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Abstract

Pruning the weights of randomly initialized neural networks plays an important
role in the context of lottery ticket hypothesis. Ramanujan et al. [23] empirically
showed that only pruning the weights can achieve remarkable performance instead
of optimizing the weight values. However, to achieve the same level of performance
as the weight optimization, the pruning approach requires more parameters in the
networks before pruning and thus more memory space. To overcome this parameter
inefficiency, we introduce a novel framework to prune randomly initialized neural
networks with iteratively randomizing weight values (IteRand). Theoretically,
we prove an approximation theorem in our framework, which indicates that the
randomizing operations are provably effective to reduce the required number
of the parameters. We also empirically demonstrate the parameter efficiency
in multiple experiments on CIFAR-10 and ImageNet. The code is available at
https://github.com/dchiji-ntt/iterand.

1 Introduction

The lottery ticket hypothesis, which was originally proposed by Frankle and Carbin [5], has been
an important topic in the research of deep neural networks (DNNs). The hypothesis claims that an
over-parameterized DNN has a sparse subnetwork (called a winning ticket) that can achieve almost
the same accuracy as the fully-trained entire network when trained independently. If the hypothesis
holds for a given network, then we can reduce the computational cost by using the sparse subnetwork
instead of the entire network while maintaining the accuracy [14, 19]. In addition to the practical
benefit, the hypothesis also suggests that the over-parametrization of DNNs is no longer necessary
and their subnetworks alone are sufficient to achieve full accuracy.

Ramanujan et al. [23] went one step further. They proposed and empirically demonstrated a conjecture
related to the above hypothesis, called the strong lottery ticket hypothesis, which informally states
that there exists a subnetwork in a randomly initialized neural network such that it already achieves
almost the same accuracy as a fully trained network, without any optimization of the weights of
the network. A remarkable consequence of this hypothesis is that neural networks could be trained
by solving a discrete optimization problem. That is, we may train a randomly initialized neural
network by finding an optimal subnetwork (which we call weight-pruning optimization), instead of
optimizing the network weights continuously (which we call weight-optimization) with stochastic
gradient descent (SGD).

However, the weight-pruning optimization requires a problematic amount of parameters in the random
network before pruning. Pensia et al. [22] theoretically showed that the required network width for
the weight-pruning optimization needs to be logarithmically wider than the weight-optimization at
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least in the case of shallow networks. Therefore, the weight-pruning optimization requires more
parameters, and thus more memory space, than the weight-optimization to achieve the same accuracy.
In other words, under a given memory constraint, the weight-pruning optimization can have lower
final accuracy than the weight-optimization in practice.

In this paper, we propose a novel optimization method for neural networks called weight-pruning
with iterative randomization (IteRand), which extends the weight-pruning optimization to overcome
the parameter inefficiency. The key idea is to virtually increase the network width by randomizing
pruned weights at each iteration of the weight-pruning optimization, without any additional memory
consumption. Indeed, we theoretically show that the required network width can be reduced by
the randomizing operations. More precisely, our theoretical result indicates that, if the number of
randomizing operations is large enough, we can reduce the required network width for weight-pruning
to the same as that for a network fully trained by the weight-optimization up to constant factors, in
contrast to the logarithmic factors of the previous results [22, 21]. We also empirically demonstrate
that, under a given amount of network parameters, IteRand boosts the accuracy of the weight-pruning
optimization in multiple vision experiments.

2 Background

In this section, we review the prior works on pruning randomly initialized neural networks.

Notation and setup. Let d,N ∈ N. Let f(x;θ) be an l-layered ReLU neural network with an
input x ∈ Rd and parameters θ = (θi)1≤i≤n ∈ Rn, where each weight θi is randomly sampled from
a distributionDparam over R. A subnetwork of f(x;θ) is written as f(x;θ�m) where m ∈ {0, 1}n
is a binary mask and "�" represents an element-wise multiplication.

Ramanujan et al. [23] empirically observed that we can train the randomly initialized neural network
f(x;θ) by solving the following discrete optimization problem, which we call weight-pruning
optimization:

min
m∈{0,1}n

E
(x,y)∼Dlabeled

[
L(f(x;θ �m), y)

]
, (1)

where Dlabeled is a distribution on a set of labeled data (x, y) and L is a loss function. To solve this
optimization problem, Ramanujan et al. [23] proposed an optimization algorithm, called edge-popup
(Algorithm 1).

Algorithm 1: Weight-pruning optimization by edge-popup [23]
1 Initialize θ ∼ Dnparam, s ∼ Dnscore; // Dparam and Dscore are distributions over R
2 while k = 0, · · · , N − 1 do
3 Sample a labeled data (x, y) ∼ Dlabeled;
4 m, s← TrainMask(θ, s; (x, y)); // optimize importance scores s and update m

5 end
6 return m,θ;

The TrainMask (Algorithm 2) is the key process in Algorithm 1. It has a latent variable s =
(si)1≤i≤n ∈ Rn, where each element si represents an importance score of the corresponding weight
θi, and optimizes s instead of directly optimizing the discrete variable m. Given the score s, the
corresponding m is computed by the function CalculateMask(s), which returns m = (mi)1≤i≤n
defined as follows: mi = 1 if si is top 100(1 − p)% in {si}1≤i≤n, otherwise mi = 0, where
p ∈ (0, 1) is a hyperparameter representing a sparsity rate of the pruned network. In the line 3 of
Algorithm 2, SGDη,λ,µ(s,g) returns the updated value of s by stochastic gradient descent with a
learning rate η, weight decay λ, momentum coefficient µ, and gradient vector g.
On the theoretical side, Malach et al. [16] first provided a mathematical justification of the above
empirical observation. They formulated it as an approximation theorem with some assumptions on
the network width as follows.

Theorem 2.1 (informal statement of Theorem 2.1 in [16]) Let ftarget(x) be an l-layered network
with bounded weight matrices, and g(x) be a randomly initialized 2l-layered neural network. If the
width of g(x) is larger than ftarget(x) by the factor of a polynomial term, then there probably exists
a subnetwork of g(x) that approximates ftarget(x).
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Algorithm 2: Pseudo code of TrainMask
1 Input: θ, s ∈ Rn, (x, y): a labeled data;
2 m← CalculateMask(s); // calculate the mask m with the current scores
3 s← SGDη,λ,µ (s,∇s=mL(f(x;θ � s), y)); // update s by the gradient at s = m
4 m← CalculateMask(s); // calculate new mask m with the updated scores
5 return m, s;

By considering a well-trained network as ftarget, Theorem 2.1 indicates that pruning a sufficiently
wide g(x) may reveal a subnetwork which achieves good test accuracy as ftarget, in principle.

In the follow-up works [22, 21], the assumption on the network width was improved by reducing
the factor of the required width to a logarithmic term. However, Pensia et al. [22] showed that the
logarithmic order is unavoidable at least in the case of l = 1. While their results imply the optimality
of the logarithmic bound, it also means that we cannot further relax the assumption on the network
width as long as we work in the same setting. This indicates a limitation of the weight-pruning
optimization, i.e. the weight-pruning optimization can train only less expressive models than ones
trained with the conventional weight-optimization like SGD, under a given amount of memory or
network parameters.

3 Method

In this section, we present a novel method called weight-pruning with iterative randomization
(IteRand) for randomly initialized neural networks.

As discussed in Section 2, although the original weight-pruning optimization (Algorithm 1) can
achieve good accuracy, it still has a limitation in the expressive power under a fixed amount of
memory or network parameters. Our method is designed to overcome this limitation. The main idea
is to randomize pruned weights at each iteration of the weight-pruning optimization. As we prove in
Section 4, this reduces the required size of an entire network to be pruned.

We use the same notation and setup as Section 2. In addition, we assume that each weight θi of the
network f(x;θ) can be re-sampled from Dparam at each iteration of the weight-pruning optimization.

3.1 Algorithm

Algorithm 3 describes our proposed method, IteRand, which extends Algorithm 1. The differences
from Algorithm 1 are lines 5-7 in Algorithm 3. IteRand has a hyperparameter Kper ∈ N≥1 (line
5). At the k-th iteration, whenever k can be divided by Kper, pruned weights are randomized by
Randomize(θ,m) function (line 6). There are multiple possible designs for Randomize(θ,m),
which will be discussed in the next subsection.

Algorithm 3: Weight-pruning optimization with iterative randomization (IteRand)
1 Initialize θ ∼ Dparam, s ∼ Dscore;
2 while k = 0, · · · , N − 1 do
3 Sample a labeled data (x, y) ∼ Dlabeled;
4 m, s← TrainMask(θ, s; (x, y));
5 if k + 1 can be divided by Kper then // this if-block is newly added to Algorithm 1
6 θ ← Randomize(θ,m); // randomize a subset of pruned weights
7 end
8 end
9 return m, θ;

Note that Kper controls how frequently the algorithm randomizes the pruned weights. Indeed the
total number of the randomizing operations is bN/Kperc. If Kper is too small, the algorithm is
likely to be unstable because it may randomize even the important weights before their scores are
well-optimized, and also the overhead of the randomizing operations cannot be ignored. In contrast,
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if Kper is too large, the algorithm becomes almost same as the original weight-pruning Algorithm
1, and thus the effect of the randomization disappears. We fix Kper = 300 on CIFAR-10 (about
1 epoch) and Kper = 1000 on ImageNet (about 1/10 epochs) in our experiments (Section 5).

3.2 Designs of Randomize(θ,m)

Here, we discuss how to define Randomize(θ,m) function. There are several possible ways to
randomize a subset of the parameters θ.

Naive randomization. For any distribution Dparam, a naive definition of the randomization func-
tion (which we call naive randomization) can be given as follows.

Randomize(θ,m)i :=

{
θi, (if mi = 1)

θ̃i, (otherwise)

where we denote the i-th component of Randomize(θ,m) ∈ Rn as Randomize(θ,m)i, and each
θ̃i ∈ R is a random variable with the distribution Dparam. Also this can be written in another form as

Randomize(θ,m) := θ �m+ θ̃ � (1−m), (2)

where θ̃ = (θ̃i)1≤i≤n ∈ Rn is a random variable with the distribution Dnparam.

Partial randomization. The naive randomization (Eq. (2)) is likely to be unstable because it
entirely replaces all pruned weights with random values every Kper iteration. To increase the stability,
we modify the definition of the naive randomization as it replaces a randomly chosen subset of the
pruned weights as follows (which we call partial randomization):

Randomize(θ,m) := θ �m+
(
θ � (1− br) + θ̃ � br

)
� (1−m), (3)

Figure 1: Analysis on r. We com-
pare partial randomizations with r ∈
{0.0, 0.01, 0.1, 1.0} applied to CNNs.
The y-axis is the validation accuracy on
CIFAR-10. r = 0.1 achieves better
mean accuracy for every CNNs.

where θ̃ ∈ Rn is the same as in Eq. (2), r ∈ [0, 1] is
a hyperparameter and br = (br,i)1≤i≤n ∈ {0, 1}n is a
binary vector whose each element is sampled from the
Bernoulli distribution Bernoulli(r), i.e. br,i = 1 with
probability r and br,i = 0 with probability 1− r.

The partial randomization replaces randomly chosen
100r% of all pruned weights with random values. Note
that, when r = 1, the partial randomization is equivalent to
the naive randomization (Eq. (2)). In contrast, when r = 0,
it never randomizes any weights and thus is equivalent to
Algorithm 1.

In Figure 1, we observe that r = 0.1 works well with
various network architectures on CIFAR-10, where we use
the Kaiming uniform distribution (whose definition will
be given in Section 5) for Dparam and Kper = 300.

4 Theoretical justification

In this section, we present a theoretical justification for our iterative randomization approach on the
weight-pruning of randomly initialized neural networks.

4.1 Setup

We consider a target neural network f : Rd0 → Rdl of depth l, which is described as follows.

f(x) = Flσ(Fl−1σ(· · ·F1(x) · · · )), (4)

where x is a d0-dimensional real vector, σ is the ReLU activation, and Fi is a di × di−1 matrix. Our
objective is to approximate the target network f(x) by pruning a randomly initialized neural network
g(x), which tends to be larger than the target network.
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Similar to the previous works [16, 22], we assume that g(x) is twice as deep as the target network
f(x). Thus, g(x) can be described as

g(x) = G2lσ(G2l−1σ(· · ·G1(x) · · · )), (5)

where Gj is a d̃j × d̃j−1 matrix (j = 1, · · · , 2l) with d̃2i = di. Each element of the matrix Gj is
assumed to be drawn from the uniform distribution U [−1, 1]. Since there is a one-to-one correspon-
dence between pruned networks of g(x) and sequences of binary matrices M = {Mj}j=1,··· ,2l with
Mj ∈ {0, 1}d̃j×d̃j−1 , every pruned network of g(x) can be described as

gM (x) = (G2l �M2l)σ((G2l−1 �M2l−1)σ(· · · (G1 �M1)(x) · · · )). (6)

Under these setups, we recall that the previous works showed that, with high probability, there exists a
subnetwork of g(x) that approximates f(x) when the width of g(x) is larger than f(x) by polynomial
factors [16] or logarithmic factors [22, 21].

4.2 Formulation and main results

Now we attempt to mathematically formulate our proposed method, IteRand, as an approximation
problem. As described in Algorithm 3, the method consists of two steps: optimizing binary variables
M = {Mj}j=1,··· ,2l and randomizing pruned weights in g(x). The first step can be formulated as
the approximation problem of f(x) by some gM (x) as described above. Corresponding to the second
step, we introduce an idealized assumption on g(x) for a given number R ∈ N≥1: each element of
the weight matrix Gj can be re-sampled with replacement from the uniform distribution U [−1, 1] up
to R− 1 times, for all j = 1, · · · , 2l. (re-sampling assumption for R)

Under this re-sampling assumption, we obtain the following theorem.

Theorem 4.1 (Main Theorem) Fix ε, δ > 0, and we assume that ‖Fi‖Frob ≤ 1. Let R ∈ N, and
assume that g(x) satisfies the re-sampling assumption for R.

If d̃2i−1 ≥ 2di−1d
64l2d2i−1di
ε2R2 log( 2ldi−1di

δ )e holds for all i = 1, · · · , l, then with probability at least
1− δ, there exist binary matrices M = {Mj}1≤j≤2l such that

‖f(x)− gM (x)‖2 ≤ ε, for ‖x‖∞ ≤ 1. (7)

In particular, if R is larger than 8ldi−1

ε

√
di log(

2ldi−1di
δ ), then d̃2i−1 = 2di−1 is enough.

Theorem 4.1 shows that the iterative randomization is provably helpful to approximate wider networks
in the weight-pruning optimization of a random network. In fact, the required width for g(x) in
Theorem 4.1 is reduced to even twice as wide as f(x) when the number of re-sampling is sufficiently
large, in contrast to the prior results without re-sampling assumption where the required width is
logarithmically wider than f(x) [22, 21]. This means that, under a fixed amount of parameters of
g(x), we can achieve a higher accuracy by weight-pruning of g(x) with iterative randomization since
a wider target network has a higher model capacity.

In the rest of this section we present the core ideas by proving the simplest case (l = d0 = d1 = 1)
of the theorem, while the full proof of Theorem 4.1 is given in Appendix A. Note that the full proof
is obtained essentially by applying the argument for the simplest case inductively on the widths and
depths.

4.3 Proof ideas for Theorem 4.1

Let us consider the case of l = d0 = d1 = 1. Then the target network f(x) can be written as
f(x) = wx : R→ R, where w ∈ R, and g(x) can be written as g(x) = vTσ(ux) where u,v ∈ Rd̃1 .
Also, subnetworks of g(x) can be written as gm(x) = (v�m)Tσ((u�m)x) for some m ∈ {0, 1}d̃1 .

There are two technical points in our proof. The first point is the following splitting of f(x):

f(x) = wσ(x)− wσ(−x), (8)

for any x ∈ R. This splitting is very similar to the one used in the previous works [16, 22, 21]:

f(x) = σ(wx)− σ(−wx). (9)
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However, if we use the latter splitting Eq. (9), it turns out that we cannot obtain the lower bound of
d̃2i−1 in Theorem 4.1 when d0 > 0. (Here we do not treat this case, but the proof for d0 > 0 is given
in Appendix A.) Thus we need to use our splitting Eq. (8) instead.

Using Eq. (8), we can give another proof of the following approximation result without iterative
randomization, which was already shown in the previous work [16].

Lemma 4.2 Fix ε, δ ∈ (0, 1), w ∈ [−1, 1], d ∈ N. Let u,v ∼ U [−1, 1]d be uniformly random
weights of a 2-layered neural network g(x) := vTσ(u · x). If d ≥ 2d 16ε2 log( 2δ )e holds, then with
probability at least 1− δ, ∣∣wx− gm(x)

∣∣ ≤ ε, for all x ∈ R, |x| ≤ 1, (10)

where gm(x) := (v �m)Tσ(u · x) for some m ∈ {0, 1}d.

Proof (sketch): We assume that d is an even number as d = 2d′ so that we can split an
index set {0, · · · , d − 1} of d hidden neurons of g(x) into I = {0, · · · , d′ − 1} and J =
{d′, · · · , d− 1}. Then we have the corresponding subnetworks gI(x) and gJ(x) given by gI(x) :=∑
k∈I vkσ(ukx), gJ(x) :=

∑
k∈J vkσ(ukx), which satisfy the equation g(x) = gI(x) + gJ(x).

By the splitting Eq. (8), it is enough to consider the probabilities for approximating wσ(x) by a
subnetwork of gI(x) and for approximating −wσ(−x) by a subnetwork of gJ(x). Now we have

P
(
6 ∃i ∈ I s.t. |ui − 1| ≤ ε

2
, |vi − w| ≤

ε

2

)
≤
(
1− ε2

16

)d′
≤ δ

2
, (11)

P
(
6 ∃j ∈ J s.t. |uj + 1| ≤ ε

2
, |vj + w| ≤ ε

2

)
≤
(
1− ε2

16

)d′
≤ δ

2
, (12)

for d′ ≥ 16
ε2 log

(
2
δ

)
, by a standard argument of the uniform distribution and the inequality ex ≥ 1+x

for x ≥ 0. By the union bound, with probability at least 1− δ, we have i ∈ I and j ∈ J such that∣∣wσ(x)− viσ(uix)∣∣ ≤ ε

2
,∣∣− wσ(−x)− vjσ(ujx)∣∣ ≤ ε

2
.

Combining these inequalities, we finish the proof. �

The second point of our proof is introducing projection maps to leverage the re-sampling assumption,
as follows. As in the proof of Lemma 4.2, we assume that d = 2d′ for some d′ ∈ N and let
I = {0, · · · , d′ − 1}, J = {d′, · · · , d− 1}. Now we define a projection map

π : Ĩ → I, k 7→ bk/Rc, (13)

where Ĩ := {0, · · · , d′R − 1}, and b·c denotes the floor function. Similarly for J , we can define
J̃ := {d′R, · · · , dR− 1} and the corresponding projection map. Using these projection maps, we
can extend Lemma 4.2 to the one with the re-sampling assumption, which is the special case of
Theorem 4.1:

Proposition 4.3 (Theorem 4.1 with l = d0 = d1 = 1) Fix ε, δ ∈ (0, 1), w ∈ [−1, 1], d ∈ N. Let
u,v ∼ U [−1, 1]d be uniformly random weights of a 2-layered neural network g(x) := vTσ(u · x).
Let R ∈ N and we assume that each element of u and v can be re-sampled with replacement up to
R− 1 times. If d ≥ 2d 16

ε2R2 log(
2
δ )e holds, then with probability at least 1− δ,∣∣wx− gm(x)

∣∣ ≤ ε, for all x ∈ R, |x| ≤ 1, (14)

where gm(x) := (v �m)Tσ(u · x) for some m ∈ {0, 1}d.

Proof (sketch): Similarly to the proof of Lemma 4.2, we utilize the splitting Eq. (8). We mainly
argue on the approximation of wσ(x) since the argument for approximating −wσ(x) is parallel.
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By the assumption that each element of u and v can be re-sampled up to R− 1 times, we can replace
the probability in Eq. (11) in the proof of Lemma 4.2, using the projection map π : Ĩ → I , by

P
(
6 ∃i1, i2 ∈ Ĩ s.t. π(i1) = π(i2), |ũi1 − 1| ≤ ε

2
, |ṽi2 − w| ≤

ε

2

)
, (15)

where ũ1, · · · , ũd′R, ṽ1, · · · , ṽd′R ∼ U [−1, 1]. Indeed, since we have

#{(i1, i2) ∈ Ĩ × Ĩ : π(i1) = π(i2)} = d′R2, (16)
we can evaluate the probability Eq. (15) as

Eq.(15) ≤
(
1− ε2

16

)d′R2

≤ δ

2
, (17)

for d′ ≥ 16
ε2R2 log

(
δ
2

)
. Eq. (17) can play the same role as Eq. (11) in the proof of Lemma 4.2.

Parallel argument can be applied for the approximation of −wσ(x) by replacing I with J . The rest
of the proof is the same as Lemma 4.2. �

5 Experiments

In this section, we perform several experiments to evaluate our proposed method, IteRand (Algo-
rithm 3). Our main aim is to empirically verify the parameter efficiency of IteRand, compared with
edge-popup [23] (Algorithm 1) on which IteRand is based. Specifically, we demonstrate that IteRand
can achieve better accuracy than edge-popup under a given amount of network parameters. In all
experiments, we used the partial randomization with r = 0.1 (Eq. (3)) for Randomize in Algorithm 3.

Setup. We used two vision datasets: CIFAR-10 [12] and ImageNet [25]. CIFAR-10 is a small-scale
dataset of 32× 32 images with 10 class labels. It has 50k images for training and 10k for testing. We
randomly split the 50k training images into 45k for actual training and 5k for validation. ImageNet
is a dataset of 224× 224 images with 1000 class labels. It has the train set of 1.28 million images
and the validation set of 50k images. We randomly split the training images into 99 : 1, and used the
former for actual training and the latter for validating models. When testing models, we used the
validation set of ImageNet (which we refer to as the test set). For network architectures, we used
multiple convolutional neural networks (CNNs): Conv6 [5] as a shallow network and ResNets [10]
as deep networks. Conv6 is a 6-layered VGG-like CNN, which is also used in the prior work [23].
ResNets are more practical CNNs with skip connections and batch normalization layers. Following
the settings in Ramanujan et al. [23], we used non-affine batch normalization layers, which are layers
that only normalize their inputs and do not apply any affine transform, when training ResNets with
edge-popup and IteRand. All of our experiments were performed with 1 GPU (NVIDIA GTX 1080
Ti, 11GB) for CIFAR-10 and 2 GPUs (NVIDIA V100, 16GB) for ImageNet. The details of the
network architectures and hyperparameters for training are given in Appendix B.

Parameter distributions. With the same notation as Section 2, both IteRand and edge-popup
requires two distributions: Dparam and Dscore. In our experiments, we consider Kaiming uniform
(KU) and signed Kaiming constant (SC) distribution. The KU distribution is the uniform distribution
over the interval [−

√
6

cfanin
,
√

6
cfanin

] where cfanin is the constant defined for each layer of ReLU
neural networks [1][9]. The SC distribution is the uniform distribution over the two-valued set
{−
√

2
cfanin

,
√

2
cfanin

}, which is introduced by Ramanujan et al. [23]. We fix Dscore to the KU
distribution, and use the KU or SC distribution for Dparam.

5.1 Varying the network width

To demonstrate the parameter efficiency, we introduce a hyperparameter ρ of the width factor for
Conv6, ResNet18 and ResNet34. The details of this modification are given in Appendix B. We train
and test these networks on CIFAR-10 using IteRand, edge-popup and SGD, varying the width factor
ρ in {0.25, 0.5, 1.0, 2.0} for each network (Figure 2). In the experiments for IteRand and edge-popup,
we used the sparsity rate of p = 0.5 for Conv6 and p = 0.6 for ResNet18 and ResNet34. Our method
outperforms the baseline method for various widths. The difference in accuracy is large both when
the width is small (ρ ≤ 0.5), and when Dparam is the KU distribution where edge-popup struggles.
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Figure 2: We train and evaluate three CNNs (Conv6 , ResNet18 and ResNet34) with various widths
on CIFAR-10. The x-axis is the width factor ρ and the y-axis is the accuracy on the test set. We plot
the mean ± standard deviation over three runs for each experiment. KU/SC in the legend represents
the distribution used for Dparam.

(a) Network Size vs. Test Accuracy. (b) Training Curves.

Figure 3: We compare IteRand with edge-popup on ImageNet. We used a fixed p = 0.7 for the
sparsity rate (Section 2) following Ramanujan et al. [23]. Figure (a) shows parameter-accuracy
tradeoff curves on the test set. In Figure (b), we plot the train/val accuracy of ResNet50 during
optimization. IteRand outperforms edge-popup from early epochs.

5.2 ImageNet experiments

The parameter efficiency of our method is also confirmed on ImageNet (Figure 3a). ImageNet is more
difficult than CIFAR-10, and thus more complexity is required for networks to achieve competitive
performance. Since our method can increase the network complexity as shown in Section 4, the effect
is significant in ImageNet especially when the complexity is limited such as ResNet34.

In addition to the parameter efficiency, we also observe the effect of iterative randomization on the
behavior of optimization process, by plotting training curves (Figure 3b). Surprisingly, IteRand
achieves significantly better performance than edge-popup at the early stage of the optimization,
which indicates that the iterative randomization accelerates the optimization process especially when
the number of iterations is limited.

6 Related work

Lottery ticket hypothesis Frankle and Carbin [5] originally proposed the lottery ticket hypothesis.
Many properties and applications have been studied in subsequent works, such as transferability of
winning subnetworks [19], sparsification before training [14, 27, 26] and further ablation studies on
the hypothesis [29].

Zhou et al [29] surprisingly showed that only pruning randomly initialized networks without any
optimization on their weights can be a training method surprisingly. Ramanujan et al. [23] went
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further by proposing an effective pruning algorithm on random networks, called edge-popup, and
achieved competitive accuracy compared with standard training algorithms by weight-optimization
[24]. Malach et al. [16] mathematically formalized their pruning-only approach as an approximation
problem for a target network and proved it with lower bound condition on the width of random
networks to be pruned. Subsequent works [22, 21] successfully relaxed the lower bound to the
logarithmic factor wider than the width of a target network. Our work can be seen as an extension of
their works to allow re-sampling of the weights of the random networks for finite R times, and we
showed that the logarithmic factor can be reduced to a constant one when R is large enough. (See
Section 4.)

Neural network pruning and regrowth Studies of finding sparse structures of neural networks
date back to the late 1980s [8, 13]. There are many approaches to sparsify networks, such as
magnitude-based pruning [7], L0 regularization [15] and variational dropout [18]. Although these
methods only focus on pruning unnecessary weights from the networks, there are several studies
on re-adding new weights during sparsification [11] to maintain the model complexity of the sparse
networks. Han et al. [6] proposed a dense-sparse-dense (DSD) training algorithm consisting of
three stages: dense training, pruning, and recovering the pruned weights as zeros followed by dense
training. Mocanu et al. [17] proposed sparse evolutionary training (SET), which repeats pruning
and regrowth with random values at the end of each training epoch. Pruning algorithms proposed in
other works [2, 20, 4] are designed to recover pruned weights by zero-initialization instead of random
values, so that the recovered weights do not affect the outputs of the networks. While these methods
are similar to our iterative randomization method in terms of the re-adding processes, all of them use
weight-optimization to train networks including re-added weights, in contrast to our pruning-only
approach.

7 Limitations

There are several limitations in our theoretical results. (1) Theorem 4.1 indicates only the existence
of subnetworks that approximate a given neural network, not whether our method works well
empirically. (2) The theorem focused on the case when the parameter distribution Dparam is the
uniform distribution over the interval [−1, 1]. Thus, generalizing our theorem to other distributions,
such as the uniform distribution over binary values {−1, 1} [3], is left for future work. (3) The
required width given in the theorem may not be optimal. Indeed, prior work [22] showed that we can
reduce the polynomial factors in the required width to logarithmic ones in the case when the number
of re-sampling operations R = 1. Whether we can reduce the required width for R > 1 remains an
open question.

Also our algorithm (IteRand) and its empirical results have several limitations. (1) Pruning randomly-
initialized networks without any randomization can reduce the storage cost by saving only a single
random seed and the binary mask representing the optimal subnetwork. However, if we save the
network pruned with IteRand in the same way, it requires more storage cost: R random seeds and
R binary masks, where R is the number of re-samplings. (2) Although our method can be applied
with any score-based pruning algorithms (e.g. Zhou et al [29] and Wang et al [28]), we evaluated
our method only combined with edge-popup [23], which is the state-of-the-art algorithm for pruning
random networks. Since our theoretical results do not depend on any pruning algorithms, we expect
that our method can be effectively combined with better pruning algorithms that emerge in the future.
(3) We performed experiments mainly on the tasks of image classification. An intriguing question is
how effectively our method works on other tasks such as language understanding, audio recognition,
and deep reinforcement learning with various network architectures.

8 Conclusion

In this paper, we proposed a novel framework of iterative randomization (IteRand) for pruning
randomly initialized neural networks. IteRand can virtually increase the network widths without any
additional memory consumption, by randomizing pruned weights of the networks iteratively during
the pruning procedure. We verified its parameter efficiency both theoretically and empirically.

Our results indicate that the weight-pruning of random networks may become a practical approach
to train the networks when we apply the randomizing operations enough times. This opens up the
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possibility that the weight-pruning can be used instead of the standard weight-optimization within
the same memory budget.
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