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Abstract

We introduce a novel anchor-free contrastive learning (AFCL) method
leveraging our proposed Similarity-Orthogonality (SimO) loss. Our ap-
proach minimizes a semi-metric discriminative loss function that simultane-
ously optimizes two key objectives: reducing the distance and orthogonality
between embeddings of similar inputs while maximizing these metrics for
dissimilar inputs, facilitating more fine-grained contrastive learning. The
AFCL method, powered by SimO loss, creates a fiber bundle topological
structure in the embedding space, forming class-specific, internally cohesive
yet orthogonal neighborhoods. We validate the efficacy of our method on
the CIFAR-10 dataset, providing visualizations that demonstrate the im-
pact of SimO loss on the embedding space. Our results illustrate the forma-
tion of distinct, orthogonal class neighborhoods, showcasing the method’s
ability to create well-structured embeddings that balance class separation
with intra-class variability. This work opens new avenues for understand-
ing and leveraging the geometric properties of learned representations in
various machine-learning tasks.
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Figure 1: 3D interpretation of Anchor-Free Contrastive Learning (AFCL) using Similarity-
Orthogonality (SimO) loss: (a) On the left, all the samples are negatively contrasted with
each other. The loss function aims to push them away from each other while maintaining
the orthogonality between all the embedding vectors in our embedding Space. (b) On the
right, all the data points belong to the same class. The loss function here decreases the
orthogonality and the distance between embeddings of the same class.

1 Introduction

The pursuit of effective representation learning (Gidaris et al. (2018); Wu et al. (2018); Oord
et al. (2019)) has been a cornerstone of modern machine learning, with contrastive methods
emerging as particularly powerful tools in recent years. Despite significant advancements,
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the field of supervised contrastive learning (Khosla et al. (2021); Balestriero et al. (2023))
continues to grapple with fundamental challenges that impede the development of truly
robust and interpretable models.
Our research unveils persistent challenges in embedding methods (Wen et al. (2016); Grill
et al. (2020); Hjelm et al. (2019)), notably the lack of interpretability and inefficient uti-
lization of embedding spaces due to dimensionality collapse (Zbontar et al. (2021); Jing
et al. (2022)). Certain techniques, such as max operations in loss functions (e.g., max(0,
loss)) (Gutmann & Hyvärinen (2010)) and triplet-based methods (Sohn (2016b); Tian et al.
(2021)), introduce complications like non-smoothness, which disrupt gradient flow. These
approaches also suffer from biases in hand-crafted triplet selection and necessitate extensive
hyperparameter tuning, thereby limiting their generalizability (Rusak et al. (2024)). Con-
trastive loss functions, including InfoNCE (Chen et al. (2020)), often rely on large batch
sizes and negative sampling, leading to increased computational costs and instability. While
recent metric learning approaches (Movshovitz-Attias et al. (2017); Qian et al. (2020)) have
made strides in improving efficiency and scalability, they frequently sacrifice interpretabil-
ity. This trade-off results in black-box models that offer minimal insight into the learned
embedding structure.
We present SimO loss, a novel AFCL framework that addresses these long-standing issues.
SimO introduces a paradigm shift in how we conceptualize and optimize embedding spaces.
At its core lies a carefully crafted loss function that simultaneously optimizes Euclidean dis-
tances and orthogonality between embeddings – a departure from conventional approaches
that typically focus on one or the other (Schroff et al. (2015)).
The key innovation of SimO is its ability to project each class into a distinct neighborhood
that maintains orthogonality with respect to other class neighborhoods. This property not
only enhances the explainability of the resulting embeddings but also naturally mitigates
dimensionality collapse by encouraging full utilization of the embedding space. Crucially,
SimO operates in a semi-metric space, a choice that allows for more flexible representations
while preserving essential distance properties.
From a theoretical standpoint, SimO induces a rich topological structure in the embedding
space, seamlessly blending aspects of metric spaces, manifolds, and stratified spaces. This
unique structure facilitates efficient class separation while preserving nuanced intra-class
relationships – a balance that has proven elusive in previous work. The semi-metric na-
ture of our approach, allowing for controlled violations of the triangle inequality, enables
more faithful representations of complex data distributions that often defy strict metric
assumptions.
Our key contributions are:

• We propose an anchor-free pertaining method (AFCL) for supervised and semi-
supervised contrastive learning

• We introduce SimO, an anchor-free contrastive learning loss that significantly ad-
vances the state-of-the-art in terms of embedding explainability and robustness.

• We provide a comprehensive theoretical analysis of the induced semi-metric embed-
ding space, offering new insights into the topological properties of learned represen-
tations.

As we present SimO to the community, we do so with the conviction that it represents not
just an incremental advance, but a fundamental reimagining of contrastive learning—one
that addresses the core challenges that have long hindered progress in the field.

2 Related Work

2.1 Anchor-Based Contrastive Learning

In contrastive learning, anchor-based losses have evolved from simple pairwise comparisons
to more sophisticated multi-sample approaches (Khosla et al. (2021)). The triplet loss (Co-
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ria et al. (2020)), which compares an anchor with one positive and one negative sample,
has found success in applications like face recognition (Chopra et al. (2005)), despite its
tendency towards slow convergence. Building on this foundation, the (N+1)-tuplet loss ex-
tends the concept to multiple negatives, approximating the ideal case of comparing against
all classes. Further refinement led to the development of the multi-class N-pair loss, which
significantly improves computational efficiency through strategic batch construction, requir-
ing only 2N examples for N distinct (N+1)-tuplets (Sohn (2016a)). Recent theoretical work
has illuminated the connections between these various loss functions. Notably, the triplet
loss can be understood as a special case of the more general contrastive loss. Moreover, the
supervised contrastive loss (Khosla et al. (2021)), when utilizing multiple negatives, bears a
close resemblance to the N-pairs loss. Nevertheless, anchor-based methods are sensitive to
negative sample quality, which can lead to inefficiencies in small datasets and struggle with
false negatives. It also relies heavily on effective data augmentations and large batch size,
with a risk of overlooking global relationships.

2.2 Dimensionality Collapse in Contrastive Learning Methods

Dimensionality collapse, a significant challenge in contrastive learning, occurs when learned
representations converge to a lower-dimensional subspace, thereby diminishing their discrim-
inative power and compromising the model’s ability to capture data structure effectively
(Jing & Tian (2020)). To address this issue, researchers have proposed several innovative
strategies. The NT-Xent loss function (Chen et al. (2020)) implements temperature scal-
ing to emphasize hard negatives, promoting more discriminative representations . Another
approach involves the use of a nonlinear projection head, which enhances representation
quality through improved hypersphere mapping (Grill et al. (2020)). The Barlow Twins
method (Zbontar et al. (2021)) takes a different tack, focusing on redundancy reduction
by minimizing correlations between embedding vector components through optimization of
the cross-correlation matrix. Architectural innovations have also played a crucial role in
combating dimensionality collapse. Methods like BYOL and SimSiam employ asymmetric
architectures to prevent the model from converging to trivial solutions (Chen & He (2021)).
The use of stop gradient in these methods ensures that the models do not converge to pro-
duce the same outputs over time. Additionally, the use of batch normalization (Ioffe (2015))
has been empirically shown to stabilize training and prevent such trivial convergence, al-
though the precise mechanisms underlying its effectiveness remain an area of active research
(Peng et al. (2023)).

2.3 Explainability of Contrastive Learning

The underlying mechanisms driving the effectiveness of contrastive learning remain an ac-
tive area of investigation. To shed light on the learned representations, Zhu et al. (2021)
introduced attribution techniques for visualizing salient features. Cosentino et al. (2022)
explored the geometric properties of self-supervised contrastive methods. They discov-
ered a non-trivial relationship between the encoder and the projector, and the strength
of data augmentation with increasing complexity. They provided a theoretical framework
for understanding how these methods learn invariant representations based on the geom-
etry of the data manifold. Furthermore, Steck et al. (2024) examined the implications of
cosine similarity in embeddings, challenging the notion that it purely reflects similarity and
suggesting that its geometric properties may influence representation learning outcomes.
Wang & Liu (2021) investigate the behavior of unsupervised contrastive loss, highlighting
its hardness-aware nature and how temperature influences the treatment of hard negatives.
They show that while uniformity in feature space aids separability, excessive uniformity
can harm semantic structure by pushing semantically similar instances apart. Wang &
Isola (2020) identified alignment and uniformity as key properties of contrastive learning.
Alignment encourages closeness between positive pairs, while uniformity ensures the even
spread of representations on the hypersphere. Their work demonstrates that optimizing
these properties leads to improved performance in downstream tasks and provides a the-
oretical framework for understanding contrastive learning’s effectiveness in representation
learning. Together, these works lay the groundwork for a deeper theoretical understanding
of contrastive learning, highlighting the necessity for additional investigation.
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3 Preliminaries

3.1 Metric Space

A metric space is a set X together with a distance function d : X×X → R (called a metric)
that satisfies the following properties for all x, y, z ∈ X:

1. Non-negativity: d(x, y) ≥ 0

2. Identity of indiscernibles: d(x, y) = 0 if and only if x = y

3. Symmetry: d(x, y) = d(y, x)

4. Triangle inequality: d(x, z) ≤ d(x, y) + d(y, z)

3.2 Semi-Metric Space

A semi-metric space is a generalization of a metric space where the triangle inequality is
not required to hold. It is defined as a set X with a distance function d : X ×X → R that
satisfies:

1. Non-negativity: d(x, y) ≥ 0

2. Identity of indiscernibles: d(x, y) = 0 if and only if x = y

3. Symmetry: d(x, y) = d(y, x)

4 Method

4.1 Similarity-Orthogonality (SimO) Loss Function

We propose a novel loss function that leverages Euclidean distance and orthogonality
(through the squared dot product) for learning the embedding space. This function, which
we term the Similarity-Orthogonality (SimO) loss, is defined as:

LSimO = y

[ ∑
i,j dij

ε+
∑

i,j oij

]
+ (1− y)

[ ∑
i,j oij

ε+
∑

i,j dij

]
(1)

- ∀i, j, i 6= j and i ≤ j are indices of the embedding pairs within a batch
- y is a binary label for the entire batch, where y = 1 for similarity and y = 0 for dissimilarity
- dij = ||ei − ej ||22 · ej is the squared Euclidean distance between embeddings ei and ej

- oij = (ei · ej)2 is the squared dot product of embeddings ei and ej

- ε is a small constant to prevent division by zero
SimO loss function presents a novel framework for learning embedding spaces, addressing
several critical challenges in representation learning. Below, we highlight its key properties
and advantages:

• Semi-Metric Space function: The SimO loss function operates within a semi-metric
space, as formalized in the SimO Semi-Metric Space Theorem. This allows for
a flexible representation of distances between embeddings, particularly useful for
high-dimensional data where traditional metrics may fail to capture complex rela-
tionships (Theorem ??).

• Preventing Dimensionality Collapse: The orthogonality component of the SimO
loss plays a pivotal role in preventing dimensionality collapse, a phenomenon where
dissimilar classes become indistinguishable in the embedding space. By encouraging
orthogonal embeddings for distinct classes, SimO ensures that the learned repre-
sentations remain well-separated and span diverse regions of the embedding space,
preserving class distinctiveness (Theorem A.2).
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Algorithm 1 SIMO Loss Function
1: Input: embeddings, label_batch, indices, epsilon
2: function orthogonality_loss(embeddings, indices)

# indices contains the unique combinations between different embeddings
3: E1← embeddings[indices[0]]
4: E2← embeddings[indices[1]]
5: dot_product_squared← vmap(pairwise_dot_product_squared)
6: loss←

∑
dot_product_squared(E1, E2)

7: return loss
8: function similarity_loss(embeddings, indices)

# indices contains the unique combinations between different embeddings
9: E1← embeddings[indices[0]]

10: E2← embeddings[indices[1]]
11: squared_distance← vmap(pairwise_squared_distance)
12: loss←

∑
squared_distance(e1, e2)

13: return loss
14: function SimO_Loss(embeddings, label_batch, indices, epsilon)
15: ortho_loss← orthogonality_loss(embeddings, indices)
16: sim_loss← similarity_loss(embeddings, indices)
17: total_loss← label_batch · sim_loss

ε+ortho_loss + (1− label_batch) · ortho_loss
ε+sim_loss

18: return total_loss/indices[0].shape[0]

• Mitigating the Curse of Orthogonality: Our embedding techniques are constrained
by the Curse of Orthogonality, which limits the number of mutually orthogonal
vectors to the dimensionality of the embedding space. SimO overcomes this limita-
tion by leveraging orthogonality-based regularization (orthogonality leaning factor)
informed by the Johnson-Lindenstrauss lemma (Theorem A.4), thus enabling more
effective utilization of the available space without falling prey to orthogonality sat-
uration (Theorem A.3).

4.2 Anchor-Free Contrastive Learning

We introduce a novel contrastive learning pretraining strategy (Algorithm 2) that uses the
SimO loss function. For each iteration, we create a batch of k images sampled from n ran-
domly selected classes where num_classes = batch_size//k. We generate the embeddings
using our model.
The loss computation strategy is the sum of three different operations:
- To calculate the loss over embeddings from the same class, we reshape the embeddings to
(num_classes, k, embeddings_dim):
Lsame = SimO_loss(embeddings, 1.0) SimO is applied class-wise (axis 0) to calculate the
loss over similar embeddings then sum it up.
- Using the same embeddings predicted, we continue to do the following:

• Compute the mean embedding for each of the nclasses represented in the batch:
µi =

1
k

∑k
j=1 fθ(Ij), where Ij ∈ mbi

• Calculate the loss using these mean embeddings: Lmean_dissimilar =
simo([µ1, µ2, ..., µm], 0 + olean), with olean is the orthogonality leaning factor

- For Ldissimilar We reshape the embeddings to (k, num_classes, embeddings_dim) and
then we calculate Ldissimilar = SimO_loss(embeddings, 0.0 + olean) where olean is the
orthogonality leaning factor.
This dual-batch approach allows the model to learn both intra-class compactness (through
Lsame) and inter-class separability (through Lmean_dissimilar and Ldissimilar). By oper-
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Algorithm 2 Anchor-Free Contrastive Learning with SimO loss pseudo-implementation
1: Input: data (xtrain, ytrain), num_epochs, batch_size, num_classes, k, olean
2: Initialize model f parameters θ
3: Initialize optimizer state
4: for iteration = 1 to num_iterations do
5: batch, labels ← create_mean_batch(data, batch_size, k, num_classes)
6: embeddings← fθ(batch; θ)
7: embeddings ← embeddings.reshape(num_classes, k, embeddings_dim) # Reshap-

ing the embeddings to group similar images together
8: L_similar← simo_loss(embeddings, 1.0) # No need for orthogonality leaning
9: mean_embeddings← {}

10: for each unique label in labels do
11: mean_e← mean(embeddings[labels == label])
12: mean_embedding ← mean_embeddings ∪ {mean_e}
13: end for
14: L_mean_dissimilar← simo_loss(mean_embeddings, 0 + olean)
15: embeddings ← embeddings.reshape(k, num_classes, embeddings_dim) # Reshap-

ing the Embeddings to group dissimilar images together
16: L_dissimilar← simo_loss(embeddings, 0.0+olean) # olean is Orthogonality leaning
17: L ← L_similar + L_mean_dissimilar + L_dissimilar
18: g ← ∇θL
19: Update θ and optimizer state using g
20: end for
21: return Trained model parameters θ

ating on class means, we encourage the model to learn more robust discriminative fea-
tures that generalize well across class instances with reduce the impact of negative sam-
pling. The overall training objective alternates between these two batch types, optimizing:
L = E[Lsame] + E[Lmean_different] + E[Ldissimilar] where the expectation is taken over the
random sampling of batches during training.

4.3 Experimental Setup

Our experiments were conducted using GPU-enabled cloud computing platforms, with ex-
periment tracking and visualization handled by Weights & Biases Biewald (2020). We im-
plemented our models using JAX/Flax and TensorFlow frameworks. For our experiments,
we utilized the CIFAR-10 dataset Krizhevsky & Hinton (2009). CIFAR-10 consists of 60,000
32x32 RGB images across 10 classes, with 50,000 for training and 10,000 for testing.
In the pretraining phase for CIFAR-10, we used an embedding dimension of 16 for the
linear projection head following the ResNet encoder with layer normalization instead of
batch normalization, with a batch size of 96 and 32 randomly selected images per class from
3 classes. During the linear probing phase, we fed the projection of our frozen pretrained
model to a classifier head consisting of one MLP layer with 128 neurons, followed by an
output layer matching the number of classes in CIFAR-10 dataset.

5 Results

Our extensive experiments on the CIFAR-10 dataset demonstrate the effectiveness of SimO
in learning discriminative and interpretable embeddings. We present a multifaceted analysis
of our results, encompassing unsupervised clustering, supervised fine-tuning, and qualitative
visualization of the embedding space.
To assess the transferability and discriminative capacity of our learned representations, we
conducted a supervised fine-tuning experiment. We froze the SimO-trained encoder and
attached a simple classifier head, fine-tuning only this newly added layer for a single epoch.
This minimal fine-tuning yielded impressive results:
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(a) (b)

Figure 2: Manifold visualization of the Embedding Space using T-SNE for both (a) trainset
and (b) testset

Figure 3: Pairwise Manifold Visualization using TSNE (Lower-Triangular Plots
and PCA (Uper Triangular Plots)

The rapid convergence to high accuracy with minimal fine-tuning underscores the quality
and transferability of our SimO-learned representations. It’s worth noting that this perfor-
mance was achieved with only 1 epoch of fine-tuning, demonstrating the efficiency of our
approach.
Examination of the confusion matrix revealed that the model primarily struggles with dis-
tinguishing between the ’cat’ and ’dog’ classes. This observation aligns with our qualitative
analysis of the embedding space visualizations (Figure 2, Figure 3, Figure 4). The challenge
in separating these classes is not unexpected, given the visual similarities between cats and
dogs, and has been observed in previous works Khosla et al. (2012); Zhang et al. (2021).
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(a) Normalized Similarity Matrix (b) Mean embedding of each class

Figure 4: Normalized Similarity Matrix calculated using SimO (a) Pairwise embeddings (b)
Class Means

Dataset Model Projection Head dim. Train Accuracy (%) Test Accuracy (%)
Cifar10 ResNet18 16 94 85

Table 1: Model Performance Metrics over 1 epoch fine-tuning of a classifier head and the
frozen pretrained model

We conducted a longitudinal analysis of the embedding space evolution using t-SNE projec-
tions at various training iterations (Figure 5). This analysis revealed intriguing dynamics
in the learning process:
Continual Learning Behavior: We observed a tendency towards continual learning (Fig-
ure 5), where the model appeared to focus on one class at a time. This behavior suggests
that SimO naturally induces a curriculum-like learning process, potentially contributing to
its effectiveness.
Persistent Challenges: The ’cat’ and ’dog’ classes remained challenging for the model
from 100,000 iterations up to 1 million iterations. This persistent difficulty aligns with our
quantitative error analysis and highlights an area for potential future improvements.
Progressive Separation: For training, we observed a clear trend of increasing inter-class
separation and intra-class cohesion, with the exception of the aforementioned challenging
classes.
These results collectively demonstrate the efficacy of SimO in learning rich, discriminative,
and interpretable embeddings. The observed continual learning behavior and the challenges
with visually similar classes provide insights into the learning dynamics of our approach and
point to exciting directions for future research.

6 Ablation Study

Our ablation studies provide crucial insights into the effectiveness of SimO’s key components.
Orthogonality Leaning Factor When removing the orthogonality constraint from our
loss function, we observed a significant degradation in performance. The model failed to
learn representations for all classes, instead converging to a state where only 4 out of 10
classes from CIFAR-10 were distinguishable, with the remaining 6 classes grouped together.
This result underscores the critical role of the orthogonality leaning factor in SimO, acting
as a regularizer that encourages the model to utilize the full dimensionality of the embedding
space and prevent the clustering of multiple classes into a single region which validate.

8
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5,000th 15,000th 25,000th 35,000th 45,000th 55,000th

65,000th 75,000th 85,000th 95,000th 105,000th 115,000th

125,000th 135,000th 145,000th 155,000th 695,000th 1,060,000th

Figure 5: Continual Learning Properties of SimO with AFCL Framework

Number of Classes per Batch: In our initial experiments with batch composition, we en-
countered an interesting phenomenon where certain classes dominated the loss function
and, consequently, the embedding space. This dominance prevented the model from learn-
ing adequate representations for the other classes, resulting in unstable learning. To address
this issue, we implemented a class sampling strategy inspired by techniques used in meta-
learning, randomly selecting less than 50% of the total number of classes for each batch.
This approach led to more balanced learning across all classes increasing stability in the
learning process.
Lower Bound of Embedding Dimension To explore the lower bounds of the embedding
dimension and understand the compressive capabilities of SimO, we conducted an exper-
iment where we pretrained a ResNet18 model with a projection head outputting only 2
dimensions, maintaining the orthogonality learning component. Remarkably, we achieved
a clustering accuracy of 60% on CIFAR-10 with this extreme dimensionality reduction.
This result is particularly impressive given that standard contrastive learning methods typ-
ically struggle with such low dimensions, often failing to separate classes meaningfully. This
demonstrates the power of SimO’s orthogonality constraint in creating discriminative em-
beddings even in very low-dimensional spaces, pointing to its potential in scenarios where
compact representations are required.

7 Discussion and Limitations

In our proposed framework, the embedding space generated by the SimO loss exhibits no-
table geometric properties (Figure 2, Figure 3) that can be interpreted through the lenses
of stratified spaces, quotient topology, and fiber bundles. Specifically, we can view the
overall embedding space as a stratified space, where each stratum corresponds to a dis-
tinct class neighborhood. This structure is facilitated by the orthogonality encouraged by
our loss function, promoting clear separations between classes while maintaining cohesive
intra-class relationships. Furthermore, we propose considering a quotient topology in which
points within the same class neighborhood are identified, simplifying the representation of
the embedding space to a point for each class. This transformation not only highlights
the distinctness of classes but also emphasizes their orthogonality in the learned space.
Additionally, our method generates a structure reminiscent of a fiber bundle, where each
fiber corresponds to a specific class and is orthogonal to other fibers. This fiber bundle-like

9
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organization allows for a rich representation of class relationships and facilitates a more
interpretable understanding of the learned embeddings. Collectively, these geometric in-
terpretations underscore the robustness and effectiveness of our SimO loss with our AFCL
framework in structuring embeddings that balance class separation with interpretability
requiring small batch sizes unlike other loss functions.
While SimO demonstrates significant advancements in contrastive learning, our extensive
experimentation has revealed several important limitations and areas for future research.
Redefinition of Similarity Metrics: A key finding of our work is that embeddings learned
through SimO no longer adhere to traditional similarity measures such as cosine similarity.
This departure from conventional metrics necessitates a paradigm shift in how we evaluate
similarity in the embedding space. Our SimO loss itself emerges as the most appropriate
measure of similarity or dissimilarity between embeddings. This also presents challenges for
integration with existing systems and methods that rely on cosine similarity. Future work
should focus on developing efficient computational methods for this new similarity metric
and exploring its theoretical properties.
Sensitivity to Data Biases: Our method’s ability to learn fine-grained representations
comes with increased sensitivity to biases present in the training data. This is particularly
evident in the case of background biases in object recognition tasks. For instance, our model
struggled to separate the neighborhoods of Dog and Cat classes even though it learned from
the 120,000th iteration to the 1 millionth iteration, despite having learned most other classes
effectively. This sensitivity necessitates robust data augmentation techniques to mitigate
the impact of such biases. While this requirement for strong augmentation can be seen as a
limitation, it also highlights SimO’s potential for detecting and quantifying dataset biases,
which could be valuable for improving dataset quality and fairness in machine learning
models.
The Orthogonality Learning Factor: The performance of SimO is notably influenced
by the orthogonality learning factor, a hyperparameter that balances the trade-off between
similarity and orthogonality objectives. Finding the optimal value for this factor presents
a challenge we term ”the curse of orthogonality.” Too low a factor leads to insufficient
separation between class neighborhoods, while too high a factor can result in overly rigid
embeddings that fail to capture intra-class variations. Our experiments show that this factor
often needs to be tuned specifically for each dataset and task, which can be computationally
expensive. Developing adaptive methods for automatically adjusting this factor during
training represents an important direction for future research.
Computational Complexity: While not unique to SimO, the computational requirements
for optimizing orthogonality in high-dimensional spaces are substantial. This can limit the
applicability of our method to very large datasets or in resource-constrained environments.
Future work should explore approximation techniques or more efficient optimization strate-
gies to address this limitation.
Despite these limitations, we believe that SimO represents a significant step forward in con-
trastive learning. The challenges identified here open up exciting new avenues for research in
representation learning, similarity metrics, and bias mitigation in machine learning models.
Addressing these limitations will not only improve SimO but also deepen our understanding
of the fundamental principles underlying effective representation learning.

8 Conclusion

Our AFCL method introduces the SimO loss function as a novel approach to contrastive
learning, effectively addressing several critical challenges related to embedding space utiliza-
tion and interoperability. By optimizing both the similarity and orthogonality of embed-
dings, SimO prevents dimensionality collapse and ensures that class representations remain
distinct, even in lower dimensions, requiring smaller batch sizes and embedding dimensions.
Our experimental results on the CIFAR-10 dataset demonstrate the efficacy of SimO in
generating structured and discriminative embeddings with minimal computational over-
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head. Notably, our method achieves impressive test accuracy as early as the first epoch.
Although there are limitations, such as sensitivity to data biases and dependence on specific
hyperparameters, SimO paves the way for future advancements in enhancing contrastive
learning techniques and managing embedding spaces more effectively.

Reproducibility Statement

We provide detailed proof for all the lemmas and theorems in the Appendices. Code will
be shared publicly after publication.

License

The source code, algorithms, and all contributions presented in this work are licensed under
the GNU Affero General Public License (AGPL) v3.0. This license ensures that any use,
modification, or distribution of the code and any adaptations or applications of the under-
lying models and methods must be made publicly available under the same license. This
applies whether the work is used for personal, academic, or commercial purposes, including
services provided over a network.
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A Appendix

Theorem A.1 (ⵟ is metric and ⵟ is pseudo-metric). Let (Rn,ⵟ) and (Rn,ⵟ) be two spaces
where:

ⵟ(ei, ej) =
oij
dij

=
(ei · ej)2

||ei − ej ||2

ⵟ(ei, ej) =
dij
oij

=
||ei − ej ||2

(ei · ej)2

for ei, ej ∈ Rn\{0} where ei 6= ej, with dij = ||ei−ej ||2 being the squared Euclidean distance
and oij = (ei · ej)2 being the squared dot product.

Then (Rn,ⵟ) is pseudo-metric when ei 6⊥ ej, while (Rn,ⵟ) is pseudo-metric.

Proof. We structure this proof into four parts:

1. Preliminary observations and domain analysis

2. Proof of common properties for both measures

3. Proof that ⵟ (yat) is a pseudo-metric

4. Proof that ⵟ (posi-yat) is a metric
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Part I: Preliminary Observations
Before proving the metric properties, we must establish the domain where these measures
are well-defined:
1. For non-zero vectors ei, ej :

• d2ij = 0 ⇐⇒ ei = ej

• oij = 0 ⇐⇒ ei ⊥ ej (vectors are orthogonal)

2. Domain restrictions:

• ⵟ is defined when d2ij 6= 0 (distinct vectors)

• ⵟ is defined when oij 6= 0 (non-orthogonal vectors)

Part II: Common Properties
Both measures satisfy the following properties:
1. Non-negativity: Since both d2ij and oij are squared quantities:

d2ij = ||ei − ej ||2 ≥ 0 and oij = (ei · ej)2 ≥ 0

Therefore:
ⵟ(ei, ej) ≥ 0 and ⵟ(ei, ej) ≥ 0

2. Identity of Indiscernibles: For both measures, we prove this bidirectionally:
(⇒) If ei = ej :

• d2ij = 0

• oij = ||ei||4 > 0 (for non-zero vectors)

Therefore, ⵟ(ei, ej) = 0 and ⵟ(ei, ej) = 0

(⇐) If ⵟ(ei, ej) = 0 or ⵟ(ei, ej) = 0:

• For ⵟ: oij
d2
ij

= 0 =⇒ oij = 0 (since d2ij 6= 0 for distinct vectors)

• For ⵟ: d2
ij

oij
= 0 =⇒ d2ij = 0 (since oij 6= 0 in domain)

In both cases, this implies that this rule stands for ⵟ, but not for ⵟ.
3. Symmetry: Symmetry follows from the symmetry of the dot product and Euclidean
distance:

ⵟ(ei, ej) =
(ei · ej)2

||ei − ej ||2
=

(ej · ei)2

||ej − ei||2
= ⵟ(ej , ei)

And similarly for ⵟ.
Part III: Proof the triangle inequality for ⵟ

To prove ⵟ satisfies the triangle inequality, we proceed in steps:
Given:

e1ⵟe2 =
(e1 · e2)2

||e2 − e1||2
.

Let:

14
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- e1 and e2 be vectors in Rn,
- θ be the angle between e1 and e2.
The dot product between e1 and e2 can be written as:

e1 · e2 = ||e1|| ||e2|| cos θ.

Thus, (e1 · e2)2 becomes:

(e1 · e2)2 = (||e1|| ||e2|| cos θ)2 = ||e1||2 ||e2||2 cos2 θ.

The Euclidean distance between e1 and e2 is:

||e2 − e1||2 = ||e1||2 + ||e2||2 − 2 ||e1|| ||e2|| cos θ.

Now we substitute these expressions into the formula for e1ⵟe2:

e1ⵟe2 =
||e1||2 ||e2||2 cos2 θ

||e1||2 + ||e2||2 − 2 ||e1|| ||e2|| cos θ
.

Let’s simplify by defining:
- A = ||e1||,
- B = ||e2||.
Thus, the expression becomes:

f(θ) = e1ⵟe2 =
A2B2 cos2 θ

A2 +B2 − 2AB cos θ
.

Let’s factor out common terms in the numerator. Notice that each term in the numerator
has a factor of A2B2 sin θ, so we can factor that out:

f ′(θ) =
A2B2 sin θ

[
−2 cos θ(A2 +B2 − 2AB cos θ)− 2AB cos2 θ

]
(A2 +B2 − 2AB cos θ)2

.

Now, distribute −2 cos θ in the first term inside the brackets:

=
A2B2 sin θ

[
−2A2 cos θ − 2B2 cos θ + 4AB cos2 θ − 2AB cos2 θ

]
(A2 +B2 − 2AB cos θ)2

.

Combine the cos2 θ terms:

=
A2B2 sin θ

[
−2A2 cos θ − 2B2 cos θ + 2AB cos2 θ

]
(A2 +B2 − 2AB cos θ)2

.

Thus, the simplified form of f ′(θ) is:

f ′(θ) =
−2A2B2 sin θ

(
A2 cos θ +B2 cos θ −AB cos2 θ

)
(A2 +B2 − 2AB cos θ)2

.

This form is simpler and allows us to see that the sign of f ′(θ) depends on the sign of − sin θ,
which is non-positive on the interval [0, π]. Therefore, f ′(θ) ≤ 0 on this interval, confirming
that f(θ) is monotonically decreasing.
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Since f(θ) is monotonically decreasing, it follows that ⵟ(e1, e2) = f(θ) decreases as θ in-
creases.
Applying the Angular Triangle Inequality Angles in Euclidean space satisfy the triangle
inequality (Cauchy–Schwarz inequality):

θik ≤ θij + θjk.

Since ⵟ(ei, ej) is a decreasing function of θ, we conclude:

ⵟ(ei, ek) ≤ ⵟ(ei, ej) + ⵟ(ej , ek).

Since ⵟ(ei, ej) = 1
ⵟ(ei,ej)

, we deduce that the ⵟ is a function of θ, we conclude:

ⵟ(ei, ek) ≤ ⵟ(ei, ej) + ⵟ(ej , ek).

, the only problem that is preventing the ⵟ from being a fully metric space is not being
defined when ei ⊥ ej , but we can remedy this with an ε so now it becomes ⵟ′

=
d2
ij

ε+oij
, we do

the same thing to the ⵟ to define it when ei = ej , just unlike the ⵟ, this operation doesn’t
change the fact that ⵟ remains pseudo-metric.

Theorem A.2 (SimO Dimentionality Collapse Prevention). The loss function LSimO pre-
vents dimensionality collapse for dissimilar (negative) classes through its orthogonality term.

Proof. Let E = {e1, . . . , en} be a set of embeddings in Rd, where n is the batch size and d
is the embedding dimension.
The loss function LSimO is defined as:

LSimO = y

[ ∑
i,j dij

ε+
∑

i,j oij

]
+ (1− y)

[ ∑
i,j oij

ε+
∑

i,j dij

]
(2)

where:

• i, j ∈ {1, . . . , n}, i 6= j, i < j

• y ∈ {0, 1} is a binary label for the entire batch (1 for similarity, 0 for dissimilarity)

• dij = ‖ei − ej‖2 = ‖ei‖2 + ‖ej‖2 − 2ei · ej is the squared Euclidean distance

• oij = (ei · ej)2 is the squared dot product

• ε > 0 is a small constant to prevent division by zero

We proceed by analyzing the behavior of LSimO for dissimilar pairs and showing how it
encourages properties that prevent dimensionality collapse.

1. For dissimilar pairs (y = 0), LSimO reduces to:

LSimO =

∑
i,j oij

ε+
∑

i,j dij
(3)

2. To minimize this loss, we must minimize
∑

i,j oij and maximize
∑

i,j dij .

3. We first prove two key lemmas:
Lemma A.2.1. Minimizing

∑
i,j oij encourages orthogonality between dissimilar

embeddings.
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Proof. • ∀i, j : oij = (ei · ej)2 ≥ 0

• Minimizing
∑

i,j oij implies minimizing each oij

• Minimizing (ei · ej)2 pushes ei · ej → 0

• ei · ej = 0 ⇐⇒ ei ⊥ ej

Therefore, minimizing
∑

i,j oij encourages orthogonality between all pairs of dis-
similar embeddings.

Lemma A.2.2. Maximizing
∑

i,j dij encourages dissimilar embeddings to be far
apart in the embedding space.

Proof. • ∀i, j : dij = ‖ei − ej‖2 ≥ 0

• Maximizing
∑

i,j dij implies maximizing each dij

• Maximizing ‖ei − ej‖2 increases the Euclidean distance between ei and ej

Therefore, maximizing
∑

i,j dij pushes dissimilar embeddings farther apart in the
embedding space.

4. Now, we show how these lemmas prevent dimensionality collapse:

(a) By Lemma 1, LSimO encourages orthogonality between dissimilar embeddings.
• Orthogonal vectors span different dimensions in the embedding space.
• This prevents dissimilar embeddings from aligning along the same dimen-

sions.
(b) By Lemma 2, LSimO simultaneously pushes dissimilar embeddings farther

apart.
• This reinforces the distinctiveness of dissimilar embeddings.
• It prevents dissimilar embeddings from collapsing to nearby points in the

embedding space.
(c) The combination of (a) and (b) ensures that:

• Dissimilar embeddings maintain their distinctiveness.
• They occupy different regions and directions in the embedding space.
• The effective dimensionality of the embedding space is preserved for dissim-

ilar classes.

5. Formally, let {ei}ki=1 be a set of dissimilar embeddings. The loss function ensures:

• ∀i 6= j : ei · ej ≈ 0 (orthogonality)
• ∀i 6= j : ‖ei − ej‖2 is maximized (separation)

These conditions directly contradict the definition of dimensionality collapse, where
dissimilar embeddings would become very similar or identical.

Theorem A.3 (Curse of Orthogonality). In an n-dimensional embedding space, the number
of classes that can be represented with mutually orthogonal embeddings is at most n.

Proof. Let Rn be an n-dimensional embedding space. Consider a set of k vectors
{a1, a2, . . . , ak} in this space, where each vector represents the mean embedding of a distinct
class.
Assume that these vectors are mutually orthogonal, i.e.,

ai · aj = 0 for all 1 ≤ i, j ≤ k and i 6= j. (4)

In Rn, the maximum number of mutually orthogonal vectors is equal to the dimension of
the space, which is n. This is because any set of mutually orthogonal vectors must also be
linearly independent, and the maximum number of linearly independent vectors in Rn is n.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Therefore, the maximum number of mutually orthogonal embeddings, and thus the maxi-
mum number of classes that can be represented with such embeddings, is n.
Hence, k ≤ n.

A.1 Johnson–Lindenstrauss Lemma

Lemma A.3.1 (Johnson–Lindenstrauss Lemma). 0 < ε < 1, and let X be a set of n points
in Rd. There exists a mapping f : Rd → Rk with k = O

(
log n
ε2

)
such that for all x, y ∈ X:

(1− ε)‖x− y‖2 ≤ ‖f(x)− f(y)‖2 ≤ (1 + ε)‖x− y‖2

Theorem A.4 (Johnson-Lindenstrauss Lemma Addressing the Curse of Orthogonality).
Given k > n vectors in Rn, there exists a projection into a higher-dimensional space Rm

where m = O( log k
ε2 ), such that the projected vectors are ”nearly orthogonal”, effectively

overcoming the limitation imposed by the Curse of Orthogonality.

Proof. Let {v1, v2, . . . , vk} be k vectors in Rn, where k > n.
1) By the Johnson-Lindenstrauss lemma, there exists a mapping f : Rn → Rm, where
m = O( log k

ε2 ), such that for all i, j ∈ {1, . . . , k}:

(1− ε)‖vi − vj‖2 ≤ ‖f(vi)− f(vj)‖2 ≤ (1 + ε)‖vi − vj‖2

2) Consider the dot product of two projected vectors f(vi) and f(vj) for i 6= j:

f(vi) · f(vj) =
1

2
(‖f(vi)‖2 + ‖f(vj)‖2 − ‖f(vi)− f(vj)‖2)

3) Using the upper bound from the JL lemma:

f(vi) · f(vj) ≤
1

2
(‖f(vi)‖2 + ‖f(vj)‖2 − (1− ε)‖vi − vj‖2)

4) If vi and vj were originally orthogonal, then ‖vi − vj‖2 = ‖vi‖2 + ‖vj‖2. Substituting
this:

f(vi) · f(vj) ≤
1

2
(‖f(vi)‖2 + ‖f(vj)‖2 − (1− ε)(‖vi‖2 + ‖vj‖2))

5) The JL lemma also ensures that for each vector:

(1− ε)‖vi‖2 ≤ ‖f(vi)‖2 ≤ (1 + ε)‖vi‖2

6) Using the upper bound from (5):

f(vi) · f(vj) ≤
1

2
((1 + ε)(‖vi‖2 + ‖vj‖2)− (1− ε)(‖vi‖2 + ‖vj‖2))

7) Simplifying:

f(vi) · f(vj) ≤ ε(‖vi‖2 + ‖vj‖2)

8) This shows that the dot product of any two projected vectors is bounded by a small value
proportional to ε, which can be made arbitrarily small by increasing m.
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Therefore, while we cannot have more than n strictly orthogonal vectors in Rn, we can
project k > n vectors into Rm where they are ”nearly orthogonal”. The dot product of any
two projected vectors is bounded by ε(‖vi‖2 + ‖vj‖2), which approaches zero as ε→ 0.

Corollary A.4.1. The projection provided by the Johnson-Lindenstrauss lemma allows for
the representation of more classes than the original embedding dimension while maintaining
near-orthogonality, effectively addressing the Curse of Orthogonality.
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