. Hybrid retrieval for hallucination mitigation
in large language models: A comparative analysis. arXiv preprint arXiv:2504.05324, 2025.

Grégoire Mialon, Clémentine Fourrier, Thomas Wolf, Yann LeCun, and Thomas Scialom. Gaia:
a benchmark for general ai assistants. In The Twelfth International Conference on Learning
Representations, 2023.

Mengjia Niu, Hao Li, Jie Shi, Hamed Haddadi, and Fan Mo. Mitigating hallucinations in large lan-
guage models via self-refinement-enhanced knowledge retrieval. arXiv preprint arXiv:2405.06545,
2024.

OpenAI. deepresearch, 2024. URL https://openai.com/index/introducing-deep-research/.

Charles Packer, Sarah Wooders, Kevin Lin, Vivian Fang, Shishir G. Patil, Ion Stoica, and Joseph E.
Gonzalez. Memgpt: Towards LLMs as operating systems. arXiv preprint arXiv:2310.08560, 2023.

Jiayi Pan, Xingyao Wang, Graham Neubig, Navdeep Jaitly, Heng Ji, Alane Suhr, and Yizhe Zhang.
Training software engineering agents and verifiers with swe-gym. arXiv preprint arXiv:2412.21139,
2024.

Long Phan, Alice Gatti, Ziwen Han, Nathaniel Li, Josephina Hu, Hugh Zhang, Chen Bo Calvin
Zhang, Mohamed Shaaban, John Ling, Sean Shi, et al. Humanity’s last exam. arXiv preprint
arXiv:2501.14249, 2025.

Jinghua Piao, Yuwei Yan, Jun Zhang, Nian Li, Junbo Yan, Xiaochong Lan, Zhihong Lu, Zhiheng
Zheng, Jing Yi Wang, Di Zhou, et al. Agentsociety: Large-scale simulation of llm-driven generative
agents advances understanding of human behaviors and society. arXiv preprint arXiv:2502.08691,
2025.

Mathis Pink, Qinyuan Wu, Vy Ai Vo, Javier Turek, Jianing Mu, Alexander Huth, and Mariya
Toneva. Position: Episodic memory is the missing piece for long-term llm agents. arXiv preprint
arXiv:2502.06975, 2025.

12

https://openai.com/index/introducing-deep-research/

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Shuofei Qiao, Runnan Fang, Ningyu Zhang, Yuqi Zhu, Xiang Chen, Shumin Deng, Yong Jiang,
Pengjun Xie, Fei Huang, and Huajun Chen. Agent planning with world knowledge model. In Proc.
NeurIPS, 2024.

Jiahao Qiu, Xuan Qi, Tongcheng Zhang, Xinzhe Juan, Jiacheng Guo, Yifu Lu, Yimin Wang, Zixin
Yao, Qihan Ren, Xun Jiang, et al. Alita: Generalist agent enabling scalable agentic reasoning with
minimal predefinition and maximal self-evolution. arXiv preprint arXiv:2505.20286, 2025.

David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien Dirani,
Julian Michael, and Samuel R Bowman. Gpqa: A graduate-level google-proof q&a benchmark. In
First Conference on Language Modeling, 2024.

Aymeric Roucher, Albert Villanova del Moral, Thomas Wolf, Leandro von Werra, and Erik Kau-
nismäki. ‘smolagents‘: a smol library to build great agentic systems. https://github.com/
huggingface/smolagents, 2025.

Rana Salama, Jason Cai, Michelle Yuan, Anna Currey, Monica Sunkara, Yi Zhang, and Yassine
Benajiba. Meminsight: Autonomous memory augmentation for llm agents. arXiv preprint
arXiv:2503.21760, 2025.

Vishwa Shah, Vishruth Veerendranath, Graham Neubig, Daniel Fried, and Zora Zhiruo Wang. Explor-
ing the pre-conditions for memory-learning agents. In Scaling Self-Improving Foundation Models
without Human Supervision, 2025. URL https://openreview.net/forum?id=WZV7I3PT90.

Kurt Shuster, Spencer Poff, Moya Chen, Douwe Kiela, and Jason Weston. Retrieval augmentation
reduces hallucination in conversation. arXiv preprint arXiv:2104.07567, 2021.

Michael Skarlinski, Jon Laurent, Albert Bou, and Andrew White. About 30% of humanity’s
last exam chemistry/biology answers are likely wrong. https://www.futurehouse.org/
research-announcements/hle-exam, July 2025. Accessed: 2025-09-23.

Larry R Squire, Lisa Genzel, John T Wixted, and Richard G Morris. Memory consolidation. Cold
Spring Harbor perspectives in biology, 7(8):a021766, 2015.

Hongjin Su, Ruoxi Sun, Jinsung Yoon, Pengcheng Yin, Tao Yu, and Sercan Ö Arık. Learn-by-
interact: A data-centric framework for self-adaptive agents in realistic environments. arXiv
preprint arXiv:2501.10893, 2025.

Xiaoyu Tan, Bin Li, Xihe Qiu, Chao Qu, Wei Chu, Yinghui Xu, and Yuan Qi. Meta-agent-workflow:
Streamlining tool usage in llms through workflow construction, retrieval, and refinement. In
Companion Proceedings of the ACM on Web Conference 2025, pp. 458–467, 2025.

Jiabin Tang, Tianyu Fan, and Chao Huang. Autoagent: A fully-automated and zero-code framework
for llm agents. arXiv e-prints, pp. arXiv–2502, 2025.

Trase. Meet trase systems. [Online], 2024. https://www.trasesystems.com/.

Xingyao Wang, Boxuan Li, Yufan Song, Frank F. Xu, Xiangru Tang, Mingchen Zhuge, Jiayi Pan,
Yueqi Song, Bowen Li, Jaskirat Singh, Hoang H. Tran, Fuqiang Li, Ren Ma, Mingzhang Zheng,
Bill Qian, Yanjun Shao, Niklas Muennighoff, Yizhe Zhang, Binyuan Hui, Junyang Lin, Robert
Brennan, Hao Peng, Heng Ji, and Graham Neubig. OpenHands: An Open Platform for AI Software
Developers as Generalist Agents, 2024a. URL https://arxiv.org/abs/2407.16741.

Yu Wang, Yifan Gao, Xiusi Chen, Haoming Jiang, Shiyang Li, Jingfeng Yang, Qingyu Yin, Zheng Li,
Xian Li, Bing Yin, Jingbo Shang, and Julian McAuley. MEMORYLLM: Towards self-updatable
large language models. arXiv preprint arXiv:2402.04624, 2024b.

Yu Wang, Chi Han, Tongtong Wu, Xiaoxin He, Wangchunshu Zhou, Nafis Sadeq, Xiusi Chen, Zexue
He, Wei Wang, Gholamreza Haffari, et al. Towards lifespan cognitive systems. arXiv preprint
arXiv:2409.13265, 2024c.

Zhenhailong Wang, Haiyang Xu, Junyang Wang, Xi Zhang, Ming Yan, Ji Zhang, Fei Huang, and
Heng Ji. Mobile-agent-e: Self-evolving mobile assistant for complex tasks. arXiv preprint
arXiv:2501.11733, 2025.

13

https://github.com/huggingface/smolagents
https://github.com/huggingface/smolagents
https://openreview.net/forum?id=WZV7I3PT90
https://www.futurehouse.org/research-announcements/hle-exam
https://www.futurehouse.org/research-announcements/hle-exam
https://www.trasesystems.com/
https://arxiv.org/abs/2407.16741

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Zora Zhiruo Wang, Jiayuan Mao, Daniel Fried, and Graham Neubig. Agent workflow memory. arXiv
preprint arXiv:2409.07429, 2024d.

Jason Wei, Zhiqing Sun, Spencer Papay, Scott McKinney, Jeffrey Han, Isa Fulford, Hyung Won
Chung, Alex Tachard Passos, William Fedus, and Amelia Glaese. Browsecomp: A simple yet
challenging benchmark for browsing agents. arXiv preprint arXiv:2504.12516, 2025a.

Jiale Wei, Xiang Ying, Tao Gao, Fangyi Bao, Felix Tao, and Jingbo Shang. Ai-native memory 2.0:
Second me. arXiv preprint arXiv:2503.08102, 2025b.

Jialong Wu, Wenbiao Yin, Yong Jiang, Zhenglin Wang, Zekun Xi, Runnan Fang, Linhai Zhang,
Yulan He, Deyu Zhou, Pengjun Xie, et al. Webwalker: Benchmarking llms in web traversal. arXiv
preprint arXiv:2501.07572, 2025a.

Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu, Beibin Li, Erkang Zhu, Li Jiang, Xiaoyun Zhang,
Shaokun Zhang, Jiale Liu, et al. Autogen: Enabling next-gen llm applications via multi-agent
conversations. In First Conference on Language Modeling, 2024a.

Yaxiong Wu, Sheng Liang, Chen Zhang, Yichao Wang, Yongyue Zhang, Huifeng Guo, Ruiming
Tang, and Yong Liu. From human memory to ai memory: A survey on memory mechanisms in the
era of llms. arXiv preprint arXiv:2504.15965, 2025b.

Zhiyong Wu, Chengcheng Han, Zichen Ding, Zhenmin Weng, Zhoumianze Liu, Shunyu Yao, Tao
Yu, and Lingpeng Kong. Os-copilot: Towards generalist computer agents with self-improvement.
arXiv preprint arXiv:2402.07456, 2024b.

Wujiang Xu, Zujie Liang, Kai Mei, Hang Gao, Juntao Tan, and Yongfeng Zhang. A-mem: Agentic
memory for llm agents. arXiv preprint arXiv:2502.12110, 2025.

Yao Xu, Shizhu He, Jiabei Chen, Zihao Wang, Yangqiu Song, Hanghang Tong, Guang Liu, Kang Liu,
and Jun Zhao. Generate-on-graph: Treat llm as both agent and kg in incomplete knowledge graph
question answering. arXiv preprint arXiv:2404.14741, 2024.

John Yang, Carlos E. Jimenez, Alexander Wettig, Kilian Lieret, Shunyu Yao, Karthik Narasimhan,
and Ofir Press. Swe-agent: Agent-computer interfaces enable automated software engineering,
2024. URL https://arxiv.org/abs/2405.15793.

Ye Ye. Task memory engine (tme): Enhancing state awareness for multi-step llm agent tasks. arXiv
preprint arXiv:2504.08525, 2025.

Ruihong Zeng, Jinyuan Fang, Siwei Liu, and Zaiqiao Meng. On the structural memory of llm agents.
arXiv preprint arXiv:2412.15266, 2024.

Fengji Zhang, Bei Chen, Yue Zhang, Jacky Keung, Jin Liu, Daoguang Zan, Yi Mao, Jian-Guang Lou,
and Weizhu Chen. Repocoder: Repository-level code completion through iterative retrieval and
generation. arXiv preprint arXiv:2303.12570, 2023.

Jieyu Zhang, Ranjay Krishna, Ahmed Hassan Awadallah, and Chi Wang. Ecoassistant: Using llm
assistants more affordably and accurately. In ICLR 2024 Workshop on Large Language Model
(LLM) Agents, 2025.

Zhengyi Zhao, Shubo Zhang, Yiming Du, Bin Liang, Baojun Wang, Zhongyang Li, Binyang Li, and
Kam-Fai Wong. Eventweave: A dynamic framework for capturing core and supporting events in
dialogue systems. arXiv preprint arXiv:2503.23078, 2025.

Longtao Zheng, Rundong Wang, Xinrun Wang, and Bo An. Synapse: Trajectory-as-exemplar
prompting with memory for computer control. arXiv preprint arXiv:2306.07863, 2023.

Wanjun Zhong, Lianghong Guo, Qiqi Gao, He Ye, and Yanlin Wang. Memorybank: Enhancing large
language models with long-term memory. In Proceedings of the AAAI Conference on Artificial
Intelligence, 2024.

14

https://arxiv.org/abs/2405.15793

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Ruiwen Zhou, Yingxuan Yang, Muning Wen, Ying Wen, Wenhao Wang, Chunling Xi, Guoqiang Xu,
Yong Yu, and Weinan Zhang. Trad: Enhancing llm agents with step-wise thought retrieval and
aligned decision. In Proceedings of the 47th International ACM SIGIR Conference on Research
and Development in Information Retrieval, pp. 3–13, 2024a.

Wangchunshu Zhou, Yuchen Eleanor Jiang, Long Li, Jialong Wu, Tiannan Wang, Shi Qiu, Jintian
Zhang, Jing Chen, Ruipu Wu, Shuai Wang, et al. Agents: An open-source framework for
autonomous language agents. arXiv preprint arXiv:2309.07870, 2023.

Wangchunshu Zhou, Yixin Ou, Shengwei Ding, Long Li, Jialong Wu, Tiannan Wang, Jiamin Chen,
Shuai Wang, Xiaohua Xu, Ningyu Zhang, et al. Symbolic learning enables self-evolving agents.
arXiv preprint arXiv:2406.18532, 2024b.

He Zhu, Tianrui Qin, King Zhu, Heyuan Huang, Yeyi Guan, Jinxiang Xia, Yi Yao, Hanhao Li,
Ningning Wang, Pai Liu, et al. Oagents: An empirical study of building effective agents. arXiv
preprint arXiv:2506.15741, 2025.

Yuqi Zhu, Shuofei Qiao, Yixin Ou, Shumin Deng, Ningyu Zhang, Shiwei Lyu, Yue Shen, Lei Liang,
Jinjie Gu, and Huajun Chen. Knowagent: Knowledge-augmented planning for LLM-based agents.
In Proc. NAACL Findings, 2024.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Part I

Appendix

Table of Contents
A Experience Source Overview 17

B Hand-crafted Experience Process 18

C Ablation Details of Reason-Retrieve-Refine Modules 19

D Inference Cost Breakdown 19

E Examples 20
E.1 Execution Example . 20
E.2 Comprehensive Examples . 22

F Collections of Used Prompts 25
F.1 Prompt Design for AGENT KB Construction . 25
F.2 Prompt Design for AGENT KB Pipeline . 28

G Language Model Usage 30
G.1 System Components . 30
G.2 Experimental Setup . 30
G.3 Manuscript Development . 31
G.4 Methodological Considerations . 31

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

A EXPERIENCE SOURCE OVERVIEW

Our AGENT KB is constructed from a diverse set of benchmark datasets spanning code reasoning,
web navigation, multi-hop retrieval, and human-level evaluation tasks. Each dataset contributes
structured experience entries that reflect distinct problem-solving patterns and domain characteristics.

Table 5 summarizes the data sources, their original task counts, and the number of resulting experience
entries after processing:

Table 5: Overview of datasets used to construct the experience knowledge base.

Dataset Domain Tasks Generated Experiences

General QA experiences
BrowseComp (Wei et al., 2025a) Web navigation 1,266 1,266
MultiHopRAG (Liu et al., 2025d) Multi-hop reasoning 2,556 2,556
HLE (Phan et al., 2025) Expert-level QA 3,000 ∼2,000
WebWalkerQA (Wu et al., 2025a) Open-domain QA 680 680

Software engineering experiences
RepoClassBench (Deshpande et al., 2024) Code understanding 100 1,000
SWE-Gym-Raw (Pan et al., 2024) Code generation 100 1,000
RepoEval (Zhang et al., 2023) Code completion 100 1,000

Total (approx.) 7,802 ∼9,502

BrowseComp. We processed all 1,266 tasks from the BrowseComp benchmark (https://
huggingface.co/datasets/smolagents/browse_comp), creating one experience entry per task.
These experiences capture web browsing, information retrieval, and multimodal reasoning patterns.

MultiHopRAG. We incorporated all 2,556 tasks from the MultiHopRAG dataset (https://github.
com/yixuantt/MultiHop-RAG/tree/main/dataset), with each task contributing one experience
entry. MultiHopRAG experiences focus on multi-hop reasoning and retrieval-augmented generation
scenarios.

HLE. From the HLE benchmark’s 3,000 tasks (https://huggingface.co/datasets/cais/hle),
we selected the text-based subset, creating one experience entry per task. We excluded non-textual
tasks to maintain consistency in knowledge representation. These experiences cover human-level
evaluation scenarios across diverse domains.

WebWalkerQA. We integrated 680 tasks from WebWalkerQA (https://huggingface.co/
datasets/callanwu/WebWalkerQA), with each task contributing one experience entry. These expe-
riences capture web navigation and question-answering patterns in open-domain contexts.

RepoClassBench. We utilized the RepoClassBench dataset (https://github.com/microsoft/
repoclassbench), selecting 100 representative cases from Python repositories that align with those
in SWE-bench. For each case, we generated 10 distinct experiences capturing different solution
approaches, resulting in 1,000 structured knowledge entries. These experiences focus on repository
classification and code understanding tasks.

SWE-Gym-Raw. We incorporated the SWE-Gym-Raw dataset (https://huggingface.co/
datasets/SWE-Gym/SWE-Gym-Raw), from which we selected 100 diverse problem instances. Fol-
lowing a methodology similar to RepoClassBench, we generated 10 distinct experiences per instance,
resulting in a total of 1,000 knowledge entries. These experiences primarily focus on code generation
and bug-fixing scenarios within Python-based repositories.

RepoEval. From the RepoEval dataset (https://github.com/microsoft/CodeT/tree/main/
RepoCoder/datasets), we selected 100 cases and generated 10 experiences per case, creating an
additional 1,000 knowledge entries. RepoEval experiences focus on code completion and repository-
level programming tasks in Python.

17

https://huggingface.co/datasets/smolagents/browse_comp
https://huggingface.co/datasets/smolagents/browse_comp
https://github.com/yixuantt/MultiHop-RAG/tree/main/dataset
https://github.com/yixuantt/MultiHop-RAG/tree/main/dataset
https://huggingface.co/datasets/cais/hle
https://huggingface.co/datasets/callanwu/WebWalkerQA
https://huggingface.co/datasets/callanwu/WebWalkerQA
https://github.com/microsoft/repoclassbench
https://github.com/microsoft/repoclassbench
https://huggingface.co/datasets/SWE-Gym/SWE-Gym-Raw
https://huggingface.co/datasets/SWE-Gym/SWE-Gym-Raw
https://github.com/microsoft/CodeT/tree/main/RepoCoder/datasets
https://github.com/microsoft/CodeT/tree/main/RepoCoder/datasets

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

B HAND-CRAFTED EXPERIENCE PROCESS

To identify common failure modes and improve generalization, human annotators manually inspect a
subset of failed logs. They summarize recurring issues such as incorrect tool selection, misaligned
reasoning chains, or missing preconditions or constraints. These failures are abstracted into correction
templates that serve as few-shot examples for the experience generation model. The abstraction
process relies on a set of reasoning templates:

AGENT KB data template

{
"question": "<question from various data source>",
"agent_plan": "<Agent original plan>",
"agent_experience": "<detailed agent experience>",
}

The procedure of hand-crafted experience is described as follows:

• Step 1: Team Setup and Objective Definition
Three computer science students familiar with the GAIA benchmark and agent reasoning
workflows were recruited to collaboratively design high-quality prompts. The main objective
was to transform successful agent reasoning paths into structured, human-readable instructions
that captured essential steps, tools, and decision rules.

• Step 2: Review of Historical Logs
Each student was assigned a subset of GAIA benchmark tasks (Level 1, 2, 3). They thoroughly
examined the corresponding smolagent logs, focusing on:

– Tasks where the agent reached the correct answer.
– Action sequences that were logically sound and tool-use efficient.
– Common patterns across multiple tasks.

After that, they also analyzed the logs of the failed questions, trying to fix the wrong answers by
hand with the successful experience.

• Step 3: Prompt Authoring and Standardization
The team synthesized these findings into general reasoning workflows—abstract sequences that
could be reused.
Each reasoning pattern was rewritten into a natural language instructional prompt. Prompts were
standardized to use consistent sentence structures, imperative voice, and tool-neutral references.

• Hand Crafted Example Experience:

Search for the 2015 paper "Pie Menus or Linear Menus, Which Is Better?"
on a scholarly database (e.g., Google Scholar or IEEE Xplore) and
note the authors in "First M. Last" format. For each author, look
up their publication history on DBLP or Google Scholar and list all
their papers with publication years. Determine which author has works
published before 2015, and collect that author’s prior publications.
Sort the author’s earlier papers by year and identify the very first
one. Verify the title of that earliest paper against the database
entry to ensure accuracy.

• Step 4: Effectiveness Testing and Selection
To evaluate quality, each handcrafted experience was tested via few-shot prompting on similar
GAIA tasks.
The top 80 prompts with the best performance were selected as the canonical set.

• Step 5: Generalization to Other Benchmarks
Using these 80 high-quality examples, we applied few-shot prompting to generate experience
instructions for other reasoning benchmarks.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

C ABLATION DETAILS OF Reason-Retrieve-Refine MODULES

To evaluate the effectiveness of each component in our AGENT KB framework, we conduct a series
of ablation studies. The deployment loop operates in two retrieval phases with distinct objectives:

• Planning stage forms the initial plan. It follows the Reason-Retrieve-Refine cycle to summa-
rize the query, select experiences, and weave them into an executable workflow.

• Feedback stage reuses the same cycle on execution traces. It reasons over the critic’s highlights,
retrieves precedents, and refines the plan while guarded by the disagreement gate.

The experimental setup involves systematically removing or disabling specific modules or agents to
assess their contributions. The results are summarized in Table 3, with the following definitions:

• w/o Planning Stage: The first-stage steps are removed.

• w/o Feedback Stage: The second-stage steps are removed.

• w/o Reason Module: In both stages, no reasoning is performed; only retrieval based on raw data
is conducted.

• w/o Retrieve Module: Both stages omit the retrieval process entirely. Agents rely solely on
prompt-based instructions to generate responses, without consulting prior experiences.

• w/o Refine Module: No refinement is performed of both stags; only the retrieved content is
used as knowledge.

• w/ Raw Workflow : The full retrieve pipeline is used, but without any explicit modular control—
i.e., the model follows a standard prompting strategy throughout, lacking structured guidance
through the Reason and Refine phases.

These ablation experiments provide insight into how each module contributes to overall performance,
particularly in terms of accuracy, robustness, and coherence in complex reasoning tasks.

D INFERENCE COST BREAKDOWN

Tables 6 and 7 report the token and monetary budget of AGENT KB across GAIA and SWE-bench
lite. In GAIA, the retrieval loop adds only $0.27 on top of a full evaluation of $86.0 USD - less
than 0.4% of the cost per run. The offline ingestion step is a one-time expense amortized over future
runs. On SWE-bench lite, hinting with AGENT KB costs on average <0.004 USD per issue with
short prompts (< 7,000 tokens), keeping the marginal overhead well below one cent when paired with
GPT-4.1. These results highlight that AGENT KB provides cross-framework experience sharing at
negligible additional cost.

Table 6: Per-task token and cost budget for GAIA validation (165 tasks). Shares cover the per-
evaluation budget and exclude the one-off knowledge-base ingestion step. Pricing: $1.36 per million
prompt tokens and $5.44 per million completion tokens. Values are averaged across 165 tasks.

Module Prompt tokens Completion tokens Cost (USD) Share (%)

Evaluation (per GAIA task)
Action loop 205,873 41,912 0.51 98.2
Log summary 6,182 67 0.01 1.6
Planning 237 119 0.001 0.2
Feedback 294 123 0.001 0.2
Total (evaluation) 212,586 42,221 0.52 100.0

One-off setup
AGENT KB construction 5,140,655 768,270 10.88 –

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Table 7: Per-instance cost for SWE-bench lite when AGENT KB supplies hints (GPT-4.1). Max
steps per issue fixed at 100. Token counts are per issue. Token pricing follows the same schedule as
Table 6.

Hint source Prompt tokens Completion tokens Cost (USD) Hint length

RepoClassBench 6,543 912 0.0078 90
RepoClassBench (refine) 4,217 508 0.0028 130
Top-n SWE-Gym 2,847 296 0.0019 60
Top-n RepoClassBench 3,129 402 0.0021 70
Average 4,184 530 0.0037 88

E EXAMPLES

This section provides concrete examples and demonstrations of how AGENT KB processes differ-
ent types of queries and workflows. We present detailed execution examples and comprehensive
illustrations of the system’s capabilities across various domains and task types.

E.1 EXECUTION EXAMPLE

Initially, the AGENT KB independently processed a query, leveraging its internal retrieval mechanisms
to summarize relevant information. This initial processing led to the generation of a preliminary
plan. As part of this plan, the AGENT KB initiated a search for the two most commonly associated
chemicals. However, the search successfully retrieved the European Community (EC) number for
only one of these chemicals, as the other was not an enzyme. Based on this incomplete retrieval, the
AGENT KB incorrectly concluded that the true answer was solely confined to entry "3.1.3.1," leading
to two sequential and erroneous returns.

Subsequently, the feedback stage provided a more explicit and refined planning directive, offering a
clearer understanding of the task trajectory and expected outcome with fewer steps. It clarified that
the question pertained explicitly to enzymes, since only enzymes have EC numbers. As a result, the
AGENT KB would no longer search for non-enzyme chemicals in the first place, and it would avoid
mistakenly returning a "no correct answer" response in the following steps. This guidance helped the
AGENT KB overcome the limitations of its initial independent processing and enabled it to retain and
utilize the corrected context.

AGENT KB - User Question

What are the EC numbers of the two most commonly used chemicals for the virus
testing method in the paper about SPFMV and SPCSV in the Pearl Of Africa from
2016? Return the semicolon-separated numbers in the order of the alphabetized
chemicals.

AGENT KB - Reason the question to get suggestion

EC numbers; virus testing method; SPFMV; SPCSV; Pearl Of Africa; 2016 paper;
commonly used chemicals; chemical alphabetization

AGENT KB - Retrieve from AgentKB

Similar task: During studies of the phage genome database, the researchers
identified an operon......
Suggestions: Explicitly map experimental design to logical variables—use data
frames or grid tables for clarity......

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

AGENT KB - Initial Plan after refinement

1. Identify the specific 2016 paper on SPFMV and SPCSV in Uganda.
2. Retrieve the full text using inspect_file_as_text or search agent.
3. Check the methodology section for the virus testing method (e.g., ELISA).
4. Extract chemicals used, focusing on enzymes.
5. Determine the two most commonly used ones.
6. Alphabetize the chemical names.
7. Look up their EC numbers using BRENDA, ExplorEnz, etc.
8. Verify EC number correctness.
9. Return EC numbers in the correct order, separated by a semicolon.

AGENT KB - Model Prediction

3.1.3.1;3.1.3.1

AGENT KB - Retrieve from AgentKB

Similar task: Which of the following peptides has been found to bind or is
highly likely to bind an integrin receptor in an in vitro assay......
Suggestions: Always decompose the question to clarify the biological context
and functional motifs encountered in sequence-based tasks......

AGENT KB - feedback stage’s suggestion

1. Search for the paper using keywords like "SPFMV", "SPCSV", "Pearl of
Africa", and "2016".
2. Identify the virus detection method (typically ELISA) and the enzymes used
in the labeling step......

AGENT KB - New Plan

1. Use compact keywords to Search for the 2016 paper on SPFMV and SPCSV in
Pearl of Africa.
2. Review the method section to find the virus detection technique and the
two enzymes.
3. Look up EC numbers from BRENDA or ExPASy.
4. Alphabetize enzyme names.
5. Return EC numbers joined by a semicolon.

AGENT KB - Model Thought

I suspect the two most common enzymes for virus detection are alkaline
phosphatase and horseradish peroxidase. Their EC numbers are:
* Alkaline phosphatase: 3.1.3.1
* Horseradish peroxidase: 1.11.1.7
Alphabetically, alkaline phosphatase comes first.
So I will return: 3.1.3.1;1.11.1.7

AGENT KB - Final Output (Code)

answer = "3.1.3.1;1.11.1.7"
final_answer(answer)

AGENT KB - Observation

Last output from code snippet:
3.1.3.1;1.11.1.7

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

E.2 COMPREHENSIVE EXAMPLES

This section provides concrete examples of how AGENT KB processes and stores different types of
agent experiences. We demonstrate three key components: SWE-bench workflow examples showing
problem-solution pairs, raw execution logs transformed into structured experiences, and complex
multi-constraint query processing.

E.2.1 AN EXAMPLE ON SWE-BENCH

The following examples illustrate how AGENT KB stores and retrieves domain-specific knowledge for
software engineering tasks from the SWE-bench dataset. Each example shows a problem description
paired with relevant guidance retrieved from AGENT KB, demonstrating the system’s ability to
provide contextual assistance for code debugging and modification tasks.

AGENT KB - Problem Description

In the project that automatically generates API documentation for Python
projects, an extra backslash is inserted before underscores—for example, hello_
is rendered as hello_

AGENT KB - Retrieve from AgentKB

Check the string processing part in the relevant functions to ensure that
escape is only carried out when necessary. For example, whether all parameters
ending with _ need to be escaped, or whether different handling methods are
required in certain specific contexts (such as attribute names, parameter
names, etc.).
When modifying conditions, not only the original conditions should be taken
into account, but also factors such as configuration and context should be
combined to ensure the accuracy of the logic.

AGENT KB - Problem Description

Disabling evaluation globally with with evaluate(False) interferes with
sympify’s string-parsing logic, preventing some integer expressions from being
instantiated as integer objects.

AGENT KB - Retrieve from AgentKB

When adding or modifying a conditional check (such as for ’evaluate’ or
imaginary coordinates), ensure the logic does not inadvertently skip important
validation for invalid inputs (such as actual imaginary numbers), and only
disables overly strict checks for valid real inputs. This is critical to
maintain mathematical correctness while fixing the bug. (Most important)
When changing the logic in constructors (like Point/Point2D), verify that the
minimal change solves the immediate bug, does not introduce new regressions,
and does not allow forbidden cases (e.g., actual imaginary coordinates)

These examples demonstrate AGENT KB’s ability to provide targeted guidance for common software
engineering challenges. The first example addresses API documentation generation issues related
to string escaping, while the second focuses on debugging a symbolic mathematics library. Notice
how the retrieved knowledge provides specific, actionable advice rather than generic troubleshooting
steps.

E.2.2 RAW LOG TO EXPERIENCE GENERATION

This subsection demonstrates the complete pipeline for transforming raw agent execution logs into
structured knowledge that can be stored in AGENT KB. This process is crucial for the system’s
learning capability, allowing successful problem-solving strategies to be captured and reused.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Raw Log Example The following demonstrates how agent execution logs are processed and trans-
formed into structured experiences for AGENT KB. This particular example shows a bioinformatics
task involving protein structure analysis, where the agent had to adapt its approach when encountering
unexpected file formats.� �

1 {
2 "agent_name": "gpt-4.1",
3 "question": "Using the Biopython library in Python, parse the PDB file of the

protein identified by the PDB ID 5wb7 from the RCSB Protein Data Bank. Calculate
the distance between the first and second atoms as they are listed in the PDB
file. Report the answer in Angstroms, rounded to the nearest picometer.",

4 "prediction": "1.46",
5 "true_answer": "1.456",
6 "intermediate_steps": [
7 {
8 "task": "You have one question to answer...",
9 "step_type": "task"

10 },
11 {
12 "facts": "Here are the facts that I know so far...",
13 "plan": "Here is the plan of action that I will follow...",
14 "step_type": "planning"
15 },
16 {
17 "tool_calls": [{"id": "call_1", "type": "function", "function": {"name":

"python_interpreter", "arguments": "..."}}],
18 "error": {"type": "AgentExecutionError", "message": "Code execution failed..."},
19 "step_type": "action"
20 }
21]
22 }� �

Listing 1: Raw Agent Execution Log

Key Insights These examples collectively demonstrate several important aspects of AGENT KB’s
design and functionality:

1. Domain Adaptation: The system successfully captures domain-specific knowledge across
different fields (software engineering, bioinformatics, biographical research), showing its
general applicability.

2. Error Recovery: Raw logs show how agents adapt when initial approaches fail, and these
adaptation strategies are preserved as valuable experiences for future use.

3. Precision Management: The system learns specific formatting and precision requirements,
crucial for tasks requiring exact numerical outputs.

4. Multi-Agent Coordination: Complex queries demonstrate how different agent roles (gen-
eral reasoning vs. specialized search) can be coordinated with distinct but complementary
planning strategies.

5. Source Validation: The emphasis on authoritative sources and cross-validation shows the
system’s commitment to reliability and accuracy in information gathering.

These examples illustrate how AGENT KB transforms individual agent experiences into a shared
knowledge resource that enhances the performance of the entire agent ecosystem.

From the raw log, the following agent experience is extracted:

Agent Experience

When calculating distance, extract only the first two ATOM coordinates directly without skipping any lines.
If the task asks for the distance in Ångströms, rounded to the nearest picometer, keep the original Å value
with three decimal places precision, without converting back and forth between Å and pm. Output the

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

distance directly in Ångströms, keeping the computed value with three decimals (e.g., x.xxx), do not round
it to fewer decimal places. The output is just the number without any units or symbols, such as x.xxx, not
x.xxx Ångströms.

E.2.3 COMPLEX QUERY PROCESSING EXAMPLE

Complex Query Example

Question: There’s this popular figure with multiple Grammy awards in the entertainment industry, who put
out their first album before 1969, had substance dependence, and was dismissed from school before they
turned 20. Their first life partner died in 1997. They became uniformed personnel at some point in their
lives. What’s the name of the hospital they died?
True Answer: St. John’s Health Center

Generated JSON Structure The following JSON structure shows how AGENT KB organizes
planning strategies and experiences for complex queries. The structure includes separate planning
approaches for different agent types (general agents vs. specialized search agents) and captures both
successful strategies and lessons learned from the task execution. This structured approach enables
systematic knowledge transfer and strategy refinement.� �

1 {
2 "question": "There’s this popular figure with multiple Grammy awards...",
3 "true_answer": "St. John’s Health Center",
4 "agent_planning": "1. Parse the question to extract all key constraints: multiple

Grammy awards, first album before 1969, substance dependence, dismissed from
school before age 20, first life partner died in 1997, served as uniformed
personnel, determine place/hospital of death.\n2. Conceptual plan:\n- Identify
the possible entertainers matching all constraints.\n- For each candidate:\n a)
Verify the timeline for first album release (before 1969)\n b) Check Grammy
history\n c) Search biographical records for substance abuse and educational
background\n d) Confirm information about life partner’s death year and
uniformed service\n e) Pinpoint the date and location/hospital of death of the
matched figure.",

5 "search_agent_planning": "1. Receive precise person identifier from Code Agent or
use biographical clues to triangulate the subject.\n2. Formulate search queries
for identification and specific hospital information.\n3. Prioritize official
biographical sources, reputable news outlets, Grammy records.\n4. Cross-check
critical data points to validate subject match.\n5. Extract facts about location
and hospital of death from obituaries.",

6 "agent_experience": [
7 "Break down multifaceted questions into smaller constraint checks",
8 "Explicitly log and verify biographical constraints with multi-source

confirmation",
9 "Select high-reliability sources for biographical and award data",

10 "Delegate to Search Agent early with specific sub-queries",
11 "Validate final answers by chaining all found facts back to original constraints"
12],
13 "search_agent_experience": [
14 "Decompose complex queries into sequential search refinements",
15 "Craft highly specific queries for ambiguous identifiers",
16 "Favor authoritative sources over entertainment/tabloid content",
17 "Cross-validate information from multiple independent sources",
18 "Format results with direct attribution and clear source references"
19]
20 }� �

Listing 2: Generated Agent Planning and Experience JSON

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

F COLLECTIONS OF USED PROMPTS

F.1 PROMPT DESIGN FOR AGENT KB CONSTRUCTION

F.1.1 GENERAL TASKS

AGENT KB Generation Prompt

You will act as an advanced AI evaluation system tasked with analyzing a
complex problem that an agent handles. Your analysis will extract valuable
insights from this process. Follow these instructions carefully:

1. I will provide a question and its correct answer (true_answer).

2. First, simulate the agent’s planning process in detail. Describe how it
would:
- Break down the problem into logical components
- Determine which tools to use (code execution, data processing, API calls)
- Decide when to delegate to the Search Agent
- Plan data transformations and analysis steps
- Structure the final solution
Include specific reasoning steps, potential code snippets considered, and
decision points. Only include content in the agent plan, without any other
description.

4. Next, based on the question and your simulated planning processes, create
a realistic error scenario. Describe:
- Where and how the agents might fail
- Incorrect assumptions they might make
- Data misinterpretations or code errors
- Logical flaws in their approach

5. Finally, provide actionable experience guidelines:
- Specific principles to improve problem-solving, tool selection, verification,
and integration of search results
The behavioral guidelines should be generalizable principles that would help
the agents perform better on similar tasks, without directly revealing the
specific answer to the question I provided.

Output your complete analysis in the following JSON format with no additional
text:
{
"question": "<question I provide>",
"true_answer": "<correct answer I provide>",
"agent_plan": "<your detailed Code Agent plan simulation>",
"agent_experience": "<your actionable Code Agent guidelines>",
}

Here is an example:

{
"question": "<question from hand-crafted experience pool>",
"true_answer": "<correct answer>",
"agent_plan": "<Real Code Agent plan>",
"agent_experience": "<Hand-crafted agent experience>",
}

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

F.1.2 GAIA

AGENT KB Generation Prompt

You will act as an advanced AI evaluation system tasked with analyzing a
complex problem handled by a Code Agent with an embedded Search Agent. Your
analysis will extract valuable insights from this process. Follow these
instructions carefully:

1. I will provide a question and its correct answer (true_answer).

2. First, simulate the Code Agent’s planning process in detail. Describe how
it would:
- Break down the problem into logical components
- Determine which tools to use (code execution, data processing, API calls)
- Decide when to delegate to the Search Agent
- Plan data transformations and analysis steps
- Structure the final solution
Include specific reasoning steps, potential code snippets considered, and
decision points. Only include content in the agent plan, without any other
description.

3. Next, simulate the Search Agent’s planning process in detail. Describe how
it would:
- Parse the search query requirements from the Code Agent
- Formulate effective search queries
- Determine which sources to prioritize
- Extract and validate relevant information
- Process and structure the search results for the Code Agent
Include specific query formulation strategies and information filtering
approaches. Only include content to search the agent plan, without any other
description.

4. Based on the question and your simulated planning processes, create a
realistic error scenario. Describe:
- Where and how the agents might fail
- Incorrect assumptions they might make
- Data misinterpretations or code errors
- Logical flaws in their approach

5. Finally, provide two sets of actionable experience guidelines:
- For the Code Agent: Specific principles to improve problem-solving, tool
selection, verification, and integration of search results
- For the Search Agent: Specific principles to enhance query formulation,
source evaluation, information extraction, and result formatting
The behavioral guidelines should be generalizable principles that would help
the agents perform better on similar tasks, without directly revealing the
specific answer to the question I provided.

Important: If the question does not require the search agent to solve, leave
"search_agent_plan" and "search_agent_experience" empty in your response.

Output your complete analysis in the following JSON format with no additional
text:
{
"question": "<question I provide>",
"true_answer": "<correct answer I provide>",
"agent_plan": "<your detailed Code Agent plan simulation>",

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

"search_agent_plan": "<your detailed Search Agent plan simulation>",
"agent_experience": "<your actionable Code Agent guidelines>",
"search_agent_experience": "<your actionable Search Agent guidelines>"
}

Here is an example:

{
"question": "<question from hand-crafted experience pool>",
"true_answer": "<correct answer>",
"agent_plan": "<Real Code Agent plan>",
"search_agent_plan": "<Real Search Agent plan>",
"agent_experience": "<Hand-crafted agent experience>",
"search_agent_experience": "<Hand-crafted search agent experience>"
}

F.1.3 SWE-BENCH

AGENT KB Generation Prompt

You are an advanced code repair analysis system tasked with constructing
structured experiences for Agent KB from SWE-bench tasks. Given a natural
language problem description, a model-generated fix, and supporting repair
hints, follow the steps below to extract reusable knowledge entries. Your
output should conform strictly to JSON formatting and follow the key structure
outlined in each step.

1. Code Reconstruction:
Given a detailed natural language description of a Python class or function,
generate its correct implementation. Ensure it is complete and syntactically
valid.
Output key: "code"

2. Error Analysis and Repair Principles:
You are given two versions of code: one with errors and one corrected. Analyze
the differences and identify key problems in the faulty version. Based on
this comparison, produce a list of 10 code repair precautions. These should
be generalizable principles addressing common issues (e.g., indentation, type
conversion, exception handling, logic errors). Avoid using titles; just
output the explanations.
Output key: "hints" (as a list of 10 strings)

3. Hint Classification:
Each natural language hint is used to prompt the LLM to repair the code.
Classify each hint into one repair category (e.g., "syntax", "logic",
"exception handling"). Also, extract important keywords and write a
one-sentence summary of the hint.
Output keys: "category", "keywords", "summary"

4. Repair Type Identification:
Given the original problem description, identify the {K} most relevant
categories this code repair case falls under. Select from a pre-defined set
of bug types.
Output key: "categories" (as a list of {K} strings)

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

5. Most Relevant Hints Ranking:
You are given a set of all the hints provided to the model. Analyze the model’s
generated fix and its reasoning trace. Based on this analysis, identify the
{N} most relevant hints. These may be either positively helpful or misleading.
Sort them in order of influence on the final patch.
Output key: "hints" (as a list of {N} strings)

Important Notes:
- Always respond strictly in JSON format.
- Do not include section titles, markdown formatting, or explanations.
- When code is requested, return only the code inside the JSON key.
- If any step is not applicable (e.g., hint classification not possible), return
an empty string or array for that field.

F.2 PROMPT DESIGN FOR AGENT KB PIPELINE

F.2.1 GAIA

AGENT KB Reason Prompt

Analyze similar tasks and past experiences to generate concise, actionable
suggestions for improving the current plan. Based on the patterns identified
in relevant tasks and insights from the Agent KB, provide specific
recommendations.

Key Requirements:
1. Focus exclusively on technical/behavioral improvements derived from similar
task patterns and experience.
2. Provide root-cause solutions and implementation strategies based on past
successes.
3. Format output strictly as:
{1. Specific suggestion 1}
{2. Specific suggestion 2}
...

No headings, explanations, or markdown.
You can refer to similar tasks, plans, and corresponding experience to provide
your suggestions:
{
"question": "<Question retrieved from Agent KB>",
"agent_plan": "<Retrieved agent plan>",
"agent_experience": "<Retrieved agent experience>",
}
...

AGENT KB Refine Prompt

Analyze the execution logs to determine the causes of the agent’s incorrect
responses. Based on the findings of the log and insights from the provided
similar tasks and experience, generate some concise, actionable suggestions
that the agent must follow to improve accuracy.

Key Requirements:
1. Focus exclusively on technical/behavioral fixes derived from log patterns
and the Agent KB.
2. Provide root-cause resolution (e.g., code logic, data validation, API

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

handling) as well as generic advice.
3. Format output strictly as:
{1. Specific suggestion 1}
{2. Specific suggestion 2}
...
No headings, explanations, or markdown.
You can refer to similar tasks and corresponding experience to provide your
suggestions:
{
"question": "<Question retrieved from Agent KB>",
"agent_plan": "<Retrieved agent plan>",
"agent_experience": "<Retrieved agent experience>",
}
...

Execution logs summary:
<Log summary>

F.2.2 SWE-BENCH

AGENT KB Reason Prompt

Extract key information from user queries to construct efficient search terms
for retrieving the most relevant results.
Requirements:
Analyze the user’s question to identify core concepts, terminology, and
keywords Extract contextual information and constraints that may impact
search quality Break down complex questions into searchable components

Identify the domain, subject matter, and specific needs of the question
Output format:
{<core concepts or topics of the question>}

Ensure search terms are specific enough to retrieve relevant information while
maintaining sufficient breadth to capture related cases. Combine technical
terminology with everyday expressions to optimize search effectiveness.

AGENT KB Retrieve Prompt

Given the current bug description, initial patch plan, and model thought
process, retrieve the most relevant historical experiences from Agent KB.
Retrieval Priorities:
1. Prefer experiences with similar bug types (e.g., off-by-one errors, null
pointer exceptions, wrong return value).
2. Favor patches with successful unit test outcomes and generalizable fix
patterns.
3. Include agent plans that show tool usage, exception guards, or correct
interface assumptions.

Format each retrieved experience as:
{
"question": "<SWE-bench issue title or commit description>",
"agent_plan": "<Historical high-level patch or thought process>",
"agent_experience": "<Failure modes avoided or debug strategies that worked>"
}
...

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

Retrieve 3 to 5 relevant entries and return them in the above format for use
in downstream reasoning and refinement.

AGENT KB Refine Prompt

Analyze the execution trace of the model’s patch attempt and identify the
reasons for its failure. You are given: a natural language description of
a code fix problem, the model-generated fix, the model’s internal thought
process, and the prompts previously provided to guide the model.
Based on this information, identify the most likely cause of the error and
determine which hints or prompt components influenced the model’s incorrect
reasoning. Rank the provided prompts in order of their influence over the
model’s behavior.
Key Requirements:
1. Focus exclusively on technical root causes, such as incorrect API
assumptions, scope misunderstanding, faulty patch structure, or missing
validation.
2. Identify which prompt(s) led the model astray, based on reasoning steps or
patch behaviors.
3. Output a strictly ranked list of prompts or hints, based on their importance
in shaping the erroneous behavior.
4. Justify the ranking based on model thought content and the specific failure
observed.

Format strictly as:
{
1. "<Most influential prompt or hint snippet>"
2. "<Second most influential prompt or hint snippet>"
...}

Do not include headings, explanations, or markdown. Focus only on returning
the ranked list with brief justifications inline.

G LANGUAGE MODEL USAGE

This section outlines the specific roles of large language models (LLMs) within our AGENT KB frame-
work and experimental methodology. We provide detailed documentation of all LLM applications for
transparency.

G.1 SYSTEM COMPONENTS

We employ LLMs in three core functions: (1) Experience synthesis using LLMs with few-shot
prompting to transform heterogeneous agent logs into standardized representations, (2) Knowledge
curation through LLM-based ranking when deduplicating similar entries (τ = 0.8 threshold), and
(3) Query processing for both task analysis in the Reason phase and experience adaptation in the
Refine phase.

G.2 EXPERIMENTAL SETUP

Agent Backbones. Our evaluation involves four distinct agent frameworks, each powered by differ-
ent LLM configurations: smolagents (GPT-4o, GPT-4.1, Claude-3.7, Qwen 3-32B, DeepSeek-R1),
OWL (GPT-4o), SWE-Agent (GPT-4.1, o3-mini), and OpenHands (GPT-4o, o3-mini, GPT-4.1,
Claude-3.7, Qwen 3-3B, DeepSeek-R1). The AGENT KB system acts as a model-agnostic memory
layer, interfacing through standardized APIs without requiring changes to agent architectures.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

Evaluation Methodology. Performance assessment relies solely on ground-truth task completion
metrics. We use exact match accuracy for GAIA reasoning tasks and test passage rates for SWE-bench
code repair, rather than LLM-generated evaluation scores.

G.3 MANUSCRIPT DEVELOPMENT

In line with conference transparency standards, we disclose that large language models assisted in
manuscript preparation through editorial tasks such as grammar correction, typo detection, and prose
clarity improvement. All technical contributions, experimental design, results interpretation, and
scientific claims are entirely authored by the researchers.

G.4 METHODOLOGICAL CONSIDERATIONS

Computational Overhead. LLM inference incurs measurable costs during experience construction
and retrieval. Cost analysis (Appendix D) estimates these overheads at $3.0 − −$4.5 per task, which
is acceptable considering the performance gains of 4.0–18.7 percentage points.

Architectural Independence. Although individual agent frameworks depend on specific LLMs,
AGENT KB maintains an architecture-agnostic design. Knowledge transfer across frameworks
happens via semantic embeddings and standardized action vocabularies, ensuring portability across
different model families and API interfaces.

31

