

000
001 AGENT KB: LEVERAGING CROSS-DOMAIN EXP-
002 RIENCE FOR AGENTIC PROBLEM SOLVING
003
004
005

006 **Anonymous authors**
007 Paper under double-blind review
008
009

010 ABSTRACT
011
012

013 AI agent frameworks operate in isolation, forcing agents to rediscover solutions
014 and repeat mistakes across different systems. Despite valuable problem-solving
015 experiences accumulated by frameworks like smolagents, OpenHands, and OWL,
016 this knowledge remains trapped within individual systems, preventing collective
017 intelligence emergence. Current memory systems focus on individual agents or
018 framework-specific demonstrations, failing to enable cross-architecture knowledge
019 transfer. We introduce AGENT KB, a universal memory infrastructure enabling
020 seamless experience sharing across heterogeneous agent frameworks without re-
021 training. AGENT KB aggregates trajectories into a structured knowledge base
022 and serves lightweight APIs. At inference time, hybrid retrieval operates through
023 two stages: planning seeds agents with cross-domain workflows, while feedback
024 applies targeted diagnostic fixes. A disagreement gate ensures retrieved knowledge
025 enhances rather than disrupts reasoning, addressing knowledge interference in
026 cross-framework transfer. We validate AGENT KB across major frameworks on
027 GAIA, Humanity’s Last Exam, GPQA, and SWE-bench. Results show substantial
028 improvements across diverse model families: compared to baseline pass@1, smo-
029 lagents with AGENT KB achieve up to 18.7pp gains at pass@3 (55.2% → 73.9%),
030 while OpenHands improves 4.0pp on SWE-bench pass@1 (24.3% → 28.3%). Simi-
031 lar improvements are observed across all base model families. Ablations confirm
032 that hybrid retrieval and feedback stages are essential, with automatically gener-
033 ated experiences matching manual curation. This establishes the foundation for
034 collective agent intelligence through shared memory infrastructures.
035

036 1 INTRODUCTION
037
038

039 Modern AI agents excel at complex reasoning and tool use (Chan et al., 2023; Hong et al., 2023; Guo
040 et al., 2024; Liu et al., 2025b; Zhou et al., 2023; 2024b), yet each framework operates in isolation,
041 unable to leverage solutions discovered by others. Current memory systems strengthen individual
042 agents (Xu et al., 2025; Packer et al., 2023; Hu & Ying, 2025) or synthesize framework-specific
043 demonstrations (Zheng et al., 2023; Tan et al., 2025), while cross-task approaches like Learn-by-
044 Interact (Su et al., 2025) and A-Mem (Xu et al., 2025) remain confined within single frameworks.
045 This fragmentation forces agents to solve identical problems and make the same mistakes repeatedly.
046

047 Enabling cross-framework knowledge sharing requires overcoming three fundamental challenges
048 that no existing system addresses simultaneously. **(1) Representation heterogeneity:** different
049 frameworks organize, encode, and abstract experiences in incompatible ways, which prevents direct
050 transfer or reuse. **(2) Context mismatch:** a solution effective in one tool ecosystem may be invalid
051 or incomplete when transplanted to another, due to differences in available APIs, reasoning protocols,
052 or execution environments. **(3) Knowledge interference:** naively injecting external experiences risks
053 destabilizing the agent’s own reasoning flow, producing incoherent plans or compounding errors.
054 Addressing these issues is crucial for building the first interoperable layer of shared memory that
055 enables agents to accumulate and reuse collective intelligence across diverse architectures. Figure 1
056 contrasts the baseline and AGENT KB-assisted workflows on a representative protein-distance task to
057 ground these challenges.
058

059 We introduce AGENT KB, the *first cross-framework plug-and-play knowledge base* that enables
060 seamless experience sharing across heterogeneous agent frameworks without retraining. By distilling
061

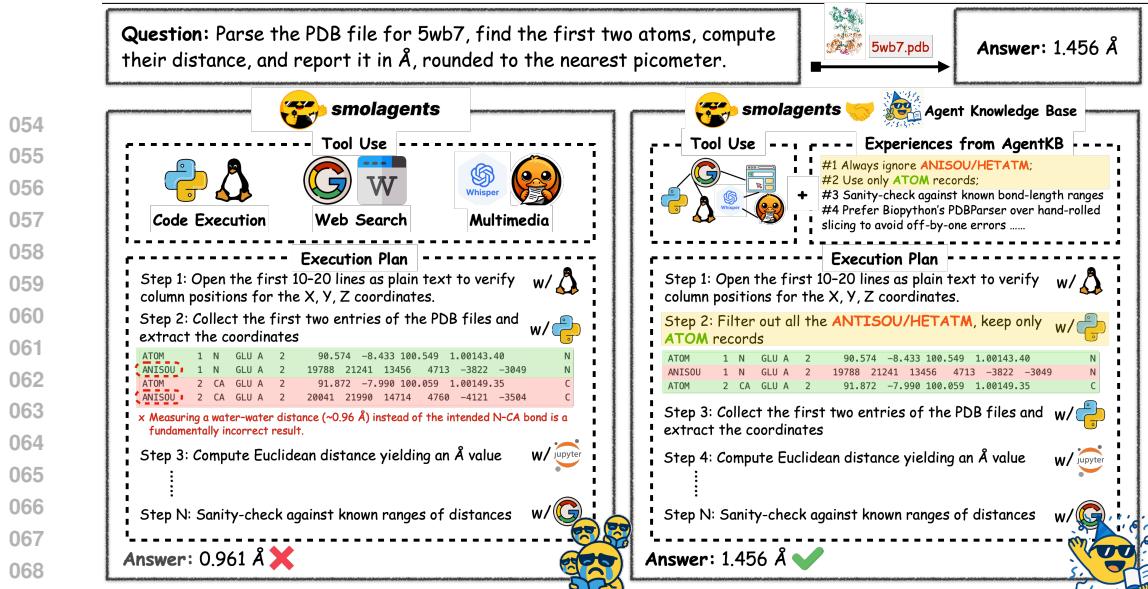


Figure 1: **Agent workflow comparison for PDB distance calculation with and without AGENT KB.** (A) **Original pipeline:** indiscriminately reads the first two ATOM/HETATM/ANISOU lines, often selecting solvent records and yielding a spurious O–H distance (0.961 \AA). (B) **AGENT KB-enhanced agent workflow:** applies experience-driven rules—filter out all ANISOU/HETATM, use only genuine ATOM entries in file order, and sanity-check against known N–CA bond-length ranges—to correctly extract the backbone N–CA pair and report the distance of 1.456 \AA .

heterogeneous agent trajectories into structured experience units through *framework-agnostic abstraction*, AGENT KB exposes them through lightweight APIs that seamlessly integrate with diverse frameworks, including smolagents (Zhu et al., 2025), OWL (Hu et al., 2025), SWE-Agent (Yang et al., 2024), and OpenHands (Wang et al., 2024a). This creates a continuously growing repository of collective intelligence. To address knowledge interference in cross-framework transfer, we introduce a novel *disagreement gate* mechanism that selectively integrates only coherent updates, ensuring stability and safety during knowledge integration.

Contributions. (1) We present the *first cross-framework plug-and-play knowledge base* that integrates with four representative open-source agent frameworks *without requiring retraining or architectural modifications*, demonstrating universal applicability across heterogeneous agent ecosystems. (2) We introduce a novel *disagreement gate mechanism* that addresses the critical challenge of knowledge interference in cross-framework transfer, ensuring stable integration of external experiences. (3) We develop a two-stage retrieval system that enables both planning guidance and feedback-driven refinement while maintaining framework compatibility. (4) We provide comprehensive empirical validation across four distinct agent frameworks on GAIA (Mialon et al., 2023), Humanity’s Last Exam (Bio/Chem)¹ (Skarbinski et al., 2025), GPQA (Rein et al., 2024), and SWE-bench (Jimenez et al., 2023), establishing the first systematic study of cross-framework knowledge transfer effectiveness.

Evaluation across reasoning and software engineering tasks demonstrates that AGENT KB consistently boosts diverse agent–model combinations. On GAIA, smolagents improve by up to 18.7pp at pass@3 ($55.2\% \rightarrow 73.9\%$), while on SWE-bench Lite, OpenHands gains 4.0pp at pass@1 ($24.3\% \rightarrow 28.3\%$). On HLE, OpenHands outperforms specialized systems ($9.5\% \rightarrow 14.1\%$ at pass@3) and on GPQA, it improves GPT-4.1 from 62.6% to 72.7%. Similar trends appear for both open-source models (Qwen, DeepSeek) and proprietary backbones (GPT, Claude), underscoring the broad applicability of our approach. Ablations further show that automatically distilled experiences perform on par with hand-curated ones, confirming AGENT KB as a scalable path toward collective agent intelligence.

2 RELATED WORK

2.1 AGENTIC MEMORY SYSTEMS

Memory systems have progressed from simple storage to advanced architectures that support complex reasoning (Piao et al., 2025; Zeng et al., 2024; Liu et al., 2025b; Du et al., 2025; Wu et al., 2025b; Zhang et al., 2025), though current systems still struggle with managing large amounts of information and transferring knowledge (Wang et al., 2024c). Earlier systems embedded knowledge in a latent space (Wang et al., 2024b), while newer, more organized approaches have adopted graph-based and hierarchical frameworks (Xu et al., 2025; Anokhin et al., 2024; Packer et al., 2023; Hu & Ying, 2025). Improving retrieval beyond basic RAG (Lewis et al., 2020a;b) includes various innovations for

¹<https://huggingface.co/datasets/futurehouse/hle-gold-bio-chem>

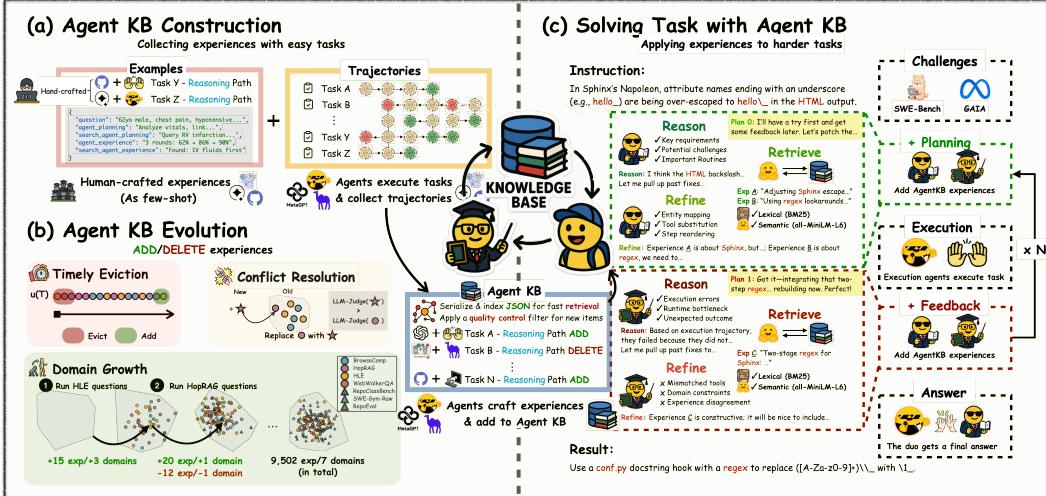


Figure 2: **End-to-end workflow of AGENT KB.** (a) **Construction:** heterogeneous agent trajectories and few-shot human seeds are abstracted into structured experiences and indexed in the AGENT KB. (b) **Evolution:** AGENT KB expands across domains through addition, conflict resolution, and timely eviction, maintaining quality while scaling. (c) **Solving tasks:** agents apply a two-stage **Reason-Retrieve-Refine** loop, planning with retrieved workflows and refining via feedback.

indexing, temporal cues, semantic tagging, and chunking strategies (Huang et al., 2025b; Gutiérrez et al., 2024; Liu et al., 2025a; Salama et al., 2025; Hu et al., 2024). These methods have also evolved to incorporate neuroscience inspiration or multi-agent variants (Ye, 2025; Wang et al., 2025; Squire et al., 2015; Wang et al., 2024d; Zhu et al., 2024; Qiao et al., 2024; Xu et al., 2024; Chen et al., 2025; Ganguli et al., 2025; Lv et al., 2024; Shuster et al., 2021; Niu et al., 2024; Mala et al., 2025). Despite improvements, existing approaches face significant limitations: they are primarily tailored for single agents, retain separate memory systems that prevent shared knowledge, and lack ways to reuse experiences across different areas, which makes them vulnerable in new or unfamiliar contexts.

2.2 AGENTIC KNOWLEDGE TRANSFER

Alongside memory infrastructures, another research area condenses agent trajectories into workflow priors that guide future problem solving: retrieval-based systems (Zheng et al., 2023; Zhou et al., 2024a) stabilize tool use with exemplar traces, mined sub-workflows support reuse across tasks (Wang et al., 2024d), and templating pipelines refine plans within narrow families (Tan et al., 2025; Liu et al., 2025e). Knowledge-augmented and collaborative planners extend these ideas with structured repositories (Zhu et al., 2024; Qiao et al., 2024; Liu et al., 2025c), yet efforts for multi-agent memory still maintain siloed stores even when coordination leverages in-context learning or RAG (Lu et al., 2023; Zhong et al., 2024; Glocker et al., 2025). Early evidence shows that cross-agent transfer depends on experience quality and stronger-to-weaker sharing (Shah et al., 2025; Zhao et al., 2025; Alakuijala et al., 2025), while visions for lifelong cognition call for AI-native, adaptive, evaluable, case-based infrastructures that jointly encode problem patterns, workflows, metadata, and relational structure (Wang et al., 2024c; Wei et al., 2025b; Pink et al., 2025; Hatalis et al., 2025). AGENT KB abstracts heterogeneous trajectories into hierarchical experience units and couples them with hybrid retrieval, seeding planning with cross-domain workflows, and injecting feedback corrections to enable transfer across divergent tasks. Although recent reviews of case-based reasoning for LLM agents (Hatalis et al., 2025) emphasize the classic **Retrieve-Reuse-Revise-Retain** cycle, our framework restructures it as a **Reason-Retrieve-Refine** loop with write-back across agents. In parallel, systems such as DSPy (Khattab et al., 2023) offer prompt declarative programming for task workflows; AGENT KB is complementary, providing a reusable cross-framework memory layer that can be integrated beneath DSPy or similar pipelines to capture and transfer execution knowledge.

3 METHODOLOGY

3.1 OVERVIEW

AGENT KB enables agents to learn from collective experiences across tasks and frameworks by capturing execution traces and abstracting them into reusable experiences. When facing new tasks, agents retrieve relevant past experiences to guide the refinement of planning and execution, transforming individual interactions into shared, cumulative intelligence. Our approach operates through two key stages: initial solution planning, which utilizes past experiences, and feedback-driven execution

162 improvements, both employing the same **Reason-Retrieve-Refine** structure but with different query
 163 formulations: the first targeting task descriptions and the other execution feedback patterns.
 164

165 To ensure framework-agnosticism, AGENT KB standardizes the experience schema and provides
 166 lightweight REST endpoints to submit and retrieve experiences. This enables heterogeneous agents to
 167 contribute and consume the same knowledge base without requiring architectural changes, allowing
 168 the sharing and reuse of high-quality entries that collectively build intelligence across the ecosystem.
 169

3.2 SELF-EVOLVING AGENT KB

170 **Experience Representation.** We transform agent execution logs into structured experiences through
 171 human-guided abstraction:
 172

$$E = (\pi, \gamma, S, \mathcal{C}) \quad (1)$$

173 where π is the task embedding via all-MiniLM-L6-v2 from sentence-transformers, γ encodes
 174 goal constraints as structured predicates, $S = \{(a_i, r_i)\}$ stores action-reasoning pairs, and \mathcal{C} carries
 175 metadata for cross-framework compatibility. Abstraction is done with few-shot prompting (10–15
 176 human-curated exemplars per domain) and standardized action vocabularies across frameworks
 177 (e.g., smolagents (Zhu et al., 2025), OWL (Hu et al., 2025), SWE-Agent (Yang et al., 2024),
 178 OpenHands (Wang et al., 2024a)). Full construction details appear in Appendix B, while the prompt
 179 templates are compiled in Appendix F with general generation patterns in Appendix F.1 and pipeline
 180 variants in Appendix F.2.
 181

182 **Self-Evolving Memory.** The memory evolves through addition, deduplication, and eviction
 183 (Fig. 2b). AGENT KB grows as diverse agent frameworks contribute execution experiences, creating
 184 cumulative intelligence that expands both coverage and generalization capability between domains.
 185 When a candidate is highly similar to existing entries $\max_{\pi' \in \mathcal{E}} \cos(\pi, \pi') > \tau$ (default $\tau = 0.8$), an
 186 LLM ranker compares reasoning quality, completeness, and transferability to keep the superior entry,
 187 preventing redundancy. Under memory pressure, experiences follow an adaptive eviction policy with
 188 a learned utility score that balances recency, frequency, and cross-framework transferability. Each
 189 experience E_j maintains $u_j \leftarrow u_j + \eta(r_j - u_j)$, where r_j is the reward signal (e.g., retrieval success
 190 or execution gain) and η is a learning rate. Low-utility entries are evicted, yielding dynamic memory
 191 allocation that preserves high-value cross-domain knowledge.
 192

3.3 EXECUTION VIA **Reason-Retrieve-Refine**

193 As shown in Fig. 2c, AGENT KB intercepts reasoning at *planning* and *feedback* stages while leaving
 194 the base agent unchanged. Retrieved experiences are adapted through the **Reason-Retrieve-Refine**
 195 cycle.
 196

197 **Retrieval Pipeline.** Retrieval uses two complementary filters: (1) lexical retrieval (BM25) to
 198 shortlist candidates with domain/tool compatibility, and (2) semantic ranking by task similarity via
 199 all-MiniLM-L6-v2 embeddings. We also support a calibrated hybrid fusion (default $\alpha = 0.5$) of the
 200 two scores:
 201

$$\sigma_i^{\text{hyb}} \leftarrow \alpha \cdot \tilde{\sigma}_i^{\text{text}} + (1 - \alpha) \cdot \tilde{\sigma}_i^{\text{sem}}, \quad \alpha \in [0, 1].$$

202 After reranking, the top- k candidates are deduplicated before refinement.
 203

Planning Stage. The system applies the **Reason-Retrieve-Refine** cycle to the incoming task
 204 description to generate a preliminary execution plan. In the **Reason** step, it surfaces key requirements
 205 and potential challenges, producing structured queries that target reusable subroutines or successful
 206 completion patterns. The **Retrieve** step then selects past experiences via the hybrid similarity scorer,
 207 providing candidate trajectories. Rather than direct reuse, these candidates are adapted in the **Refine**
 208 step: abstract action patterns are aligned with currently available tools and APIs using metadata \mathcal{C}
 209 for cross-framework compatibility. When multiple experiences are retrieved, the system synthesizes
 210 them into a coherent workflow by applying *entity mapping*, *tool substitution*, and *step reordering*
 211 to satisfy domain-specific constraints—enabling cross-framework compatibility without sacrificing
 212 execution fidelity. The final output is an executable plan ρ , which is returned to the agent framework
 213 for execution in its native environment.
 214

Feedback Stage After initial execution, AGENT KB re-engages through a second **Reason-Retrieve-Refine**
 215 cycle. In the **Reason** step, it analyzes execution traces to identify errors, bottlenecks, or
 unexpected outcomes. The **Retrieve** step then produces queries derived from these traces, rather than
 216

task descriptions, that favor experiences that document successful refinements in similar contexts. In the **Refine** step, candidate fixes are adapted to live execution, taking into account domain constraints and observed errors. To ensure safety, we introduce a *disagreement gate*:

$$\mathcal{G}(\rho, \rho') = \mathbb{1}[\cos(\phi(\rho), \phi(\rho')) \geq \beta],$$

where ρ is the original plan, ρ' the refined one, ϕ is implemented as all-MiniLM-L6-v2 embeddings, and $\beta = 0.8$ by default. Only refinements with $\mathcal{G}(\rho, \rho') = 1$ are applied.

4 EXPERIMENT

4.1 SETUP

Dataset We benchmark AGENT KB on four suites covering reasoning and software engineering. GAIA (Mialon et al., 2023) contributes 165 tasks: 53 Level 1 (factual lookup), 86 Level 2 (multi-step reasoning), and 26 Level 3 (analysis and synthesis). The cleaned biology & chemistry subset provides 149 tasks needing multimodal reasoning with scientific images and tools. GPQA (Rein et al., 2024) offers 198 graduate-level MCQs in physics, chemistry, and biology, requiring experts. Both GAIA and HLE support web browsing, file I/O, and tools within standard limits, whereas GPQA focuses on reasoning without the use of external tools. Benchmarks are reported with pass@1, pass@2, and pass@3 accuracy. SWE-bench Lite (Jimenez et al., 2023) comprises 300 GitHub issues across Python repositories; success is tested with 50- and 100-iteration limits for reproducibility. It restricts network access and limits operations to those within the repository. These benchmarks show how knowledge refinement affects reasoning (GAIA, HLE, GPQA) and software engineering (SWE-bench).

AGENT KB Construction. We bootstrap AGENT KB with 80 seed trajectories written by five computer-science graduate students (60 BrowseComp/HopRAG-style browsing traces and 20 SWE-Gym-style coding logs). These curated demonstrations are never retrieved directly; instead they guide automatic rollouts executed by smolagents (Zhu et al., 2025), OWL (Hu et al., 2025), SWE-Agent (Yang et al., 2024), and OpenHands (Wang et al., 2024a) across BrowseComp (Wei et al., 2025a), HopRAG (Liu et al., 2025d), HLE² (Phan et al., 2025), WebWalkerQA (Wu et al., 2025a), RepoClassBench (Deshpande et al., 2024), SWE-Gym-Raw (Pan et al., 2024), and RepoEval (Zhang et al., 2023). We normalize both successful and failed runs into structured experience units, yielding roughly 9k workflow summaries and 7k execution snippets before evaluation. This mix equips the memory with reusable plans for each modality and the diagnostic traces in later passes (Appendix A).

Model Configurations We attach the same AGENT KB instance to all planners through lightweight RPC calls so that experiences gathered in one framework are *instantly available to the others*, demonstrating true cross-framework knowledge transfer. GAIA experiments use smolagents (backed by GPT-4o, GPT-4.1, Claude-3.7, Qwen-3 32B, and DeepSeek-R1) and OWL (GPT-4o); SWE-bench Lite is evaluated with SWE-Agent (GPT-4.1, o3-mini) and OpenHands (GPT-4o, GPT-4.1, Claude-3.7, Qwen-3 32B, DeepSeek-R1, o3-mini). Each benchmark instance is solved in three sequential passes: pass@1 retrieves cross-task experiences without exposure to held-out labels, pass@2 enriches AGENT KB with failure diagnoses from the first attempt, and pass@3 revisits unresolved cases using the expanded retrieval pool. Unless otherwise stated, we fix the base model to GPT-4.1, the temperature to 1.0, and the retrieval top- k to 3, mirroring the setting used for Figure 3. We estimate budget caps assuming OpenAI pricing (\$1.36/M prompt, \$5.44/M completion tokens); see Appendix D for detailed cost analysis.

4.2 MAIN RESULTS

Table 1 shows that AGENT KB delivers consistent gains across *heterogeneous* agent stacks and model families on GAIA. With smolagents, GPT-4.1 rises from 55.2% to 73.9% pass@3 accuracy (+18.7), with the largest lift at Level 2 (53.5% \rightarrow 73.3%, +19.8). The more capable Claude-3.7 backbone reaches 75.2% pass@3 and adds 19.2 on Level 3 (38.5% \rightarrow 57.7%), matching or exceeding closed-source systems such as h2oGPTe (63.6%). Relative to A-Mem (Xu et al., 2025), which lifts GPT-4o smolagents to 69.1%, AGENT KB attains 73.9% with the same planner, indicating hybrid retrieval extracts more value from each pass. OWL with GPT-4o also benefits: accuracy improves by 20.0 overall (43.6% \rightarrow 63.6%) and retains gains on the most challenging questions (30.8% \rightarrow 38.5%).

On SWE-bench Lite, Table 2b highlights similar trends. GPT-4.1 paired with SWE-Agent improves from 24.3% to 38.0% at 50 iterations and 42.3% under 100 iterations. OpenHands sees

²We deliberately removed the biology & chemistry subset from Humanity’s Last Exam as a test set.

Table 1: Results on GAIA benchmark (val set). We report pass@1 for all standard baselines. For methods that build on top of a base framework (A-MEM (Xu et al., 2025) and AGENT KB), we present the baseline alongside the improvements achieved by each enhanced variant.

Method	Models	Config	Average	Level 1	Level 2	Level 3
Agentic Model						
Search-ol-32B (Li et al., 2025a)	Qwen-3	pass@1	39.8	53.8	34.6	16.7
WebThinker-32B-RL (Li et al., 2025b)	Qwen-3	pass@1	48.5	56.4	50.0	16.7
Closed-source Frameworks						
TrasceAgent (Trasce, 2024)	Claude-3.5	pass@1	70.3	83.0	69.8	46.2
Deep Research (OpenAI, 2024)	Unknown	pass@1	67.4	74.3	69.1	47.6
h2oGPTe (H2O.ai, 2024)	Claude-3.5	pass@1	63.6	67.9	67.4	42.3
Desearch (AI, 2024)	GPT-4o	pass@1	57.0	71.7	58.1	23.1
Alita (Qiu et al., 2025)	Claude-3.7	pass@1	72.7	81.1	75.6	46.2
Open-source Frameworks						
OWL (Hu et al., 2025)	o3-mini	pass@1	60.6	81.1	58.1	26.9
TapeAgents (Bahdanau et al., 2024)	Claude-3.7	pass@1	55.8	71.7	53.5	30.8
AutoAgent (Tang et al., 2025)	Claude-3.5	pass@1	55.2	71.7	53.4	26.9
Magnetic-1 (Fourney et al., 2024)	o1	pass@1	46.1	56.6	46.5	23.1
FRIDAY (Wu et al., 2024b)	GPT-4 turbo	pass@1	34.6	45.3	34.9	11.5
smolagents (Roucher et al., 2025)	GPT-4o	pass@1	43.6 → 57.0 <small>↑13.4</small>	52.8 → 71.7 <small>↑18.9</small>	41.9 → 57.0 <small>↑15.1</small>	30.8 → 26.9 <small>↓3.9</small>
~+A-MEM (Xu et al., 2025)		pass@2	53.9 → 64.2 <small>↑10.3</small>	64.2 → 83.0 <small>↑18.9</small>	53.5 → 64.0 <small>↑10.5</small>	34.6 → 26.9 <small>↓7.7</small>
		pass@3	57.0 → 69.1 <small>↑12.1</small>	69.8 → 86.8 <small>↑17.0</small>	55.8 → 69.8 <small>↑14.0</small>	34.6 → 30.8 <small>↓3.8</small>
smolagents (Roucher et al., 2025)	GPT-4.1	pass@1	55.2 → 61.2 <small>↑6.1</small>	67.9 → 79.3 <small>↑11.3</small>	53.5 → 58.1 <small>↑4.7</small>	34.6 → 34.6 <small>↑0.0</small>
~+AGENT KB		pass@2	61.8 → 67.3 <small>↑5.5</small>	73.6 → 83.0 <small>↑9.4</small>	62.8 → 67.4 <small>↑4.7</small>	34.6 → 34.6 <small>↑0.0</small>
		pass@3	68.5 → 73.9 <small>↑5.5</small>	77.4 → 84.9 <small>↑7.6</small>	68.6 → 73.3 <small>↑4.7</small>	50.0 → 53.9 <small>↑3.9</small>
smolagents (Roucher et al., 2025)	Claude-3.7	pass@1	58.8 → 65.5 <small>↑6.7</small>	64.2 → 75.5 <small>↑11.3</small>	61.6 → 66.3 <small>↑4.7</small>	38.5 → 38.5 <small>↑0.0</small>
~+AGENT KB		pass@2	63.6 → 69.7 <small>↑6.1</small>	77.4 → 79.3 <small>↑1.9</small>	61.6 → 69.8 <small>↑8.1</small>	42.3 → 50.0 <small>↑7.7</small>
		pass@3	72.7 → 75.2 <small>↑2.4</small>	81.1 → 84.9 <small>↑3.8</small>	74.4 → 74.4 <small>↑0.0</small>	50.0 → 57.7 <small>↑7.7</small>
OWL (Hu et al., 2025)	GPT-4o	pass@1	43.6 → 52.7 <small>↑9.1</small>	52.8 → 64.2 <small>↑11.3</small>	41.9 → 54.7 <small>↑12.8</small>	30.8 → 23.1 <small>↓7.7</small>
~+AGENT KB		pass@2	53.9 → 60.6 <small>↑6.7</small>	64.2 → 75.5 <small>↑11.3</small>	53.5 → 61.6 <small>↑8.1</small>	34.6 → 26.9 <small>↓7.7</small>
		pass@3	57.0 → 63.6 <small>↑6.7</small>	69.8 → 79.3 <small>↑9.4</small>	55.8 → 61.6 <small>↑5.8</small>	34.6 → 38.5 <small>↑3.8</small>

Table 2: Results on multiple benchmarks. We report baseline pass@1 and AGENT KB-enhanced variants.

(a) SWE-bench Lite (Jimenez et al., 2023) (300 instances) with max iterations of 50 and 100.

Method	Models	Success Rate (%)		Budget Cap
		Max Iter 50	Max Iter 100	
SWE-agent (Yang et al., 2024)		24.3	27.0	\$3.0
pass@1 +AGENT KB	GPT-4.1	31.7 <small>↑7.4</small>	35.3 <small>↑8.3</small>	\$3.0
pass@2 +AGENT KB		36.7 <small>↑12.4</small>	38.0 <small>↑11.0</small>	\$3.0
pass@3 +AGENT KB		38.0 <small>↑13.7</small>	42.3 <small>↑15.3</small>	\$3.0
OpenHands (Wang et al., 2024a)		24.3	28.7	\$4.5
pass@1 +AGENT KB	GPT-4.1	28.3 <small>↑4.0</small>	31.7 <small>↑3.0</small>	\$4.5
pass@2 +AGENT KB		37.3 <small>↑13.0</small>	42.3 <small>↑13.7</small>	\$4.5
pass@3 +AGENT KB		38.7 <small>↑14.3</small>	45.7 <small>↑17.0</small>	\$4.5
OpenHands		30.0	41.3	\$4.5
pass@1 +AGENT KB	Claude-3.7	46.7 <small>↑16.7</small>	48.3 <small>↑7.0</small>	\$4.5
pass@2 +AGENT KB		49.7 <small>↑19.7</small>	51.7 <small>↑10.3</small>	\$4.5
pass@3 +AGENT KB		51.0 <small>↑21.0</small>	53.3 <small>↑12.0</small>	\$4.5

(b) GAIA (Mialon et al., 2023) (165 instances) with pass@1 baseline and AGENT KB-enhanced variants.

Method	Models	Accuracy (%)		
		Avg	L1	L2
OWL (Hu et al., 2025)		43.6	52.8	41.9
pass@1 +AGENT KB	GPT-4o	52.7 <small>↑9.1</small>	64.2 <small>↑11.3</small>	54.7 <small>↑12.8</small>
pass@2 +AGENT KB		60.6 <small>↑6.7</small>	75.5 <small>↑11.3</small>	61.6 <small>↑8.1</small>
pass@3 +AGENT KB		63.6 <small>↑6.7</small>	79.3 <small>↑9.4</small>	61.6 <small>↑5.8</small>
smolagents (Roucher et al., 2025)		55.2	67.9	53.5
pass@1 +AGENT KB	GPT-4.1	61.2 <small>↑6.1</small>	79.3 <small>↑11.3</small>	58.1 <small>↑4.7</small>
pass@2 +AGENT KB		67.3 <small>↑5.5</small>	83.0 <small>↑9.4</small>	67.4 <small>↑4.7</small>
pass@3 +AGENT KB		73.9 <small>↑5.5</small>	84.9 <small>↑7.6</small>	73.3 <small>↑4.7</small>
smolagents		58.8	64.2	61.6
pass@1 +AGENT KB	Claude-3.7	65.5 <small>↑6.7</small>	75.5 <small>↑11.3</small>	66.3 <small>↑4.7</small>
pass@2 +AGENT KB		69.7 <small>↑6.1</small>	79.3 <small>↑11.9</small>	69.8 <small>↑8.1</small>
pass@3 +AGENT KB		75.2 <small>↑2.4</small>	84.9 <small>↑3.8</small>	74.4 <small>↑0.0</small>
				57.7 <small>↑7.7</small>

(c) Humanity’s Last Exam (Bio/Chem) (Skarlinski et al., 2025) (149 instances) with pass@1 baseline and AGENT KB-enhanced variants.

Method	Models	Accuracy (%)
AutoGen (Wu et al., 2024a)	GPT-4.1	7.4
SciMaster (Chai et al., 2025)	GPT-4.1	9.5
Biomni (Huang et al., 2025a)	GPT-4.1	10.7
OpenHands (Wang et al., 2024a)		9.5
pass@1 +AGENT KB		10.1 <small>↑0.7</small>
pass@2 +AGENT KB	GPT-4.1	12.1 <small>↑2.7</small>
pass@3 +AGENT KB		14.1 <small>↑4.7</small>

(d) GPQA benchmark (Rein et al., 2024) (198 instances) with pass@1 baseline and AGENT KB-enhanced variants.

Method	Models	Accuracy (%)
	o3-mini	75.0
Direct Reasoning	Claude-3.7	67.4
	GPT-4.1	64.6
OpenHands (Wang et al., 2024a)		62.6
pass@1 +AGENT KB	GPT-4.1	67.2 <small>↑4.6</small>
pass@2 +AGENT KB		70.7 <small>↑8.1</small>
pass@3 +AGENT KB		72.7 <small>↑10.1</small>

a 14.4-point increase at 50 iterations (24.3% → 38.7%) and a 17.0-point gain at 100 iterations (28.7% → 45.7%). The strongest backbone, Claude-3.7, achieves the largest jump, adding 21.0 at 50 iterations (30.0% → 51.0%) and 12.0 at 100 iterations (41.3% → 53.3%).

Beyond GAIA and SWE-bench, AGENT KB also improves on challenging scientific QA datasets. On HLE (Table 2c, OpenHands baseline (9.5%) lags behind Biomni (10.7%), but surpasses it once retrieval is applied (12.1% at pass@2, 14.1% at pass@3). On GPQA (Table 2d), OpenHands with GPT-4.1 climbs from 62.6% to 72.7%, approaching latest proprietary models. These improvements are achieved without additional fine-tuning or tool customization, underscoring the *zero-shot transferability* of the shared experience store across diverse agent architectures.

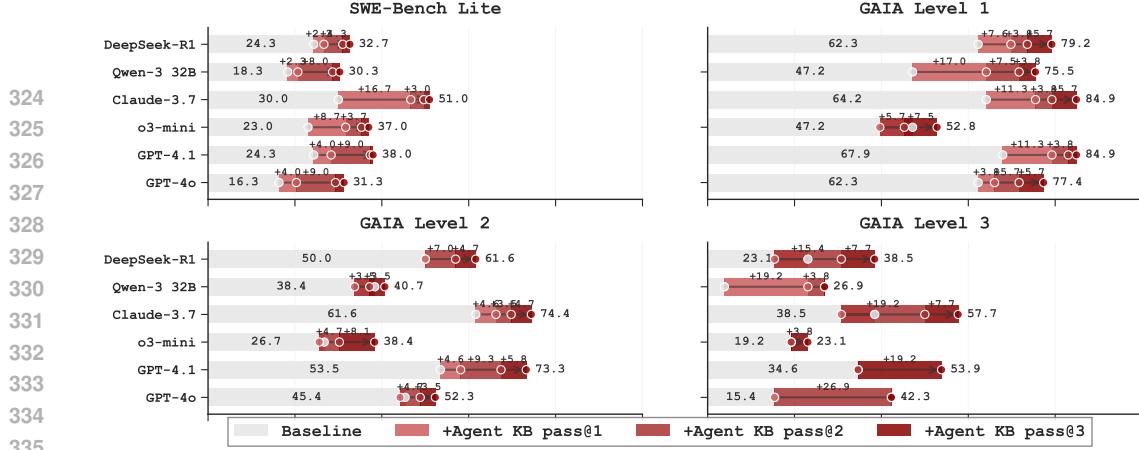


Figure 3: Score improvements (%) across benchmarks for multiple LLMs enhanced with AGENT KB. Results on SWE-Bench Lite (Jimenez et al., 2023) using OpenHands (Wang et al., 2024a) (left) and GAIA benchmark (Mialon et al., 2023) using smolagents (Zhu et al., 2025) (right) showing iterative improvement through progressive knowledge refinement. Red intensity indicates the refinement stage, baseline performance in gray.

The stacked analysis in Figure 3 confirms that every backbone benefits from successive retrieval passes across reasoning (GAIA, HLE, GPQA) and software engineering (SWE-bench). For example, GPT-4o gains 15.0 on SWE-bench (16.3% \rightarrow 31.3%) and 26.9 on GAIA Level 3 (15.4% \rightarrow 42.3%). GPT-4.1 delivers similarly strong lifts on GAIA Level 2 (53.5% \rightarrow 73.3%), while Claude-3.7 records the largest SWE-bench improvement (30.0% \rightarrow 51.0%). Across all settings, pass@1 supplies the initial boost by importing compatible workflows, while deeper passes (pass@2/pass@3) contribute targeted refinements, most pronounced on scientific and general reasoning tasks.

Representative GAIA and SWE-bench walkthroughs illustrating these dynamics appear in Appendix E, with the full execution trace reproduced in Appendix E.1.

4.3 ABLATION STUDIES

Impact of Retrieval Passes and Reasoning Stages. To assess the contribution of each core component in AGENT KB, we conduct systematic ablation studies in Table 3. Details of the ablation elements can be found in Appendix C.

Removing the **Refine** stage incurs the largest drop (-6.06), confirming that retrieved workflows must be adapted rather than replayed. Removing either **Retrieve** pass caps average pass@1 at 59.39%, with sharper Level 1 erosion without the feedback stage ($79.25\% \rightarrow 73.58\%$) and without the planning stage ($79.25\% \rightarrow 75.47\%$), underscoring their complementary planning/feedback roles. The **Refine** stage imposes the largest penalty when ablated ($61.21\% \rightarrow 55.15\%$ overall; Level 3 $34.62\% \rightarrow 30.77\%$), while dropping **Retrieve** loses 3.63 and **Reason** only 1.21, indicating that knowledge grounding and structured hypothesis drafting together prevent regression even when raw workflow logs (58.18%) are available. Figure 5a further shows AGENT KB benefit from a disagreement gate in the feedback stage with a threshold at $\beta \approx 0.8$.

Hybrid retrieval outperforms individual similarity metrics. We compare three retrieval methods: lexical (BM25), semantic (embedding), and hybrid. The hybrid strategy consistently achieves the highest accuracy across general reasoning and software engineering benchmarks, combining the precision of exact matches with the broader coverage of semantic similarity. This complementary fusion proves essential for cross-framework knowledge transfer, as different agent architectures may require either precise tool matches or conceptual similarity depending on the task context.

Table 3: Ablation study for components of the AGENT KB.

Ablation Setting	Avg	Level 1	Level 2	Level 3
smolagent	55.15	67.92	53.49	34.62
smolagents +AGENT KB	61.21	79.25	58.14	34.62
w/o Planning Step	59.39	75.47	56.98	34.62
w/o Feedback Step	59.39	73.58	58.14	34.62
w/o Reason Module	60.00	77.36	56.98	34.62
w/o Retrieve Module	57.58	73.58	54.65	34.62
w/o Refine Module	55.15	69.81	53.49	30.77
w/ Raw Workflow	58.18	73.58	55.81	34.62

Table 4: Performance of smolagents (GPT-4.1) on GAIA and SWE-bench with different knowledge types. Baseline uses no augmentation, HAND CRAFTED uses student-annotated experiences, and AGENT KB uses automatically extracted and refined experiences.

Knowledge type	GAIA			SWE-bench Lite	
	Average	Level 1	Level 2	Level 3	
Baseline	55.15	67.92	53.49	34.62	24.33
+ HAND CRAFTED	76.97	84.91	79.07	53.85	55.67
+ AGENT KB	75.15	84.91	74.42	57.69	51.00

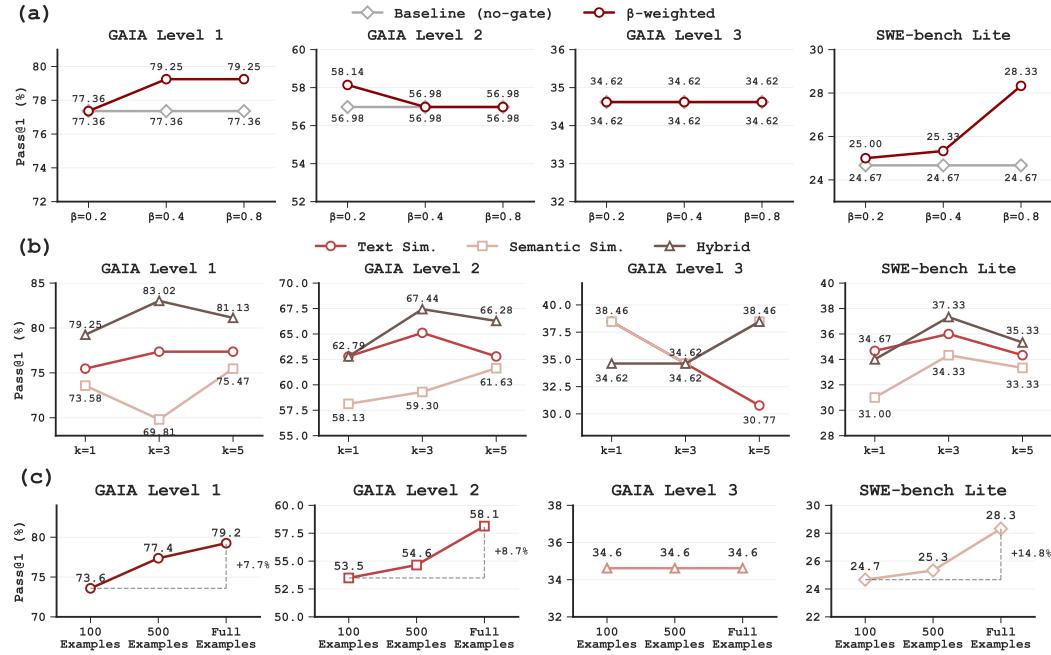


Figure 5: Ablation analysis of retrieval configuration, knowledge-base size, and feedback weighting. (a) Impact of confidence weighting hyper-parameter β on feedback integration. (b) Comparison of retrieval strategies across top- k settings. Text similarity, semantic similarity, and hybrid methods are evaluated on GAIA Levels 1–3 and SWE-bench Lite. (c) Effect of knowledge-base size on validation performance.

Figure 5b shows that hybrid retrieval maintains robust performance across different top- k settings, with optimal results at $k = 3$ where it attains peak accuracy on general reasoning tasks (83.0% on GAIA Level 1) while remaining effective across software engineering benchmarks.

Increasing knowledge base size improves validation performance. Figure 5c shows performance degrades gracefully as AGENT KB shrinks. With 100 examples, general reasoning and software benchmarks retain capability, indicating that small stores offer useful prior trajectories. Expanding to 500 examples yields consistent gains in reasoning, while software tasks benefit greatly, highlighting the importance of this scale for code repair. Advanced reasoning tasks remain flat, suggesting that the quality of abstraction is bottlenecked, not the quantity. Larger knowledge bases reliably improve performance, but supporting complex tasks needs better structuring and retrieval.

Automatic experience construction matches manual curation. Table 4 shows that AGENT KB’s automatically refined knowledge matches hand-crafted experiences (annotated by five computer science students) on GAIA (75.15% vs. 76.97%), surpasses them on Level 3 (57.69% vs. 53.85%), and lifts SWE-bench lite accuracy from 24.33% to 51.00%.

Latency and memory overhead remain modest. Figure 4 compares raw lookup latency against store size for AGENT KB and alternatives such as A-Mem (Xu et al., 2025), MemoryBank (Zhong et al., 2024), and

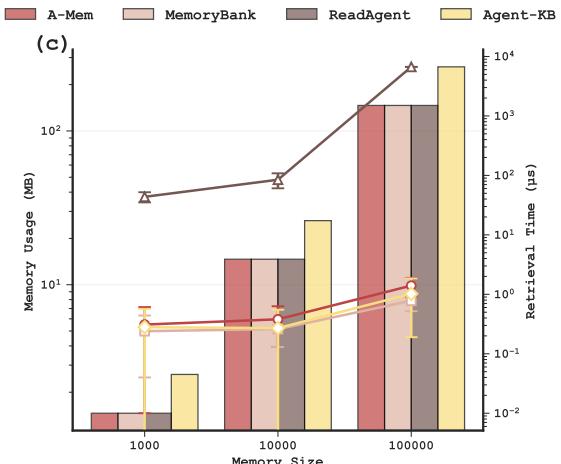


Figure 4: Retrieval latency & memory footprint when scaling different stores. Baselines are taken directly from Xu et al. (2025).

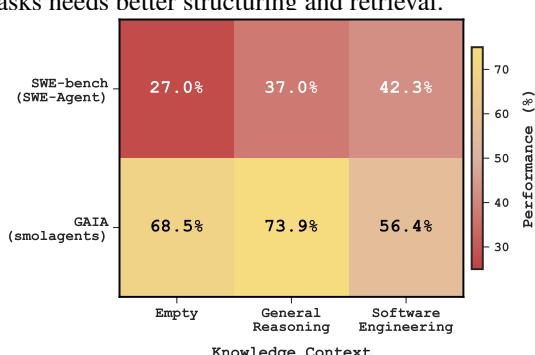


Figure 6: Cross-domain knowledge transfer analysis. Performance comparison when applying domain-specific knowledge bases to different task types.

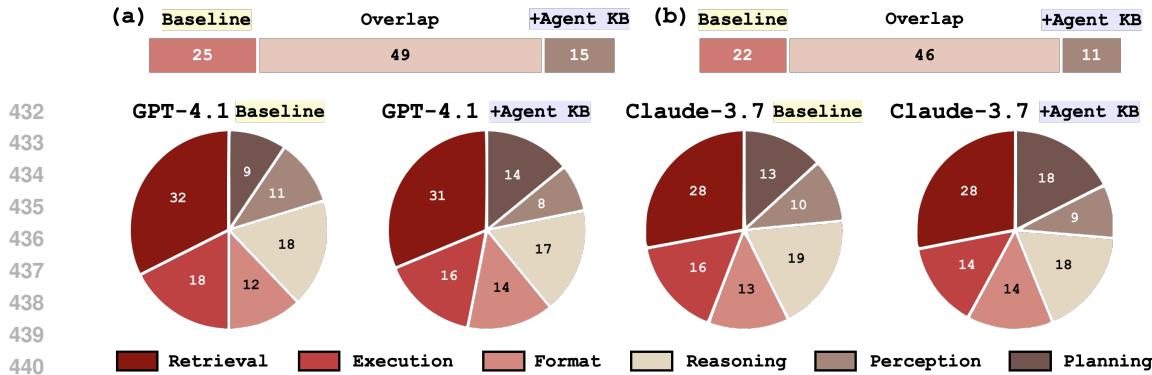


Figure 7: The frequency of errors comparing smolagents (Roucher et al., 2025) with and without AGENT KB on GAIA. The Venn diagrams quantify overlapping and unique failure cases, while the horizontal bar charts show error counts per category. (a) Results for GPT-4.1. (b) Results for Claude-3.7.

ReadAgent (Lee et al., 2024). AGENT KB maintains competitive latency while occupying a similar memory footprint across different store sizes. Alongside the cost accounting in Appendix D, this indicates that AGENT KB’s construction and inference overhead remains minor relative to the performance gains.

Domain-specific knowledge bases exhibit asymmetric transferability. Figure 6 compares *general reasoning experiences* (e.g., BrowseComp, HopRAG, HLE, and WebWalkerQA) with *software engineering experiences* (e.g., RepoClassBench, SWE-Gym-Raw, and RepoEval). Reasoning experience reaches 73.9% in GAIA and still reaches 37.0% in SWE-bench, whereas SWE experience reaches 42.3% in SWE-bench, but drops to 56.4% in GAIA. This asymmetry shows that SWE knowledge does not generalize to reasoning tasks, while reasoning experience retains partial utility in SWE domains.

4.4 ERROR ANALYSIS

On the GAIA benchmark, we analyze error distributions under baseline and AGENT KB-augmented configurations (Figure 7). For GPT-4.1 (Figure 7a), 49 errors are shared across both settings, while 25 are unique to the baseline; AGENT KB introduces only 15 new errors, yielding a net reduction of 10. For Claude-3.7 (Figure 7b), 46 errors persist in both runs, with 22 baseline-specific errors corrected and 11 new errors added, giving a net improvement of 11. We manually categorized each error into six classes: *retrieval* (incorrect or missing evidence), *planning* (invalid task decomposition or step ordering), *reasoning* (logical inconsistency or unsupported inference), *format* (violations of required output schema), *perception* (failures in image/video understanding or tool grounding), and *execution* (extraneous or fabricated steps). Pie charts show the relative prevalence of each type. With GPT-4.1, retrieval errors decrease from 24 to 20 and planning errors from 13 to 10, reflecting more consistent query formulation and workflow reuse. Claude-3.7 achieves larger gains in reasoning, dropping from 13 to 8, alongside fewer retrieval failures (19 to 16). These improvements arise from AGENT KB’s knowledge base, which encodes search protocols, planning templates, and formatting conventions, enabling agents to adopt proven strategies rather than improvising from scratch. While perception errors remain constrained by tool capabilities, AGENT KB mitigates their impact by reducing unnecessary steps and minimizing context length. Overall, both models benefit from similar error reductions, with Claude-3.7 excelling in reasoning robustness and GPT-4.1 in perception alignment, underscoring how AGENT KB complements different model strengths on GAIA.

5 CONCLUSION

We presented AGENT KB, a cross-framework memory layer that abstracts heterogeneous agent traces into reusable experiences. By coupling *hybrid retrieval* with a *disagreement-gated refinement stage*, it addresses the core challenges of representation heterogeneity, context mismatch, and knowledge interference. Experiments across GAIA, HLE, GPQA, and SWE-bench confirm consistent improvements, with automatically generated experiences performing comparably to curated ones and surpassing them on harder tasks. These results suggest that a *shared, evolving memory backbone* offers a practical step toward collective agent intelligence, with future work aimed at richer modalities and longer-horizon reasoning.

486 ETHICS STATEMENT
487488 Our work builds on publicly available datasets (GAIA, HLE, GPQA, SWE-bench) and follows their
489 respective licenses. We do not foresee direct ethical concerns; however, when deploying agent
490 memory systems in practice, one should carefully consider data privacy, potential bias in retrieved
491 knowledge, and the risk of misuse in high-stakes domains.
492493 REPRODUCIBILITY STATEMENT
494495 We provide complete details of architectures, configurations, datasets, and evaluation protocols in
496 the main text and the Appendix. Our code and scripts to reproduce all experiments are available at
497 <https://anonymous.4open.science/r/Agent-KB/>.
498499 REFERENCES
500501 Desearch AI. Desearch, 2024. URL <https://desearch.ai/>.
502503 Minttu Alakuijala, Ya Gao, Georgy Ananov, Samuel Kaski, Pekka Marttinen, Alexander Ilin, and
504 Harri Valpola. Memento no more: Coaching ai agents to master multiple tasks via hints internal-
505 ization. *arXiv preprint arXiv:2502.01562*, 2025.506 Petr Anokhin, Nikita Semenov, Artyom Sorokin, Dmitry Evseev, Mikhail Burtsev, and Evgeny
507 Burnaev. Arigraph: Learning knowledge graph world models with episodic memory for llm agents.
508 *arXiv preprint arXiv:2407.04363*, 2024.509 Dzmitry Bahdanau, Nicolas Gontier, Gabriel Huang, Ehsan Kamalloo, Rafael Pardinas, Alex Piché,
510 Torsten Scholak, Oleh Shliazhko, Jordan Prince Tremblay, Karam Ghanem, Soham Parikh, Mi-
511 tul Tiwari, and Quaizar Vohra. Tapeagents: a holistic framework for agent development and
512 optimization, 2024. URL <https://arxiv.org/abs/2412.08445>.
513514 Jingyi Chai, Shuo Tang, Rui Ye, Yuwen Du, Xinyu Zhu, Mengcheng Zhou, Yanfeng Wang, Yuzhi
515 Zhang, Linfeng Zhang, Siheng Chen, et al. Scimaster: Towards general-purpose scientific ai
516 agents, part i. x-master as foundation: Can we lead on humanity's last exam? *arXiv preprint*
517 *arXiv:2507.05241*, 2025.518 Chi-Min Chan, Weize Chen, Yusheng Su, Jianxuan Yu, Wei Xue, Shanghang Zhang, Jie Fu, and
519 Zhiyuan Liu. Chateval: Towards better llm-based evaluators through multi-agent debate. *arXiv*
520 *preprint arXiv:2308.07201*, 2023.
521522 Yongrui Chen, Junhao He, Linbo Fu, Shenyu Zhang, Rihui Jin, Xinbang Dai, Jiaqi Li, Dehai Min,
523 Nan Hu, Yuxin Zhang, et al. Pandora: A code-driven large language model agent for unified
524 reasoning across diverse structured knowledge. *arXiv preprint arXiv:2504.12734*, 2025.525 Ajinkya Deshpande, Anmol Agarwal, Shashank Shet, Arun Iyer, Aditya Kanade, Ramakrishna
526 Bairi, and Suresh Parthasarathy. Class-level code generation from natural language using iterative,
527 tool-enhanced reasoning over repository. *arXiv preprint arXiv:2405.01573*, 2024.528 Yiming Du, Wenyu Huang, Danna Zheng, Zhaowei Wang, Sebastien Montella, Mirella Lapata,
529 Kam-Fai Wong, and Jeff Z Pan. Rethinking memory in ai: Taxonomy, operations, topics, and
530 future directions. *arXiv preprint arXiv:2505.00675*, 2025.
531532 Adam Journey, Gagan Bansal, Hussein Mozannar, Cheng Tan, Eduardo Salinas, Friederike Niedtner,
533 Grace Proebsting, Griffin Bassman, Jack Gerrits, Jacob Alber, et al. Magentic-one: A generalist
534 multi-agent system for solving complex tasks. *arXiv preprint arXiv:2411.04468*, 2024.535 Anish Ganguli, Prabal Deb, and Debleena Banerjee. Mark: Memory augmented refinement of
536 knowledge. *arXiv preprint arXiv:2505.05177*, 2025.
537538 Marc Glocker, Peter Hönig, Matthias Hirschmanner, and Markus Vincze. Llm-empowered em-
539 bodied agent for memory-augmented task planning in household robotics. *arXiv preprint*
540 *arXiv:2504.21716*, 2025.

540 Taicheng Guo, Xiuying Chen, Yaqi Wang, Ruidi Chang, Shichao Pei, Nitesh V Chawla, Olaf Wiest,
 541 and Xiangliang Zhang. Large language model based multi-agents: A survey of progress and
 542 challenges. *arXiv preprint arXiv:2402.01680*, 2024.

543

544 Bernal Jiménez Gutiérrez, Yiheng Shu, Yu Gu, Michihiro Yasunaga, and Yu Su. Hipporag: Neurobio-
 545 logically inspired long-term memory for large language models. *arXiv preprint arXiv:2405.14831*,
 546 2024.

547 H2O.ai. Autonomous agentic ai: execute multi-step workflows autonomously. [Online], 2024.
 548 <https://h2o.ai/platform/enterprise-h2ogpte/#AgenticAI>.

549

550 Kostas Hatalis, Despina Christou, and Vyshnavi Kondapalli. Review of case-based reasoning for
 551 llm agents: Theoretical foundations, architectural components, and cognitive integration. *arXiv*
 552 *preprint arXiv:2504.06943*, 2025.

553

554 Sirui Hong, Xiawu Zheng, Jonathan Chen, Yuheng Cheng, Jinlin Wang, Ceyao Zhang, Zili Wang,
 555 Steven Ka Shing Yau, Zijuan Lin, Liyang Zhou, et al. Metagpt: Meta programming for multi-agent
 556 collaborative framework. *arXiv preprint arXiv:2308.00352*, 3(4):6, 2023.

557

558 Mengkang Hu, Tianxing Chen, Qiguang Chen, Yao Mu, Wenqi Shao, and Ping Luo. Hiagent: Hier-
 559 archical working memory management for solving long-horizon agent tasks with large language
 560 model. *arXiv preprint arXiv:2408.09559*, 2024.

561

562 Mengkang Hu, Yuhang Zhou, Wendong Fan, Yuzhou Nie, Bowei Xia, Tao Sun, Ziyu Ye, Zhaoxuan
 563 Jin, Yingru Li, Zeyu Zhang, Yifeng Wang, Qianshuo Ye, Ping Luo, and Guohao Li. Owl: Optimized
 564 workforce learning for general multi-agent assistance in real-world task automation, 2025. URL
<https://github.com/camel-ai/owl>.

565

566 Pengbo Hu and Xiang Ying. Unified mind model: Reimagining autonomous agents in the llm era.
arXiv preprint arXiv:2503.03459, 2025.

567

568 Kexin Huang, Serena Zhang, Hanchen Wang, Yuanhao Qu, Yingzhou Lu, Yusuf Roohani, Ryan Li,
 569 Lin Qiu, Gavin Li, Junze Zhang, et al. Biomni: A general-purpose biomedical ai agent. *biorxiv*,
 570 2025a.

571

572 Tenghao Huang, Kinjal Basu, Ibrahim Abdelaziz, Pavan Kapanipathi, Jonathan May, and Muham-
 573 Chen. R2d2: Remembering, reflecting and dynamic decision making for web agents. *arXiv*
preprint arXiv:2501.12485, 2025b.

574

575 Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik
 576 Narasimhan. Swe-bench: Can language models resolve real-world github issues? *arXiv preprint*
arXiv:2310.06770, 2023.

577

578 Omar Khattab, Arnav Singhvi, Paridhi Maheshwari, Zhiyuan Zhang, Keshav Santhanam, Sri Vard-
 579 hamanan, Saiful Haq, Ashutosh Sharma, Thomas T Joshi, Hanna Moazam, et al. Dspy: Compiling
 580 declarative language model calls into self-improving pipelines. *arXiv preprint arXiv:2310.03714*,
 581 2023.

582

583 Kuang-Huei Lee, Xinyun Chen, Hiroki Furuta, John Canny, and Ian Fischer. A human-inspired
 584 reading agent with gist memory of very long contexts. *arXiv preprint arXiv:2402.09727*, 2024.

585

586 Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,
 587 Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, Sebastian Riedel, and Douwe Kiela.
 588 Retrieval-augmented generation for knowledge-intensive NLP tasks. In *Proc. NeurIPS*, 2020a.

589

590 Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, et al. Retrieval-
 591 augmented generation for knowledge-intensive nlp tasks. *arXiv preprint arXiv:2005.11280*, 2020b.
 592 URL <https://arxiv.org/abs/2005.11280>.

593

Xiaoxi Li, Guanting Dong, Jiajie Jin, Yuyao Zhang, Yujia Zhou, Yutao Zhu, Peitian Zhang, and
 Zicheng Dou. Search-o1: Agentic search-enhanced large reasoning models. *arXiv preprint*
arXiv:2501.05366, 2025a.

594 Xiaoxi Li, Jiajie Jin, Guanting Dong, Hongjin Qian, Yutao Zhu, Yongkang Wu, Ji-Rong Wen, and
 595 Zhipeng Dou. Webthinker: Empowering large reasoning models with deep research capability.
 596 *arXiv preprint arXiv:2504.21776*, 2025b.

597

598 Baichuan Liu, Chen Li, Ming Tan, Wenqiang Liu, and Yiming Yang. Echo: A large language model
 599 with temporal episodic memory. *arXiv preprint arXiv:2502.16090*, 2025a.

600

601 Bang Liu, Xinfeng Li, Jiayi Zhang, Jinlin Wang, Tanjin He, Sirui Hong, Hongzhang Liu, Shaokun
 602 Zhang, Kaitao Song, Kunlun Zhu, et al. Advances and challenges in foundation agents: From
 603 brain-inspired intelligence to evolutionary, collaborative, and safe systems. *arXiv preprint*
 604 *arXiv:2504.01990*, 2025b.

605

606 Hanchao Liu, Rongjun Li, Weimin Xiong, Ziyu Zhou, and Wei Peng. Workteam: Constructing
 607 workflows from natural language with multi-agents. *arXiv preprint arXiv:2503.22473*, 2025c.

608

609 Hao Liu, Zhengren Wang, Xi Chen, Zhiyu Li, Feiyu Xiong, Qinhan Yu, and Wentao Zhang.
 610 Hoprag: Multi-hop reasoning for logic-aware retrieval-augmented generation. *arXiv preprint*
 611 *arXiv:2502.12442*, 2025d.

612

613 Siwei Liu, Jinyuan Fang, Han Zhou, Yingxu Wang, and Zaiqiao Meng. Sew: Self-evolving agentic
 614 workflows for automated code generation. *arXiv preprint arXiv:2505.18646*, 2025e.

615

616 Junru Lu, Siyu An, Mingbao Lin, Gabriele Pergola, Yulan He, Di Yin, Xing Sun, and Yunsheng Wu.
 617 Memochat: Tuning llms to use memos for consistent long-range open-domain conversation. *arXiv*
 618 *preprint arXiv:2308.08239*, 2023.

619

620 Qitan Lv, Jie Wang, Hanzhu Chen, Bin Li, Yongdong Zhang, and Feng Wu. Coarse-to-fine highlighting:
 621 Reducing knowledge hallucination in large language models. *arXiv preprint arXiv:2410.15116*,
 622 2024.

623

624 Chandana Sree Mala, Gizem Gezici, and Fosca Giannotti. Hybrid retrieval for hallucination mitigation
 625 in large language models: A comparative analysis. *arXiv preprint arXiv:2504.05324*, 2025.

626

627 Grégoire Mialon, Clémentine Fourrier, Thomas Wolf, Yann LeCun, and Thomas Scialom. Gaia:
 628 a benchmark for general ai assistants. In *The Twelfth International Conference on Learning*
 629 *Representations*, 2023.

630

631 Mengjia Niu, Hao Li, Jie Shi, Hamed Haddadi, and Fan Mo. Mitigating hallucinations in large lan-
 632 guage models via self-refinement-enhanced knowledge retrieval. *arXiv preprint arXiv:2405.06545*,
 633 2024.

634

635 OpenAI. deepresearch, 2024. URL <https://openai.com/index/introducing-deep-research/>.

636

637 Charles Packer, Sarah Wooders, Kevin Lin, Vivian Fang, Shishir G. Patil, Ion Stoica, and Joseph E.
 638 Gonzalez. Memgpt: Towards LLMs as operating systems. *arXiv preprint arXiv:2310.08560*, 2023.

639

640 Jiayi Pan, Xingyao Wang, Graham Neubig, Navdeep Jaithly, Heng Ji, Alane Suhr, and Yizhe Zhang.
 641 Training software engineering agents and verifiers with swe-gym. *arXiv preprint arXiv:2412.21139*,
 642 2024.

643

644 Long Phan, Alice Gatti, Ziwen Han, Nathaniel Li, Josephina Hu, Hugh Zhang, Chen Bo Calvin
 645 Zhang, Mohamed Shaaban, John Ling, Sean Shi, et al. Humanity’s last exam. *arXiv preprint*
 646 *arXiv:2501.14249*, 2025.

647

648 Jinghua Piao, Yuwei Yan, Jun Zhang, Nian Li, Junbo Yan, Xiaochong Lan, Zhihong Lu, Zhiheng
 649 Zheng, Jing Yi Wang, Di Zhou, et al. Agentsociety: Large-scale simulation of llm-driven generative
 650 agents advances understanding of human behaviors and society. *arXiv preprint arXiv:2502.08691*,
 651 2025.

652

653 Mathis Pink, Qinyuan Wu, Vy Ai Vo, Javier Turek, Jianing Mu, Alexander Huth, and Mariya
 654 Toneva. Position: Episodic memory is the missing piece for long-term llm agents. *arXiv preprint*
 655 *arXiv:2502.06975*, 2025.

648 Shuofei Qiao, Runnan Fang, Ningyu Zhang, Yuqi Zhu, Xiang Chen, Shumin Deng, Yong Jiang,
 649 Pengjun Xie, Fei Huang, and Huajun Chen. Agent planning with world knowledge model. In *Proc.
 650 NeurIPS*, 2024.

651 Jiahao Qiu, Xuan Qi, Tongcheng Zhang, Xinzhe Juan, Jiacheng Guo, Yifu Lu, Yimin Wang, Zixin
 652 Yao, Qihan Ren, Xun Jiang, et al. Alita: Generalist agent enabling scalable agentic reasoning with
 653 minimal predefinition and maximal self-evolution. *arXiv preprint arXiv:2505.20286*, 2025.

654 David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien Dirani,
 655 Julian Michael, and Samuel R Bowman. Gpqa: A graduate-level google-proof q&a benchmark. In
 656 *First Conference on Language Modeling*, 2024.

657 Aymeric Roucher, Albert Villanova del Moral, Thomas Wolf, Leandro von Werra, and Erik Kau-
 658 nismäki. ‘smolagents’: a smol library to build great agentic systems. [https://github.com/
 659 huggingface/smolagents](https://github.com/huggingface/smolagents), 2025.

660 Rana Salama, Jason Cai, Michelle Yuan, Anna Currey, Monica Sunkara, Yi Zhang, and Yassine
 661 Benajiba. Memindsight: Autonomous memory augmentation for llm agents. *arXiv preprint
 662 arXiv:2503.21760*, 2025.

663 Vishwa Shah, Vishruth Veerendranath, Graham Neubig, Daniel Fried, and Zora Zhiruo Wang. Explor-
 664 ing the pre-conditions for memory-learning agents. In *Scaling Self-Improving Foundation Models
 665 without Human Supervision*, 2025. URL <https://openreview.net/forum?id=WZV7I3PT90>.

666 Kurt Shuster, Spencer Poff, Moya Chen, Douwe Kiela, and Jason Weston. Retrieval augmentation
 667 reduces hallucination in conversation. *arXiv preprint arXiv:2104.07567*, 2021.

668 Michael Skarlinski, Jon Laurent, Albert Bou, and Andrew White. About 30% of humanity’s
 669 last exam chemistry/biology answers are likely wrong. [https://www.futurehouse.org/
 670 research-announcements/hle-exam](https://www.futurehouse.org/research-announcements/hle-exam), July 2025. Accessed: 2025-09-23.

671 Larry R Squire, Lisa Genzel, John T Wixted, and Richard G Morris. Memory consolidation. *Cold
 672 Spring Harbor perspectives in biology*, 7(8):a021766, 2015.

673 Hongjin Su, Ruoxi Sun, Jinsung Yoon, Pengcheng Yin, Tao Yu, and Sercan Ö Arık. Learn-by-
 674 interact: A data-centric framework for self-adaptive agents in realistic environments. *arXiv
 675 preprint arXiv:2501.10893*, 2025.

676 Xiaoyu Tan, Bin Li, Xihe Qiu, Chao Qu, Wei Chu, Yinghui Xu, and Yuan Qi. Meta-agent-workflow:
 677 Streamlining tool usage in llms through workflow construction, retrieval, and refinement. In
 678 *Companion Proceedings of the ACM on Web Conference 2025*, pp. 458–467, 2025.

679 Jiabin Tang, Tianyu Fan, and Chao Huang. Autoagent: A fully-automated and zero-code framework
 680 for llm agents. *arXiv e-prints*, pp. arXiv–2502, 2025.

681 Trase. Meet trase systems. [Online], 2024. <https://www.trasesystems.com/>.

682 Xingyao Wang, Boxuan Li, Yufan Song, Frank F. Xu, Xiangru Tang, Mingchen Zhuge, Jiayi Pan,
 683 Yueqi Song, Bowen Li, Jaskirat Singh, Hoang H. Tran, Fuqiang Li, Ren Ma, Mingzhang Zheng,
 684 Bill Qian, Yanjun Shao, Niklas Muennighoff, Yizhe Zhang, Binyuan Hui, Junyang Lin, Robert
 685 Brennan, Hao Peng, Heng Ji, and Graham Neubig. OpenHands: An Open Platform for AI Software
 686 Developers as Generalist Agents, 2024a. URL <https://arxiv.org/abs/2407.16741>.

687 Yu Wang, Yifan Gao, Xiusi Chen, Haoming Jiang, Shiyang Li, Jingfeng Yang, Qingyu Yin, Zheng Li,
 688 Xian Li, Bing Yin, Jingbo Shang, and Julian McAuley. MEMORYLLM: Towards self-updatable
 689 large language models. *arXiv preprint arXiv:2402.04624*, 2024b.

690 Yu Wang, Chi Han, Tongtong Wu, Xiaoxin He, Wangchunshu Zhou, Nafis Sadeq, Xiusi Chen, Zexue
 691 He, Wei Wang, Gholamreza Haffari, et al. Towards lifespan cognitive systems. *arXiv preprint
 692 arXiv:2409.13265*, 2024c.

693 Zhenhailong Wang, Haiyang Xu, Junyang Wang, Xi Zhang, Ming Yan, Ji Zhang, Fei Huang, and
 694 Heng Ji. Mobile-agent-e: Self-evolving mobile assistant for complex tasks. *arXiv preprint
 695 arXiv:2501.11733*, 2025.

702 Zora Zhiruo Wang, Jiayuan Mao, Daniel Fried, and Graham Neubig. Agent workflow memory. *arXiv*
 703 *preprint arXiv:2409.07429*, 2024d.
 704

705 Jason Wei, Zhiqing Sun, Spencer Papay, Scott McKinney, Jeffrey Han, Isa Fulford, Hyung Won
 706 Chung, Alex Tachard Passos, William Fedus, and Amelia Glaese. Browsecmp: A simple yet
 707 challenging benchmark for browsing agents. *arXiv preprint arXiv:2504.12516*, 2025a.
 708

709 Jiale Wei, Xiang Ying, Tao Gao, Fangyi Bao, Felix Tao, and Jingbo Shang. Ai-native memory 2.0:
 710 Second me. *arXiv preprint arXiv:2503.08102*, 2025b.
 711

712 Jialong Wu, Wenbiao Yin, Yong Jiang, Zhenglin Wang, Zekun Xi, Runnan Fang, Linhai Zhang,
 713 Yulan He, Deyu Zhou, Pengjun Xie, et al. Webwalker: Benchmarking llms in web traversal. *arXiv*
 714 *preprint arXiv:2501.07572*, 2025a.
 715

716 Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu, Beibin Li, Erkang Zhu, Li Jiang, Xiaoyun Zhang,
 717 Shaokun Zhang, Jiale Liu, et al. Autogen: Enabling next-gen llm applications via multi-agent
 718 conversations. In *First Conference on Language Modeling*, 2024a.
 719

720 Yaxiong Wu, Sheng Liang, Chen Zhang, Yichao Wang, Yongyue Zhang, Huifeng Guo, Ruiming
 721 Tang, and Yong Liu. From human memory to ai memory: A survey on memory mechanisms in the
 722 era of llms. *arXiv preprint arXiv:2504.15965*, 2025b.
 723

724 Zhiyong Wu, Chengcheng Han, Zichen Ding, Zhenmin Weng, Zhoumianze Liu, Shunyu Yao, Tao
 725 Yu, and Lingpeng Kong. Os-copilot: Towards generalist computer agents with self-improvement.
 726 *arXiv preprint arXiv:2402.07456*, 2024b.
 727

728 Wujiang Xu, Zujie Liang, Kai Mei, Hang Gao, Juntao Tan, and Yongfeng Zhang. A-mem: Agentic
 729 memory for llm agents. *arXiv preprint arXiv:2502.12110*, 2025.
 730

731 Yao Xu, Shizhu He, Jiabei Chen, Zihao Wang, Yangqiu Song, Hanghang Tong, Guang Liu, Kang Liu,
 732 and Jun Zhao. Generate-on-graph: Treat llm as both agent and kg in incomplete knowledge graph
 733 question answering. *arXiv preprint arXiv:2404.14741*, 2024.
 734

735 John Yang, Carlos E. Jimenez, Alexander Wettig, Kilian Lieret, Shunyu Yao, Karthik Narasimhan,
 736 and Ofir Press. Swe-agent: Agent-computer interfaces enable automated software engineering,
 737 2024. URL <https://arxiv.org/abs/2405.15793>.
 738

739 Ye Ye. Task memory engine (tme): Enhancing state awareness for multi-step llm agent tasks. *arXiv*
 740 *preprint arXiv:2504.08525*, 2025.
 741

742 Ruihong Zeng, Jinyuan Fang, Siwei Liu, and Zaiqiao Meng. On the structural memory of llm agents.
 743 *arXiv preprint arXiv:2412.15266*, 2024.
 744

745 Fengji Zhang, Bei Chen, Yue Zhang, Jacky Keung, Jin Liu, Daoguang Zan, Yi Mao, Jian-Guang Lou,
 746 and Weizhu Chen. Repocoder: Repository-level code completion through iterative retrieval and
 747 generation. *arXiv preprint arXiv:2303.12570*, 2023.
 748

749 Jieyu Zhang, Ranjay Krishna, Ahmed Hassan Awadallah, and Chi Wang. Ecoassistant: Using llm
 750 assistants more affordably and accurately. In *ICLR 2024 Workshop on Large Language Model*
 751 (*LLM*) *Agents*, 2025.
 752

753 Zhengyi Zhao, Shubo Zhang, Yiming Du, Bin Liang, Baojun Wang, Zhongyang Li, Binyang Li, and
 754 Kam-Fai Wong. Eventweave: A dynamic framework for capturing core and supporting events in
 755 dialogue systems. *arXiv preprint arXiv:2503.23078*, 2025.
 756

757 Longtao Zheng, Rundong Wang, Xinrun Wang, and Bo An. Synapse: Trajectory-as-exemplar
 758 prompting with memory for computer control. *arXiv preprint arXiv:2306.07863*, 2023.
 759

760 Wanjun Zhong, Lianghong Guo, Qiqi Gao, He Ye, and Yanlin Wang. Memorybank: Enhancing large
 761 language models with long-term memory. In *Proceedings of the AAAI Conference on Artificial
 762 Intelligence*, 2024.

756 Ruiwen Zhou, Yingxuan Yang, Muning Wen, Ying Wen, Wenhao Wang, Chunling Xi, Guoqiang Xu,
757 Yong Yu, and Weinan Zhang. Trad: Enhancing llm agents with step-wise thought retrieval and
758 aligned decision. In *Proceedings of the 47th International ACM SIGIR Conference on Research
759 and Development in Information Retrieval*, pp. 3–13, 2024a.

760 Wangchunshu Zhou, Yuchen Eleanor Jiang, Long Li, Jialong Wu, Tiannan Wang, Shi Qiu, Jintian
761 Zhang, Jing Chen, Ruipu Wu, Shuai Wang, et al. Agents: An open-source framework for
762 autonomous language agents. *arXiv preprint arXiv:2309.07870*, 2023.

764 Wangchunshu Zhou, Yixin Ou, Shengwei Ding, Long Li, Jialong Wu, Tiannan Wang, Jiamin Chen,
765 Shuai Wang, Xiaohua Xu, Ningyu Zhang, et al. Symbolic learning enables self-evolving agents.
766 *arXiv preprint arXiv:2406.18532*, 2024b.

767 He Zhu, Tianrui Qin, King Zhu, Heyuan Huang, Yeyi Guan, Jinxiang Xia, Yi Yao, Hanhao Li,
768 Ningning Wang, Pai Liu, et al. Oagents: An empirical study of building effective agents. *arXiv
769 preprint arXiv:2506.15741*, 2025.

771 Yuqi Zhu, Shuofei Qiao, Yixin Ou, Shumin Deng, Ningyu Zhang, Shiwei Lyu, Yue Shen, Lei Liang,
772 Jinjie Gu, and Huajun Chen. Knowagent: Knowledge-augmented planning for LLM-based agents.
773 In *Proc. NAACL Findings*, 2024.

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810
811
Part I812
813
Appendix814
815
Table of Contents

817	A	Experience Source Overview	17
818			
819	B	Hand-crafted Experience Process	18
820			
821	C	Ablation Details of Reason-Retrieve-Refine Modules	19
822			
823	D	Inference Cost Breakdown	19
824			
825	E	Examples	20
826		E.1 Execution Example	20
827		E.2 Comprehensive Examples	22
828			
829	F	Collections of Used Prompts	25
830		F.1 Prompt Design for AGENT KB Construction	25
831		F.2 Prompt Design for AGENT KB Pipeline	28
832			
833	G	Language Model Usage	30
834		G.1 System Components	30
835		G.2 Experimental Setup	30
836		G.3 Manuscript Development	31
837		G.4 Methodological Considerations	31

838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

864

A EXPERIENCE SOURCE OVERVIEW

865
 866
 867 Our AGENT KB is constructed from a diverse set of benchmark datasets spanning code reasoning,
 868 web navigation, multi-hop retrieval, and human-level evaluation tasks. Each dataset contributes
 869 structured experience entries that reflect distinct problem-solving patterns and domain characteristics.

870 Table 5 summarizes the data sources, their original task counts, and the number of resulting experience
 871 entries after processing:

872
 873 Table 5: Overview of datasets used to construct the experience knowledge base.
 874

876 Dataset	877 Domain	878 Tasks	879 Generated Experiences
<i>General QA experiences</i>			
BrowseComp (Wei et al., 2025a)	Web navigation	1,266	1,266
MultiHopRAG (Liu et al., 2025d)	Multi-hop reasoning	2,556	2,556
HLE (Phan et al., 2025)	Expert-level QA	3,000	~2,000
WebWalkerQA (Wu et al., 2025a)	Open-domain QA	680	680
<i>Software engineering experiences</i>			
RepoClassBench (Deshpande et al., 2024)	Code understanding	100	1,000
SWE-Gym-Raw (Pan et al., 2024)	Code generation	100	1,000
RepoEval (Zhang et al., 2023)	Code completion	100	1,000
Total (approx.)		7,802	~9,502

880 **BrowseComp.** We processed all 1,266 tasks from the BrowseComp benchmark (https://huggingface.co/datasets/smolagents/browse_comp), creating one experience entry per task.
 881 These experiences capture web browsing, information retrieval, and multimodal reasoning patterns.
 882

883 **MultiHopRAG.** We incorporated all 2,556 tasks from the MultiHopRAG dataset (<https://github.com/yixuantt/MultiHop-RAG/tree/main/dataset>), with each task contributing one experience
 884 entry. MultiHopRAG experiences focus on multi-hop reasoning and retrieval-augmented generation
 885 scenarios.
 886

887 **HLE.** From the HLE benchmark’s 3,000 tasks (<https://huggingface.co/datasets/cais/hle>),
 888 we selected the text-based subset, creating one experience entry per task. We excluded non-textual
 889 tasks to maintain consistency in knowledge representation. These experiences cover human-level
 890 evaluation scenarios across diverse domains.
 891

901 **WebWalkerQA.** We integrated 680 tasks from WebWalkerQA (<https://huggingface.co/datasets/callanwu/WebWalkerQA>), with each task contributing one experience entry. These experiences capture web navigation and question-answering patterns in open-domain contexts.
 902

903 **RepoClassBench.** We utilized the RepoClassBench dataset (<https://github.com/microsoft/repoClassBench>), selecting 100 representative cases from Python repositories that align with those
 904 in SWE-bench. For each case, we generated 10 distinct experiences capturing different solution
 905 approaches, resulting in 1,000 structured knowledge entries. These experiences focus on repository
 906 classification and code understanding tasks.
 907

908 **SWE-Gym-Raw.** We incorporated the SWE-Gym-Raw dataset (<https://huggingface.co/datasets/SWE-Gym/SWE-Gym-Raw>), from which we selected 100 diverse problem instances. Following a methodology similar to RepoClassBench, we generated 10 distinct experiences per instance,
 909 resulting in a total of 1,000 knowledge entries. These experiences primarily focus on code generation
 910 and bug-fixing scenarios within Python-based repositories.
 911

912 **RepoEval.** From the RepoEval dataset (<https://github.com/microsoft/CodeT/tree/main/RepoCoder/datasets>), we selected 100 cases and generated 10 experiences per case, creating an
 913 additional 1,000 knowledge entries. RepoEval experiences focus on code completion and repository-
 914 level programming tasks in Python.
 915

918 **B HAND-CRAFTED EXPERIENCE PROCESS**
919920 To identify common failure modes and improve generalization, human annotators manually inspect a
921 subset of failed logs. They summarize recurring issues such as *incorrect tool selection*, *misaligned*
922 *reasoning chains*, or *missing preconditions or constraints*. These failures are abstracted into correction
923 templates that serve as few-shot examples for the experience generation model. The abstraction
924 process relies on a set of reasoning templates:925 **AGENT KB data template**
926927 {
928 "question": "<question from various data source>,"
929 "agent_plan": "<Agent original plan>,"
930 "agent_experience": "<detailed agent experience>,"
931 }
932933 The procedure of hand-crafted experience is described as follows:
934935 • **Step 1: Team Setup and Objective Definition**
936937 Three computer science students familiar with the GAIA benchmark and agent reasoning
938 workflows were recruited to collaboratively design high-quality prompts. The main objective
939 was to transform successful agent reasoning paths into structured, human-readable instructions
940 that captured essential steps, tools, and decision rules.941 • **Step 2: Review of Historical Logs**
942943 Each student was assigned a subset of GAIA benchmark tasks (Level 1, 2, 3). They thoroughly
944 examined the corresponding smolagent logs, focusing on:945 – Tasks where the agent reached the correct answer.
946 – Action sequences that were logically sound and tool-use efficient.
947 – Common patterns across multiple tasks.948 After that, they also analyzed the logs of the failed questions, trying to fix the wrong answers by
949 hand with the successful experience.950 • **Step 3: Prompt Authoring and Standardization**
951952 The team synthesized these findings into general reasoning workflows—abstract sequences that
953 could be reused.954 Each reasoning pattern was rewritten into a natural language instructional prompt. Prompts were
955 standardized to use consistent sentence structures, imperative voice, and tool-neutral references.956 • **Hand Crafted Example Experience:**
957958 Search for the 2015 paper "Pie Menus or Linear Menus, Which Is Better?"
959 on a scholarly database (e.g., Google Scholar or IEEE Xplore) and
960 note the authors in "First M. Last" format. For each author, look
961 up their publication history on DBLP or Google Scholar and list all
962 their papers with publication years. Determine which author has works
963 published before 2015, and collect that author's prior publications.
964 Sort the author's earlier papers by year and identify the very first
965 one. Verify the title of that earliest paper against the database
966 entry to ensure accuracy.967 • **Step 4: Effectiveness Testing and Selection**
968969 To evaluate quality, each handcrafted experience was tested via few-shot prompting on similar
970 GAIA tasks.

971 The top 80 prompts with the best performance were selected as the canonical set.

972 • **Step 5: Generalization to Other Benchmarks**
973974 Using these 80 high-quality examples, we applied few-shot prompting to generate experience
975 instructions for other reasoning benchmarks.

972 C ABLATION DETAILS OF **Reason-Retrieve-Refine** MODULES

974 To evaluate the effectiveness of each component in our AGENT KB framework, we conduct a series
 975 of ablation studies. The deployment loop operates in two retrieval phases with distinct objectives:
 976

- 977 • **Planning stage** forms the initial plan. It follows the **Reason-Retrieve-Refine** cycle to summa-
 978 rize the query, select experiences, and weave them into an executable workflow.
- 980 • **Feedback stage** reuses the same cycle on execution traces. It reasons over the critic’s highlights,
 981 retrieves precedents, and refines the plan while guarded by the disagreement gate.

982 The experimental setup involves systematically removing or disabling specific modules or agents to
 983 assess their contributions. The results are summarized in Table 3, with the following definitions:
 984

- 985 • w/o Planning Stage: The first-stage steps are removed.
- 986 • w/o Feedback Stage: The second-stage steps are removed.
- 987 • w/o **Reason** Module: In both stages, no reasoning is performed; only retrieval based on raw data
 988 is conducted.
- 989 • w/o **Retrieve** Module: Both stages omit the retrieval process entirely. Agents rely solely on
 990 prompt-based instructions to generate responses, without consulting prior experiences.
- 991 • w/o **Refine** Module: No refinement is performed of both stages; only the retrieved content is
 992 used as knowledge.
- 993 • w/ Raw Workflow: The full retrieve pipeline is used, but without any explicit modular control—
 994 i.e., the model follows a standard prompting strategy throughout, lacking structured guidance
 995 through the **Reason** and **Refine** phases.

996 These ablation experiments provide insight into how each module contributes to overall performance,
 997 particularly in terms of accuracy, robustness, and coherence in complex reasoning tasks.

1002 D INFERENCE COST BREAKDOWN

1004 Tables 6 and 7 report the token and monetary budget of AGENT KB across GAIA and SWE-bench
 1005 lite. In GAIA, the retrieval loop adds only \$0.27 on top of a full evaluation of \$86.0 USD - less
 1006 than 0.4% of the cost per run. The offline ingestion step is a one-time expense amortized over future
 1007 runs. On SWE-bench lite, hinting with AGENT KB costs on average <0.004 USD per issue with
 1008 short prompts (< 7,000 tokens), keeping the marginal overhead well below one cent when paired with
 1009 GPT-4.1. These results highlight that AGENT KB provides cross-framework experience sharing at
 1010 negligible additional cost.

1012 Table 6: Per-task token and cost budget for GAIA validation (165 tasks). Shares cover the per-
 1013 evaluation budget and exclude the one-off knowledge-base ingestion step. Pricing: \$1.36 per million
 1014 prompt tokens and \$5.44 per million completion tokens. Values are averaged across 165 tasks.

1016 Module	1017 Prompt tokens	1018 Completion tokens	1019 Cost (USD)	1020 Share (%)
<i>Evaluation (per GAIA task)</i>				
Action loop	205,873	41,912	0.51	98.2
Log summary	6,182	67	0.01	1.6
Planning	237	119	0.001	0.2
Feedback	294	123	0.001	0.2
Total (evaluation)	212,586	42,221	0.52	100.0
<i>One-off setup</i>				
AGENT KB construction	5,140,655	768,270	10.88	—

1026 Table 7: Per-instance cost for SWE-bench lite when AGENT KB supplies hints (GPT-4.1). Max
 1027 steps per issue fixed at 100. Token counts are per issue. Token pricing follows the same schedule as
 1028 Table 6.

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

Hint source	Prompt tokens	Completion tokens	Cost (USD)	Hint length
RepoClassBench	6,543	912	0.0078	90
RepoClassBench (refine)	4,217	508	0.0028	130
Top- n SWE-Gym	2,847	296	0.0019	60
Top- n RepoClassBench	3,129	402	0.0021	70
Average	4,184	530	0.0037	88

E EXAMPLES

This section provides concrete examples and demonstrations of how AGENT KB processes different types of queries and workflows. We present detailed execution examples and comprehensive illustrations of the system’s capabilities across various domains and task types.

E.1 EXECUTION EXAMPLE

Initially, the AGENT KB independently processed a query, leveraging its internal retrieval mechanisms to summarize relevant information. This initial processing led to the generation of a preliminary plan. As part of this plan, the AGENT KB initiated a search for the two most commonly associated chemicals. However, the search successfully retrieved the European Community (EC) number for only one of these chemicals, as the other was not an enzyme. Based on this incomplete retrieval, the AGENT KB incorrectly concluded that the true answer was solely confined to entry "3.1.3.1," leading to two sequential and erroneous returns.

Subsequently, the feedback stage provided a more explicit and refined planning directive, offering a clearer understanding of the task trajectory and expected outcome with fewer steps. It clarified that the question pertained explicitly to enzymes, since only enzymes have EC numbers. As a result, the AGENT KB would no longer search for non-enzyme chemicals in the first place, and it would avoid mistakenly returning a "no correct answer" response in the following steps. This guidance helped the AGENT KB overcome the limitations of its initial independent processing and enabled it to retain and utilize the corrected context.

AGENT KB - User Question

What are the EC numbers of the two most commonly used chemicals for the virus testing method in the paper about SPF MV and SPC SV in the Pearl Of Africa from 2016? Return the semicolon-separated numbers in the order of the alphabetized chemicals.

AGENT KB - Reason the question to get suggestion

EC numbers; virus testing method; SPF MV; SPC SV; Pearl Of Africa; 2016 paper; commonly used chemicals; chemical alphabetization

AGENT KB - Retrieve from AgentKB

Similar task: During studies of the phage genome database, the researchers identified an operon.....

Suggestions: Explicitly map experimental design to logical variables—use data frames or grid tables for clarity.....

1080

AGENT KB - Initial Plan after refinement

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1. Identify the specific 2016 paper on SPF MV and SPCSV in Uganda.
2. Retrieve the full text using inspect_file_as_text or search agent.
3. Check the methodology section for the virus testing method (e.g., ELISA).
4. Extract chemicals used, focusing on enzymes.
5. Determine the two most commonly used ones.
6. Alphabetize the chemical names.
7. Look up their EC numbers using BRENDA, ExplorEnz, etc.
8. Verify EC number correctness.
9. Return EC numbers in the correct order, separated by a semicolon.

AGENT KB - Model Prediction

3.1.3.1;3.1.3.1

AGENT KB - Retrieve from AgentKB

Similar task: Which of the following peptides has been found to bind or is highly likely to bind an integrin receptor in an in vitro assay.....

Suggestions: Always decompose the question to clarify the biological context and functional motifs encountered in sequence-based tasks.....

AGENT KB - feedback stage's suggestion

1. Search for the paper using keywords like "SPFMV", "SPCSV", "Pearl of Africa", and "2016".
2. Identify the virus detection method (typically ELISA) and the **enzymes** used in the labeling step.....

AGENT KB - New Plan

1. Use compact keywords to Search for the 2016 paper on SPF MV and SPCSV in Pearl of Africa.
2. Review the method section to find the virus detection technique and the two **enzymes**.
3. Look up EC numbers from BRENDA or ExPASy.
4. Alphabetize enzyme names.
5. Return EC numbers joined by a semicolon.

AGENT KB - Model Thought

I suspect the two most common enzymes for virus detection are alkaline phosphatase and horseradish peroxidase. Their EC numbers are:

* Alkaline phosphatase: 3.1.3.1

* Horseradish peroxidase: 1.11.1.7

Alphabetically, alkaline phosphatase comes first.

So I will return: 3.1.3.1;1.11.1.7

AGENT KB - Final Output (Code)

```
answer = "3.1.3.1;1.11.1.7"
final_answer(answer)
```

AGENT KB - Observation

Last output from code snippet:
3.1.3.1;1.11.1.7

1134 **E.2 COMPREHENSIVE EXAMPLES**
 1135

1136 This section provides concrete examples of how AGENT KB processes and stores different types of
 1137 agent experiences. We demonstrate three key components: SWE-bench workflow examples showing
 1138 problem-solution pairs, raw execution logs transformed into structured experiences, and complex
 1139 multi-constraint query processing.

1140
 1141 **E.2.1 AN EXAMPLE ON SWE-BENCH**

1142 The following examples illustrate how AGENT KB stores and retrieves domain-specific knowledge for
 1143 software engineering tasks from the SWE-bench dataset. Each example shows a problem description
 1144 paired with relevant guidance retrieved from AGENT KB, demonstrating the system’s ability to
 1145 provide contextual assistance for code debugging and modification tasks.

1146
 1147 **AGENT KB - Problem Description**

1148
 1149 In the project that automatically generates API documentation for Python
 1150 projects, an extra backslash is inserted before underscores—for example, hello_
 1151 is rendered as hello_

1152
 1153 **AGENT KB - Retrieve from AgentKB**

1154 Check the string processing part in the relevant functions to ensure that
 1155 escape is only carried out when necessary. For example, whether all parameters
 1156 ending with _ need to be escaped, or whether different handling methods are
 1157 required in certain specific contexts (such as attribute names, parameter
 1158 names, etc.).

1159 When modifying conditions, not only the original conditions should be taken
 1160 into account, but also factors such as configuration and context should be
 1161 combined to ensure the accuracy of the logic.

1162
 1163 **AGENT KB - Problem Description**

1164 Disabling evaluation globally with with evaluate(False) interferes with
 1165 sympify’s string-parsing logic, preventing some integer expressions from being
 1166 instantiated as integer objects.

1167
 1168 **AGENT KB - Retrieve from AgentKB**

1169
 1170 When adding or modifying a conditional check (such as for ‘evaluate’ or
 1171 imaginary coordinates), ensure the logic does not inadvertently skip important
 1172 validation for invalid inputs (such as actual imaginary numbers), and only
 1173 disables overly strict checks for valid real inputs. This is critical to
 1174 maintain mathematical correctness while fixing the bug. (Most important)
 1175 When changing the logic in constructors (like Point/Point2D), verify that the
 1176 minimal change solves the immediate bug, does not introduce new regressions,
 1177 and does not allow forbidden cases (e.g., actual imaginary coordinates)

1178 These examples demonstrate AGENT KB’s ability to provide targeted guidance for common software
 1179 engineering challenges. The first example addresses API documentation generation issues related
 1180 to string escaping, while the second focuses on debugging a symbolic mathematics library. Notice
 1181 how the retrieved knowledge provides specific, actionable advice rather than generic troubleshooting
 1182 steps.

1183
 1184 **E.2.2 RAW LOG TO EXPERIENCE GENERATION**

1185
 1186 This subsection demonstrates the complete pipeline for transforming raw agent execution logs into
 1187 structured knowledge that can be stored in AGENT KB. This process is crucial for the system’s
 1188 learning capability, allowing successful problem-solving strategies to be captured and reused.

1188 **Raw Log Example** The following demonstrates how agent execution logs are processed and trans-
 1189 formed into structured experiences for AGENT KB. This particular example shows a bioinformatics
 1190 task involving protein structure analysis, where the agent had to adapt its approach when encountering
 1191 unexpected file formats.

```

1192
1193 {
1194   "agent_name": "gpt-4.1",
1195   "question": "Using the Biopython library in Python, parse the PDB file of the
1196     protein identified by the PDB ID 5wb7 from the RCSB Protein Data Bank. Calculate
1197     the distance between the first and second atoms as they are listed in the PDB
1198     file. Report the answer in Angstroms, rounded to the nearest picometer.",
1199   "prediction": "1.46",
1200   "true_answer": "1.456",
1201   "intermediate_steps": [
1202     {
1203       "task": "You have one question to answer...",
1204       "step_type": "task"
1205     },
1206     {
1207       "facts": "Here are the facts that I know so far...",
1208       "plan": "Here is the plan of action that I will follow...",
1209       "step_type": "planning"
1210     },
1211     {
1212       "tool_calls": [{"id": "call_1", "type": "function", "function": {"name": "python_interpreter", "arguments": "..."}}, {"error": {"type": "AgentExecutionError", "message": "Code execution failed..."}}, {"step_type": "action"}
1213     ]
1214   }
1215 }
```

Listing 1: Raw Agent Execution Log

1217 **Key Insights** These examples collectively demonstrate several important aspects of AGENT KB’s
 1218 design and functionality:

1. **Domain Adaptation:** The system successfully captures domain-specific knowledge across different fields (software engineering, bioinformatics, biographical research), showing its general applicability.
2. **Error Recovery:** Raw logs show how agents adapt when initial approaches fail, and these adaptation strategies are preserved as valuable experiences for future use.
3. **Precision Management:** The system learns specific formatting and precision requirements, crucial for tasks requiring exact numerical outputs.
4. **Multi-Agent Coordination:** Complex queries demonstrate how different agent roles (general reasoning vs. specialized search) can be coordinated with distinct but complementary planning strategies.
5. **Source Validation:** The emphasis on authoritative sources and cross-validation shows the system’s commitment to reliability and accuracy in information gathering.

1233 These examples illustrate how AGENT KB transforms individual agent experiences into a shared
 1234 knowledge resource that enhances the performance of the entire agent ecosystem.

1235 From the raw log, the following agent experience is extracted:

1236 Agent Experience

1237 When calculating distance, extract only the first two ATOM coordinates directly without skipping any lines.
 1238 If the task asks for the distance in Ångströms, rounded to the nearest picometer, keep the original Å value
 1239 with three decimal places precision, without converting back and forth between Å and pm. Output the

1242
 1243 distance directly in Ångströms, keeping the computed value with three decimals (e.g., x.xxx), do not round
 1244 it to fewer decimal places. The output is just the number without any units or symbols, such as x.xxx, not
 1245 x.xxx Ångströms.

1246

1247 E.2.3 COMPLEX QUERY PROCESSING EXAMPLE

1248

1249 Complex Query Example

1250

1251 **Question:** There's this popular figure with multiple Grammy awards in the entertainment industry, who put
 1252 out their first album before 1969, had substance dependence, and was dismissed from school before they
 1253 turned 20. Their first life partner died in 1997. They became uniformed personnel at some point in their
 1254 lives. What's the name of the hospital they died?

1255

True Answer: St. John's Health Center

1256

Generated JSON Structure The following JSON structure shows how AGENT KB organizes planning strategies and experiences for complex queries. The structure includes separate planning approaches for different agent types (general agents vs. specialized search agents) and captures both successful strategies and lessons learned from the task execution. This structured approach enables systematic knowledge transfer and strategy refinement.

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

```

1  {
2    "question": "There's this popular figure with multiple Grammy awards...",
3    "true_answer": "St. John's Health Center",
4    "agent_planning": "1. Parse the question to extract all key constraints: multiple
5      Grammy awards, first album before 1969, substance dependence, dismissed from
6      school before age 20, first life partner died in 1997, served as uniformed
7      personnel, determine place/hospital of death.\n2. Conceptual plan:\n- Identify
8      the possible entertainers matching all constraints.\n- For each candidate:
9        a) Verify the timeline for first album release (before 1969)\n        b) Check Grammy
10       history\n        c) Search biographical records for substance abuse and educational
11       background\n        d) Confirm information about life partner's death year and
12       uniformed service\n        e) Pinpoint the date and location/hospital of death of the
13       matched figure.",
14    "search_agent_planning": "1. Receive precise person identifier from Code Agent or
15      use biographical clues to triangulate the subject.\n2. Formulate search queries
16      for identification and specific hospital information.\n3. Prioritize official
17      biographical sources, reputable news outlets, Grammy records.\n4. Cross-check
18      critical data points to validate subject match.\n5. Extract facts about location
19      and hospital of death from obituaries.",
20    "agent_experience": [
21      "Break down multifaceted questions into smaller constraint checks",
22      "Explicitly log and verify biographical constraints with multi-source
23      confirmation",
24      "Select high-reliability sources for biographical and award data",
25      "Delegate to Search Agent early with specific sub-queries",
26      "Validate final answers by chaining all found facts back to original constraints"
27    ],
28    "search_agent_experience": [
29      "Decompose complex queries into sequential search refinements",
30      "Craft highly specific queries for ambiguous identifiers",
31      "Favor authoritative sources over entertainment/tabloid content",
32      "Cross-validate information from multiple independent sources",
33      "Format results with direct attribution and clear source references"
34    ]
35  }
  
```

Listing 2: Generated Agent Planning and Experience JSON

1296 F COLLECTIONS OF USED PROMPTS
1297
12981299 F.1 PROMPT DESIGN FOR AGENT KB CONSTRUCTION
13001301 F.1.1 GENERAL TASKS
13021303 **AGENT KB Generation Prompt**
1304

1305 You will act as an advanced AI evaluation system tasked with analyzing a
1306 complex problem that an agent handles. Your analysis will extract valuable
1307 insights from this process. Follow these instructions carefully:
1308

1309 1. I will provide a question and its correct answer (true_answer).
1310

1311 2. First, simulate the agent's planning process in detail. Describe how it
1312 would:
1313 - Break down the problem into logical components
1314 - Determine which tools to use (code execution, data processing, API calls)
1315 - Decide when to delegate to the Search Agent
1316 - Plan data transformations and analysis steps
1317 - Structure the final solution
1318 Include specific reasoning steps, potential code snippets considered, and
1319 decision points. Only include content in the agent plan, without any other
1320 description.
1321

1322 4. Next, based on the question and your simulated planning processes, create
1323 a realistic error scenario. Describe:
1324 - Where and how the agents might fail
1325 - Incorrect assumptions they might make
1326 - Data misinterpretations or code errors
1327 - Logical flaws in their approach
1328

1329 5. Finally, provide actionable experience guidelines:
1330 - Specific principles to improve problem-solving, tool selection, verification,
1331 and integration of search results
1332 The behavioral guidelines should be generalizable principles that would help
1333 the agents perform better on similar tasks, without directly revealing the
1334 specific answer to the question I provided.
1335

1336 Output your complete analysis in the following JSON format with no additional
1337 text:
1338 {
1339 "question": "<question I provide>,"
1340 "true_answer": "<correct answer I provide>,"
1341 "agent_plan": "<your detailed Code Agent plan simulation>,"
1342 "agent_experience": "<your actionable Code Agent guidelines>,"
1343 }
1344

1345 Here is an example:
1346

1347 {
1348 "question": "<question from hand-crafted experience pool>,"
1349 "true_answer": "<correct answer>,"
1349 "agent_plan": "<Real Code Agent plan>,"
1349 "agent_experience": "<Hand-crafted agent experience>,"
1349 }
1350

1350 F.1.2 GAIA

1351

1352

1353

AGENT KB Generation Prompt1354 You will act as an advanced AI evaluation system tasked with analyzing a
1355 complex problem handled by a Code Agent with an embedded Search Agent. Your
1356 analysis will extract valuable insights from this process. Follow these
1357 instructions carefully:

1358

1359 1. I will provide a question and its correct answer (true_answer).

1360

1361 2. First, simulate the Code Agent's planning process in detail. Describe how
1362 it would:

1363

- Break down the problem into logical components
- Determine which tools to use (code execution, data processing, API calls)
- Decide when to delegate to the Search Agent
- Plan data transformations and analysis steps
- Structure the final solution

1367

1368 Include specific reasoning steps, potential code snippets considered, and
1369 decision points. Only include content in the agent plan, without any other
1370 description.

1371

1372 3. Next, simulate the Search Agent's planning process in detail. Describe how
1373 it would:

1374

- Parse the search query requirements from the Code Agent
- Formulate effective search queries
- Determine which sources to prioritize
- Extract and validate relevant information
- Process and structure the search results for the Code Agent

1375

1376 Include specific query formulation strategies and information filtering
1377 approaches. Only include content to search the agent plan, without any other
1378 description.

1379

1380 4. Based on the question and your simulated planning processes, create a
1381 realistic error scenario. Describe:

1382

- Where and how the agents might fail
- Incorrect assumptions they might make
- Data misinterpretations or code errors
- Logical flaws in their approach

1383

1384 5. Finally, provide two sets of actionable experience guidelines:

1385

- For the Code Agent: Specific principles to improve problem-solving, tool
1386 selection, verification, and integration of search results
- For the Search Agent: Specific principles to enhance query formulation,
1387 source evaluation, information extraction, and result formatting

1388

1389 The behavioral guidelines should be generalizable principles that would help
1390 the agents perform better on similar tasks, without directly revealing the
1391 specific answer to the question I provided.

1392

1393

1394

1395

1396

1397

1398 Important: If the question does not require the search agent to solve, leave
1399 "search_agent_plan" and "search_agent_experience" empty in your response.

1400

1401 Output your complete analysis in the following JSON format with no additional
1402 text:

1403

```
{
  "question": "<question I provide>",
  "true_answer": "<correct answer I provide>",
  "agent_plan": "<your detailed Code Agent plan simulation>",
}
```

```

1404 "search_agent_plan": "<your detailed Search Agent plan simulation>",
1405 "agent_experience": "<your actionable Code Agent guidelines>",
1406 "search_agent_experience": "<your actionable Search Agent guidelines>"  

1407 }
1408
1409 Here is an example:
1410
1411 {
1412 "question": "<question from hand-crafted experience pool>",
1413 "true_answer": "<correct answer>",
1414 "agent_plan": "<Real Code Agent plan>",
1415 "search_agent_plan": "<Real Search Agent plan>",
1416 "agent_experience": "<Hand-crafted agent experience>",
1417 "search_agent_experience": "<Hand-crafted search agent experience>"  

1418 }
1419
1420
1421
1422 F.1.3 SWE-BENCH
1423

```

AGENT KB Generation Prompt

You are an advanced code repair analysis system tasked with constructing structured experiences for Agent KB from SWE-bench tasks. Given a natural language problem description, a model-generated fix, and supporting repair hints, follow the steps below to extract reusable knowledge entries. Your output should conform strictly to JSON formatting and follow the key structure outlined in each step.

1. Code Reconstruction:

Given a detailed natural language description of a Python class or function, generate its correct implementation. Ensure it is complete and syntactically valid.

Output key: "code"

2. Error Analysis and Repair Principles:

You are given two versions of code: one with errors and one corrected. Analyze the differences and identify key problems in the faulty version. Based on this comparison, produce a list of 10 code repair precautions. These should be generalizable principles addressing common issues (e.g., indentation, type conversion, exception handling, logic errors). Avoid using titles; just output the explanations.

Output key: "hints" (as a list of 10 strings)

3. Hint Classification:

Each natural language hint is used to prompt the LLM to repair the code. Classify each hint into one repair category (e.g., "syntax", "logic", "exception handling"). Also, extract important keywords and write a one-sentence summary of the hint.

Output keys: "category", "keywords", "summary"

4. Repair Type Identification:

Given the original problem description, identify the $\{K\}$ most relevant categories this code repair case falls under. Select from a pre-defined set of bug types.

Output key: "categories" (as a list of $\{K\}$ strings)

1458
 1459 **5. Most Relevant Hints Ranking:**
 1460 You are given a set of all the hints provided to the model. Analyze the model's
 1461 generated fix and its reasoning trace. Based on this analysis, identify the
 1462 {N} most relevant hints. These may be either positively helpful or misleading.
 1463 Sort them in order of influence on the final patch.
 1464 Output key: "hints" (as a list of {N} strings)
 1465
 1466 Important Notes:
 1467 - Always respond strictly in JSON format.
 1468 - Do not include section titles, markdown formatting, or explanations.
 1469 - When code is requested, return only the code inside the JSON key.
 1470 - If any step is not applicable (e.g., hint classification not possible), return
 1471 an empty string or array for that field.

1472 F.2 PROMPT DESIGN FOR AGENT KB PIPELINE

1474 F.2.1 GAIA

1476 AGENT KB Reason Prompt

1477
 1478 Analyze similar tasks and past experiences to generate concise, actionable
 1479 suggestions for improving the current plan. Based on the patterns identified
 1480 in relevant tasks and insights from the Agent KB, provide specific
 1481 recommendations.

1482 Key Requirements:

- 1483 1. Focus exclusively on technical/behavioral improvements derived from similar
 1484 task patterns and experience.
- 1485 2. Provide root-cause solutions and implementation strategies based on past
 1486 successes.
- 1487 3. Format output strictly as:
 1488 {1. Specific suggestion 1}
 1489 {2. Specific suggestion 2}

1490 ...

1491 No headings, explanations, or markdown.

1492 You can refer to similar tasks, plans, and corresponding experience to provide
 1493 your suggestions:

```
1494     {  

  1495       "question": "<Question retrieved from Agent KB>",  

  1496       "agent_plan": "<Retrieved agent plan>",  

  1497       "agent_experience": "<Retrieved agent experience>",  

  1498     }  

  1499     ...
```

1502 AGENT KB Refine Prompt

1503
 1504 Analyze the execution logs to determine the causes of the agent's incorrect
 1505 responses. Based on the findings of the log and insights from the provided
 1506 similar tasks and experience, generate some concise, actionable suggestions
 1507 that the agent must follow to improve accuracy.

1508 ****Key Requirements:****

- 1509 1. Focus exclusively on technical/behavioral fixes derived from log patterns
 1510 and the Agent KB.
- 1511 2. Provide root-cause resolution (e.g., code logic, data validation, API

```

1512 handling) as well as generic advice.
1513 3. Format output strictly as:
1514 {1. Specific suggestion 1}
1515 {2. Specific suggestion 2}
1516 ...
1517 No headings, explanations, or markdown.
1518 You can refer to similar tasks and corresponding experience to provide your
1519 suggestions:
1520 {
1521 "question": "<Question retrieved from Agent KB>",
1522 "agent_plan": "<Retrieved agent plan>",
1523 "agent_experience": "<Retrieved agent experience>",
1524 }
1525 ...
1526 Execution logs summary:
1527 <Log summary>
1528
1529
1530 F.2.2 SWE-BENCH
1531

```

AGENT KB Reason Prompt

Extract key information from user queries to construct efficient search terms for retrieving the most relevant results.

Requirements:

Analyze the user's question to identify core concepts, terminology, and keywords Extract contextual information and constraints that may impact search quality Break down complex questions into searchable components

Identify the domain, subject matter, and specific needs of the question

Output format:

{<core concepts or topics of the question>}

Ensure search terms are specific enough to retrieve relevant information while maintaining sufficient breadth to capture related cases. Combine technical terminology with everyday expressions to optimize search effectiveness.

AGENT KB Retrieve Prompt

Given the current bug description, initial patch plan, and model thought process, retrieve the most relevant historical experiences from Agent KB.

Retrieval Priorities:

1. Prefer experiences with similar bug types (e.g., off-by-one errors, null pointer exceptions, wrong return value).
2. Favor patches with successful unit test outcomes and generalizable fix patterns.
3. Include agent plans that show tool usage, exception guards, or correct interface assumptions.

Format each retrieved experience as:

```

{
  "question": "<SWE-bench issue title or commit description>",
  "agent_plan": "<Historical high-level patch or thought process>",
  "agent_experience": "<Failure modes avoided or debug strategies that worked>"
}
...
```

1566
 1567 Retrieve 3 to 5 relevant entries and return them in the above format for use
 1568 in downstream reasoning and refinement.
 1569

1570 AGENT KB Refine Prompt

1571
 1572 Analyze the execution trace of the model’s patch attempt and identify the
 1573 reasons for its failure. You are given: a natural language description of
 1574 a code fix problem, the model-generated fix, the model’s internal thought
 1575 process, and the prompts previously provided to guide the model.

1576 Based on this information, identify the most likely cause of the error and
 1577 determine which hints or prompt components influenced the model’s incorrect
 1578 reasoning. Rank the provided prompts in order of their influence over the
 1579 model’s behavior.

1579 Key Requirements:

- 1580 1. Focus exclusively on technical root causes, such as incorrect API
 1581 assumptions, scope misunderstanding, faulty patch structure, or missing
 1582 validation.
- 1583 2. Identify which prompt(s) led the model astray, based on reasoning steps or
 1584 patch behaviors.
- 1585 3. Output a strictly ranked list of prompts or hints, based on their importance
 1586 in shaping the erroneous behavior.
- 1587 4. Justify the ranking based on model thought content and the specific failure
 1588 observed.

1589 Format strictly as:

```
1590     {  

  1591       1. "<Most influential prompt or hint snippet>"  

  1592       2. "<Second most influential prompt or hint snippet>"  

  1593       ...}
```

1594
 1595 Do not include headings, explanations, or markdown. Focus only on returning
 1596 the ranked list with brief justifications inline.

1598 G LANGUAGE MODEL USAGE

1601 This section outlines the specific roles of large language models (LLMs) within our AGENT KB frame-
 1602 work and experimental methodology. We provide detailed documentation of all LLM applications for
 1603 transparency.

1606 G.1 SYSTEM COMPONENTS

1607 We employ LLMs in three core functions: (1) **Experience synthesis** using LLMs with few-shot
 1608 prompting to transform heterogeneous agent logs into standardized representations, (2) **Knowledge
 1609 curation** through LLM-based ranking when deduplicating similar entries ($\tau = 0.8$ threshold), and
 1610 (3) **Query processing** for both task analysis in the **Reason** phase and experience adaptation in the
 1611 **Refine** phase.

1614 G.2 EXPERIMENTAL SETUP

1616 **Agent Backbones.** Our evaluation involves four distinct agent frameworks, each powered by differ-
 1617 ent LLM configurations: smolagents (GPT-4o, GPT-4.1, Claude-3.7, Qwen 3-32B, DeepSeek-R1),
 1618 OWL (GPT-4o), SWE-Agent (GPT-4.1, o3-mini), and OpenHands (GPT-4o, o3-mini, GPT-4.1,
 1619 Claude-3.7, Qwen 3-3B, DeepSeek-R1). The AGENT KB system acts as a model-agnostic memory
 1620 layer, interfacing through standardized APIs without requiring changes to agent architectures.

1620
1621 **Evaluation Methodology.** Performance assessment relies solely on ground-truth task completion
1622 metrics. We use exact match accuracy for GAIA reasoning tasks and test passage rates for SWE-bench
1623 code repair, rather than LLM-generated evaluation scores.
1624

1625 G.3 MANUSCRIPT DEVELOPMENT

1626 In line with conference transparency standards, we disclose that large language models assisted in
1627 manuscript preparation through editorial tasks such as grammar correction, typo detection, and prose
1628 clarity improvement. All technical contributions, experimental design, results interpretation, and
1629 scientific claims are entirely authored by the researchers.
1630

1631 G.4 METHODOLOGICAL CONSIDERATIONS

1632 **Computational Overhead.** LLM inference incurs measurable costs during experience construction
1633 and retrieval. Cost analysis (Appendix D) estimates these overheads at \$3.0 – \$4.5 per task, which
1634 is acceptable considering the performance gains of 4.0–18.7 percentage points.
1635

1636 **Architectural Independence.** Although individual agent frameworks depend on specific LLMs,
1637 AGENT KB maintains an architecture-agnostic design. Knowledge transfer across frameworks
1638 happens via semantic embeddings and standardized action vocabularies, ensuring portability across
1639 different model families and API interfaces.
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673