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ABSTRACT

With the powerful reasoning capabilities of large language models (LLMs)
and vision-language models (VLMs), many recent works have explored using
them for decision-making. However, most of these approaches rely solely
on language-based reasoning, which limits their ability to reason and make
informed decisions. Recently, a promising new direction has emerged with
unified multimodal models (UMMs), which support both multimodal inputs and
outputs. We believe such models have greater potential for decision-making by
enabling reasoning through generated visual content. To this end, we propose
Uni-Plan, a planning framework built on UMMs. Within this framework, a
single model simultaneously serves as the policy, dynamics model, and value
function. In addition, to avoid hallucinations in dynamics predictions, we present
a novel approach self-discriminated filtering, where the generative model serves
as a self-discriminator to filter out invalid dynamics predictions. Experiments
on long-horizon planning tasks show that Uni-Plan substantially improves
success rates compared to VLM-based methods, while also showing strong data
scalability, requiring no expert demonstrations and achieving better performance
under the same training-data size. This work lays a foundation for future research
in reasoning and decision-making with UMMs.

1 INTRODUCTION

Large language models (LLMs) and vision-language models (VLMs) have demonstrated strong rea-
soning capabilities across a wide range of tasks (Brown et al., 2020; Wei et al., 2022; OpenAI, 2023;
Zhang et al., 2024b). Motivated by this, many recent works (Huang et al., 2022a; Ichter et al., 2022;
Driess et al., 2023; Hu et al., 2023) have explored their application to decision-making, such as
generating high-level, step-by-step plans for long-horizon tasks. However, their planning process
remains purely text-based. Even for most VLMs, visual inputs are typically used only at the initial
stage of reasoning, rather than being incorporated throughout the thinking process. As a result, the
reliance on a single modality limits the model’s ability to accurately represent the current state during
planning. The absence of multimodality throughout the thinking process limits their effectiveness in
complex scenarios that require accurate spatial or visual understanding.

Recently, an increasing number of works (Hu et al., 2024; Zhou et al., 2024; Li et al., 2025; Chern
et al., 2025) have proposed incorporating images into the reasoning process. This is typically
achieved by integrating external tools to interpret visual observations, for example, by generating
program code to call Python plotting libraries (Hu et al., 2024), or by invoking vision models for
segmentation or object detection on input images (Zhou et al., 2024). However, such approaches are
highly dependent on separate visual modules or external toolchains, which limits their adaptability
to more complex visual reasoning tasks. In contrast, a different line of work (Li et al., 2025; Chern
et al., 2025) explores generating intermediate images directly within the model to support reason-
ing. Although this approach is more general and holds greater promise, it has been used primarily
to visualize reasoning traces (Li et al., 2025) or to iteratively refine image generation (Chern et al.,
2025), rather than to enable more sophisticated decision-making.

Notably, a promising new class of models has recently emerged, i.e., unified multimodal models
(UMMs) (Wu et al., 2024; Xie et al., 2025b; Wang et al., 2024; Liao et al., 2025; Deng et al., 2025),
which support both multimodal inputs and outputs, typically in the form of images and text. We
argue that such models are particularly well-suited for decision-making, as they can simultaneously
serve as dynamics models (generating the next visual observation), as policies (generating text-based
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Figure 1: Overview of Uni-Plan, a planning system where one single UMM serves as (i) the policy,
(ii) the dynamics model, (iii) the self-discriminator, and (iv) the value function simultaneously.

actions), and as value functions (estimating how far away from goals), thus enabling integrated
planning. However, such models remain subject to the curse of the horizon, with a key bottleneck
being their limited ability to serve as faithful dynamics models. While current state-of-the-art models
can perform basic image-editing tasks (Deng et al., 2025; Liao et al., 2025), our findings indicate
that they are still insufficiently accurate to give reliable dynamics predictions. This limitation can be
alleviated through finetuning for relatively simple downstream tasks, but the improvement does not
extend to more challenging scenarios, particularly those involving stochastic dynamics.

To address this challenge, we strategically leverage the UMM’s flexible input–output modality to
employ it as a self-discriminator for filtering out invalid transition predictions. Concretely, the model
first generates multiple candidate predictions for the next observation. It then operates in an inverse
dynamics mode, inferring the action that would lead from each current–next observation pair. By
comparing these inferred actions with the actual action, we can identify and discard those transitions
where the actions do not match, effectively removing implausible predictions. Building on this
capability, we develop a planning framework Uni-Plan, and demonstrate its superior performance
across a range of long-horizon planning tasks.

We highlight the main contributions of our work below:

• We propose self-discriminated filtering, where the generative model serves as a self-
discriminator to filter out invalid dynamics predictions for a more accurate dynamics model.

• We present a planning framework Uni-Plan, illustrated in Figure 1, where one UMM plays
the roles of (i) policy, (ii) dynamics model, (iii) self-discriminator, and (iv) value function
simultaneously.

• Evaluating on several long-horizon planning tasks, our method achieves nearly 30% higher
success rates than open-source VLM-based planning methods, and even matches the pow-
erful GPT-5-Thinking model. Furthermore, our method also exhibits strong data scalability,
requiring no expert demonstrations for finetuning and outperforming VLMs when trained
with the same amount of data.

2 PLANNING WITH UNIFIED MULTIMODAL MODELS

2.1 FORMULATION

In this work, we focus on leveraging unified multimodal models (UMMs) for decision-making.
Here, the UMMs refer to such models capable of multimodal inputs and outputs, typically in the
form of images and text. This kind of model can give us more flexibility and higher potential when
using them for decision-making. In this paper, we use BAGEL (Deng et al., 2025), the state-of-the-
art open-source UMM, as the foundation model. We refer readers to Appendix A for more details.

We formulate the decision-making process as a hierarchical framework. At the high level, given
an initial visual observation o0 of the environment and a goal g described in natural language, A
model (VLM/UMM) is required to generate a sequence of plans a0:H to achieve the goal, where
each ai is a textual action. At the low level, we assume the availability of a set of off-the-shelf
policies (skills) {πi}1:N that serve as controllers, producing low-level control actions conditioned

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

move rightmove right

(a) w/o finetuning (b) with finetuning

move green
cube to yellow
star

(c) with finetuning

move green
cube to yellow
star

(d) with finetuning & self-discriminated filtering

Deterministic dynamics

Stochastic dynamics

Figure 2: Illustration of dynamics predictions by different models.

on the current observation and the corresponding textual action. These low-level policies can be
derived from either behavior cloning or reinforcement learning. Our work primarily focuses on the
high-level planning component.

The core idea of our method is to employ a UMM for planning, which inherently integrates the
functions of a dynamics model, a policy, and a value function. Owing to the flexible input-output
modalities of UMMs, a single model can simultaneously serve all these roles. In Section 2.2, we
first describe how to utilize it as a reliable dynamics model, which constitutes the most challenging
aspect of the planning system. Subsequently, in Section 2.3, we present the design of the overall
planning framework.

2.2 UMMS AS DYNAMICS MODELS

To enable high-level planning, the model must be capable of predicting the next visual observation
conditioned on the current observation and a textual action, i.e., PUMM(oh, ah) → oh+1. This task
closely resembles image editing in the training of UMMs (Deng et al., 2025; Liao et al., 2025), as
both require accurate language grounding while preserving the consistency of unaffected regions in
the image. However, dynamics prediction presents a greater challenge, as it additionally demands
the ability to reason about precise causal effects of textual actions.

As an illustrative example, we employ BAGEL (Deng et al., 2025) to perform dynamics predictions
in a maze environment (Figure 2(a)). Note that we directly use its open-source weights without any
finetuning. While the model preserves overall image consistency, it fails to predict the character’s
position accurately. This limitation can, however, be mitigated through few-shot finetuning. As
shown in Figure 2(b), after such adaptation, the model can serve as an effective dynamics model.

However, we find that only finetuning remains insufficient for accurate dynamics predictions on
more challenging tasks, particularly those involving stochastic dynamics. In Figure 2(c), we il-
lustrate the dynamics prediction for table rearrangement tasks using the finetuned BAGEL. The
stochasticity in this setting arises from the existence of multiple valid outcomes {oih+1} for a given
(oh, ah). For example, suppose that the text action is “move green cube to yellow star”, such that
multiple valid next states may exist because the green cube could be placed at different relative
positions around the yellow star, leading to different but equally correct results.

To mitigate this issue, we propose a novel technique termed self-discriminated filtering, which en-
ables the model itself to act as a discriminator to select correct predictions from multiple candidates
sampled by the model. Specifically, we jointly train a UMM to perform inverse dynamics inference,
allowing it to predict the textual action that describes the transition between two observations, i.e.,
P−1
UMM(oh, oh+1) → ah. To identify valid transitions among the model’s predictions {ôih+1} for

(oh, ah), we feed each candidate pair (oh, ôih+1) into the model to obtain an inferred aih, and then
verify whether aih matches the ground-truth action ah

1. Although effective, we observe that the

1Exact lexical match is not required and semantic equivalence is sufficient. We can use regular-expression
matching to extract environment changes for comparison.
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Algorithm 1 Uni-Plan

Require: Initial visual observation o0, Language goal g
1: Functions: Dynamics model PUMM(oh, ah), Inverse dynamics P−1

UMM(oh, oh+1), Policy
πUMM(oh, g), Heuristic value function HUMM(oh, g)

2: Hyperparameters: Action-branching factor A, Dynamics-branching factor D, Planning beams
B, Max planning horizon H

3: plans←
[
(o0, []) ∀i ∈ {0, . . . , B − 1}

]
▷ Initialize B different plan beams

4: for h = 0 : H do
5: candidates← []
6: for b = 0 : B do
7: oh, a0:h ← plans[b] ▷ Get the observation and the action sequence
8: {aih}0:A ← πUMM(oh, g) ▷ Generate A text actions
9: for i = 0 : A do

10: for j = 0 : D do
11: ôjh+1 ← PUMM(oh, a

i
h) ▷ Generate a next observation

12: if P−1
UMM(oh, ô

j
h+1) = aih then

13: candidates.append((ôjh+1, a0:h + aih)) ▷ Only add valid transitions
14: end if
15: end for
16: end for
17: end for
18: plans← sort(candidates, HUMM)[0 : B] ▷ Keep the top-B beams
19: if Max(HUMM) = 0 then
20: break ▷ Early stop when number of steps left is 0
21: end if
22: end for
23: plan← argmax(plans, HUMM) ▷ Return highest value plan

model occasionally produces predictions in which objects are unexpectedly missing or duplicated.
To address such rare errors, we further employ an object-count consistency check: the model counts
the objects in both the current observation and each predicted next observation, and discards pre-
dictions where the counts differ, thereby reducing such anomalies. With this technique, we achieve
a significant reduction in hallucinations, as shown in Figure 2(d). A quantitative evaluation of the
improvements introduced by this approach is presented in Section 3.2.

2.3 WHOLE PLANNING SYSTEM DESIGN

In this section, we describe how to construct the complete planning system based on UMMs. To
enable planning, two additional components are required: a policy for sampling actions, and a value
function for evaluating states caused by different actions.

For the policy, we directly employ a UMM as a function πUMM(o, g) → a that outputs a textual
action given an observation o and a goal description g. We do not finetune the model to serve as
a policy. Instead, we provide it with task-specific instructions and constraints (i.e., the set of valid
actions) through the prompt. During planning, this policy takes the current observation as input
and samples multiple action candidates for evaluation. For the value estimation, we follow Du
et al. (2024) to implement a heuristic function HUMM(o, g) → u, which takes as input an image
observation o and a goal g, and outputs a scalar estimating the number of steps required to reach a
state that satisfies g from the current state o. To construct this heuristic, we finetune the UMM on a
labeled dataset in which each image observation is annotated with the remaining number of steps to
the goal.

With all modules in place, we can now introduce the full planning system Uni-Plan. We adopt beam
search as the underlying planning algorithm. First, beam search initializes B parallel beams. Then,
at each step of the planning horizon, for each beam, the policy πUMM(o, g) samples A candidate
actions. For each action, the dynamics model PUMM(o, a) generates D possible next observations.
Subsequently, the self-discriminated filtering module selects a valid prediction among these D can-
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didates and extends the corresponding beam with the chosen transition. After each rollout step, the
heuristic value function HUMM(o, g) assigns a score to each beam, and only the top-B beams are
retained. The final plan is determined by the beam with the highest heuristic value at the end of the
planning horizon. The overall procedure is summarized in Algorithm 1.

It is noteworthy that, unlike existing approaches that finetune VLMs for decision-making (Driess
et al., 2023; Mu et al., 2023), our framework does not rely on expert demonstration datasets. The
forward and inverse dynamics models can be finetuned on any available transition data (expert or
non-expert). The policy component requires no finetuning, while the heuristic value function only
necessitates some labeled data to learn to estimate the number of steps to a goal.

3 EXPERIMENTS

In this section, we empirically validate three claims:

• Compared to VLM-based planning methods, our method is better at long-horizon decision-
making tasks, including both navigation and manipulation tasks.

• The strong decision-making ability is rooted in the fact that the fine-tuned Unified Mul-
timodal Model (UMM) serves as a highly generalizable dynamics model, and is further
strengthened by our proposed self-discriminated filtering, which rejects implausible transi-
tions to improve prediction accuracy.

• Our approach demonstrates superior data scalability in two aspects: it requires no expert
demonstrations for finetuning and achieves stronger performance than VLMs when trained
with the same amount of data.

3.1 EVALUATION OF PLANNING ABILITY UNDER OOD ENVIRONMENTS

Tasks. To comprehensively evaluate the planning ability of different models, we design exper-
iments across three simulated environments and one real-world environment. (i) FrozenLake: a
maze-like environment where the agent must plan a path from a start location to a goal while avoid-
ing traps. This task primarily assesses the model’s ability to perform long-horizon reasoning under
strict safety constraints. (ii) Mini-BEHAVIOR: a series of grid-world embodied AI tasks in which
the agent is required to navigate and complete specified goals, such as picking up a target object and
placing it in another goal position. This environment emphasizes both navigation and goal-directed
decision-making. (iii) Language Table: a tabletop object rearrangement task where the agent manip-
ulates objects on the table to achieve a desired configuration shown in a target image. This setting
evaluates the model’s capacity for grounded language understanding and spatial reasoning in manip-
ulation tasks. (iv) Real World: a more challenging real-world object-rearrangement scenario where
the agent must precisely identify previously unseen objects and generate a coherent multi-step plan
toward the goal.

Training & Test Sets. To evaluate planning under out-of-distribution (OOD) conditions, we con-
struct training and test configurations that explicitly induce distribution shifts in each environment.
(i) FrozenLake: the test set contains unseen layouts that differ from the training set in both map
size and trap distribution. (ii) Mini-BEHAVIOR: the test set comprises novel maps with different
start, object, and goal positions. (iii) Language Table: the test set uses distinct block configurations
for both the initial and goal states. (iv) Real World: the test set uses distinct configurations with
unseen objects and containers for both the initial and goal states. We collect only 500 trajectories
for each task for finetuning, except for the real-robot task, where data collection was more costly
and resulted in 200 trajectories. Notably, the datasets used to finetune the VLM baselines are expert
demonstrations, whereas our approach requires no expert data. Instead, we collect an equal amount
of non-expert trajectories to ensure a fair comparison. Dataset statistics and collection procedures
are provided in Appendix B.1.

Baselines. We compare our approach against a range of planning methods based on vi-
sion–language models (VLMs).

For open-source baselines, we include the mainstream VLM Qwen2.5-VL (Bai et al., 2025) and
additionally compare BAGEL-VLM, which is BAGEL restricted to its VLM-only mode and thus
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Table 1: Success rates of planning with different methods.

Model Frozen Lake Mini-BEHAVIOR Language Table Real World Average

Closed-Source

GPT-5 0.08 0.04 0.00 0.10 0.06
GPT-5-Thinking 0.44 0.30 0.82 0.80 0.59
GPT-5-Thinking-Tool 0.98 0.68 0.90 0.80 0.84

Open-Source (three training runs)

Qwen2.5-VL-7B-Ins 0.33±0.04 0.00±0.00 0.14±0.03 0.07±0.02 0.14±0.02
Qwen2.5-VL-7B-Ins-CoT 0.37±0.02 0.15±0.02 0.36±0.01 0.22±0.02 0.28±0.02
Qwen2.5-VL-32B-Ins 0.43±0.05 0.07±0.03 0.28±0.06 0.18±0.06 0.24±0.05
Qwen2.5-VL-32B-Ins-CoT 0.49±0.02 0.51±0.01 0.57±0.02 0.33±0.02 0.48±0.02
BAGEL-VLM (baseline, 7B) 0.38±0.05 0.01±0.02 0.23±0.02 0.09±0.04 0.18±0.03
BAGEL-VLM-CoT (baseline, 7B) 0.43±0.02 0.48±0.00 0.51±0.02 0.26±0.02 0.42±0.02

Ours

Uni-Plan (14B-A7B) 0.95±0.01 0.83±0.01 0.73±0.02 0.63±0.02 0.78±0.02

serving as a natural ablation of our method. For these models, we consider both non-CoT and CoT
variants:

• Non-CoT version: The model is fine-tuned using only the final answers so that it outputs
a complete plan directly.

• CoT version: The model is additionally provided with rationales (Wei et al., 2022) during
fine-tuning, enabling it to think step-by-step at inference.

For closed-source VLMs1, we choose GPT-5 (OpenAI, 2025) and its variants:

• GPT-5: A standard chat model with relatively limited reasoning ability. We prompt it to
think step by step to produce a plan.

• GPT-5-Thinking: A stronger model trained to reason through reinforcement learning.
• GPT-5-Thinking-Tool: Extends GPT-5-Thinking with a code interpreter, allowing it to

write and execute code for better problem solving.

Appendix B.3 lists the detailed prompts and CoT demonstrations for all these tasks.

Main Results. Table 1 reports the planning success rates of all evaluated methods, measured by
invoking the corresponding low-level policies to execute the generated plans in the environments.
Our approach consistently outperforms open-source VLM baselines by a substantial margin. In par-
ticular, compared with the BAGEL-VLM, our method achieves more than 60% higher success rates
than its non-CoT variant and nearly 40% higher than its CoT variant across all tasks. This directly
highlights the superiority of our planning system over traditional chain-of-thought (CoT) reasoning
based solely on text, as both approaches share the same underlying model, yet ours more effec-
tively exploits BAGEL’s capabilities. We provide a detailed analysis of VLM-based planning failure
cases in the Appendix C.2. When compared with the advanced closed-source model, our method
still exhibits comparable performance, which is a promising result given that GPT-5-Thinking-Tool
is a significantly larger model and possesses broader knowledge. This also indicates that, beyond
the use of external tools to enhance a model’s visual reasoning capability, leveraging the UMM’s
inherent multimodal generation ability can likewise significantly strengthen reasoning performance,
providing a new perspective for improving visual reasoning in the future.

Planning Visualizations. We further showcase some planning examples produced by Uni-Plan
on the real-world task. Notably, this scenario contains previously unseen objects and containers,
making it particularly challenging: the policy must accurately recognize new items, and the dynam-
ics model must predict correct transitions under novel visual conditions. As shown in Figure 3,
our planning system generates coherent plans that are both plausible in their action sequences and
consistent in dynamics predictions. Additionally, we test Uni-Plan on a more challenging scenario
with an unseen background. It can be seen that the change in background does not bring any in-
fluence to the planning, indicating the great generalization ability of our method. More qualitative
visualizations are provided in Appendix C.1.

1Because the closed-source models cannot be finetuned directly, we employ few-shot prompting for in-
context learning instead.
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Figure 3: Planning for a real-world tabletop task with unseen objects and containers (top), and a
more challenging case with additional unseen background (bottom).

3.2 STRONG DYNAMICS MODEL AS THE CORE OF STRONG DECISION-MAKING ABILITY

Unlike chain-of-thought (CoT) reasoning, which instinctively generates a reasoning trace in an au-
toregressive manner, our approach performs beam search over several sampled action candidates,
allowing it to escape the limitations of a fixed policy and adapt to novel situations. However, this
advantage hinges on the model’s ability to accurately predict the outcomes of different actions.

finetuned

trained
from
scratch

go left go down go right go up

Figure 4: Illustrations of predictions on an OOD
case by finetuned BAGEL and BAGEL trained
from scratch as dynamics models.
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Figure 6: Confusion matrices of predictions by
self-discriminated filtering.

We show that the finetuned BAGEL does serve
as a strong dynamics model. Figure 4 illus-
trates examples of transition predictions in an
OOD case of the FrozenLake task, where both
the maze layout (trap positions, start point, and
goal) and the grid size differ from those in the
training set. We observe that finetuned BAGEL
demonstrates strong generalization ability, pro-
ducing correct predictions for all possible ac-
tions. In contrast, BAGEL trained from scratch
performs poorly on this OOD layout. As further
supported by the quantitative analysis in Figure 5, where we evaluate models on 100 OOD scenarios
per task by measuring the accuracy of transition predictions, the finetuned model achieves substan-
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Figure 7: Ablations on self-discriminated filtering.

100250 500 1000 2000
Number of Training Trajectories

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

FrozenLake

100250 500 1000 2000
Number of Training Trajectories

0.0

0.2

0.4

0.6

0.8

1.0 Mini-BEHAVIOR

100250 500 1000 2000
Number of Training Trajectories

0.0

0.2

0.4

0.6

0.8

1.0 Language Table

Qwen2.5-VL-32B-Ins-CoT BAGEL-VLM-CoT Uni-Plan

Figure 8: Data scaling trends of two VLM methods: Qwen2.5-VL-32B-Ins-CoT and BAGEL-VLM-
CoT, and our method Uni-Plan.

tially higher prediction accuracy than the model trained from scratch. These results indicate that
BAGEL’s strong generalization stems from its pretrained model and that, with few-shot finetuning,
it can serve as a reliable dynamics model for downstream tasks. Additional qualitative comparisons
between the two models are provided in Appendix C.1.

The finetuned dynamics model is further enhanced by our proposed self-discriminated filtering.
Before evaluating its impact, we first verify that this technique is capable of reliably distinguishing
correct dynamics predictions from incorrect ones. As shown by confusion matrices in Figure 6,
it achieves high accuracy and recall with a low false-positive rate, indicating its strong ability to
judge the correctness of its own predicted transitions. Subsequently, we conduct an ablation study to
investigate its influence on planning. Figure 7 reports the accuracy of dynamics predictions and the
planning success rates with and without the filtering. As shown in Figure 7, the self-discriminated
filtering effectively reduces prediction errors in dynamics and, as a result, substantially improves
planning success rates.

3.3 DATA SCALING WITHOUT EXPERT DEMONSTRATIONS

In this section, we examine the data scalability of our planning system. While existing VLM base-
lines require expert-collected datasets to adapt their policies (Driess et al., 2023; Mu et al., 2023),
our framework can be trained effectively on non-expert trajectories, where actions may be subop-
timal. Figure 8 compares scaling trends for Qwen2.5-VL-32B-Ins-CoT, BAGEL-VLM-CoT, and
Uni-Plan. Despite relying only on non-expert data, Uni-Plan consistently achieves higher perfor-
mance with the same amount of data. In particular, just 500 trajectories are sufficient for Uni-Plan
to reach strong performance, whereas VLMs fail to achieve competitive results even with four times
as much data on FrozenLake and Mini-BEHAVIOR.

4 RELATED WORK

Our work intersects with several research areas, including decision-making with language models,
thinking with images, self-verification, and unified multimodal models. We provide a comprehen-
sive discussion below.
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Decision-Making with Language Models. Motivated by the strong reasoning capabilities of large
language models (LLMs) and vision–language models (VLMs), many studies have explored their
application to decision-making. Huang et al. (2022a) demonstrate that LLMs can serve as zero-
shot planners, decomposing high-level tasks into mid-level plans via prompting. Ichter et al. (2022)
augment LLMs with affordances to ground them in real-world robotic tasks. Huang et al. (2022b)
further incorporate environment feedback to form an inner monologue, enabling richer planning and
control. However, all of these approaches operate solely in the text modality and thus lack grounded
perception. To overcome this limitation, several works leverage VLMs for decision-making. For in-
stance, Driess et al. (2023) and Mu et al. (2023) combine LLMs with vision encoders to form VLMs
that, after finetuning on embodied datasets, can handle a wide range of embodied planning tasks. Hu
et al. (2023) show that advanced closed-source VLMs such as GPT-4V can solve many open-world
manipulation tasks without finetuning. Beyond manipulation, Zhang et al. (2024a) demonstrate the
use of VLMs for vision-and-language navigation. While these methods have unique advantages,
they generally reduce decision-making to treating an LLM/VLM as a policy, and therefore lack
counterfactual reasoning ability. In contrast, another line of work formulates decision-making as
planning with world models. Hao et al. (2023) and Zhao et al. (2023) repurpose LLMs as both
world models and reasoning agents, incorporating principled planning algorithms such as Monte
Carlo Tree Search for strategic exploration. More recently, Du et al. (2024) introduce video lan-
guage planning (VLP), a framework for complex visual tasks in which VLMs act as policies and
value functions, and text-to-video models serve as dynamics models. VLP is most relevant to our
work since both VLP and our method employ beam search for visual task planning. Nevertheless,
our approach differs in key aspects: (i) we unify all roles within a single model, whereas VLP re-
quires two separate models, making our method more efficient at inference; (ii) our model can act
as a self-discriminator to reduce hallucinations; and (iii) we demonstrate superior data scalability
compared with VLM-based planning.

Thinking with Images. The driving idea of our work is that incorporating images into the thinking
process can enhance reasoning ability. Many related studies share the same insight and demonstrate
effectiveness on reasoning tasks such as mathematics or VQA. Hu et al. (2024) propose the vi-
sual chain-of-thought, which generates Python code to invoke external tools for sketching. Zhou
et al. (2024) similarly leverage tools for image manipulation to create visual rationales in chain-
of-thought reasoning. These methods, however, rely on external modules for image generation. A
more promising direction is native multimodal reasoning. For example, Li et al. (2025) finetune
a unified multimodal model for multimodal visualization-of-thought, enabling the UMM to pro-
duce visualizations of their reasoning traces. Chern et al. (2025) propose iterative refinement of
image generation through visual reasoning. Despite these advances, existing approaches use UMMs
mainly for visualizing reasoning traces or refining generations, rather than for more sophisticated
decision-making as in our work.

Self-Verification. Recent studies explore enabling large language models (LLMs) to verify their
own outputs. Weng et al. (2023) propose a self-verification strategy that allows large language
models (LLMs) to reevaluate their own reasoning to improve answer reliability. Miao et al. (2024)
introduce a multi-stage approach that breaks the problem down into a series of simpler tasks and per-
form step-by-step check. Ma et al. (2025) train models via reinforcement learning to strengthen both
self-verification and self-correction abilities. However, these approaches focus purely on textual rea-
soning. In contrast, our proposed self-discriminated filtering extends self-verification to multimodal
dynamics prediction, where a UMM generates candidate next observations and verifies them via
inverse-dynamics inference, filtering invalid transitions.

More broadly, our self-discriminated filtering can be understood as a form of consistency regulariza-
tion between forward and inverse dynamics (Tarvainen & Valpola, 2017). This echoes established
ideas in representation learning, where cycle-consistency or bidirectional prediction serves as a regu-
larizer that improves sample efficiency and robustness (Zhu et al., 2017). In our setting, this principle
grounds multimodal generation in action–observation consistency, making the dynamics model both
more faithful and more useful for planning (Jordan & Rumelhart, 1992).

While Uni-Plan still inherits the horizon-dependence of model-based planning where errors com-
pound over multi-step rollouts (Talvitie, 2014; Venkatraman et al., 2015), beam search combined
with self-discriminated filtering provides a partial remedy by pruning implausible futures early.
Moreover, the heuristic value function plays a role analogous to an admissible heuristic in A* search
(Hart et al., 1968; Russell & Norvig, 1995), by estimating the number of steps to goal and thereby
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prioritizing promising beams and reducing wasted computation on implausible branches. Although
our heuristic is learned rather than guaranteed admissible, this connection clarifies how Uni-Plan
mitigates horizon-related error accumulation not only through more accurate dynamics but also
through structured search.

Unified Multimodal Models. Since our method is built on a UMM, it is necessary to review re-
lated work in this field. One line of research assembles off-the-shelf specialized LLMs and visual
generative models by tuning adapters or learnable tokens, such as NExT-GPT (Wu et al., 2024),
DreamLLM (Dong et al., 2024), Seed-x (Ge et al., 2024), and BLIP3-o (Chen et al., 2025a). Alter-
natively, other work integrates multimodal understanding and generation objectives within a single
architecture, including Chameleon (Team, 2024), Show-o (Xie et al., 2025a), Transfusion (Zhou
et al., 2025), Emu3 (Wang et al., 2024), Janus-Pro (Chen et al., 2025b), and BAGEL (Deng et al.,
2025). We adopt BAGEL as the foundation model in our system because it achieves state-of-the-art
performance in both multimodal understanding and image generation among these approaches.

Model-based Reinforcement Learning. World models are widely regarded as a powerful means
to improve decision-making, a view supported by numerous model-based RL approaches such as
Dreamer (Hafner et al., 2020; 2021; 2025) and MuZero (Schrittwieser et al., 2020). However, these
methods are typically developed for a single, fixed MDP and must learn dynamics from scratch,
which limits their generality and scalability. In contrast, our work builds on the insight that im-
ages and language naturally align with the state–action formulation, allowing a pretrained UMM
to serve as a general multimodal world model. This perspective enables leveraging large-scale im-
age–language datasets for finetuning, offering a more scalable path toward a generalist model-based
RL paradigm.

5 CONCLUSION AND LIMITATIONS

In this paper, we presented Uni-Plan, a planning framework built on Unified Multimodal Models
(UMMs) where a single model simultaneously serves as policy, dynamics model, and value function.
The central challenge we identified is learning a faithful dynamics model. To address this, we
introduced a self-discriminated filtering mechanism that allows the generative model to act as its
own discriminator, filtering out invalid dynamics predictions. Experimental results show that Uni-
Plan outperforms VLM-based decision-making paradigms on long-horizon planning tasks, owing to
its capacity to function as a highly generalizable dynamics model further reinforced by our proposed
filtering method. Uni-Plan also exhibits strong data scalability, requiring no expert demonstrations
for fine-tuning and outperforming VLMs when trained with the same amount of data.

Unlike prior approaches that use generated images primarily for visualization of reasoning traces,
Uni-Plan employs image generation for counterfactual reasoning. By simulating multiple possible
futures under different actions, the model does not merely illustrate its thought process but actively
evaluates alternative trajectories. This constitutes a shift from visual explanation to visual reasoning
as computation, where generated images are intermediates in search and decision-making rather than
expository artifacts. We view this as a conceptual leap: images here are not outputs to be consumed
by humans but internal representations used by the model to reason about the world.

Our approach nonetheless has limitations. Reasoning through image generation incurs higher com-
putational costs during inference (Table 4), though we expect these to diminish with more efficient
foundational models. In addition, the current value function is deliberately simple, producing a
scalar step-to-goal estimate; more expressive forms of value prediction could benefit complex do-
mains. Addressing these issues points to a practical research agenda: reducing inference cost, im-
proving value estimation, and exploring broader applications of counterfactual visual reasoning in
planning.
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A BRIEF INTRODUCTION TO BAGEL

BAGEL (Deng et al., 2025) is an open-source foundational model that natively supports both multi-
modal understanding and generation. In this section, we describe its architecture, pretraining data,
and the capabilities of the pretrained model.

The backbone of BAGEL is derived from the Qwen2.5 LLM (Yang et al., 2024). For visual under-
standing, it employs a Vision Transformer (ViT) encoder to convert raw pixels into visual tokens.
For visual generation, BAGEL first applies a pretrained VAE to map images from pixel space to a
latent space, and then adopts Rectified Flow (Lipman et al., 2023; Esser et al., 2024) in that latent
space to generate images. Text generation is performed autoregressively, whereas image generation
proceeds in parallel. In addition, BAGEL adopts a Mixture-of-Transformers (MoT) architecture that
uses separate QKV projectors and feed-forward networks (FFNs) for understanding and generation
while sharing the same attention layers. Each component is initialized from Qwen2.5-7B, resulting
in a total of roughly 14B parameters (only 7B parameters active during inference).

BAGEL is pretrained on interleaved multimodal datasets encompassing multimodal conversation,
text-to-image generation, and image manipulation, which enables seamless integration of diverse
generative tasks. In the early stages of pretraining, it is primarily trained on simple text-to-image
(T2I) and image-to-text (I2T) pairs; later stages introduce high-resolution T2I and I2T pairs as well
as interleaved multimodal understanding and generation data. Cross-entropy loss is applied to text
tokens, while mean-squared error loss is used for image token generation.

Thanks to this comprehensive training corpus, BAGEL exhibits superior visual understanding and
image generation capabilities compared with other leading open-source models (Bai et al., 2025;
Chen et al., 2024; Ge et al., 2024; Chen et al., 2025b). More importantly, BAGEL is capable of
high-fidelity image editing, which is more challenging than T2I generation because it requires pre-
cise control over image details according to textual instructions while maintaining overall visual
consistency. This image-editing ability underpins its role as a reliable dynamics model in our plan-
ning framework.

B IMPLEMENTATION DETAILS

B.1 DATA COLLECTION

Simulation tasks. There are three simulated environments in our experiments: FrozenLake, Mini-
BEHAVIOR, and Language Table. We show some illustrations of these tasks in Figure 9. As for
these three simulated tasks, we train RL agents to collect expert trajectories and also randomly
sample some non-expert trajectories.

Init Goal Init Goal Init Goal

Figure 9: Illustrations of FrozenLake, Mini-BEHAVIOR, and Language Table.

Real-world tasks. For the real-world task (visualized in Figure 3), we collect 200 full-horizon
expert demonstrations via human teleoperation. The task requires the robot to execute a long-horizon
sequence of three subtasks to rearrange the objects on the table to the goal:

• Open or close the trash can (if trash-related actions occur).

• move X on Y to Z with varying object-container pairs, where X denotes the target object
and Y and Z represent the source and the target containers.

As illustrated in Figure 10, we involve unseen objects and containers in the test set for challenging
visual discrimination and dynamics prediction. Moreover, when trash manipulation is involved, the
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Training Set

Objects Containers

Unseen Test Set

Objects Containers

Task Illustration

Init

Goal

Figure 10: Setting for real-world tasks. The training set contains 8 objects (4 foods and 4 cutlery)
and 4 containers, and the test set contains 6 unseen objects and 3 unseen containers.

robot must open the trash can before the first such action and close it after the last, enforcing stateful
environmental awareness. Overall, this real-world task demands joint competence in fine-grained
object and container recognition as well as accurate dynamics prediction.

Overall data statistics. We train Uni-Plan on mixed expert and randomly sampled data while
training Qwen2.5-VL (Bai et al., 2025) on pure expert data, and keep the same amount of data
during training. Dataset statistics are presented in Table 2.

Table 2: Dataset Statistics for different tasks.

Tasks Num of trajectories for training Num for test Average Length of trajectories

FrozenLake 500 50 7.3
Mini-BEHAVIOR 500 50 7.7
Language Table 500 50 8.8
Real-world Task 200 20 8.2

B.2 IMPLEMENTATION DETAILS OF UNI-PLAN

Uni-Plan finetunes BAGEL on each task using 8×H100 GPUs for 3,000 gradient steps with a con-
stant learning rate of 1e−6, requiring roughly 6 hours of training. During finetuning, the sampling
ratio between image-generation data (for the dynamics model) and visual-understanding data (for
the policy, value function, and inverse dynamics) is set to 1:1.

As for inference, we list the hyperparameters of Uni-Plan in Table 3. We also present the detailed
inference cost in Table 4. Although our model is relatively time-consuming for reasoning, it fortu-
nately requires no replanning and thus needs only a single inference pass.

Table 3: Hyperparameters of beam search.

Task Beams Action Branch Dynamics Branch

FrozenLake 2 4 1
Mini-BEHAVIOR 2 5 1
Language Table 2 4 4
Real World 2 4 8

Table 4: Inference cost on one H100 GPU.

Task Image Resolution Images/Step Time/Step

FrozenLake 512× 512 8 16s
Mini-BEHAVIOR 512× 512 10 18s
Language Table 912× 512 32 140s
Real World 688× 512 64 199s
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To help the model assume different functional roles, we employ tailored prompts. The input prompts
used for the various tasks are listed as follows.

Prompt for FrozenLake

Dynamics Model
You are now acting as a **world model** that simulates
environment transitions.
Your task is to predict the **next frame of visual
observation**, given the **current observation image** and the
**current action** taken by the agent.
### Environment description:
You are in a maze environment that contains:
- A character (the agent) that can move
- A gift (the goal)
- Several icy trap tiles, represented in **dark blue**
### Action space:
- "move up"
- "move down"
- "move left"
- "move right"
Each action moves the character exactly one tile in the
indicated direction.
Your task is to **predict the next image** that results from
applying the given action to the current image.
You must:
- Ensure spatial and visual **consistency** of all objects (the
character, gift, traps)

Policy
You are a vision-language model with advanced decision-making
abilities. You will be shown a maze image.
In the maze:
- A character is located at a certain position.
- The goal is to reach the gift location.
- **The path must avoid all hole tiles, which are represented
in dark blue.**
Your task is to carefully observe the image, and then **give
an action for next move** for the character to reach the gift
**without stepping on any hole tiles**.
The available actions are:
- 0: go left
- 1: go down
- 2: go right
- 3: go up
**Your response must be a json form like: {"action id": 0,
"action name": "go up"}. Note that you can only give one of
these four available actions.**

Value Function
You are a vision-language model with advanced reasoning
ability. You will be shown a maze image and determine how many
steps left to reach the goal.
In the maze:
- A character is located at a certain position.
- The goal is to reach the gift location.
- **The path must avoid all hole tiles, which are represented
in dark blue.**
Your task is to carefully observe the image, and then **give
the number of steps** for the current character to reach the
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gift **without stepping on any hole tile**.**Note that if the
character falls into the hole, you should output 100 meaning
that it can never reach the goal**.
In each step, the character can only perform one of the
following actions:
- go left
- go down
- go right
- go up
**Your response must be a json form like: {"num steps left":
N}. Do not include any other output.**

Prompt for Mini-BEHAVIOR

Dynamics Model
You are now acting as a **world model** that simulates
environment transitions.
Your task is to predict the **next frame of visual
observation**, given the **current observation image** and the
**current action** taken by the agent.
### Environment description:
You are in a maze environment that contains:
- An agent (the red triangle) that can move
- A table marked by brown region
- An apple
### Action space:
- "turn left"
- "turn right"
- "move forward"
- "pick up apple"
- "drop apple on the table"
### Causal effects of different actions
- turn left: The agent rotates 90 degrees to the left in
place.
- turn right: The agent rotates 90 degrees to the right in
place.
- move forward: The agent moves one step forward in the
direction it is currently facing. Note that the agent cannot
move forward if the cell ahead contains a table or an object.
- pick up apple: The agent picks up the object located in the
cell directly in front of it and carries it. If the object is
in an adjacent cell but the agent is not facing it, the agent
cannot pick it up.
- drop apple on the table: The agent places the object it is
carrying into the table directly in front of it. If the agent
is not facing the table, it cannot place the object.
Your task is to **predict the next image** that results from
applying the given action to the current image.
You must:
- Ensure spatial and visual **consistency** of all objects
- Ensure the causal effect of the given action

Policy
You are a vision-language model with advanced decision-making
abilities.
Your task is to carefully observe the image, and then **give
an action for next move** for the agent to collect the apple to
the table.
### Environment description:
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You are in a maze environment that contains:
- An agent (the red triangle) that can move
- A table marked by brown region
- An apple
### Action space:
- 0: turn left
- 1: turn right
- 2: move forward
- 3: pick up apple
- 4: drop apple on the table
### Causal effects of different actions
- turn left: The agent rotates 90 degrees to the left in
place.
- turn right: The agent rotates 90 degrees to the right in
place.
- move forward: The agent moves one step forward in the
direction it is currently facing. Note that the agent cannot
move forward if the cell ahead contains a table or an object.
- pick up apple: The agent picks up the object located in the
cell directly in front of it and carries it.
- drop apple on the table: The agent places the object it is
carrying into the cell directly in front of it.
**Your response must be a json form like: {"action id": 0,
"action name": "turn left"}. Note that you can only give one
of these five available actions.**

Value Function
You are a vision-language model with advanced reasoning
abilities.
Your task is to carefully observe the image, and then **give
the number of steps** for the current agent to collect the
apple to the table. This task needs an agent to first navigate
to the apple to pick it up and then navigate to table to drop
it on.
### Environment description:
You are in a maze environment that contains:
- An agent (the red triangle) that can move
- A table marked by brown region
- An apple
### Action space:
- 0: turn left
- 1: turn right
- 2: move forward
- 3: pick up apple
- 4: drop apple on the table
### Causal effects of different actions
- turn left: The agent rotates 90 degrees to the left in
place.
- turn right: The agent rotates 90 degrees to the right in
place.
- move forward: The agent moves one step forward in the
direction it is currently facing. Note that the agent cannot
move forward if the cell ahead contains a table or an object.
- pick up apple: The agent picks up the object located in the
cell directly in front of it and carries it.
- drop apple on the table: The agent places the object it is
carrying into the cell directly in front of it.
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**You should first give the number of steps to pick up the
apple, then the number of steps to drop it on the table,
finally give the total number of steps. Your response
must be a json form like: {"num steps for pickup": N1,
"num steps for drop": N2, "total num steps": N1+N2}. Do not
include any other output.**

Prompt for Language Table

Dynamics Model
You are now acting as a **world model** that simulates
environment transitions.
Your task is to predict the **next frame of visual
observation**, given the following inputs:
- A **current observation image** that shows the current state
of the environment, which may have partial occlusions due to
the robot arm.
- A **natural language instruction** that describes the
intended action.
### Environment description:
You are in a tabletop environment containing exactly **8 unique
objects**, scattered across the table surface. These objects
differ in both **color** and **shape**:
- blue moon, blue cube
- green star, green cube
- yellow star, yellow pentagon
- red moon, red pentagon
### Important considerations:
- The **instruction** describes the action to be executed
at the current step (e.g., move the blue cube to the red
pentagon).
Your task is to **predict the next image** that results from
applying the given instruction to the current image.
You must:
- Maintain **visual coherence** of the scene (consistent
lighting, robot pose, object appearance)
- Produce a prediction that visually aligns with the expected
effect of the instruction
- Strictly maintain **object consistency**: the number
of objects must remain exactly the same as in the initial
observation (no missing or extra objects).

Policy
You are a vision-language model with advanced decision-making
abilities.
Your task is to carefully observe the image, and then **give an
action for the next step** to reach the desired goal.
You are given the following inputs:
- A **current observation image** that shows the current state
of the environment.
- A **natural language instruction** that describes the
intended goal.
### Environment description:
You are in a tabletop environment that contains:
- A table surface with **8 unique objects** scattered on it.
These objects vary in both **color** and **shape** and are
categorized as follows:
- blue moon, blue cube
- green star, green cube
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- yellow star, yellow pentagon
- red moon, red pentagon
### Action space:
- move block to block: move a block to another block (the
target block must be placed at a position with no other objects
around it).
- move block to position: move a block to a specific position
(where position is one of the 8 positions above, and this
position must be empty. **If it is occupied, you need to move
the object currently on that position elsewhere first**).
### Causal effects of different actions
- move block to block: The agent moves a block to another
block.
- move block to position: The agent moves a block to a
specific position.
**Your response must be a json form like: {"action": "xxx"}.
Do not include any other output.*

Value Function
You are a vision-language model with advanced decision-making
abilities.
Your task is to carefully observe the image, and then **give
the number of steps** to reach the desired goal.
You are given the following inputs:
- A **current observation image** that shows the current state
of the environment.
- A **natural language instruction** that describes the
intended goal.
### Environment description:
You are in a tabletop environment that contains:
- A table surface with **8 unique objects** scattered on it.
These objects vary in both **color** and **shape** and are
categorized as follows:
- blue moon, blue cube
- green star, green cube
- yellow star, yellow pentagon
- red moon, red pentagon
In each step, only one object can be moved. And note that
**the number of left steps will never over 10**.
**Your response must be a json form like: {"num steps left":
N}. (N<=10) Do not include any other output.**

Inverse Dynamics
You are now acting as an inverse dynamics to infer the action
between two images.
You will be given the following inputs:
- A **current observation image**
- A **next observation image**
### Environment description:
You are in a tabletop environment that contains:
- A table surface with **8 unique objects** scattered on it.
These objects vary in both **color** and **shape** and are
categorized as follows:
- blue moon, blue cube
- green star, green cube
- yellow star, yellow pentagon
- red moon, red pentagon
You need to describe what happened between the two images.
Your output should be like:
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**move {object A} to {object B}. Do not include any other
output.**

B.3 IMPLEMENTATION DETAILS OF VLMS

Finetuning Qwen2.5-VL. We finetune both Qwen2.5-VL-7B and Qwen2.5-VL-32B on each task
using 8×H100 GPUs with a learning rate of 1e−6. Because the dataset is relatively small (about
500 trajectories containing roughly 4k–5k samples), we iterate over the dataset multiple times until
training converges.

We also provide specific prompts to guide these VLMs toward better decision-making. The versions
of the prompts without chain-of-thought (w/o CoT), with chain-of-thought (with CoT), and the CoT
answer templates used for finetuning are shown below.

Prompt for FrozenLake

w/o CoT version
You are a vision-language model with advanced decision-making
abilities. You will be shown a maze image.
In the maze:
- A character is located at a certain position.
- The goal is to reach the gift location.
- **The path must avoid all hole tiles, which are represented
in dark blue.**
Your task is to carefully observe the image, and then **give
a list of actions ** for the character to reach the gift
**without stepping on any hole tiles**.
The available actions are:
- 0: go left
- 1: go down
- 2: go right
- 3: go up
**Your response must be a list form like: ["go right", "go
down", "go left", ...]. Note that you can only give one of
these four available actions.**

with CoT version
You are a vision-language model with advanced decision-making
abilities. You will be shown a maze image.
In the maze:
- A character is located at a certain position.
- The goal is to reach the gift location.
- **The path must avoid all hole tiles, which are represented
in dark blue.**
Your task is to carefully observe the image, and then **give
a list of actions ** for the character to reach the gift
**without stepping on any hole tiles**.
The available actions are:
- 0: go left
- 1: go down
- 2: go right
- 3: go up
You should first analyze the positions of traps, then plan the
path step by step, and finally give a list of actions. Note
that you can only give one of these four available actions.

CoT answer template
<rationale>The traps positions are: [(1, 2)].
The character is at position (0, 0) and the next move is go
down.
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The character is at position (1, 0) and the next move is go
down.
The character is at position (2, 0) and the next move is go
right.
The character is at position (2, 1) and the next move is go
right.
The character has reached the goal.</rationale>
<action plan>[’go down’, ’go down’, ’go right’, ’go
right’]</action plan>

Prompt for Mini-BEHAVIOR

w/o CoT version
You are a vision-language model with advanced decision-making
abilities.
Your task is to carefully observe the image, and then **give an
action list* for the agent to collect the apple to the table.
### Environment description:
You are in a maze environment that contains:
- An agent (the red triangle) that can move
- A table marked by brown region
- An apple
### Action space:
- 0: turn left
- 1: turn right
- 2: move forward
- 3: pick up
- 4: drop
### Causal effects of different actions
- turn left: The agent rotates 90 degrees to the left in
place.
- turn right: The agent rotates 90 degrees to the right in
place.
- move forward: The agent moves one step forward in the
direction it is currently facing. Note that the agent cannot
move forward if the cell ahead contains a table or an object.
- pick up: The agent picks up the object located in the cell
directly in front of it and carries it.
- drop: The agent places the object it is carrying into the
cell directly in front of it.
**Your response must be a list form like: ["turn right", "move
forward", "pick up", "drop", ...]. Note that you can only give
one of these five available actions.**

with CoT version
You are a vision-language model with advanced decision-making
abilities.
Your task is to carefully observe the image, and then **give an
action list* for the agent to collect the apple to the table.
### Environment description:
You are in a maze environment that contains:
- An agent (the red triangle) that can move
- A table marked by brown region
- An apple
### Action space:
- 0: turn left
- 1: turn right
- 2: move forward
- 3: pick up
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- 4: drop
### Causal effects of different actions
- turn left: The agent rotates 90 degrees to the left in
place.
- turn right: The agent rotates 90 degrees to the right in
place.
- move forward: The agent moves one step forward in the
direction it is currently facing. Note that the agent cannot
move forward if the cell ahead contains a table or an object.
- pick up: The agent picks up the object located in the cell
directly in front of it and carries it.
- drop: The agent places the object it is carrying into the
cell directly in front of it.
You should first analyze the position of the table, then plan
the path step by step, and finally give a list of actions.
Note that you can only give one of these five available
actions.

CoT answer template
<rationale>The table is at position [0, 3].
The character is at position [1, 2] facing left. To pick up
the object located at position [3, 3], the next action should
be to turn left.
The character is at position [1, 2] facing down. To pick up
the object located at position [3, 3], the next action should
be to turn left.
The character is at position [1, 2] facing right. To pick up
the object located at position [3, 3], the next action should
be to move forward.
The character is at position [1, 3] facing right. To pick up
the object located at position [3, 3], the next action should
be to turn right.
The character is at position [1, 3] facing down. To pick up
the object located at position [3, 3], the next action should
be to move forward.
The character is at position [2, 3] facing down. To pick up
the object located at position [3, 3], the next action should
be pickup.
The character is at position [2, 3] facing down, carrying
the object. To drop the object on the table, the next action
should be to turn left.
The character is at position [2, 3] facing right, carrying
the object. To drop the object on the table, the next action
should be to turn left.
The character is at position [2, 3] facing up, carrying the
object. To drop the object on the table, the next action
should be to move forward.
The character is at position [1, 3] facing up, carrying the
object. To drop the object on the table, the next action
should be to drop.
The object has been placed on the table.</rationale>
<action plan>[’turn left’, ’turn left’, ’move forward’, ’turn
right’, ’move forward’, ’pickup’, ’turn left’, ’turn left’,
’move forward’, ’drop’]</action plan>
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Prompt for Language Table

w/o CoT version
You are a vision-language model with advanced decision-making
abilities.
Your task is to carefully observe the current and target goal
image, and then **give an action list* for the agent to move
the blocks to the desired goal.
### Environment description:
You are in a language table environment that contains:
- 8 blocks: red moon, red pentagon, blue moon, blue cube,
green cube, green star, yellow star, and yellow pentagon.
- 8 absolute positions: top center, top left, top right,
center left, center right, bottom center, bottom left, and
bottom right.
### Action space:
- move block to block: move a block to another block (the
target block must be placed at a position with no other objects
around it).
- move block to position: move a block to a specific position
(where position is one of the 8 positions above, and this
position must be empty. **If it is occupied, you need to move
the object currently on that position elsewhere first**).
### Causal effects of different actions
- move block to block: The agent moves a block to another
block.
- move block to position: The agent moves a block to a
specific position.
You should directly give a list of actions. Note that you can
only give one of these two available actions. Do not give any
other text.

with CoT version
You are a vision-language model with advanced decision-making
abilities.
Your task is to carefully observe the current and target goal
image, and then **give an action list* for the agent to move
the blocks to the desired goal.
### Environment description:
You are in a language table environment that contains:
- 8 blocks: red moon, red pentagon, blue moon, blue cube,
green cube, green star, yellow star, and yellow pentagon.
- 8 absolute positions: top center, top left, top right,
center left, center right, bottom center, bottom left, and
bottom right.
### Action space:
- move block to block: move a block to another block (the
target block must be placed at a position with no other objects
around it).
- move block to position: move a block to a specific position
(where position is one of the 8 positions above, and this
position must be empty. **If it is occupied, you need to move
the object currently on that position elsewhere first**).
### Causal effects of different actions
- move block to block: The agent moves a block to another
block.
- move block to position: The agent moves a block to a
specific position.
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You should first analyze the target block config, then plan the
path step by step, and finally give a list of actions. Note
that you can only give one of these two available actions.

CoT answer template
<rationale>Target block config: ’top center’: [’yellow star’],
’top left’: [’red moon’], ’top right’: [’green star’],
’center left’: [’green cube’], ’center right’:
[’blue cube’], ’bottom center’: [’blue moon’], ’bottom left’:
[’yellow pentagon’], ’bottom right’: [’red pentagon’].
Current block config: ’top center’: [’yellow star’,
’blue cube’], ’top left’: [’red moon’], ’top right’:
[’green star’], ’center left’: [’green cube’], ’center right’:
[’blue moon’], ’bottom center’: [], ’bottom left’:
[’yellow pentagon’], ’bottom right’: [’red pentagon’]. Next
action: move blue moon to bottom center.
Current block config: ’top center’: [’yellow star’,
’blue cube’], ’top left’: [’red moon’], ’top right’:
[’green star’], ’center left’: [’green cube’], ’center right’:
[], ’bottom center’: [’blue moon’], ’bottom left’:
[’yellow pentagon’], ’bottom right’: [’red pentagon’]. Next
action: move blue cube to center right.
Current block config: ’top center’: [’yellow star’],
’top left’: [’red moon’], ’top right’: [’green star’],
’center left’: [’green cube’], ’center right’:
[’blue cube’], ’bottom center’: [’blue moon’], ’bottom left’:
[’yellow pentagon’], ’bottom right’: [’red pentagon’]. Reach
target block config.</rationale>
<action plan>[’move blue moon to bottom center’, ’move blue cube
to center right’]</action plan>

Few-shot Prompting for Closed-source VLMs. Because the closed-source models cannot be
finetuned directly, we employ 10-shot prompting for in-context learning instead. The prompts for
these models are identical to those for Qwen2.5-VL, with the addition of a few demonstration ex-
amples appended to the end of each prompt.
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C QUALITATIVE ANALYSIS

C.1 QUALITATIVE ANALYSIS OF UNI-PLAN

We first present representative successful planning cases of Uni-Plan for each task in Figure 11.

go left go down go left

go down go left go left

go down

move forward move forward turn right

drop turn left pick up

move forward

move
red_moon to
blue cube

move
blue_moon to
top_left

move
red_pentagon
to center_left

move
green_cube to
bottom_left

move
yellow_pentag
on to
center_right

move
red_moon to
bottom_center

move
green_star to
bottom_right

Figure 11: Three planning visualizations with Uni-Plan on FrozenLake, Mini-BEHAVIOR, and
Language Table.
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Then, we show additional illustrations of dynamics predictions on unseen samples by finetuned
BAGEL and BAGEL trained from scratch in Figure 12.

finetuned

trained
from
scratch

turn left turn right move forward pick up

finetuned

trained
from
scratch

move yellow star 
to blue pentagon

move green 
pentagon to blue 

pentagon

move red cube 
to center right

move blue moon 
to center right

finetuned

trained
from
scratch

move tongs from 
pink hexagon plate 
to blue circle plate

move banana from 
pink hexagon plate 
to blue circle plate

move lemon from 
green squared plate 
to blue circle plate

open trash can

Figure 12: Illustrations of dynamics predictions on unseen samples by finetuned BAGEL and
BAGEL trained from scratch

28



1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Next, we examine several failure cases, which can be broadly grouped into two categories: dynamics
model errors and value function errors.

Dynamics Model Errors. Figure 13 shows failures caused by incorrect dynamics predictions. The
top panel illustrates a wrong placement in the transition, which leads to the next action still trying
to move other blocks to red moon. The bottom panel shows a case where an object is missing from
the predicted observation, causing the policy to continue moving other objects toward that location.
Although our proposed self-discriminated filtering alleviates such issues, these errors can still occur
because only a limited number of predictions are sampled for each state–action pair, and we cannot
guarantee that at least one valid prediction will be included, especially in low-data regimes.

move blue_cube to
bottom_right

move green_cube
to bottom_right

move green_star to
red_moon

move green_star to
red_moon

…

move to wrong place

object missing

Figure 13: Illustrations of dynamics model errors.

Value Function Errors. Figure 14 depicts failures arising from inaccurate value estimates, which
frequently occur in data-scarce regimes, such as when only 100 trajectories are used for finetuning.
In the FrozenLake task, the value function assigns the best value to the action move right. Although
the right cell appears closer to the goal, it is actually surrounded by several traps, leaving no path to
the goal. In the Mini-BEHAVIOR task, the value function favors turn right since it wrongly thinks it
can go left straight to pick up the object. However that way is blocked by the table. In the Language
Table task, the value function thinks the task is finished, but the green star is not placed in the right
position (top center) yet.

move right

move left

num_steps_left: 3

num_steps_left: 5

turn right

move forward

num_steps_to
_pickup: 2

num_steps_to
_pickup: 5

move green_cube to
bottom_left num_steps_left: 0

Finished

Figure 14: Illustrations of value function errors.

29



1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

<rationale>The traps positions are: [(1, 1), (1, 4), (2, 1), (2, 2), (3, 0), (3, 3), (4, 1)].
The character is at position (0, 0) and the next move is go down.
The character is at position (1, 0) and the next move is go down.
The character is at position (2, 0) and the next move is go right.
The character is at position (2, 1) and the next move is go right.
The character is at position (2, 2) and the next move is go right.
The character is at position (2, 3) and the next move is go down.
The character is at position (3, 3) and the next move is go right.
The character is at position (3, 4) and the next move is go down.
The character has reached the goal.</rationale>
<action_plan>['go down', 'go down', 'go right', 'go right', 'go right', 'go down', 'go 
right', 'go down']</action_plan>

Violate constraint

<rationale>The table is at position [1, 1]. 
The character is at position [1, 3] facing up. To pick up the object located at position [3, 0], the next action should be turn left. 
The character is at position [1, 3] facing left. To pick up the object located at position [3, 0], the next action should be move forward. 
The character is at position [1, 2] facing left. To pick up the object located at position [3, 0], the next action should be move forward. 
The character is at position [1, 1] facing left. To pick up the object located at position [3, 0], the next action should be move forward. 
The character is at position [1, 0] facing left. To pick up the object located at position [3, 0], the next action should be turn left. 
The character is at position [1, 0] facing down. To pick up the object located at position [3, 0], the next action should be move forward. 
The character is at position [2, 0] facing down. To pick up the object located at position [3, 0], the next action should be pickup. 
The character is at position [2, 0] facing down, carrying the object. To drop the object on the table, the next action should be turn left. 
The character is at position [2, 0] facing right, carrying the object. To drop the object on the table, the next action should be move forward. 
The character is at position [2, 1] facing right, carrying the object. To drop the object on the table, the next action should be turn left. 
The character is at position [2, 1] facing up, carrying the object. To drop the object on the table, the next action should be drop. 
The object has been placed on the table.</rationale> 
<action_plan>['turn left', 'move forward', 'move forward', 'move forward', 'turn left', 'move forward', 'pickup', 'turn left', 'move forward', 'turn left', 
'drop']</action_plan>

Violate dynamics rule

<rtationale>Target block config: {'top_center': ['blue_cube'], 'top_left': ['green_star'], 'top_right': ['green_cube'], 'center_left': ['yellow_star'], 
'center_right': ['red_pentagon'], 'bottom_center': ['red_moon'], 'bottom_left': ['blue_moon'], 'bottom_right': ['yellow_pentagon']}.
Current block config: {'top_center': ['green_cube'], 'top_left': ['red_moon'], 'top_right': ['yellow_pentagon'], 'center_left': ['green_star'], 
'center_right': ['blue_moon'], 'bottom_center': ['blue_cube'], 'bottom_left': ['yellow_star'], 'bottom_right': ['red_pentagon']}.Next action: move 
blue_cube to red_moon.
Current block config: {'top_center': ['green_cube'], 'top_left': ['red_moon', 'blue_cube'], 'top_right': ['yellow_pentagon'], 'center_left': 
['green_star'], 'center_right': ['blue_moon'], 'bottom_center': [], 'bottom_left': ['yellow_star'], 'bottom_right': ['red_pentagon']}.Next action: move 
red_moon to bottom_center.
Current block config: {'top_center': ['green_cube'], 'top_left': ['red_moon', 'blue_cube'], 'top_right': ['yellow_pentagon'], 'center_left': 
['green_star'], 'center_right': ['blue_moon'], 'bottom_center': ['red_moon'], 'bottom_left': ['yellow_star'], 'bottom_right': ['red_pentagon']}.Next 
action: move blue_cube to bottom_center.
Current block config: {'top_center': ['green_cube'], 'top_left': ['red_moon'], 'top_right': ['yellow_pentagon'], 'center_left': ['green_star'], 
'center_right': ['blue_moon'], 'bottom_center': ['red_moon', 'blue_cube'], 'bottom_left': ['yellow_star'], 'bottom_right': ['red_pentagon']}.Next 
action: move blue_moon to top_center.
Current block config: {'top_center': ['blue_cube', 'blue_moon'], 'top_left': ['red_moon'], 'top_right': ['yellow_pentagon'], 'center_left': 
['green_star'], 'center_right': [], 'bottom_center': ['red_moon', 'blue_cube'], 'bottom_left': ['yellow_star'], 'bottom_right': ['red_pentagon']}.Next 
action: move red_pentagon to center_right.
Current block config: {'top_center': ['blue_cube', 'blue_moon'], 'top_left': ['red_moon'], 'top_right': ['yellow_pentagon'], 'center_left': 
['green_star'], 'center_right': ['red_pentagon'], 'bottom_center': ['red_moon', 'blue_cube'], 'bottom_left': ['yellow_star'], 'bottom_right': []}.Next 
action: move yellow_pentagon to bottom_right.
Current block config: {'top_center': ['blue_cube', 'blue_moon'], 'top_left': ['red_moon'], 'top_right': [], 'center_left': ['green_star'], 'center_right': 
['red_pentagon'], 'bottom_center': ['red_moon', 'blue_cube'], 'bottom_left': ['yellow_star'], 'bottom_right': ['yellow_pentagon']}.Next action: move 
green_cube to top_right.
Current block config: {'top_center': ['blue_cube', 'blue_moon'], 'top_left': ['red_moon'], 'top_right': ['green_cube'], 'center_left': ['green_star'], 
'center_right': ['red_pentagon'], 'bottom_center': ['red_moon', 'blue_cube'], 'bottom_left': ['yellow_star'], 'bottom_right': 
['yellow_pentagon']}.Reach target block config.</rationale>
<action_plan>['move blue_cube to red_moon', 'move red_moon to bottom_center', 'move blue_cube to bottom_center', 'move blue_moon to 
top_center', 'move red_pentagon to center_right', 'move yellow_pentagon to bottom_right', 'move green_cube to top_right']</action_plan>

Goal

Init

Violate task rule

Figure 15: Qualitative analysis of errors of CoT-based planning with Qwen2.5-VL-32B-Ins-CoT on
FrozenLake, Mini-BEHAVIOR, and Language Table.

C.2 QUALITATIVE ANALYSIS OF VLMS

To highlight the limitations of using VLMs for planning, we present several failure cases of
Qwen2.5-VL-32B-Ins-CoT in Figure 15.

We identify three distinct factors contributing to these failures. In the FrozenLake task, the model
violates the safety constraint: it recognizes a trap at position (2,1) but still chooses to move right
from (2,0). In the Mini-BEHAVIOR task, the plan disregards environment dynamics, attempting to
move forward when the agent is at (1,2) despite a table blocking the path. In the Language Table
task, the plan breaks the task rule that only one object may occupy a given position. By the third
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step, the bottom-center cell is already occupied by another block, yet the model attempts to move the
blue cube there. We argue that these errors stem from the fact that chain-of-thought reasoning does
not explicitly construct a world model to predict the outcomes of different actions or use a reward
mechanism to evaluate those outcomes. a limitation also noted in prior work (Hao et al., 2023; Zhao
et al., 2023).

D OMITTED EXPERIMENTS

D.1 PLANNING UNDER PARTIAL OBSERVATION SCENARIOS

All environments in our main experiment are fully observed without any occlusion in the planning
process. To demonstrate that our approach is also able to tackle those partial observation scenarios,
we further collect a new real-world dataset in which the robot arm frequently occludes objects during
manipulation. Predicting future states under occlusion requires the model to infer the identity and
placement of partially or fully hidden objects.

To handle this, we provide the dynamics model with an initial unoccluded observation during pre-
diction, enabling it to reason about occluded objects even when they disappear in subsequent frames.
As shown in Figure 16, the model successfully infers and predicts the motion of occluded objects,
demonstrating that our method extends to substantially more challenging real-world scenarios.

move tongs
from pink 
hexagon plate 
to blue circle 
plate

move straw
from blue
circle plate to 
pink hexagon 
plate

move lemon 
from green 
squared plate 
to blue circle 
plate

open trash can

put trash from
table to trash 
canclose trash can

move banana from pink 
hexagon plate to green 
squared plate

Figure 16: An illustration of planning under the robot’s arm occlusion.

D.2 COMPARISON TO PLANNING APPROACHES WITH LLMS

Besides comparing different VLMs, we also include a classic LLM-based planning baseline, Say-
Can (Ichter et al., 2022). SayCan requires iterating over the entire action (skill) space, making it
infeasible to evaluate on the Language Table task. Therefore, we omit this setting. The core com-
ponent of SayCan is an affordance function that determines which actions are feasible in the current
state. For FrozenLake, all actions (left / down / right / up) are always valid and thus require no af-
fordance filtering. For Mini-BEHAVIOR, “pick up” is feasible only when the object is not currently
held, and “drop” is feasible only when an object is held; we use ground-truth simulator informa-
tion to implement this affordance logic. For the real-world rearrangement task, we design a small
rule-based affordance module to follow the SayCan procedure.

Table 5: Success rates of SayCan and our method.

Method Frozen Lake Mini-BEHAVIOR Real World

SayCan 0.32 0.22 0.40
Uni-Plan 0.95 0.83 0.63

Table 5 reports the comparison between SayCan and our method. Importantly, SayCan requires
online interaction with the environment-executing an action at each step to obtain a new observation.
In contrast, our method and the VLM baselines operate in a purely offline manner, generating a
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complete plan from a single initial observation. Despite this stricter condition, our method still
achieves substantially higher performance.

E THE USE OF LARGE LANGUAGE MODELS (LLMS)

Large language models (LLMs) were used in the preparation of this manuscript for sentence-level
editing, including improving grammar, clarity, and readability.
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