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Abstract

We show that a constant number of self-attention
layers can efficiently simulate—and be simu-
lated by—a constant number of communication
rounds of Massively Parallel Computation, a pop-
ular model of distributed computing with wide-
ranging algorithmic results. As a consequence,
we show that logarithmic depth is sufficient for
transformers to solve basic computational tasks
that cannot be efficiently solved by several other
neural sequence models and sub-quadratic trans-
former approximations. We thus establish paral-
lelism as a key distinguishing property of trans-
formers.

1 Introduction

The transformer (Vaswani et al., 2017) has emerged as the
dominant neural architecture for many sequential modeling
tasks such as machine translation (Radford et al., 2019) and
protein folding (Jumper et al., 2021). Reasons for the suc-
cess of transformers include suitability to modern hardware
and training stability: unlike in recurrent models, inference
and training can be efficiently parallelized, and training is
less vulnerable to vanishing and exploding gradients. How-
ever, the advantages of transformers over other neural archi-
tectures can be understood more fundamentally via the lens
of representation, which regards neural nets as parameter-
ized functions and asks what they can efficiently compute.

Many previous theoretical studies of transformers establish
(approximation-theoretic and computational) universality
properties, but only at large model sizes (Yun et al., 2020;
Pérez et al., 2021). These results are not unique to trans-
formers and reveal little about which tasks can be solved in a
size-efficient manner. Several other works (e.g., Hahn, 2020;
Merrill & Sabharwal, 2022; Sanford et al., 2023) give fine-
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grained representational results in the scaling regime where
context length grows but model depth is constant. In this
regime, basic algorithmic tasks like matching parentheses
and evaluating Boolean formulas are impossible.

In this work, we identify parallelism as a key to distin-
guishing transformers from other architectures. While re-
current architectures process their inputs serially, transform-
ers allow independent interactions between the input to-
kens, mediated by the inner products between query and
key embeddings in self-attention units. We leverage this
property of self-attention to establish a formal connection
between transformers and Massively Parallel Computation
(MPC) (Karloff et al., 2010). Concretely, we design trans-
formers that simulate MPC protocols (and vice versa), and
in doing so, we exhibit a wide range of computational tasks
that are solved by logarithmic-depth transformers, including
tasks that cannot be efficiently solved with other architec-
tures such as graph neural nets and recurrent models.

1.1 Our Results

We advance the understanding of transformers’ representa-
tional capabilities with the following results.

1. The algorithmic capabilities and limitations of
logarithmic-depth transformers are captured by the MPC
model (Section 3).

2. There is a simple sequential task that (i) is solved by
(and, empirically, learned from data using) logarithmic-
depth transformers, but (ii) cannot be efficiently solved
by several alternative architectures (Sections 4 and 5).

In more detail, our first collection of results, Theorems 3.1
and 3.4, show that any R-round MPC protocol can be imple-
mented by a transformer of depth O(R), and that any depth-
L transformer can be simulated by an O(L)-round MPC pro-
tocol. The former implies that several graph problems are
solved by logarithmic-depth transformers (Corollary 3.3);
the latter implies the near-optimality of these transform-
ers (Corollary 3.5) conditional on a well-known conjecture
about the limitations of MPC algorithms (Conjecture 2.4). A
key technical step (Lemma 3.2) shows how transformers can
implement the simultaneous message-passing used in MPC
protocols to communicate between machines. While previ-
ous works (Sanford et al., 2023) have used communication
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complexity to understand the representational limitations
of self-attention layers, our results show the benefits of
the communication lens for understanding the strengths of
transformers as well.

Our second set of results concern the k-hop induction
heads task, a synthetic sequential task that draws inspi-
ration from the induction heads primitive of Elhage et al.
(2021). The theoretical results of Section 4 prove that depth
L = O(log k) is necessary and sufficient for efficient trans-
former representation. An accompanying empirical inves-
tigation reveals that transformers trained on the task obey
the same threshold and recover a similar model to the the-
oretical construction. In contrast, Section 5 illustrates that
non-parallelizable recurrent architectures—including state-
space models like Mamba (Gu & Dao, 2023)—are unable
to solve the task in a size-efficient manner. Moreover, well-
known transformer models with computationally-efficient
alternatives to self-attention, like Performer (Choromanski
et al., 2022) and Longformer (Beltagy et al., 2020), and shal-
low transformers with chain-of-thought prompting sacrifice
their abilities to implement parallel algorithms, as evidenced
by their proven inability to solve this task.

1.2 Related Work

Some of the types of lower bounds we sought in this
work were inspired by the literature on depth-separation
for feed-forward neural networks (e.g., Eldan & Shamir,
2016; Daniely, 2017; Telgarsky, 2016), which exhibit func-
tions that are efficiently approximated by deep networks,
but not by shallower networks.

Many theoretical approaches have been used to understand
the representational capabilities of transformers and self-
attention units in various scaling regimes. Some works
model (variants of) transformers as machines for recogniz-
ing formal languages, such as the Dyck languages (Hahn,
2020; Bhattamishra et al., 2020; Yao et al., 2021; Hao et al.,
2022) and star-free regular languages (Angluin et al., 2023).
These approaches reveal inability of fixed-size transformers
to handle arbitrarily long inputs. Other works show how
transformers can simulate finite-state automata (Liu et al.,
2022) with logarithmic depth, and Turing machines with
(unrolled) depth (or chain-of-thought length) scaling poly-
nomially with total runtime (Wei et al., 2021; Malach, 2023;
Merrill & Sabharwal, 2023b). However, it is unclear if these
results are near optimal or even transformer-specific.

Theoretical results about the limitations of constant-depth
transformers have been articulated by way of analogy to cir-
cuit complexity (Merrill & Sabharwal, 2023a; Merrill et al.,
2022; Merrill & Sabharwal, 2022; Strobl, 2023; Strobl et al.,
2023), implying the inability of constant-depth transformers
to solve tasks like graph connectivity and Boolean formula
evaluation. Other works characterize the representational

capabilities of one-layer transformers (Likhosherstov et al.,
2021; Sanford et al., 2023), but these approaches do not
apply to deeper models. Sanford et al. study multi-headed
attention using communication complexity, a framing that
informs this work’s connection to distributed computing.

The MPC model (Karloff et al., 2010; Beame et al., 2017;
Goodrich et al., 2011; Andoni et al., 2014; Im et al., 2023)
was introduced to study distributed computing frameworks
such as MapReduce (Dean & Ghemawat, 2004). A major
goal is to design protocols that use few rounds of commu-
nication for setups in which each machine’s local memory
is sublinear in the input size. Many advances have been
made in MPC algorithms for important problems, including
weighted interval selection, approximate maximum match-
ing, and clustering (see, e.g., Im et al., 2023, for a recent
survey). Nanongkai & Scquizzato (2022) established equiv-
alence classes among MPC algorithmic tasks, proving that
determining the connectivity of a graph is equivalent to
numerous other graph reasoning tasks—such as bipartite-
ness testing and cycle detection—in O(1) rounds of MPC
computation.

The centrality of graph connectivity to the study of MPC is
further evident in its conjectured hardness. Connectivity in
sparse graphs is a basic problem that has resisted progress,
and all all MPC protocols in this memory regime appear
to require 2(logn) rounds for input graphs on n vertices.
Lower bounds in MPC and related models were studied
by Beame et al. (2017), Roughgarden et al. (2018), and
Charikar et al. (2020). The conjectured impossibility of
o(logn)-round protocols for connectivity is now used as
basis for conditional lower bounds (Ghaffari et al., 2019).

Simulation of transformers by recurrent models (Oren et al.,
2024) and simulation of graph neural nets (GNN5s) by trans-
formers (Kim et al., 2022) offer some coarse-grain insight
into the relationship between these architectures, but sepa-
rations are not implied by these previous works. Our con-
nection between transformers and MPC is most similar to
that established by Loukas (2019) between GNNs and the
CONGEST model of distributed computation. Both works
establish positive and negative results by identifying neural
architectures with communication protocols. In Section 5.1,
we show that the MPC connection allows transformers solve
graph connectivity more efficiently than GNNs.

Our k-hop induction heads task is designed as a k-fold com-
position of its standard analogue (Elhage et al., 2021). It
is similar to a special case of the LEGO reasoning task
(Zhang et al., 2023), which reveals the super-linear benefit
of depth with respect to k; in our case, we theoretically
and empirically exhibit an exponential benefit. We also
draw a connection to the well-studied problem of pointer-
chasing (Papadimitriou & Sipser, 1982; Duris et al., 1984;
Nisan & Wigderson, 1993), which enables the proof of our
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separation between parallel and serial architectures. Our
fine-grained empirical interpretability analysis for synthetic
tasks draws inspiration from similar approaches for the anal-
ysis of sequential algorithms like sorting and reversal (Li &
McClelland, 2022).

2 Preliminaries

2.1 Transformers

We first define a self-attention head, the core primitive
of a transformer. The softmax operator is softmax(v) =
(exp(v1),...,exp(vn))/ Z;V:1 exp(v;) forv € RN, We
apply softmax to matrices A € RN*N row-wise, i.e.
softmaX(A)i = softmax((AM, ce 7Ai7N))~

Definition 2.1 (Self-attention head). A self-attention head
is a mapping fg kv : RV*™ — RNX™ defined by

fokv(X)= softmaX(Q(X)K(X)T)V(X)

and parameterized by row-wise query, key, and value em-
beddings Q,K,V: RN*m RNxm (e.g., Q(X) =
(Q1(X1),...,Qn(Xn)). Let Attn)Y denote the set of all
self-attention heads with embeddmg dimension m and con-
text length N.

A transformer composes L layers of H self-attention heads
per layer, plus an output multi-layer perceptron (MLP).

Definition 2.2 (Transformer). A transformer is a mapping
T : RNXdin _ RNXdous gpecified by self-attention heads
(fen € Attn%)[e[L],he[H] and element-wise input and out-
put MLPs:

¢:(¢1a---7¢N),¢:(¢17~-

Upon input X € RV*%n_ the transformer computes inter-
mediate embeddings X°,..., X% ¢ RVX™ with X0 =
¢(X) and

= X" 1+Z fzh (X,
P(XF) as output. Let
denote the set of all such trans-

out

and returns T(X) =
N
Transformer,, | 5 4. 4
N N
formers, and Transformer,, ; ; := Transformer,, ; ;.

Modeling assumptions. We treat the transformer as a
computational model that permits arbitrary element-wise
computation, but restricts the manner in which multiple
elements are processed together. This manifests in our deci-
sions to model query/key/value embeddings and MLPs as
arbitrary functions on the embedding space; Loukas (2019)
employs a similar modeling assumption for GNNs. Note
that the element-wise embeddings and MLPs may be index-
specific, obviating the need for positional embeddings.

,wN) :RNXm _>RN><dout.

Our theoretical results cover the scaling regime where the
context length N is the main asymptotic parameter; while
the embedding dimension m, the number of heads H, and
the depth L grow sub-linearly in /N. This reflects real-world
trends in large-language models, where context length has
sharply increased in recent years.

Throughout, we assume all intermediate computations in
transformers are represented by p-bit precision numbers for
p = O(log N). Limiting the precision is consistent with
recent practice of using low-precision arithmetic with trans-
formers (e.g., Wang et al., 2022; Dettmers et al., 2022). We
discuss this precision assumption in greater detail in Ap-
pendix A.1, along with other minor technical assumptions
(such as the inclusion of a “start token” for mathematical
convenience).

Masked Transformers. We also consider masked self-
attention, where only certain inner J\?roducts influence the
softmax output. Let A € {—o0,0} be a masking ma-
trix with at least one zero entry in every row. Then, a
A-masked self-attention unit is defined by

15 kv (X) = softmax(Q(X)K (X)T + A)V(X).

Let A-Attn and A—Transformerrl,vl’ L1 respectively, de-
note the sets of all A-masked self-attention heads and all
transformers comprised of those heads. We define causally-
masked transformers by MaskAttnN = I- AttnN and
MaskTransformerTA,i L = I- Transformer,l\,i 1> Where
T is the lower-trlangular mask with I'; ; = 0iff 7 > j.

2.2 Massively Parallel Computation Model

We use the definition of MPC from Andoni et al. (2018).

Definition 2.3 (MPC protocol). For any global and local
memory constants v,0 > 0, a (v, )-MPC protocol for a
function f : Zj» — Zgg"* specifies a distributed com-
puting protocol for ¢ = ©(n.t77%) machines, each with
s = O( ) words! of local memory to jointly compute
S (Input) for any given Input € Zii» as follows. The
Input € Z3* is distributed across the local memories of
the first [n;y, /s] machines. Computation proceeds in rounds.
In each round, each machine computes an arbitrary function
of its local memory to prepare at most s words to send to
other machines; messages are simultaneously transmitted,
and the protocol ensures that each machine receives at most
s words at the end of the round. After the final round, the
Output = f(Input) € Zsg™ is in the local memories of
the first [n0y/s] machines. See Figure 1 for details.

Our negative results in Section 3.2 are conditional on
the well-known “one-versus-two cycle” conjecture (Beame

"We assume the word size is p = ©(log nin) bits. For conve-
nience, we regard words as elements of Zo» (integers mod 27).
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Min

* Input=(Input,,...,Input, ) € Zy," is distributed across local memories of machines 1 < i < [=in]:

Machinelng1> = {(Input,,¢) : ¢ € {(s—1)i+1,...,min {nin, si} } }.
e Forroundr =1,..., R:

— Each machine i € [g] computes messages (Msg[]utl(v’?)j:l,zw to send to machines (Destg:’:j))j:1727'“ as function of MachineIn;
MachineOut!”) = Local, ;(MachineIn")) = {(MngutE?,DestErj)) € Zg{; x[gl:7=12,...} Z dj < sisensured.
i ’ j

— All messages are simultaneously transmitted; the messages in local memory of machine ¢ € [¢] for round r + 1 are:

().

MachineIngH'l) = {(Msg, Src) : (Msg,i) € MachineOuté:l};

(r+1) IMsg| < s is ensured.

K

Z (Msg,Src) EMachineIn

« Output=f(Input) comes from MachineIn!"*" = {(Output,,Src) : ¢ € {(s—1)i+1,...,min{nou,si}}} for 1 <4 < [Rent]

Min

Figure 1. Formal execution of an MPC protocol for computing f: Zsi* — Zas*t. (|Msg| is the number of words in Msg.)

et al., 2017; Roughgarden et al., 2018; Ghaffari et al., 2019).

Conjecture 2.4 (see, e.g., Ghaffari et al., 2019). For any
v> 0,6 <1, and N, if w is an (v, 6)-MPC protocol that
distinguishes a single cycle on N nodes and a union of two
cycles each on N/2 nodes, then m uses Q(log N') rounds.

2.3 Graphs as Sequential Inputs

When providing a graph G = (V| E) as input to trans-
formers or MPC protocols, we serialize G as a sequence in
[[V]]?I®] that encodes each edge as a pair of vertex tokens.
The resulting transformer has N = 2|F| and d;,, = 1, and
the resulting MPC protocol has n;, = 2|E|.

3 Relating Transformers and MPC

We coarsely characterize the computational power of trans-
formers in a certain size regime by establishing a bidirec-
tional relationship between transformers and MPC. The-
orems 3.1 and 3.4 show that any MPC protocol can be
simulated by a transformer, and vice versa. As corollaries
(Corollaries 3.3 and 3.5), we obtain tight upper and lower
bounds on the depth of bounded-size transformers for com-
puting connected components in graphs.

3.1 Simulation of MPC Protocols by Transformers

The following theorem shows that any MPC protocol 7 with
sublinear local memory can be simulated by a transformer
whose depth L is linear in the number of rounds R of 7, and
embedding dimension m is polynomial in the local memory
size s = O(N?) of machines used by 7.

Theorem 3.1. For constants 0 < v < § < 1 and any
deterministic R-round (v, §)-MPC protocol 7 on nyy, in-
put words and noyy < iy output words, there exists a
transformer T’ € Transformer%LH with N = nj,, m =
O(nﬁ‘f lognin), L = R+ 1, H = O(loglog niy,) such that
T (Input) = 7(Input) for all Input € Z5),.

Mout

The theorem provides a non-trivial construction in the
strongly sub-linear local memory regime when s =

O(N'/4=¢) for any € > 0.2 Because numerous tasks, in-
cluding approximate maximum matching, submodular max-
imization, and weighted interval selection, can be solved by
MPC protocols with O(N?) memory for any fixed § € (0, 1)
(Ghaffari, 2019), these tasks are similarly implementable by
transformers with sub-linear embedding dimension. Sub-
sequent work by Sanford et al. (2024) improves this anal-
ysis by proving that any MPC protocol with local memory
s = O(N'=¢) for any € € (0,1) can be simulated by a
transformer of embedding dimension m = O(N'~¢) for
some € € (e, 1).

Theorem 3.1 Proof Overview. At a high level, the
proof in Appendix B.2 entails simulating each round
of parallel computation with a single-layer transformer
and applying those constructions serially to Input. The
local computation on each machine (represented by
MachineOut!” = Local, ;(MachineIn!"))is directly en-
coded using element-wise query/key/value embeddings.

The crux of the proof involves the simulation of a
routing protocol to determine MachineIn("t!) from
MachineOut("). We construct a self-attention unit that en-
sures that an encoding of a sequence of addressed messages
from each machine are properly routed to their destinations.’

For any message size (3, message count bound s, and number
of tokens IV, we say that (Sent,Rcvd) € RVXm x RNVxm
is a valid (B, s)-routing if, for each i € [N], the i-th row of
Sent (resp. Rcvd) is the vector encoding of some Sent; C
Zg,, x [N] (resp. Revd; C ng x [N]) such that

Revd; = {(Msg, Src) : (Msg,i) € Sentg,c},

2 Applying Theorem 3.1 when § > i yields transformers with
embedding dimension m > N, which trivializes the transformer
architecture and negates any advantages of depth under our MLP
universality assumption. This is due to the fact a transformer
with N-dimensional embeddings could aggregate the entire input
sequence X € R" in a single embedding and use its output MLP
to compute any arbitrary function on that input.

3This routing between machines uses the all-pairs structure of
self-attention and may not admit a subquadratic approximation.
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and each of Rcvd,; and Sent; has cardinality at most s

Lemma 3.2. For any f,s,N € N, there exists a
transformer routeg, € Transformer%yl’1 with m =
O(s*Blog N) satisfying routes s(Sent) = Rcvd for any
valid (3, s)-routing (Sent,Rcvd).

The proof of Lemma 3.2 appears in Appendix B.1 and com-
bines two key techniques: sparse propagation and multiple
hashing. The former is a simple variant of the “sparse aver-
aging” task of Sanford et al. (2023), which simultaneously
computes [V averages over subsets of inputs; this task is
solved a single self-attention head with small embedding
dimension (Proposition B.1). Using sparse propagation, we
construct a self-attention head that averages the < s encod-
ings of each Rcvdg,. for every Src € Rcvd;. In order to
ensure that we can decode that average of encodings, we ap-
ply error-correction by encoding each Output, in a sparse
and redundant manner, where each outgoing messages ap-
pears as multiple copies of the same addressed “packet.”

Application: Connectivity with Log-Depth Transform-
ers. As an immediate consequence of Theorem 3.1, any
graph problem solvable with a logarithmic number of rounds
of MPC computation (and local memory s) is also com-
putable by a logarithmic depth transformer (and embedding
dimension O(s*)). The following result—which bounds
transformer depth needed to compute connected compo-
nents of a graph G—follows from Theorem 6.2 of Coy &
Czumaj (2022), which derandomizes an MPC algorithm of
Behnezhad et al. (2019), and Theorem 3.1.

Corollary 3.3. For any constant ¢ € (0,1) and any D <
N, there exists a transformer in Transformerf:;L_H with
m = O(N¢), H = O(loglog N), and L. = O(log D) that
identifies the connected components of any input graph
G = (V, E) with |V|,|E| = O(N) where each connected
component has diameter at most D.

Coy & Czumaj also give efficient MPC algorithms for other
related problems (e.g., spanning forest), so we obtain effi-
cient transformers for these problems, too (Appendix B.3).

3.2 Simulation of Transformers by MPC protocols

The following theorem shows that MPC protocols can sim-
ulate transformers and prove depth lower bounds on trans-
formers, conditioned on Conjecture 2.4. We get, as a corol-
lary, the conditional optimality of the transformer depth
bound in Corollary 3.3.

Theorem 3.4. For any transformerT' € Tra nsformerffl’ L.H
(or A—Transformerfx’LyH) with mH = O(N?) for § €
(0,1) and any &' € (8,1), there exists a O(5%)-round

*We abuse notation by writing Dest € Sent; to mean there
exists some Msg such that (Msg, Dest) € Sent;.

(1+6',8")-MPC protocol with ¢ = O(N?) machines with
s = O(N?") local memory for computing T.

Theorem 3.4 demonstrates that the algorithmic capabilities
of transformers are no stronger than those of MPC proto-
cols with a quadratic scaling in the number of machines.
While Theorems 3.1 and 3.4 do not jointly provide a sharp
characterization of the two computational models, the re-
ductions are tight enough to provide strong evidence for
the optimality of the connected components construction of
Corollary 3.3.

Theorem 3.4 Proof Overview. At a high-level, the proof
in Appendix C.1 constructs an MPC protocol that simu-
lates a self-attention layer by separating the computation of
MLPs and attention matrices into three separate categories
of machines.

* Each input token is provided to its own foken machine, re-
sponsible for preparing the query/key/value embeddings.

* Each pair of tokens is associated with an inner product
machine that will compute the inner product between their
respective query and key embeddings.

* Propagation machines ensure that embeddings are routed
to the proper inner product machine and compute outputs
of each softmax unit.

The proof gives the communication protocol for these ma-
chines, shows how they simulate a layer of self-attention
in O(1/(6’ — §)) rounds, and establishes the sufficiency of
O(N?) machines with O(N?") local memory.

Application: Conditional Optimality of Corollary 3.3.
Assuming the well-established Conjecture 2.4, we prove an
Q(log D) lower bound on the depth of parameter-efficient
transformers for determining connectivity of graphs where
connected components may have diameter up to D.

Corollary 3.5. Let ¢ € (0,1) be any constant, and let
D > N¢. Assume Conjecture 2.4, and suppose there exists
Te Transformer,l,vl’LyH withmH = O(D'~¢) that decides
connectivity of any input graph with connected components
having diameter < D. Then L = Q(log D).

4 Transformers for k-Hop Induction Heads

We complement the generality of Section 3 by studying,
both empirically and theoretically, a specific toy sequen-
tial modeling task which will also serve (in Section 5) as
a problem to separate the representational capabilities of
transformers from that of other neural architectures.

This task, called the k-hop induction heads task, draws
inspiration from the original induction heads task defined
and analyzed on trained language models and in synthetic
environments by Elhage et al. (2021) (see also Bietti et al.,
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2023). The standard induction heads task completes bigrams
auto-regressively by predicting the token that follows the
last previous occurrence of the final token in the sequence.
For example, given the input X = baebcabebdea, the
standard induction heads task is to complete the final bigram
by predicting b for the final token.

The k-hop induction heads tasks generalizes this mechanism
by repeatedly using the completion of a bigram to determine
the next bigram to complete. In the previous example, the
2-hop induction heads task is to predict ¢ for the final token:

baeblabebdex.

Definition 4.1. For any finite alphabet ¥, define the map
hop,: BN — (2 U {L})N by hop(X); = Xgnat (i) if
find% (i) # 0 and L otherwise, where

ﬁndk(i) =max({0} U{j e N:j <i, X;—1 = X;});
find (1) = findk (find% (7)) for k > 2.

The k-hop induction heads task is to compute, for each
it =1,..., N, the value of hop (X); from (X,..., X;).

We note a similarity to the LEGO tasks of (Zhang et al.,
2023), who empirically study the ability of transformers to
learn sequential operations on Abelian groups and observe
the ability to perform more operations than the depth of the
network.

4.1 Log-Depth Transformer for k-Hop Induction
Heads

Although hop,, appears to requires k steps to solve, we show
that it is solved by a transformer of depth O(log k).

Theorem 4.2. Forany k € N and alphabet ¥ with |X| < N,
there exists T € MaskTransformer,]?;LH that computes
hopy,: =V — (SU{ L} withm = O(1), L = |log, k] +
2, and H = 1.

In contrast to Corollary 3.3, this construction has constant
embedding dimension and is achieved by a causally-masked
transformer. As such, its proof in Appendix D.1 depends on
other techniques that exploit the simplicity of the problem
and build on the induction heads construction of Bietti et al.
(2023), rather than simply applying Theorem 3.1.

We give evidence for the optimality of this construction by
proving a conditional lower bound using Theorem 3.4, as
was done in Corollary 3.5.

Corollary 4.3. Assuming Conjecture 2.4, for any constants
€€ (0,1/2] and € € (0,1), and any even k = O(N*%), ev-
ery transformer T’ € I\/IaskTransformerzyL’H withmH =
O(k'=¢) that computes hop,, has depth L = Q(log k).

4.2 Log-Depth Transformer Learned from Data

We empirically assess whether the representational trade-
offs elucidated by tasks efficiently solved by parallelizable
algorithms have implications for optimization and general-
ization properties of transformers. To that end, we trained
auto-regressive transformer architectures of varying sizes to
solve hop,, (X)) for a variety of values of & in order to un-
derstand how changing depth impacted the performance of
the learned models, the goal being to verify the sufficiency
of logarithmic depth, just as in our theory.

In brief, we trained transformers with 500K to SM parame-
ters and depths {2, 3,4, 5,6} with Adam to solve hop, (X)
for k € {0,...,16} with context length |N| = 100 and
alphabet size |X| = 4. We trained the transformers in a
multi-task setting, where a single model was trained to pre-
dict the sequence hop,, (X ) auto-regressively when provided
with X and k drawn at random. Further experimental details
can be found in Appendix G.1, and the experimental code
is available at https://github.com/chsanford/
hop-induction-heads.

We found that transformers are indeed capable of learn-
ing hop,, given sufficient training time, and that the largest
learnable k& grows exponentially with the depth. As can
be seen in Figure 2, a six-layer neural network performs
well on all £ < 16, a five-layer on k < 8, a four-layer
on k < 4, and so forth. We further explore these experi-
mental results in Appendix G.2 and observe a performance
threshold appears to specifically lie at |log, k| + 2 that co-
incides with Theorem 4.2. This logarithmic dependence of
the depth on k persists in a larger-width regime, which is ex-
plored in Appendix G.3. In the finite sample regime where
neural networks are prone to overfit, our investigations in
Appendix G.5 note improved generalization in deeper mod-
els, which suggests that deeper models have a favorable
inductive bias for tasks like hop,.

Moreover, the learned models are surprisingly interpretable.
We examined the activation patterns of attention matrices,
and found close correspondences to useful intermediate
products such as find%,. Taken together, these indicate
that the learned models mechanistically resemble the con-
struction employed in the proof of Theorem 4.2. See Ap-
pendix G.4 for our investigation of model interpretability.

5 Separations between Transformers and
Alternative Architectures

Sections 3 and 4 characterize the representational capability
of transformers by providing algorithmic problems they can
solve with logarithmic depth and small polynomial or con-
stant width. In contrast, other well-known architectures are
unable to solve those same problems in a parameter-efficient
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~r~r~r~r~
LI T (O T

o U s WN

Figure 2. Evaluation of transformers of depths L € {2, 3,4, 5,6}
trained on a mixture of hop,, for k € {0,...,16} evaluated on
n = 100 samples of size N = 100 from each hop,,. Increment-
ing depth approximately doubles the largest k such that hop,, is
learnable with small error.

manner. This section provides lower bounds on the parame-
ter complexity of graph neural networks (GNNs), recurrent
neural architectures, transformers with computationally effi-
cient alternatives to softmax self-attention, and single-layer
transformers with autoregressive chain-of-thought tokens
needed to solve graph connectivity and the k-hop task.

5.1 GNNs Need Polynomial Depth for Graph
Connectivity

The bidirectional relationship between transformers and
MPC draws inspiration from past work drawing a simi-
lar connection between message passing graph neural net-
works (GNN,,,;,) and the CONGEST distributed comput-
ing model (Loukas, 2019). Their computation model of
GNN,,,, for width m and depth L closely resembles our
Tra nsformerfyh 1,z in providing a general framework for the
analysis of graph neural networks by allowing unbounded
computation in each vertex with bounded communication
on edges. On some input graph G, vertices send neighbors
messages of size at most m—which are aggregated and
crafted into new messages with MLPs—over L rounds of
communication.

By restating Corollary 4.2 of (Loukas, 2019), we demon-
strate a sharp contrast in the abilities of GNNs and trans-
formers to solve graph algorithmic tasks.

Theorem 5.1 (Corollary 4.2 of (Loukas, 2019)). There ex-
ists a graph G with N edges such that any GNN,,,, with
width m and depth L that determines whether an input sub-

graph H either (1) is connected or (2) forms a spanning
tree of G requires L/m = Q(N/4).

While Corollaries 3.3 and B.8 demonstrate the ability of
transformers to determine whether any input graph is con-
nected or to identify a spanning tree with logarithmic depth
and small polynomial width (i.e. m = O(N*)), GNNs re-
quire depth L = Q(N'/4=¢/2) in the same regime. This gap
is explainable by the fact that transformers on graph inputs
G are not bound to pass messages exclusively along the
edges of G. By “rewiring” the graphical structure in each
layer, transformers can perform aggregation and “pointer
passing” tasks with greater parametric ease than GNNs.

5.2 Suboptimality of Recurrent Architectures for hop,,

The logarithmic-depth and constant-width transformer im-
plementation of hop,, in Theorem 4.2 cannot be replicated
by recurrent neural architectures (Chung et al., 2014; Bengio
et al., 1994; Turkoglu et al., 2021), including not just multi-
layer recurrent neural networks (RNNs) but any sequential
prediction procedure equivalent to them at inference time,
which includes state space models such as Mamba (Gu &
Dao, 2023).

We first consider a family of multi-layer RNNs of depth
L and width m, consisting of arbitrary MLP units g, :
R™X™ s R™*™ which on input X € RN*%n pro-
duce output Y € RV *dout a5 follows using intermediates
X =2027',...,21, 2 =Y € RNV*™6and hidden
states H', ..., HE € {0, 1}V>™ with Hf = 0:

(Z{,H}) = go(Z;"" H[_,), ¥i € [N],£ € [L].

We provide a polynomial bound on the width and depth of a
multi-layer RNN solving hop,,.

Corollary 5.2. A multi-layer RNN of depth L and width m
as above with Yy = hop, (X)) satisfies either L > k or
m = Q(%)

In contrast to Theorem 4.2, which demonstrates that depth
O(log k) transformers with constant width suffice to solve
hop,, for any k, Corollary 5.2 demonstrates that all multi-
layer RNNs with width O(N'/7) require depth & when
k= O(NYT).

Mamba (Gu & Dao, 2023) can be seen as the combination
of three ideas: (1) a continuous-time dynamics model of
sequential prediction, powerful enough to model Kalman
filters, hidden markov models, and many others; (2) a family
of time-discretization schemes; (3) an unrolling technique
to enable efficient linear-time training, using ideas similar to

SWhile the problem of subgraph connectivity for GNNs may at
first glance appear more difficult than general graph connectivity
for transformers, an implementation of this exact task can be im-
plemented by modifying the protocol Corollary 3.3 to remove all
edges from the graph that do not belong to H.

®We assume that din, dout < m and treat X and Y as if they
are padded with zeros.
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FlashAttention (Dao et al., 2022). Ultimately, at inference
time, the time-discretization step results in an RNN (see Gu
& Dao, 2023, Algorithm 2 and Theorem 1), and is therefore
directly handled by Corollary 5.2.

This corollary is a near immediate application of a com-
munication complexity fact about the hardness of solving
multi-player pointer-chasing problems with limited commu-
nication among players (Guha & McGregor, 2009; Assadi
& N, 2021). We provide the communication model and
this result in Appendix E.1, and the reductions necessary to
prove the above hardness results in Appendix E.2.

5.3 Suboptimality of Sub-Quadratic Attention
Transformers for hop,,

Due to the quadratic computational cost of computing the
attention matrix softmax(Q(X)K(X)T) € R¥*N and the
continued desire for ever-larger context lengths, there is sub-
stantial interest in improving the computational complexity
of the transformer architecture while preserving its expres-
sive capabilities and inductive biases. As a result, a rich lit-
erature has emerged that proposes computationally-efficient
alternatives to standard softmax attention. In this section,
we demonstrate how several representative examples of sub-
quadratic attention mechanisms lose the ability to perform
efficient parallel computation under a logarithmic-depth
scaling.

Kernel-Based Sub-Quadratic Attention. One approach
to computationally-efficient approximation of transform-
ers are kernel-based sub-quadratic attention mechanisms
such as Performer (Choromanski et al., 2022), and Poly-
Sketchformer (Kacham et al., 2023). Both approximate
the attention matrix softmax(Q(X)K (X)T) with a low-
rank matrix Q'(X)K'(X)T where Q', K’ : R™ — R™
are applied element-wise. For sufficiently small m’ < N,
Q'(X)K'(X)TV(X) can be computed efficiently by first
computing K'(X)TV(X) € R™ *™ bounding the total
runtime as O( Nmm’), rather than O(N?m).

Let KerneIFormeer’m,_LyH denote all H-headed L-layer
transformer whose softmax attention modules are replaced
by kernel-based sub-quadratic attention. We demonstrate
the limitations of KerneIFormerfq\]wn,,L)H by showing that,
unlike Tra nsformerfx’ L. they have no depth-efficient im-
plementation of hop,.

Corollary 5.3. Any T ¢ KerneIFormernNLm,’L’H with
T(X)n = hop, (X)) satisfies either L > k or mm/ Hp =
Q(%)-

Under a parameter-efficient regime where mpHL =
O(N*), solving hop,, for k = ©(N€) necessitates kernel
feature dimension m’ = Q(N'~%¢), which forces each at-
tention unit to compute an N x N1~% matrix, yielding a

nearly quadratic runtime. We prove Corollary 5.3 in Ap-
pendix E.3 using a similar pointer chasing reduction.

Masking-Based Sub-Quadratic Attention. Another
method that reduces the computational cost of transform-
ers is to used masked models of A-Tra nsformerf,vl’LyH for a
sparse mask A. The Longformer architecture (Beltagy et al.,
2020) introduces a particular masked architecture that com-
bines sliding windows with sparse unmasked global tokens.
Put concretely, for window radius w and global frequency
g.let A% € {—00,0}" ™" be masking matrix with

wg )0 ifli—jl<worj=0 (mod g),
“J —oo  otherwise.

Then, the output of a single unit of A*»9-masked attention
is computable in time O((w + %)Nm).

Corollary 5.4. Any T € A“9-Attn)) | o with T(X)n =
hop, (X)n satisfies either L > k or (w + gﬂk)me =
Q()-

Like kernel-based attention, sparsely-masked attention mod-
els fail to efficiently compute hop,,. Similarly, in the same
parameter-efficient regime, a Longformer must have either
w = Q(N%) or g = O(N®), which jointly ensures
that the masked matrix has at least Q(N2~%) entries and
diminishes any computational advantages. This proof also
appears in Appendix E.3.

5.4 Limitations of 1-Layer Transformers with
Chain-of-Thought

While most of the paper considers transformers as sequence-
to-sequence models, we can also frame them as auto-
regressive models performing next-token-prediction with
chain-of-thought prompting. In this regime, a single
causally-masked transformer aims to compute a function of
its input by repeatedly predicting the next token, appending
previously predicted tokens to the end of the input. In doing
so, a function is computable if there exists an intermedi-
ate chain-of-thought produced by the model that eventually
reaches the answer.

Definition 5.5. We say thatT" € MaskTransformerﬁiﬁ?"T
computes f : SN+Ncer s SN where the additional
N tokens denote chain-of-thought, if for every X €
dom(f), there exists Xcor € XNeoT such that T(X o
XcoT)N:N+Neor = (Xcor 0 f(X)).

The theoretical capabilities of chain-of-thought augmented
transformers to simulate finite-state automata and Turing
machines have been studied (Malach, 2023; Merrill & Sab-
harwal, 2023b), but the comparative capabilities of shallow
models with chain-of-thought prompting and deep sequen-
tial models are unknown. In contrast to the fact that any
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transformer with N, tokens can be simulated by a sequen-
tial model with depth scaled by N¢or, we show that deep
transformers cannot necessarily be efficiently simulated by
shallow chain-of-thought models. We do so by demonstrat-
ing that a linear amount of chain-of-thought prompting in k
is necessary to solve hop, (X )y, and also sufficient.

Corollary 5.6. Any T € MaskTra nsformerzf[f}ff"T that
computes hop, (X )y with Noor tokens of chain-of-thought
requires either Ncor > k or mHp = Q(%)

The proof appears in Appendix E.4. For future work, it
remains to consider the comparative powers of chain-of-
thought models of depths greater than one.

6 Conclusion and Future Work

This work highlights parallelism as a central feature of trans-
formers that sets them apart from other neural architectures.
The focus on the log-depth and sublinear-width regime and
specific computational tasks allows us to accentuate the ben-
efits of parallelism, even for tasks like k-hop that appear
inherently serial at first glance.

There is some efficiency loss in the “compilation” of MPC
protocols to transformers that subsequent work by Sanford
et al. (2024) remedies by extending Theorem 3.1 to all MPC
algorithms with strictly sublinear local memory. Although
we have empirically demonstrated the learnability of trans-
formers that exploit parallelism in crucial ways, a theoretical
understanding of learning such solutions remains an open
question.

Finally, a unified theoretical framework for transformers and
parallel computation that addresses both task parallelism
and hardware paralellism would be of great value. While the
MPC model delivers substantial insight into the algorithmic
capabilities of transformers, its local memory assumptions
preclude a useful analysis of the inference and training
runtime capabilities of modern GPU hardware. Future work
in this direction may integrate the results of this paper with
works that present approaches to model and data parallelism
(e.g. Shoeybi et al., 2019).
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A Supplemental Preliminaries

A.1 Further Details about Transformers

We discuss a few minor technicalities and modifications of the self-attention unit (Definition 2.1) and transformer model
(Definition 2.2) defined in Section 2.1 that are necessary for readers looking for a comprehensive understanding of the
proofs of our theoretical results.

Fixed-Bit Precision Arithmetic. As discussed in Section 2.1, we assume that all numbers that appear in the intermediate
products and outputs of self-attentions are representable with p-bit precision arithmetic, where p = O(log N). While the
details of fixed-precision arithmetic will be uninteresting to most readers, it is necessary to explain precisely what we mean
in order to ensure that proofs of results like Theorem 3.4 are sound. Throughout the paper, we allow p to depend on of
constants, such as v, d, and e.

Concretely, we assume that all query, key, and value embeddings Q(X), K (X), V(X)) evaluated on all inputs contain scalar
values z € R that are polynomially bounded (i.e. |z| < exp(O(p)) = N¢ for sufficiently large constant exponent ¢ > 0)
and are inverse-polynomially discretized (i.e. z - N¢ € Z). Depending on the desired exponent ¢, some p = ©(log V) can
be chosen to guarantee this property. While we do not formally analyze the precision needed to approximate the particular
embeddings employed by our proofs, we note that our recurring sinusoidal embeddings (e.g. Lemma D.1) can be discretized
without losing their central properties and that discretizations of the restricted isometry embeddings of Proposition B.1 are
analyzed by Sanford et al. (2023).

Rather than stipulating a particular bounded-precision implementation that computes the output of a self-attention unit
must be implemented, we specify a rounding constraint that any computational implementation of a self-attention unit must
satisfy. Precisely, we require that any output round to the same inverse-polynomial discretization as the true mathematical
attention.

Definition A.1. For a self-attention unit f € Attn,lx, let f be an finite-precision implementation of that unit. We say that f
is a valid implementation if

10 - foo| =0 ().

sup
XeRNxm

This definition is only to establishing the fact that self-attention units with sufficient margins can precisely compute hardmax
outputs in Lemma A.2 and to showing that MPC models can indeed compute the outputs precisely in Theorem 3.4.

Hardmax Attention. While we exclusively consider attention units with the softmax, our constructions periodically rely
on the exact computation of averages of embeddings. We define the hardmax operator to allow the consideration of discrete
averaging operations. For some v € RY, let

1 . .
b f 6 IIn'(IX
hardmax(X); = { Hmax(®)l e ! (v)
0 otherwise,

where Iax(v) = {i € [N] : v; = max; vy }.

We show that bounded-precision softmax self-attention units that satisfy a margin property can be modified slightly to have
identical outputs to an analogous hardmax unit.

Lemma A.2. Let f € Attn% be a self-attention unit with precision p = ©(log N) and embedding functions Q, K,V such
that for some fixed 1 > ¢ = N9 and every X € RN*™ and i € [N):

A(X)i,i’ < max A(X)i,i” - ga vi' g Imax(A(X)i);
z//
where A(X) = Q(X)K (X)T. Then there exists a self-attention unit f' € Attn) with a valid p/ -bit implementation with
p’ = O(p) satisfying
f'(X) = hardmax(A(X))V(X).
The proof of Lemma A.2 is provided in Appendix F.
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Start Tokens. Our technical proofs are occasionally simplified by including a “dummy token” whose value is passed in
self-attention layers as a default or null value. For example, in the proof of Lemma D.2, the dummy token handles the case
where the reference token does not appear previously in the sequence. While we believe that this extra token is not necessary
for our technical arguments, we include it for the sake of simplicity.

We model this dummy token as a start-of-sequence token X. Concretely, if we employ X in a self-attention f € Attn%
which takes as input X, we instead treat f as an attention unit in Attnz 1 that operates on (X, X1,...,Xy). We assume
that X is constant-valued, and therefore never both to pay attention to its outputs; it’s only relevance is via its key and
value embeddings K (Xp), Vo(Xo) € R™. If X, is unmentioned, we assume that it does not exist, or is set such that its key

embedding inner products are all zero.

Supplemental Chain-of-Thought Tokens. We periodically (see Theorem B.3 and the proofs of Corollaries 3.5 and 4.3)
consider transformers with supplemental blank “chain-of-thought” tokens appended to the end of the sequence. Unlike
the start token, these are only constant at initialization and may be used deeper in the model to perform meaningful
computations.

Let Tra nsformerﬁ”% H.dyy doy, denote transformers with M — N extra blank elements appended to the input sequence.
Concretely, we represent 1" € Transformerﬁ’]{[ Hod.doy, @8 some 1" € Tra nsformer% L.H.ds.doy, and define the output
T(X) for X € RVN*din by letting Y € RM*din for Yy.xy = X and Y y1.0 = 0, and letting T'(X) = T'(Y).

B Proofs from Section 3.1
B.1 Proof of Lemma 3.2

Lemma 3.2. For any 3,s,N € N, there exists a transformer routeg s € Transformer,%ly1 with m = O(s*Blog N)
satisfying routeg s(Sent) = Revd for any valid (3, s)-routing (Sent, Rcvd).

The proof relies on a sparse propagation sequential primitive, which complements the sparse averaging primitive of Sanford
et al. (2023). Forany Q < d, N, oninput X = (X1,...,Xy) € RV*? with X; = (z;,5;) € R¥=% x [N]9 and
b; =|{S; 2i:j € [N]}| <Q, wedefine

1 .
b Zs_jai zj ifb; >0,

sparsePropagate X); =
P pag Q’d( )i {0 otherwise.

Closely following the argument of Sanford et al. (2023), we show in Proposition B.1 that there is a self-attention unit with
embedding dimension m = max(d, O(qlog N)) that computes sparsePropagate, ,. This construction is a key component
of the single-layer transformer used in the proof of Lemma 3.2.

Proposition B.1. For any b < N and d, there exists a self-attention unit sparsePropagateg, ; € Attnfq\;p for m =
d+O(Qlog N) and p = O(log N), which, given any input X with X; = (z;, S;,0) € R% x (@g) x {0}™ 9™ such that
bi = |{S; 2 i:j € [N]}| < Q for all i, has output sparsePropagateg, 4(X) satisfying

1
sparsePropagateg 4(X); = ™ E Zj.
K .
S;2i

The proof of Proposition B.1 appears in Appendix F.

Proof of Lemma 3.2. We construct a single-layer single-headed transformer with query, key, and value embeddings @, K,V
and output MLP v. @, K,V can be decomposed as Q = Q" o ¢, K = K' o ¢, V = V' o ¢, for some input MLP ¢
and embeddings Q', K',V'. We fix Q’, K, V' to be the respective embeddings of the self-attention unit with embedding

dimension m from Proposition B.1 that computes Y = sparsePropagate; ,, (X) for Xs;c = (2src, Ssrc) for every
Src € [N] to be determined. Hence, the proof entails designing element-wise encoders ¢ = (¢4, ..., ¢n) and decoders
Y = (¢1,...,9n) that compute Rcvd from Sent, using sparsePropagate, ,,, as an intermediate step. A high-level

overview of the proof construction is visualized in Figure 3.
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Figure 3. A visualization of the construction used to prove Lemma 3.2 in three phases—the encoding of each input Sents,. as embedding
zsrc and subset Ssyc With ¢; the combination of those embeddings into Ypes: via the simulation of sparsePropagate S’m((z, S)); and the
decoding of each Ypest into output Rcvdpest With ¢. The figure provides an example of the encoding and decoding where machines 1 and
3 transmit messages to machine 2. “Multiple hashing” is used to compute z; and z3 by encoding each message in multiple fixed-location
“packets” in embedding space space. This redundancy ensures the possibility of machine 2 decoding Rcvds from Y>, due to each message
occurring alone at least once in the encoding.

On input Sentgy., we use the encodings Qsrc, Ksrc, Vsre to specify that all tokens Dest with Dest € Sentg,. (or
equivalently, all Dest with Src € Rcvdpest) should receive a copy of the encoding of Sentg,.. That is, we set Sgyc :=
{Dest € Sentg,.} for each Src € [N]. This ensures that Y satisfies

1
Yest = —— re-
Dest |RCVdDest‘ Z Zsrc

SrcERcvdpest

While it’s tempting to simply set each zg,. € R™ equal to a (s)-dimensional vectorization of Sentg,., it is unclear how
to extract Rcvdpest from each Ypest, since each average performed by sparsePropagatesym will combine multiple vector
embeddings in a shared space. In order to avoid these troubles, we employ a multiple hasing-based encoding that treats
messages as “packets” identified by a message, a source, a destination, and a “validity token” that can be used to determine
whether a message is uncorrupted. We include multiple copies of each packet in the encoding zs... For notational ease, we
represent each zsy. € R as a collection of packets

Zsre = (MsgSICJ,SrcSch,DestSrc’j,as“,j)je[ml] € (ng x [N] x [N] x {0, 1})m/’

where m = m/(3 + 3).
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To sparsely and redundantly encode each Sents,. as zsyc, We encode outgoing messages as packets by utilizing the matrix
A guaranteed by the following fact (which we use with n := N2, b := 5%, and m’ := d = O(s* log N)).

Fact B.2. Foranyn, b <n,andd > {1262 In nw, there exists a binary matrix A € {0, 1}"Xd such that, for every subset

S C [n] with |S| < b, the columns of the sub-matrix Ag € {0, 1}151%9 contains all S-dimensional elementary vectors, i.e.,
{el, cs €8] } is a subset of the columns of Ag.

The proof of Fact B.2 is at the end of the section. We use the following rule to determine which (if any) message to encode
as a packet at each Src € [N]and j € [m/]. We let A (s pest),j = AN(src—1)+pest,; fOr notational convenience.

(Msg, Src,Dest, 1) if (Msg,Dest) € Sentg;c and A (src pest),j = 1
Zgre,j = and A(syc pest’),; = 0, V Dest’ € Sentg, \ {Dest},
(6, 0,0,0) otherwise.

In Figure 3, this encoding is visualized in the tables of “Machine 1” and “Machine 3,” where the entirety of each message is
encoded in two fixed and distinct locations in the embeddings z; and z3, alongside metadata about the source of message
and the validity &. Each message is encoded as multiple identical packets in different embedding dimensions and a large
fraction of embedding locations are left blank. These features are critical for the proper evaluation of the decoding step .

We analyze the Y = sparsePropagateg ,,, (X) outputs, letting

Yoest = (Yoest,1- - -, Yoestum');  Yoest,j € (R” x R x R x R)™,
with all numbers represented with p-bit fixed precision. This analysis shows that there exists an element-wise decoder

MLP 1) satisfying tpest (Ypest) = Rcvdpest for all Dest € [N]. For any j € [m/], observe from the definition of zs,. and
sparsePropagate, ,, that

Ybest,j = (Msgpesw, SrCDest,jaDeStDest,j; &Dest,j)

1 e ——

= E (Msgsrcd‘a SrCSrc,j7DeStSrc,j7aSrc,j) .
|RCVdDeSt‘ s

rcERcvdpest

Before formally analyzing this construction, we motivate its utility with Figure 3. The encoding 2Y> of Machine 2 contains
four “clean” rows j with 2z ; = 1, two “corrupted” rows with 2ai2 ; = 2, and one “blank” row with 2a3 ; = 0.

» The blank row contains no information about any incoming messages, since neither Machine 1 nor Machine 3 encoded
messages as packets in these locations. The fact that 2a ; = 0 certifies the blankness of this row, and hence, the
decoder 1) can ignore it.

L]

The corrupted rows correspond to locations where both Machine 1 and Machine 3 saved messages as packets. As a
result, the corresponding embedding Y3 ; = %(zl j + z3,7) is an average of two non-zero embeddings and is hence
“corrupted.” Because 2aix ; = 2, the decoder 1) detects the corruption and ignores it when computing Rcvds,.

* The clean rows are locations where exactly one of Machine 1 and Machine 3 encoded a message. Hence, these
messages can be cleanly understood by the decoder 1), which simply validates the “cleanliness” of the row with
20i3 ; = 1, determines whether Machine 2 is indeed the target recipient of the respective message, and saves all such
messages in the decoding Rcvd,.

We prove the validity of this intuition by ensuring that the encoding scheme successfully encodes each incoming message in
a clean row and that the category of each row (blank, corrupted, or clean) can be detected by the decoder ). We observe the
following sequence of facts about every Ypest. Let

Relevantpes: := {(Msg, Src’,Dest’) : Src’ € Revdpest, (Msg,Dest’) € Sentgyer }

denote the set of all messages sent by sources of messages sent to Dest.
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1. Consider any outgoing message (Msg, Src’,Dest’) € Relevantpest. By the property of A guaranteed by Fact B.2,
there exists some j such that A(s,c/ pest/),; = 1 and A sy pestrr),j = 0 for every (Src”,Dest”) € Relevantpest \
{(Src’,Dest’)} . As aresult of the definition of the encoding z and the averaged representation of Ypest:

Ybest,j = (Msg, Src’,Dest’, 1). (1

‘RCVdDeSt |

2. Conversely, if Gpest,j = 1/|Rcvdpest
satisfied.

, then there exists a unique (Msg, Src’,Dest’) € Relevantpes; such that (1) is

3. If at least one message is received, then the minimal nonzero value of Apest 1S 1/|Rcvdpest|-

We design ¢pest, to uniquely identify Rcvdpest, from Ypest, as follows. If at least one message is received, then 1/|Rcvdpest|
can be identified by finding the smallest nonzero value of dpest. The decoder 1) inspects every Ypest,; satisfying apest,; =
1/|Rcvdpest |, which therefore satisfies

|Rcvdpest| - (I"IsgDestJ7 STCpest,j; DeStpest,j) € Relevantpess.

Thus, if [Rcvdpest| - Destpest,; = Dest, then [Rcvdpest| - (MsgDesm7 Srcpest,j) € Rcvdpest, and ¢ encodes it as such.

O

Fact B.2. Foranyn, b <n, and d > [121)2 In n], there exists a binary matrix A € {0,1}"*% such that, for every subset

S C [n] with |S| < b, the columns of the sub-matrix Ag € {0, 1}51%¢ contains all S-dimensional elementary vectors, i.e.,
{el, cs €8 } is a subset of the columns of Ag.

Proof. Let col(A) denote the set of columns of A. We use the probabilistic method and consider A with iid entries

A; j ~ Bernoulli(7). We bound the probability of failure:

Pr {35 € (g) st. {er,....e5} ¢ col(AS)] <b-n"Prle; & col(Ag)]
< pbtt (1 — H% (1 - Hll)b>d

d
<npbti (1= #
- e(b+1)

d
< pbtl, .
<n exp< e(b+1)>

< exp ((b+ 1)Inn — 3(bd+1)> <1

Therefore, there exists a matrix A with the claimed property. O

B.2 Proof of Theorem 3.1

We give a generalization of Theorem 3.1 that simulates a broader family of MPC protocol, including those with more than n
machines (i.e. v > §). We accommodate this generalization by simulating MPC protocols with the generalized transformer
family Tra nsformerz%  detailed in Appendix A with supplemental blank “chain-of-thought” tokens.

Theorem B.3 (Generalization of Theorem 3.1). For constant v,6 > 0 and any potentially randomized R-round (y,0)-MPC

protocol w on niy input words and neyy < niy output words, there exists a transformer T € Transformeri\i’]LM g With
N = njn, M = max(niy, O(n1+7_6)),m = O(n¥logni,), L = R+ 1, H = O(loglog nyy) such that

in

T'(Input) = 7(Input).

‘Mout
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Figure 4. To simulate MPC, the local computation within each machine is pushed inside Q(-), K(-), V (-), and then the pairwise attention
matrix performs message routing. To ensure proper routing and also that the outputs of Q(-), K (-), V'(+) are all tall-and-skinny matrices,
the construction carefully utilizes both multiple hashing and sparse propagation.

Theorem 3.1 is an immediate consequence of Theorem B.3 by noting that M = N for sufficiently large n;, when v < 6. Its
central construction is summarized in Figure 4.

Proof. Consider any MPC protocol 7 with ¢ = O(n.-""°) machines and s = O(n{,) local memory that, following the
notation of Definition 2.3, maps Input € ZJi" to Output € Zjs" with intermediates MachineIn(!), .. MachineIn(/?)

and MachineOut(!), ... MachineOut " and deterministic functions (Local; i)re(R),ic[q With

(r)

MachineOut! oy,

= Local, ;(MachineIn,
To simulate the protocol, we let every machine ¢ € [¢] correspond to a particular position in the transformer’s context. A
transformer that simulates 7 can then be constructed that consolidates Input onto [n,/s] machines to match MachineIn(");
computes MachineIn("t1) from MachineIn(") foreachr = 1,..., R — 1; and computes and properly distributes Qutput
from MachineIn("). These three elements of the construction exist due to the following lemmas, which are proved later.

Lemma B.4. For any MPC protocol T with local memory s and q machines with ni,-word inputs, there exists a trans-
former init € Transformer;“i"{n ;:(th’tq) with din, = 1 and dowy = s, which, given Input € Z%,, has output satisfying

init(Input) = MachineIn(.

Lemma B.5. For any R-round MPC protocol m with local memory s and q machines and any r € [R — 1], there exists a
transformer round™ € Transformer‘fmLH’UAD7dout with H = O(loglog q), m = O(s*logq), and di, = douy = s which,
given any valid input X = MachineIn(") € Z3X™ under the MPC protocol in vectorized form, has output satisfying
round” (X) = MachineIn("+1),

Lemma B.6. For any R-round MPC protocol m with local memory s and q machines with ngy-word output, there exists

a transformer final € TransformerZ:?fii(::’(‘i‘;’]‘z) for di, = s and doyy = 1, which, given input X = MachineIn™®), has

output final(X') with final(X); ; = Output; € Zar.
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The proof immediate from the three lemmas. We construct the final transformer 7' by stacking the single-layer constructions
as a single transformer with embedding dimension m:

T = final o round® Y o - o round™® o init.

The proofs of Lemmas B.4 and B.6 rely on simple constructions with fixed attention matrices and appear in Appendix F.
The proof of Lemma B.5 relies on Lemma 3.2 and is proved in the following section. [

Proof of round”) Construction. To prove the existence single-layer transformer that simulates round”, we separate
the computational task into two steps: (i) obtaining MachineOut (") from MachineIn(") and (ii) obtaining MachineIn(" 1)
from MachineOut("). Because the former requires no communication between machines, we can encode that conversion in
the input MLP to the transformer.

The nontrivial part of the reduction is thus the latter step, which we obtain by utilizing multiple single-headed attention units
routeg s of Lemma 3.2 to route messages of different sizes to their recipients. The difficulty in this task is the mismatch
in functionality between the two computational models: while the MPC model ensures that each recipient automatically
receives its intended messages, transformers must implement this functionality manually, while ensuring that multiple
messages do not overwrite one another.

The following lemma implements that routing functionality for all messages, using different attention heads depending on
the size of the message. We prove Lemma B.5 at the end of the section as a simple modification of Lemma B.7.

Lemma B.7. For any R-round MPC protocol w with local memory s and q machines and any r € [R — 1], there
exists a transformer route(”) € Transformerfn"l’H with H = O(loglog q) and m = O(s*log q), which, given any valid

input X = MachineOut(") € Z35™ under the MPC protocol in vectorized form, has output satisfying route(r)(X ) =
MachineIn("*b),

Because at most s messages can be shared and received by each machine, and each message is of size at most s, we can
prove an single-headed alternative to Lemma B.7 with a somewhat suboptimal dependence on embedding dimension. By
applying by Lemma 3.2 with message size § = s, bounded number of messages s, and context length N = g, there
exists a transformer route; ; with H = 1 and m = O(s° log q) that computes MachineIn("*!) from MachineOut("+1) by
regarding each outgoing message as belonging to Z35, by adding padding dimensions as needed.

We improve the embedding dimension to m = O(s*log ¢) by running in parallel O(log log N) transformers guaranteed by
Lemma 3.2 that encode differently sized messages. The number of heads H increases at a doubly-logarithmic rate because
of a doubling trick employed on the size of message encodings used by constituent part.

Proof. We describe an implementation of route(") by considering any fixed input MachineOut(") € Z3X™. For each

(r)

i

i € [g] and some integer sequence 1 = By < 81 < --- < By = s+ 1, we partition MachineQut
as follows. For any h € [H], let

into H disjoint subsets

%

r+1)

)

Sent” := {(I"Isg7 Dest) € MachineOut!” : dim(Msg) € [ﬁh,l,ﬁh]},

Revd] := {(Msg7 Src) € MachineInE : dim(Msg) € [Br-1, 5]

and note that MachineDutEr) = {U,,_,Sent! and MachineInz(-H'l) ={,,_,Revdl.

For each h € [H], note that dim(Msg) < S, and ‘Sentﬂ = |Rcvdﬂ < 8/Pr—1. As a result, Lemma 3.2 guarantees
the existence of a single-headed transformer routeg) such that routeg) (Sent”) = Rcvd") with embedding dimension
my, < Cs*Bylog(q)/ B, for some sufficiently large universal constant C.

We defined route”) as the computation of routey), e ,routeg) as H parallel heads of self-attention with disjoint

embeddings concatenated into in m-dimensional embedding space with m = Zthl myp. We conclude by letting

1 ifh =0,
Bh=12 . 0.3 .
min(28;_,,q+1) ifh e [H],
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noting that Sy = ¢ + 1 for H = O(loglog ¢), and bounding m:

H
Cs*log(q 4 1
m < h < o0s log(q) -
DO sae
H
< 2Cs*log(q (s*logq). O

Proof of Lemma B.5. To simulate a round of MPC protocol 7 by mapping MachineIn") and p, to MachineIn("+1),
the single-layer transformer round™ first computes MachineOut (") element-wise and then properly routes messages in
MachineOut(") to their proper destination. We can define round™ = route(”) o Local, for route(" in Lemma B.7
and Local,. Z(MachlneIn( ), Pri) = MachineDutgr). This can be immediately constructed as a single-layer transformer
by prepending the embeddings @, K,V of the construction of route(") with Local,., using Q o Local,, K o Local,,
V o Local, as the embeddings of round (", O

B.3 Additional Graph Problems Solvable by Log-Depth Transformers

Theorem 8.1 and Corollary 8.2 of Coy & Czumaj (2022) give efficient MPC protocols for other graph problems besides
connectivity, and therefore, as corollaries of Theorem 3.1, we also obtain log-depth transformers for these problems.

Corollary B.8 (Spanning forest construction). For any constant € € (0,1) and any D < N, there exists a transformer in
Transformerfyl L. withm = O(N€), H = O(loglog N), and L = O(log D) that computes a rooted spanning forest of
any input graph G = (V, E) with |V|,|E| = O(N) where each connected component has diameter at most D.

Corollary B.9 (Minimum spanning forest construction). For any constant € € (0,1) and any Dysp < N, there exists
a transformer in Transformer%yL’H with m = O(N€), H = O(loglog N), and L. = O(log DrsF) that identifies the
connected components of any input graph G = (V, E) with |V |, |E| = O(N) and poly (N )-bounded integer weights whose
minimum spanning forest has diameter at most D s .

C Proofs from Section 3.2

C.1 Proof of Theorem 3.4

As in Appendix B.2, we give and prove a generalized version of Theorem 3.4 that broadens the family of considered
transformers to include masked models and those that contain extra blank chain-of-thought tokens, using notation from
Appendix A.

Theorem C.1 (Generalization of Theorem 3.4). For any transformer T € Transformer%’l}jl g (or MaskTra nsformerfizj}f )
with mH = O(N®) for § € (0,1) and M = ©(N'*?) for a > 0 and for any §' € (8,1), there exists an O(£ Hg‘)) round
(14 2a + &', 8")-MPC protocol with ¢ = O(M?) machines with s = O(N°®") local memory that outputs the same sequence
as T(X) forall X € RV,

Theorem 3.4 is an immediate consequence by setting M := N and o := 0.

Proof. Tt suffices to show that an O( 1+‘)‘) round MPC protocol 7 that simulates a single-layer transformer 7' €

Tra nsformerﬁf’m’m,l’ g with m-dimensional input and output embeddings since a depth-L transformer can be constructed
by applying L such protocols sequentially. Moreover, we can ignore the difference between the input context length N and
the context length with padding M by assuming that the input contains M tokens.

Concretely, we consider H heads with embeddings (Qn, Kn, Vi) ne[#), element-wise output MLP ¢ = (41, ..., 9s), and
any fixed masks A1, ..., Ay € {—o00,0}M*M We show that there exists some 7 such that for any Input = X € RM*™,

H
m(X) =1 <X + Z SOftmaX(Qh(X)Kh(X)T + Ah)Vh(X)> )

h=1
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(Qnis Knis Vi)

Query Key/ valu.c
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Qi K h.

Inner product machines

Figure 5. This construction employs M? inner product machines to compute the entries of the softmax matrix, and M token machines
to compute all values of Q(-), K(+), V(). What is most complex about the construction are the additional machines and message
routing needed to propagate these values efficiently between the inner product machines and the token machines, in particular carefully
aggregating the output of the attention mechanism and computing its normalization. To this end, the protocol uses additional machines,
organized into a tree with branching factor b = O(N ‘;/_5) and depth D = O(3£%).

where numbers in X and all intermediate products of the transformer computation can be represented with p = O(log M)
bit precision.

Our MPC protocol 7, which will use ¢ = O(M?) machines and s = (N ‘y) words of local memory per machine, assigns
each of the ¢ machines to one of four possible roles: token machine, inner product machine, query propagation machine,
and key/value propagation machine. We describe these machines below. For the sake of readability, we identify machines
with easily interpretable descriptions and use the bijection ID to map each of those to a token in [g] that is used for routing
messages. Our protocol has two important parameters: b = |s/(4mH)| = O(N? ~9) is the branching factor of the

protocol, and D = [log,(M)] = O(4£2) is the depth of the protocol.

At a high level (see Figure 5 for a corresponding diagram), the protocol involves computing all intermediate products of the
of a transformer unit by performing MLP computations in N token machines, computing inner products in N inner product
machines, and using O(N?) other propagation machines arranged in trees to share information between the two in O(D)
rounds. The protocol draws inspiration from Appendix C.6.1 of Sanford et al. (2023), which uses a similar construction to
simulate transformers with CONGEST protocols on fixed graphs. It is also similar to the MPC implementation of the MPI
AllReduce functionality (MPICH, 2023) described by Agarwal et al. (2014).

* Machine i € [M] is a token machine that performs all element-wise computation on the ith token embedding, including
the computation of (Qp,i(X:), Kn i(Xs), Va,i(Xs))nem) and the final M L P output ;. Let ID(i) = 1.

* Machine (i,i’) € [M]? is an inner product machine designed to compute the inner products
(Qn,i(Xi) Ko (Xir) ) nepm-

* Machine (Q,4,d, k) for token i € [M], depth d € [D — 1] and position k € [b%] is a query propagation machine. This
machine is responsible for handling communication of query tokens (Qn,:(X;))nes and of all partially-computed
attention outputs for the ith token between token machine ¢ and inner product machines (i, ") for

i’ € Descendantsyy, == {b" (k- 1),...,b" %k} N [M].
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Concretely, if £ = 1, then the machine communicates with token machine ¢ and query propagation machines (Q, ¢, d +
1, ) for

k' € Childreny := {b(k — 1)+ 1,...,bk}.

If ¢ = D—1, then it communicates with inner product machines (7, ¢’) fori’ € Children;N[M] and query propagation
machine (Q,¢,d — 1, | k/b]). Otherwise, it communicates with query propagation machines (Q, ¢,d — 1, Parenty), for
Parenty := |k/b|, and (Q,i,d + 1, k") for k' € Childreny.

* Machine (KV, i, d, k) is a key/value propagation machine. This machine is analogous to a query propagation machine,
except that it is responsible for the communication of key and value tokens (Qp,,i(X:), Vi i(Xi))ne[s) between token
machine ¢ and inner product machines (4, ") for i’ € Descendantsg, .

Since the total number of machines is ¢ = M + M? + M Zf;ll b? = O(M?), we conclude that the global memory of the
protocol is gs = O(N2+2e+8") which means the protocol is (1 + 20 + &', §')-MPC. We simulate the transformer using a

four stage protocol using 2D + 3 = O( ;,*_"g) rounds of MPC computation.

Stage 1: Token Dispersion. Because the input to an MPC protocol Input = X is divided equally among machines
1,...,[MmH]/s], the first round of MPC computation routes each input token X to its respective token machine. This

is completed by setting (i, X;) € MachlneOut( ) if (1,X;) € MachlneIn( ). Thus, MachlneIn = {(8rc, X;)} for all
token machines ¢ € [M].

Stage 2: Embedding Propagation. Inrounds 2,...,D + 1, m computes the respective key, query, and value embeddings
in each token machine and propagate them to respective inner product machines using the query and key/value propagation
machines. Concretely:

* In round 2, each token machine 7 (whose memory contains X;) computes m-dimensional embeddings embeddings
Qi = (Qn,i(Xa))nern)s Ki = (Kni(Xi))nerrs Vi := (Va,i(Xi)) nea- It transmits each embedding to the respec-
tive depth-1 query and key/value propagation machine nodes, while also preserving knowledge of its own X;. (In all

further rounds, we assume that ((, X;)) € MachineDutEr) to ensure that token machine ¢ can compute the skip-level
connection at the end.) That is,

MachlneOut ={(4, X;)}
U {(1D(Q,4,1,k),Q;) : k¥ € Children,}
U {(ID(KkV,i,1,k"), (K;,V;)) : kK" € Children;}.

Note that the total amount of messages sent is b - mH + 2b- mH + m < s and that the only machines receiving
messages are size m-messages by token machines and size < 4mH messages by query and key/value propagation
machines.

e Inrounds r € {3,..., D}, each query and key/value propagation machine of depth d = r — 2 passes embeddings onto
their successors. That is,

MachineOut(y, ., = {(ID(Q,i,d +1,k'), Q) : K € Childreny},

MachlneOut;))(Kv idk) = {(ID(KV,i,d + 1, k), (K;,V;)) : k' € Childreny}.

e Inround D + 1, the depth-(D — 1) query and key/value propagation machines pass their embeddings onto their
respective inner product machines. That is,

MachineDutﬁD(gi)D Lk = 1(ID(i, k), Qi) : k' € Children, N [M]},
MachineOut'Dt!) = [(ID(K',i), (K, Vi) : k' € K € Childreny N [M]}.
ID(KV,i,D—1,k)
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Stage 3: Softmax Computation. Inrounds D + 2,...,2D + 2, computes each inner product and iteratively builds up
each attention output by accumulating partial softmax computations. For each query propagation machine (Q, ¢, d, k) and
h € [H],welet S; g k.5 and Z; 4 1, denote its partial normalization and softmax computations respectively. That is,

Zidkh = Z exp(Qn.i(Xi) T Kp o (Xi))1{A; o = 0}
i/ €Descendantsg i
_ Zk’EChildrenk Zid 1,k 1 iftd<D—1,
exp(Qn,i(Xi) T Knk (X)L {Ai), = 0} ifd=D.
1
Sidkh = dkh > exp(Q,i(Xi) T K ir (Xir)) Vior (X)L { A r = 0}

i/ €Descendantsy, x

Z' 1 ’ .
_ Ek’eChildrenk ﬁ “Sidyien ifd<D—1,
Vi e (Xi)1 {Aq ) = 0} if d = D;

Note that S; 01,4 = (softmax(Qp(X)Kn(X)" + Ap)Vi(X)); and let S; g = (Sidten)nelm] € R¥*™ and Z; g =
(Ziann)nem € RY

e Inround D + 2, each inner product machine computes its respective inner products and passes its partial softmax
computations to its parent query propagation machine. As a result of round D + 1, each inner product machine (3, ')
recently received the embeddings necessary to compute the relevant inner product:

Machinelnngi),) = {(10(Q, %, D — 1,Parent;), Q;), (ID(KV,i’, D — 1,Parent; ), (K, Vi’))}.

It propagates the respective partial computations .S; p ;» and Z; p ; as follows:

MachineDuthj(j?,)) = {(ID(Q, i, D — 1, Parenti), (Si,D,i’ s Z@D}i’))} .

Note that each depth-(D — 1) query propagation machine receives messages of size at most b - (m + 1)H < s.

e Inrounds r € {D + 3,...,2D}, partial softmax computations are received by query propagation machines of depth
d =2D + 1 — r, added together, and passed along to their parent machines. That is, given

MachineTIn{yi, . oo = {(ID(@,4,d + 1, k'), (Sias 14, Ziap1 ) : K € Children},
each respective machine computes S; 4,5 and Z; 4 5, recursively and propagates

MachineOutgg)(Q k) = {(ID(Q, %, d — 1,Parenty), (Si.d.k: Zi,dk)} -

e Inround 2D + 1, the top-most query propagation tokens pass their partial sums to the token machines:

. D .
MachlneDutgi(Q;}1)7k) ={(% (Sii ke Zing))}-

* Inround 2D + 2, the token machines compute their respective output of the transformer, 7'(X);. Given input

MachineIn!*’ "% = {(K',(Sig ks Ziag)) : k' € Children; } U {(i, X;)},

the token machine ¢ computes S; o, and H; o1 and then
H H
T(X)i = (X + ) softmax(Qn (X ) Kn(X)" + A,,)IV;,,(X)) = <Xi + Si,O,Lh) :
h=1 h=1

This quantity is used as an intermediate product for the final phase of computation.
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Stage 4: Token Compression. We invert Stage 1 by properly compressing the MPC output in the final round 2D + 3.
That is, we let MachineOutEQD“) ={(|l#gmH/s| +1,T(X);)} for each token machine ¢ € [M], which ensures that the
outputs are condensed in the proper order in machines 1,..., [MmH/s].

Precision Analysis. In order for the proof to be fully sound, care must be taken to ensure that the computation of each
self-attention output .S, ¢ 1 5, is handled with proper numeric precision, as discussed in Appendix A. We show that each
Si.0,1,n 18 a valid implementation of its corresponding self-attention unit, per Definition A.1.

To do so, we let Si,d,k,h and Zi,d,k,h denote the p-bit representations of \S; 4 » and Z; 4 1 5, where scalars of Si,d,k,h
and 1og(Z; a.1.) are represented as discretized rational numbers 2 satisfying |z| < 19P/2 and z - 2P/2 € Z. For some
sufficiently small p’ = ©(p), we assume that all embeddings @, (X), Kp,(X), V4 (X) have scalars z satisfying |z| < %21’// 2
and z - 27'/2 € 7. We prove that for each h € [H],
1
L0 (2) :

Si.0,1,h — Si,dkh

Boundedness of intermediate representations is not an issue because

10g(Zia.k.n) < O(log(N) + max Q(X)] K(X)x]) = exp(O(p")),

and
1S5, nllo < IV(X)]| o < 2772

It remains to show that that all intermediate representations are sufficiently close to their exact counterparts. We prove the

following via an inductive argument ford = D, D — 1,...,0:
. 2b D—d
’10g(Zi,d,k,h) - 10g(Zi,d,k,h)’ < (22,7/2, (2)
. 2p'/2 8b D—d
’ Si dkh — Si,d,k,hHOO < % 3)

If (3) holds for d = 0, then the claim holds for sufficiently large p = ©(p’).
For the base case D, we verify (3) by

due to the ability to access V}, ,(X}) and round it directly. We verify (2) due to the immediate access to and boundedness of
Qn.i(Xi) T Ko (Xg):

Si Db — Si,D,k,hH = HVh,k(Xk>]l {Ai =0} — gi,D,k,hH

o S 2

10g(Zian)| < @i (X0) Kk (Xi) | < 1Qni (Xi)lly |1 K i (Xi) |, < N - 2972,

We prove the inductive step for d — 1, assuming that the inductive hypothesis holds for d. We first address ZALd_l,hh by
employing the Lipschitzness of the log-sum-exp function.

log (Z eXp(log(Zi,d,k’,h))> — log (Z eXP(log(Zi,d,k/,h))> ’
™

k!

5 1
log(Zi.a—1,k.n) — IOg(Zi,dfl,k,h)‘ < 73 +

1 R
< oz T Z ’log(Zi,d,k’,h) - 1Og(Zi,d,k',h)‘
k/
< (20)°~ _ (20)P !
— 2p/2 CTop/2 = op/2
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To obtain (3) for d — 1, we first note that for sufficiently large p:
Zi aw Zia-
= |1 —exp | log [ 22220 | 4 1og [ Sh4=LE
Zi d k' \h Zi.d—1,k,h
§1+2<1og Ak’ h )

4- (2b>D—d+1
R
We conclude by using the fact that each S; 41 .5 is a convex combination of other S; g,k p.

1 Zid k' hZid—1,k

Zi.d k. hZid—1,kh

| Zi d—1,k,h
og ST

+

i,d,k! b Zi.d—1,k,h

- op/2

5 1 Zi.d,k' b Zid k' h A
Sid—1,kh — Si,d—1,k,n| < o7z T g ———Siax h — =S5 d ¥k h
oo T 2 || Zid—1.k' k. Zi d—1,k b
,d—1,k, o
< Zidkh Zid k' hZid—1,k g
< 5 E Sid k' h — S i,d,k";h
21’/ Zz d—1,k"\h Zi d ke h i, d—1,k' b -
Zidk b A
< p/2 E ‘ d, k! h — Si,d,k’,hH
2 Zz d—1,k"\h 00
Zidak'n ||a Zia k' hZid—1,kh
+ ———— \|Si.d.k"h 1- =
' Zid—1k' h 00 Zid k,hLi,d—1,k" \h

_ Zid k' hZid=1,k'h

1 2v'/2(8p)P—d : Zi . dk' \h

~ 2p/2 2v/2 ' Zi,d—1,k' h ZiaknZi a1k
2p'/2(8b)D7d 2p'/2 4. (2b)D7d+1 2;0'/2 (8b)D7d+1
=47 p/2 + ' op/2 = op/2

Owing to the fact that D and p’ are constants and b = NP, a sufficiently large choice of p guarantees that the
implementation is valid. O

C.2  Proof of Corollary 3.5

Corollary 3.5. Let ¢ € (0,1) be any constant, and let D > N¢. Assume Conjecture 2.4, and suppose there exists
T € Tra nsformerT]yL L. wWithmH = O(D'~¢) that decides connectivity of any input graph with connected components
having diameter < D. Then L = Q(log D).

We prove Corollary 3.5 by combining Theorem C.1 and Conjecture 2.4.

Proof. Fix any D < N with D > N¢ for some ¢ € (0, 1]. Let Cy denote a cycle graph on D vertices, and let Cy denote the
union of two cycle graphs each with D /2 vertices.

Suppose there is a transformer 7' € Tra nsformerfx’ g WithmH = O(D*'~¢) that determines the connectivity of graphs
with at most [V edges and connected components with diameter at most D. We will show that it can be used to design an
©(L)-round MPC protocol 7 that distinguishes graphs C; and Cy with n = D edges.

Let 7’ be an MPC protocol that exactly computes the output of T using taking R = O(L) rounds with local memory
s = O(D'~¢/?) and ¢ = O(N?) machines, which is guaranteed to exist by Theorem C.1.

Letn:=2|2|and k := [ & |. We design 7 with the same local memory and machine count to determine the identity of
input graph G = (V, E) € {C’l, Cs} provided as an arbitrary sequence of n edges. Let u € V be an arbitrary vertex in G.

Using a constant number of MPC rounds, 7 converts G into a graph G’ = (V', E') with |E’| = kn + k < N and diameter
n + 2 < D such that G’ is connected if and only if G = C;. We do so by letting G’ be composed of k copies G, ..., G*
of G on separate vertices, along with k extra edges connecting the vertex corresponding to v in each G’ (say v/ € G7) to
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u! € Gy. This ensures that the connectivity correspondence and edge count diameter bounds are met. Since G’ can be
produced by simply copying edges from G and adding an additional edge each time an edge containing v is copied, 7 can
produce G’ in O(1) rounds.

Then, 7 simulates 7’ on G’ and returns its output. Since G’ is connected if and only if G = C1, this protocol suffices to
distinguish C; and C5. Because the protocol uses s = O(n'~¢/2) local memory and ¢ = O(n?/¢) machines, Conjecture 2.4
implies that 7 (and hence T') only exists if L = Q(logn) = Q(log N). O

D Proofs from Section 4.1
D.1 Proof of Theorem 4.2

Theorem 4.2. For any k € N and alphabet ¥ with |X| < N, there exists T € MaskTransformer,Anfl’L?H that computes
hopy,: &V — (SU{L}HN withm = O(1), L = |logy k| + 2, and H = 1.

Proof. We design a masked transformer that implements hop,, in two phases. The first two layers compute ﬁndk (7) for
each i € [N] using a similar approach to the induction heads construction of (Bietti et al., 2023). The subsequent layers

employ a doubling trick to compute each ﬁnd§§72 (7) after ¢ layers.

To do so we employ two technical lemmas (which are proved in Appendix F.4) that describe the implementation of masked
self-attention units that copy .

Lemma D.1. For some m > d+ 2, 7 : [N] x R™ — [N], and p : R™ — RY, there exists an attention head
lookUp, , € MaskAttn with precision p = O(log N) and m > d + 2 satisfying lookUp, ,(X)i.a = p(Xr@i,x,))-

Lemma D.2. For any finite alphabet ¥, m > d + 2, pi1, 1o : R™ — %, and p : R™ — R, there exists an attention head
lastOccurrence,, , € MaskAttnlY with precision p = O(log(N |%))) such that,

lastOccurrence(X); .q = {‘0(6) Vil <i:p(Xe) # /~L2(-}§ )_

p(Xy) ifd :max{z <i:p(X wa(X5)}.

The first layer obtains the previous token X;_; from each X;. This is accomplished via the self-attention head lookUp, ,
with 7(4, X;) = ¢ — 1 and p(X;) = X;.

The second layer retrieves (find (i), Xiinal () for each i € [N] by finding the most recent token whose preceding token

is X;. It does so by employlng the lastOccurrence#h 112,p Primitive on the intermediate state X! = (X;, X;_1) with
/Ll(Xil) :Xz 1,MQ(X ) Xl,and p(Xl) (Z,XZ)

* If find (i) > 0, then lastOccurrence,,, ,., ,(X}) = (find) (i), Xeindl (i))-

« Otherwise, it obtains 0 and performs no further passing, returning _L after all L layers.

If k = 1, the transformer returns 7'(X); = Xgna1 () = hopy (X);.

Otherwise, let k := Zuogz k] k;27 for some k; € {0,1}, and let k., = 25:0 k;27. Construct a transformer inductively to
ensure that the ith output of the ¢th layer X! € R™ for £ > 2 contains an encoding of

ko2
(Y (0, X e @)'

Note that the base case holds for £ = 2, since find5 (0) = find (0) if ko = 0 and is i otherwise.

(Xh find}  (5), Xgqze—2

Foreach ¢ =1,...,|log, k| + 1, we assume that the inductive hypothesis holds up to layer £ and prove that it also holds
for layer £ + 1. To do so, we use a lookUp, , self-attention head with (i, X H= ﬁnd??2 () and

p(X0) = (find% (i), X find® =2 (1), X

find (i) find 2 (4) ):
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which ensures that X f“ can encode

find% (i) = find% (find% (i)

Xﬁ]adgf*1 R Xg

findy' = (i) = {

nd% " (find% % (9))

find% 2 (find% (1)) ifke_y =1

ﬁnd];f”(i) ifhy 1 =0

X, & = Xﬁnd;efz(ﬁndﬁf’z(i)) ifkp_1 =1
NNV '

find (i) X " k£71 o

find ¢ =2 (4)

As a result, the output of layer L = |log, k| + 2 contains an encoding of
Xﬁnd'}}’L’Q(i) = Xenay (1) = hopg(X);

for each ¢ € [N]. This is returned as the output of T'(X).

D.2 Proof of Corollary 4.3

Corollary 4.3. Assuming Conjecture 2.4, for any constants ¢ € (0,1/2] and € € (0,1), and any even k = O(N¥¢), every
transformer T € I\/IaskTransformerfiL,H with mH = O(k'~¢) that computes hop,, has depth L = Q(log k).

Proof. The proof is analogous to that of Corollary 3.5. Let C'y be a cycle on & vertices, and C'y be the union of two cycles
each on k/2 vertices. So both C; and C; have k edges. We show that the existence of T' € Transformerfx’ L,m With
mH = O(k'=¢) such that T(X) = hop,,(X) can be used to design an ©(L)-round MPC protocol 7 to solve the task.

As aresult of Theorem C.1, there exists an MPC protocol 7’ that exactly computes 7" with R = ©(L) rounds with local
memory s = O(D'~¢/?) and ¢ = O(N?) machines. On input G = (V, E) € {C},C,}, we design a constant-round
protocol that computes an sequence X € XV such that hop, (X ) exactly determines the identity of G.

Since the k edges are passed to 7 in an unknown ordering with unknown labelings, we let V' = [k] and denote the edges as
er = {u1,v1},...,ex = {ug, vr}. We define an operator next over the domain {(u,v), (v,u) : {u,v} € E} as follows:
for {u,v} € E, let next(u,v) := (v/,u) where v’ € V is the unique vertex v’ # v such that {u, v’} € E. Notice that next
is well-defined because all vertices in a cycle have degree 2. If G' = Cs, then next®/2(u;, v;) = (uj, v;) for any i € [k].

To set up our encoding of G as a sequence X, we first construct a gadget for each edge e; that will be used to compute a
single next(u;, v;). Under the alphabet ¥ = [k] U {f,x, _}, we define the nine-token sequence
€; = *U; T V; Uj "' V; *x

This gadget ensures that two hops will swap the values of u; and v;. That is

ﬁndzioui(lo) = ﬁndéioui (6) = 4? Xﬁndz,ou, (10) = Uy,
ﬁndz‘iovi(lo) = ﬁndtlaiov,i (8) = 2a )(ﬁnd2 (10) = Us-

e;ov;

Likewise, concatenating sequences corresponding to overlapping edges facilitates multiple hops. For example, if e; =
(1,2),e2 = (3,4),e5 = (2,3), then

ﬁndzloezoegoQ (28) = 22, Xﬁndzloezoesoz(QS) =3,

ﬁndiloe209302(28) = 137 Xﬁndiloe20e302(28) = 47
4

ﬁnd9109206303(28) = 2’ Xﬁndiloe20e303(28) =L
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Let
E:= (eloego~~~oek)k/201

be a length Ny, := 9k - £ + 1 sequence and let X = (_)N =N+ o E. We show that hop, (X)y = hop,(E)y, = L if and
only if G = Cs.
Without loss of generality, let {j, j + 1} = e;, € E forall j € [5 — 1]. Let e;, = {1,v*}, where v* = &

fG = Csy and
v* =k if G = Cy. Assume without loss of generality that i; > i5. We argue inductively that for any j € [£]:

i
E
2
1. Every two hops simulates a single step of next:

, j ifj+l<forG=0y,
hop, (E)y, = next’ (1,v™); = 2
p2,7( )Nk ( )1 {1 if j = §7 G = Cy;

2. Every two hops never “jumps” by more than one repetition of all edges gadgets:

find? (Ny,) > find2) ~*(Ny) — 9(k — 1);

3. The executed gadget corresponds to the correct edge and the gadget is executed correctly:

ﬁndi:j(Nk) € {9kj +9i;+v: 57 €N, e {2,4}}.

If all three conditions are met, then hop, (X )y = 1 if and only if G = C; from condition 1.

We first show that the base case holds for 7 = 1. Since ¢; > i, the second-last time 1 appears in the E is in the final
encoding e;, . By the two-case analysis of the e;, gadget, we validate that hop,(E)y, = 2 and conditions (1) and (3) hold.
Since e;, cannot be the first edge encoding appearing in e; o e3 o - - - 0 e, owing to it following e;,), condition (2) is
satisfied.

Suppose that the inductive hypotheses holds up to j < g Then, we argue that it holds for j + 1. Since hopy; (E)n, = j+1
(from condition (1)) and ﬁndi:j(Nk) resides at the left-most side of the gadget for e;; (from condition (3)), the two
subsequent findg iterations must occur in the gadget e;, . Because ﬁnd]%:j(N x) > 9k(k — j) (from condition (2)), all
edges appear in the k£ gadgets to the left of ﬁndéj (Nk), and all other edges (including e;;_ ,) must occur before the next
occurrence of e;,. Thus, the two hops occur in the e;,, , gadget (within distance 9(k — 1)) and results in a properly positioned
find2/ *2(N,) with hopy; 4 »(E) N, = next/ (1, v%);.

Since an MPC protocol can convert G to X using a constant number of layers, and because 7’ outputs 7'(X )y = 1 if and
only if G = C1, we can construct a protocol of 7 by simulating 7’. Because the protocol 7 uses s = O(k'~¢/2) local
memory and ¢ = O(k?/¢) machines, Conjecture 2.4 implies that the existence of 7" requires L = Q(log k). O

E Proofs from Section 5

E.1 Multi-Player Pointer Chasing Communication Complexity

We introduce the multi-pass multi-player blackboard communication model studied by Guha & McGregor (2009) and
Assadi & N (2021) to prove lower bounds for multi-pass streaming algorithms. A protocol in this model specifies how k
players, each possessing a portion of a shared input, can jointly compute a function on the input over the course of 2 rounds
of communication. In each round, all players take turns to broadcast an s-bit message to all other players. We provide a
formal definition of the model as described in Section 6 of Assadi & N (2021).

Definition E.1. A k-player R-round s-space sequential blackboard communication protocol includes k players Py, ..., Py.
On input Z that can be partitioned into (Z1, ..., Zj), each player P; is provided with its respective Z;. In each round,
players communicate via a shared blackboard. That is, in round 7 and in order Py, ..., P, each player P; writes a message
I’ € {0, 1}* on the blackboard (which can be viewed by all players) as a potentially randomized function of input Z; and
all information on the blackboard. After the conclusion of R rounds, the final message I1# is the output of the protocol.
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Assadi & N (2021) proves a lower bound on the round complexity necessary to solve the well-studied multi-party pointer
chasing problem of Nisan & Wigderson (1993). We present the problem as defined by Assadi & N (2021).

Definition E.2. For ¢,k € Z, let an (g, k)-layered graph G = (V, E) have disjoint vertex layers V1, ..., Vi1 with
V =V, U---UVj4q and each |V;| = ¢ and edge layers En, ..., Ey, with E = E; U --- U Ej, and each E; being a perfect
matching between V; and Vj 1. The pointer chasing task is provides a (g, k)-layered graph G, an arbitrary v € V3, and an
arbitrary equipartition V! 1 and V2 1 Of Vi41 as input and asks whether v is connected to a vertex in Vi 1 Or V2 1

Assadi & N (2021) give the following lower bound.

Proposition E.3 (Proposition 4.12 of Assadi & N, 2021). Consider a k-player R-round s-space sequential blackboard
protocol that solves the (g, k)-pointer chasing task where each player P; is provided with the matching E; and v and
Vk1 1 V,f "1 are globally known. Then, the protocol succeeds with probability at least % only if R> kor s = Q(%).

All of the lower bounds in Section 5 are most naturally proved by reducing from hop,,, rather than pointer chasing. So we
first prove a lower bound for hop,, using the lower bound for pointer chasing from Proposition E.3.

Proposition E.4. Consider a k-player R-round s-space sequential blackboard protocol that computes hop,(X) N on any
X € 3N for ¥ = [2q + 2] with q = L%J where each player Pj is provided with X7 := (Xo(k—j)g+1s - -+ > X2(kh—j+1)q)>

except for Py, who is given X' := (X2(k=1)g+1, - - - » XN ). Then, the protocol succeeds with probability at least % only if
R>kors= Q(%)

Proof. Assuming the existence of a k-player R-round s-space sequential blackboard protocol for hop, (X ) x as described
above, we design a protocol for solving (g, k)-pointer chasing with R rounds and s-size messages. The claimed lower bound
will then follow by Proposition E.3.

Consider any pointer chasing input with universally known Vi,..., Vi1, v € V4, and V;! | and V}2, |, and each player P,
knowing matching E;. We recursively define v1, ..., vg4+1 such that v; = v and (vj,v;41) € Ej, noting that the output
hinges on whether vy 41 € V! 1

Without loss of generality, let v = 1 and

L g if j is odd,
T {g+1,...,2¢q} ifjiseven.

Each player independently determines their substring X7 of a input X to hop,, before running the aforementioned protocol:

* Player P; encodes X! by letting Xy = s = 1 and forany i € 1,..., 2q, letting

i

1 _ ] 5t ent ifiisodd,
i"eVy  ifiiseven, (5,i) € Ey.

This ensures that that every integer in {1, ..., 2q} appears exactly once in X7,..., X. 21q, which in turn guarantees that
findk (N) = (k — 1+ 1)g + 2 and that Xg,qy () = vz where (1,7') € Ey.

e Forany j € {2,...,k — 1}, player P; encodes F; as X7 as follows. If j is odd, then for every i € {1,...,2q},

i JHr eV ifiisodd,
! i' € Vjy1 ifiiseven, (£,7) € Ej.
Alternatively, if j is even,
i _ Ja+ eV, ifiisodd, |

! i eVin ifiiseven, (¢ + 5,i) € Ej.
Since every odd token corresponds to a vertex in V; and each subsequent token corresponds to the vertex it’s connected
to by E;, we can ensure that for every i € [2¢]:

(Xo(k—j+1)+is Xeindl (2(k—j+1)+1)) € Ej-

Hence, it follows inductively that X dl, (V) = Uit1:
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* Player P, encodes X* if k is odd by letting

“4l eV, ifiisodd,
XF=X;={2¢+1 ifiiseven, ({,v) € By, andv € V}\, |,
2+ 2 if 7 is even, (%,v) € Ey,and v € Vk2+1'

Likewise, if k is even,

g+ 5 e Vi ifiisodd,
XF=X;={2¢+1 if i is even, (%,v) € Ey, andv € V!, |,
2q + 2 if i is even, (4,v) € By, andv € V2.

These jointly ensure that
2¢+1 ifvger € V25,
hop, (X)n = Xgnar (v) = . ot
2¢+2 ifuvgr €V .

Therefore, by formatting F1, ..., E}, appropriately as X, running the protocol for hop,, (X ) v, and observing that the final
output of player P! is 2¢ + 1 if and only if viy11 € V! 1> there exists a k-player R-round s-space protocol for pointer
chasing. Hence, by Proposition E.3, the protocol for hop, (X )y must use R > k rounds or s = Q(4%) space. O

E.2 Proofs of Section 5.2

Corollary 5.2. A multi-layer RNN of depth L and width m as above with Yy = hop,, (X )y satisfies either L > k or
m = Q(3%).

Proof. Suppose there exists a multi-layer RNN computing output Y with Yy 1 = hop,, (X) 5 from input X with intermediate
states Z1, ..., Z;—1 and hidden states H,..., H-. For any ¢ € [L] and i < 7, note that Z¢, ..., Z! can be determined
exactly from H} ; and Zf ...z ffl. Given this RNN, we provide a multi-player blackboard communication protocol
for solving hop,, (X) ;v under the input model of Proposition E.4.

In round 7, we assume inductively that each player P; knows AR IS (Zg(_kl_j)qﬂ, ey Zg(_klfjﬂ)q), except for P;, who
knows Z¢~ 11 = (Zﬁ@{l)q+1, RN Z]{,_l). In descending order, each player P; computes 7% and Hg(k_j+1)q—writing

the latter on the blackboard—from Z*~17 and H. 5( k—j) q,which was written on the blackboard by the previous player. Thus,
player P after round L knows and outputs Z 1%,1 = Yn,1 = hop,(X)n, which provides an L-round protocol m-space
protocol.

So the claimed lower bounds on width and depth follow from Proposition E.4. O

E.3 Proofs of Section 5.3

Corollary 5.3. Any T € KerneIFormerﬁﬁm,yL,H with T(X )y = hop, (X) n satisfies either L > k or mm'Hp = Q(£).

Proof. Under the distribution of input X = (X!,..., X¥) to players Py, ..., P, stipulated in the statement of Proposi-
tion E.4, we explain how the players can all compute the outcome of a single layer of H-headed kernelized attention in a
single round of a blackboard protocol. It is immediate that a depth L network can be simulated in L rounds.

On input X, consider H kernelized self-attention units with embeddings (@, K1,V1),...,(Q%, K}, Vi) and out-
put MLP 1. Each player P; immediately computes its embeddings (Q},(X7), K} (X7), V4 (X7))pepm), followed by
(K} (X7)TV;,(X7)) € R™ %™ for each h € [H]. Because the object is to compute for each h

k

(@ (XKL (X)TVA(X)) = h(Q(X) Y K (X7) TV (XY)),

j=1
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each player writes their (K (X7)TVj,(X7)),e(n) using message size s = O(mm’Hp). Each can then construct
K} (X)™V,(X)) by reading the board, and use it to compute its respective outputs without requiring supplemental
communication.

Hence, T (and thus hop,, (X) ;) can be simulated using an L-round blackboard protocol with message size s = ©(mm'Hp),
and the corollary follows from Proposition E.4. O

Corollary 54. Any T € vag_Attn%)LH with T(X)n = hop,(X) N satisfies either L > k or (w + év—k)me =Q(5%).

Proof. As in the proof of Corollary 5.3, we explain how each player can compute their respective outputs of a single unit of
self-attention masked by A"9.

To compute the output corresponding to X;, note that it is necessary to only know the embeddings corresponding to
Xicws Ximwi1, -+ Xigpw and Xy, Xog, ..., X n/g|g- Thus, player X can compute the outputs of all of their inputs
X7 = (Xo(k—j)q+1>- - - » Xo(k—j+1)q) given access to

Xo(h—j)g+1—ws - -+ » X2(k—)qs X2(k—j+1)q+1s - - - s X2(k—j+1)q+w>

aswellas X, Xog, ..., X|ny/g)g-

Therefore, the protocol can be simulated if each player X7 writes inputs

Xo(k—j)g+1s -+ s X2(kh—j)gtw> X2(k—j+1)g—w+1s - - s X2(k—j+1)q € R™,

in addition to all X; € X7 such thati = 0 (mod g). This can be accomplished by a protocol where each player writes
s=0((w+ qﬂk)mp) bits of information on the blackboard.

By repeating this protocol in parallel for every head and sequentially for every layer, 7" and hop, (X ) x can be simulated,
and hence the claim follows from Proposition E.4. O

E.4 Proofs of Section 5.4

Corollary 5.6. Any T € MaskTransformeerjf\I[f"T that computes hop, (X)n with Ncor tokens of chain-of-thought

requires either Ncor > k or mHp = Q(4%).

Proof. We reduce to Proposition E.4. Consider some input X € R¥ partitioned into X', ..., X7 as specified by the proof
of Proposition E.4 with chain-of-thought X ¢, and hop, (X )y determined by some masked transformer 7.” Suppose T
has embeddings (Qr, Kp, Vi)ne[m) and output MLP ¢). We provide an (Ncot + 1)-round blackboard protocol to compute
hop,, (X )y from X.

Suppose in the rth round of the protocol, all players know Xcor,1, ..., Xcor,r—1 and aim to compute

XcoT,r if r < Neor

T(X o X, =
(X o Xcor)ntr-1 {hopk(X)N if r = Neor 4 1

_ ¥ 3 Zimt Qs Kivir ) TR VA (X)
- ’(/JNJr'r‘fl N+r—1 + N+r—1 n Tih .
h=1 22‘:1 exp( N+r71(XN+?”*1) Ki (XZ))

"We abuse notation to index X n4; = Xcor,; and let X; € X7 be true if i € {2(k — j)g+ 1,...,w(k —j + 1)g}.
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If we let

Seng = Y exp(QNorr(Xnsr1) K (X:) V(X)) € R,
X, eXi
N+r—1

Sencor = exp(Q i1 (Xnr 1) K(X) V(X)) €R™,
i=N+1

Zrng= Y exp(QRryr1(Xnir1) KM (X)) €R,
X, eXi
N+r—1

Zr,h,CoT = Z eXp(Q}Iil'+r—l(XN+T’—1)Tth(Xi)T) € R’
i=N+1

then we observe that

H <k
Z': Sv’f"’Sr,h,CT
T(X 0 XCoT)N4r—1 = PN4r—1 (XN-‘F’I‘—]. + Z zjﬂ e .

h=1 j=1 Zr,h,j + Zr,h,CoT

Each player P, computes (S, j, Zr n,j) e and writes them on the blackboard with O(mHp)-bit messages. Since
Sy.h,cor and Z,. , cor are known by all players, every player can individually T(X o Xcor)N+r—1-

By induction, all players know hop, (X) x after N, + 1 rounds. The claim now follows from Proposition E.4. O

F Proofs of low-level attention constructions
F.1 Hardmax simulation proof of Appendix A.1

Lemma A.2. Let f € Attn,]yl be a self-attention unit with precision p = ©(log N) and embedding functions Q, K,V such
that for some fixed 1 > € = N9 and every X € RN*™ and i € [N):

A(X )i < max A(X)iim — & Vi’ & Imax (A(X)y),

where A(X) = Q(X)K (X)T. Then there exists a self-attention unit f' € Attn) with a valid p/ -bit implementation with
p' = O(p) satisfying
f/(X) = hardmax(A(X))V(X).

Proof. For some p’ = O(p + log %) and ¢ = @(I’/T+< -log N') where ( is as in Appendix A.1), let f' have query embedding
Q'(X) = cQ(X) and identical key K and value V embeddings as f. Therefore, by construction, these embeddings can be
written with precision p’ = O(In(c) + p) = O(log % +loglog N + p) = O(p).

Let /' be a valid p/-bit implementation of f/, meaning that the two || f* — f'||sc = O(1/2P*1) (thus f’ rounds f’ to p’ bits
of precision), and fix some X. We first show that the softmax matrix is sufficiently close to that of the hardmax and is also a
valid p’-bit implementation of the hardmax. Without loss of generality, let 1 € I1ax(A(X);). First, note that

N 1
| > exp(cA(X)iw) < —CTi) exp(cA(X)i1) = 1557re PEAX)i).
4/ Imax (A(X);)
Then,
1 exp(cA(X)i1)
[softmax(cA(X));1 — hardmax(A(X)); 1] = - :
|Imax(A(X)i)| 25:1 exp(cA(X)m/)
D i L (A(X),) EP(CA(X) i) 1

T | Imax(A(X)i)] exp(cA(X)i 1) T NFO
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Likewise, for any i & I nax(A(X);):
eXp(CA(X)i)iH) _ 1
S exp(eA(X)yw)  NOWHOT

|softmax(cA(X));» — hardmax(A(X)); | <

Therefore,

1

||softmax(cA(X)); — hardmax(cA(X))l, < VN - max [softmax(cA(X)),» — hardmax(cA(X));,i| = NI

We conclude that the approximation is sufficiently close, meaning it is O(1/ o' ), whereby it is exact after rounding:

\ F1(X) - hardmax(Q(X)K(X)T)V(X)HOO

< [1£(X) = hardmax(Q(X) K (X)W (X)]| , +|

100 - 10|

o

(3

< max |softmax(cA(X)); V(X).; — hardmax(A(X))] V(X). ;| + O <1,>
< max Hsoftmax(cA(X))iT - hardmax(A(X))iTH2 V(X).4ll, +O (;p,)

).\/JV.N<+O( 1,):0( ! )

< N +¢ P op"

Therefore, f” is a valid p/-bit implementation of hardmax(Q(X)K (X)T)V(X). O
F.2 Constructions for Appendix B.1

Proposition B.1. For any b < N and d, there exists a self-attention unit sparsePropagateg, ; € Attn%yp for m =
d+O(Qlog N) and p = O(log N), which, given any input X with X; = (z;, S;,0) € R% x ([<1\g) X {O}mefd such that
bi =[{S; 2i:j € [N]}| < Q foralli, has output sparsePropagateg, ,(X) satisfying -

1
sparsePropagateg ;(X); = b E 2.
K3 B
S;2i

Proof. Following the proof of Theorem 2 of Sanford et al. (2023), there exist p-bit precision vectors uj,...,uy €
{£1/y/m}" and wg with wg < 2,/Q forall S € (<A£2) such that

ulws =1, foralli € S

uiTwS < %, forall: ¢ S.
We then design the embeddings of sparsePropagateg, ; with
Q(X); = (ui, 1),
I A,

14

vix), = % ifi >0,
10 ifi=0.

As a result,

ifi € Sy,i’ >0,

ifi ¢ Sy, i’ >0,

=l wWw N = =
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Hence, the largest inner products for query ¢ correspond to i’ for all S;; 5 ¢ if any exist, and 0 otherwise. There exists a
margin of at least i between the largest inner product in each row and all others. By applying Lemma A.2, we conclude that
there exists a self attention unit f’ with embedding dimension p = ©(log N) that computes

f/(X) = hardmax(Q(X)K (X)")V(X) = sparsePropagate(X). O

F.3 Constructions for Appendix B.2

Lemma B.4. For any MPC protocol 7 with local memory s and q machines with ni,-word inputs, there exists a trans-

(Zm D \ith din = 1 and doywy = s, which, given Input € Z5,, has output satisfying

out

former init € Transformer:‘f ;n;x
init(Input) = MachineIn(V).

Proof. Let M = max(niy,, q) and Q, K,V : Z3I — RM* be the query, key, and value embeddings of the attention unit f
in init, and let ¢ : RMxs _y Z5, x [N] be its output MLP. Let gi, = ["“W denote the number of machines used to store
the inputs.

Let Dest; = [%—‘ € [qin] denote the machine that stores the input token index i’ € [n;,] in the MPC protocol, and let
Revd; = {(s —1)i+1,...,min(si, nin) }

denote the set of all input tokens indices belonging to MachineInEl) for machine i € [qip].

For each machine ¢ € [giy], we define the query embedding as

Input); = 2mi\ . 2m 2\ . [ 2mi
Q( npu )z = (cos (M> , SIn (M) . ..,CO8 (M) ,sin (M>> .

Likewise, for each token index i’ € [n;y], the key and value vectors are

27 Dest; . (27 -Dest, e )
(c (Wes '),5111(”]\;5“)) if i/ <nyy, ¥ =1 (mod s),

K(Input) ,(20—1,20) — .
0,0) otherwise,

(
(Input,,i') if¢ <nj, ¢ =¢ (mod s),
0,

V{Input) i-1,2) = { i') otherwise.

These definitions guarantee that large inner products only occur between machine queries Q(Input); and tokens keys
K (Input),s when Input, is allocated to MachineIngl). That is,

Q(Input); K (Input)y = 1, if i’ € Revd;

1
Q(Input); K (Input); <1 —Q (W) , otherwise.

By applying Lemma A.2 with £ = Q( 5 ), there exists some self-attention unit f’ such that

(Input,;,i’)i creva,
|R.CVdi|

f'(Input); = hardmax(Q(Input)K (Input)’) =

A proper choice of ¢ and an invocation of the definition of MachineIn(") ensures that init(Input); = (f(Input)); =
Machine Ingl) . O

Lemma B.6. For any R-round MPC protocol m with local memory s and q machines with ngy-word output, there exists

a transformer final € TransformerZ:Tf‘d(:f(‘i‘;’z) for di, = s and doyy = 1, which, given input X = MachineIn™®), has

output final(X') with final(X); ; = Output; € Zar.
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Proof. This argument inverts that of Lemma B.4, after applying the Local ; to transform MachineIn" to MachineOut (™.
Let Q, K,V : Z}I — RMX*s be the query, key, and value embeddings of the only attention unit f in final, and let
W RMXs 75, X [N] be its output MLP. Let gout = ["2‘“] denote the number of machines storing relevant information
for the output of the MPC protocol.

For each machine ¢’ € [gout], let
Senty = {(s— 1)i’ +1,...,min(si’, nous) }

denote the set of all token indices receiving its output. Likewise, for each token index i € [noytl, let Src; = [i/s] be the
machine containing its relevant token. We define Q = Q’ o Localg, K = K’ oLocalg,V = V' o Localp as follows.

(cos (%) ,sin (%)) ifi <nou, 1 =¢  (mod s)
(0,0) otherwise.

2 -/ 2 -/ 2 .y 2 .y
K'(MachineOut ™)), = (COS (E) ,sin ( ;\Z ) ,...,CO8 (]7\:[2 ) ,sin( ]7\; )) )

V' (MachineOut®)); = Mngut(R).

il

Q' (MachineOut ") )is(20—-1,20) = {

Applying Lemma A.2 as before yields

MachineOutZ(.,R) if 7 € Sent;/,

MachineIn(R) ;=
I )i {0 otherwise.

A properly chosen ¢ ensures that final(MachineIn(®); = ¢(f(MachineIn")); = Output,. O

F.4 Constructions for Appendix D.1

Lemma D.1. For some m > d + 2, 7 : [N] x R™ — [N], and p : R™ — R there exists an attention head
lookUp, , € MaskAttn% with precision p = O(log N) and m > d + 2 satisfying lookUp, ,(X)i.a = p(Xr,x,))-

-,

Proof. Welet V(X;) = (p(X;),0) and define sinusoidal embeddings @ and K with

Note that
QX)] K (X)y =1, if (i, X;) = 7,
X)TK(X)y < 27\ (L herwi
Q(X); K(X)y < cos N 1- Nz ) otherwise.
By applying Lemma A.2 with £ = Q(#), we conclude that a satisfactory self-attention unit exists. O

Lemma D.2. For any finite alphabet ¥, m > d + 2, ji1, 1o : R™ — %, and p : R™ — R, there exists an attention head
lastOccurrence,, , € MaskAttn) with precision p = O(log(N |%)|)) such that,
0 ] V % - X,'/ Xz 3
lastOccurrence(X); .q = p(0) l_f‘/ vt Nlll( ) 7 H2(Xi)
' p(Xi) ifi" =max{i’ <i:p1(Xir) = pa2(Xi)}.
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Proof. Let N’ = N|X|. We define token embeddings as follows, including start token “dummy embeddings” as discussed
in Appendix A.1.

e o () (02) )
-

1
—3)\ &
OOCOS< NS >,0),

V(X)i = (p(X
V(X)o=0.

Taken together, these embeddings provide the following characterization of the inner products (with causal masking matrix
I):

T 2m(i —i') ey
Q(X>OK(X)1' +Fi,i’ = COS W leZ’L >O7 Iul(XZ/):HQ(Xz),
2
Q(X);I—K(X)z/ + Fi,i’ S (60)] (;) if 7 Z i/ > O7 ul(Xll) ;ﬁ /—’LQ(Xi)7
QX)K(X)y + Ty = —00 ifi <,
2r(N - 1)
T . R 2
Q(X), K(X); +T;0=cos <N|Z ) .

As a result, the largest inner product Q(X )] K (X); for some i is the largest i’ with 1 (X;/) = p2(X;) if one exists and
i’ = 0 otherwise. Furthermore, there exists a margin of Q(W) between this inner product and all others. We conclude
by applying Lemma A.2. O

G Further Empirical Analysis of £-Hop Induction Heads

This appendix presents in-depth explanations of the empirical results of Section 4.2, along with further experiments. Taken
together, these results suggest that the relationship between the number of hops & and the depth L of transformers trained on
the task is well-characterized by the representational thresholds of Theorem 4.2 and Corollary 4.3; that the construction
described in the proof of Theorem 4.2 is attainable by trained models; and deep models likely exhibit an inductive bias that
favors compositional learning rules in the finite sample regime.

We define our experimental methodology precisely in Appendix G.1 and provide supporting evidence for our claims in the
subsequent sections.

Exponential Powers of Depth. Our principal empirical claim is that incrementing the depth L of a transformer ex-
ponentially increases the model’s capabilities to learn k-hop induction heads tasks. We explore this claim primarily in
Appendix G.2, where we compare this empirical claim with the relevant theoretical results (Theorem 4.2 and Corollary 4.3),
which suggest a similar dependence. We further study the impacts of increasing the embedding dimension m of the
transformer in Appendix G.3 and find that doubling the width is roughly equivalent in performance to incrementing the
depth by one.

Empirical Claim G.1. A transformer T' € MaskTra nsformeran’ 1, trained with Adam to solve hop,, has small token-wise
classification error if Llog(m) = Q(log k) and large error if Llogm = O(log k).

Mechanistic Alignment with Theoretical Construction. We further demonstrate the empirical salience of our theoretical
construction by conducting a study of the interpretability of learned transformers in Appendix G.4. This investigation
reveals that the attention matrices of sufficiently deep transformers exhibit an implementation of a circuit that relies on the
same “doubling” principle of the construction in the proof of Theorem 4.2. The resulting circuit is comprised of the same
intermediate products that are used in that hop,, construction.
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Empirical Claim G.2. The outputs of individual attention matrices of a transformer 1" € MaskTransformerﬁi 1, u trained

with Adam to solve hop,, with L = Q(log k) and evaluated on input X € X (i) correspond to the find’; intermediate
products of the Theorem 4.2 construction and (ii) demonstrate a “doubling” phenomenon where the each head layer ¢
corresponds to find’. for some j = O(2°).

Beneficial Inductive Biases of Depth. While most of our experiments belong to the “infinite-sample” regime where
new samples are randomly generated on each training step, we also evaluate our models in two finite-sample regimes in
Appendix G.5. We find that a small number of samples is sufficient to approach the performance of the infinite-sample
regime. When the amount of training data is small, we find that deeper models perform better than shallower models,
possibly due to an inductive bias that favors compositional hypotheses.

Empirical Claim G.3. hop,, can be learned in a sample-efficient manner by transformers 7' € MaskTra nsformer%ﬁ L.H
trained with Adam with L = Q(log k). If T overfits to hop,, tasks for some k, then increasing the depth L while holding &
fixed leads superior performance.

The experiments detailed here were conducted under limited computational resources. The authors are interested in future
work that would evaluate whether these scaling rules persist on larger architectures and more complex tasks.

G.1 Experimental Details

Task Details. We study a multi-task variant of k-hop induction heads that predicts hop, (X) = (0, hop,(X’)) from
input X = (k, X’) fork € {0,1,..., kmax}® and X’ € 2V~ We refer to this task as multi-hop and provide the task
hyper-parameters in Table 1.

Hyperparameter ~ Value

Context length N 100
Alphabet size |X| 4
Max hops kpmax 16

Table 1. Multi-hop task hyper-parameters

We define the distribution Dypyiti—nhop Over labeled samples for the multi-hop task and Dy over input sequences X € nN-1
We draw a labeled sample (X, hop, (X)) ~ Dmuiti—hop by independently sampling k& ~ Unif({0,1, ..., kyax}) and
X' ~ Dy. Input sequences X’ ~ Dy are drawn uniformly from inputs with no repeating elements. That is, we sample
Xi ~ Unif(%) and each X7 ; ~ Unif(¥ \ {x ]’}) For each k € [kpax], let Dyp, denote the conditional distribution
((K', X"),(0,hopy/ (X)) ~ Dmutti—hop | (k = k’). Also, let dom(hop,,) = {(k, X') : Pr [X' ~ Dx] > 0}.

= .. . . . =N =N
For ¥ := ¥ U [kyax), we define the n-sample empirical token-wise classification error of a transformer T : ¥ — X° on
a task hop,, as

. _l n 1 N N "
erry(T) = n ; | {i : hop(X*); #L}] EH{T(X )i # hopy (X*); #L1},

for iid samples (X', hop,(X')),..., (X™ hop,(X™)) ~ Dyop,. We ignore null L outputs of hop, when no k-hop
induction head exists in order to avoid inadvertently over-estimating the performance of transformers on large k tasks, which
have a large fraction of null outputs.

Training Details. We trained a variety of causally-masked GPT-2 transformers (Radford et al., 2019) from HuggingFace
to solve the multi-hop task. The model has an absolute positional encoding.

The transformers are trained with Adam (Kingma & Ba, 2014) on the cross-entropy loss. In the infinite-sample regime,
we draw 32 new iid samples from Dy,u1ti—hop ON €ach training step. Otherwise, 7rqin Samples are drawn before training
commences and all samples are rotated through batches, before repeating. We use the hyper-parameters in Table 2 to train
all of the models identified in Table 3.

Computational Resources. All experiments were run on a 2021 Macbook Pro with an M1 chip.

8The task hopy, is simply the identity mapping: hop,(X’) = X".
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Hyperparameter Value
Embedding dimension m {128,256}
Depth L {2,3,4,5,6}
Number of heads H {4,8}
Vocabulary size 30
Activation function GeLU

Layer norm ¢ 1075
Training samples n¢rain {1037 3103, oo}
Learning rate 1074
Training steps 10°

Batch size 32

Table 2. Model and training hyper-parameters

Identifier Heads H Embedding dimension m Depth L  Training samples nt,,in, ~ Total parameters

5% 4 128 2 00 413,440
T35 4 128 3 00 611,712
T, 4 128 4 00 809,984
TS 4 128 5 00 1,008,256
5% 4 128 6 00 1,206,528
755 8 256 2 00 1,613,312
755 8 256 3 00 2,403,072
T 8 256 4 00 3,192,832
T5S 8 256 5 00 3,982,592
5% 8 256 6 00 4,772,352
T390 4 128 2 3000 413,440
T390 4 128 3 3000 611,712
750 4 128 4 3000 809,984
90 4 128 5 3000 1,008,256
e 4 128 6 3000 1,206,528
9" 4 128 2 1000 413,440
1000 4 128 3 1000 611,712
T,1000 4 128 4 1000 809,984
71900 4 128 5 1000 1,008,256
T 4 128 6 1000 1,206,528

Table 3. Hyper-parameters of all MaskTra nsformerf)’z, 1, u trained for the empirical analysis.

G.2 Exponential Increases in k-Hop Capacity with Depth (Empirical Claim G.1; Figures 6 to 8)

We visualize the relationship between the depth L of a transformer and the largest k such that err}!(7") is small in
Figure 6, Figure 7, and Figure 8. We exhibit the relationship in its simplest form by considering transformers with heads
H = 4, embedding dimension m = 128, and new training samples on every epoch. The figures provide alternate views of
erry(T7%) foreach L € {2,3,4,5,6} with n = 100 samples for each k € [kmax]-

Together, these plots illustrate a sharp phase transition when D = |log, k| + 2, which identically matches the depth scaling
in Theorem 4.2. Increasing the depth of a transformer by one approximately doubles the number of values k € [kmax]
with bounded error. For instance, following the theoretical and empirical intuition of (Bietti et al., 2023), the depth L = 2
transformer TZEOQ succeeds in solving the standard induction heads task, but attains at least 10% error on all other tasks.
Likewise, a depth L = 3 model has error bounded by 1% for k € {1, 2}, which increases rapidly for larger values of k.

This doubling phenomenon suggests that simple compositional tasks with a larger number of compositions than the depth of
the model are easily learnable if the model can employ a doubling trick, similar to the one used in the proof of Theorem 4.2.
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Evaluation of L-depth, 4-headed, infinite-sample intransformers on hopk
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Figure 6. Zoomed in version of Figure 2. Evaluation of transformers erry (7;77,) with depths L € {2,3,4,5,6}, heads H = 4, and
embedding dimension m = 128 trained on the multi-hop task. This figure plots errj (T77,) on n = 100 samples as a function of k for
each choice of L.

This relationship between compositionality and depth reflects the results of Zhang et al. (2023), where the learnable task
complexity also scales super-linearly in depth.

Given the lower bounds of Corollary 4.3, one may ask why models with depth L < |log, k| achieve non-trivial success on
hop,, tasks that cannot be represented in a compositional manner. There are several relevant explanations:

1. In these experiments, the embedding dimension m = 128 is actually larger than the context N = 100, which may
enable the model to memorize more of its preceding samples and offload logical work to the MLP, rather than executing
a pointer-doubling strategy. While practical models regularly have the opposite (and our theoretical results are oriented
around that parametric scaling), we used a larger m than is necessary for representational purpose to improve the
optimization landscape and speed convergence.

2. This is made further plausible by the small alphabet size |%| and randomly drawn sequences X', which place effective
bounds on how much look-back from each token i is necessary to compute hop,, (X);.

Nonetheless, these results provide strong support that models are substantially easier to train to low classification error in the
regime where the depth is sufficient to implement a pointer-doubling construction. In the following subsection, we further
investigate this phenomenon by examining the intermediate attention matrices produced by trained models.
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Evaluation of L-Depth, 4-headed, infinite-sample transformers on hopy
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Figure 7. Alternate view of Figure 6 including erry (7,7, ) plotted as a function of L for each k.
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Figure 8. Alternate views of Figure 6 including erry (T77,) as a table with one cell for each (L, k) pair.
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G.3 Width Variation (Empirical Claim G.1; Figure 9)

While the primary focus of these empirical results and the paper as a whole is on the role of depth in the ability of transformer
to learn parallelizable and compositional tasks, we also aim to understand the interplay of depth and width in learning the
multi-hop task. Here, we contrast the previous transformers T4°7°L with models Tg’fL that have more heads (H = 8) and
larger embedding dimensions (m = 256). We plot the classification errors of all 10 architectures over 16 hop,, sub-tasks in
Figure 9.

Here, we observe a rough correspondence in performance between the transformers Tj}f ; and Tog 11 and the same
doubling phenomenon as is evident models with I = 4 heads. That is, while increasing the width improves the classification
error of learned models, it does so in a far less parameter-efficient manner than incrementing the depth. As mentioned
before, the relative success of wide and shallow transformers is likely contingent on the relatively short context length /N and
alphabet size |X|. However, these results still suggest an important role for wider models to play beyond representational
capabilities of transformers.

Evaluation of L-depth, H-headed, infinite-sample intransformers on hopy

Error: errk(T)

Figure 9. Comparison between the errors erry (T ;,) of transformers with embedding dimension and heads (m, H) = (4, 128) (dashed
line, same plots as Figure 6) and (m, H) = (8, 256) (solid line) trained on the multi-hop task, evaluated on n = 100 samples per hop,,
task.
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G.4 Mechanistic Alignment with Theoretical Construction (Empirical Claim G.2, Figures 10 to 15)

We use standard attention-based interpretability techniques to better understand what particular logical circuits are imple-
mented by transformers trained to solve the multi-hop task. By qualitatively inspecting the attention matrices produced
by trained models and by measuring the alignment between those inner products and partial solutions find” of hop L WE
uncover a striking correspondence between the behaviors of the trained models and the transformer construction designed in
the proof of Theorem 4.2. We further observe that trained transformers with high accuracy have “decisive” self-attention
units with particularly strong correlations to some find” intermediate, while poorly performing models have less predictable
attention activations.

For a fixed trained model T € Tra nsformer%) 1.1» We let A“MT](X) represent the output of the hth self-self attention
matrix in the (th layer for h € [H] and ¢ € [L], evaluated at some input X € dom(hop,,). That is, we let

ASMT)(X) = softmax (Q“M(X K M (X 1T 4+ T) e RV*N,

where X1 is the intermediate state representing the output of layer £ — 1 of T on input X and I' is the causal masking
matrix. Each row ¢ in the matrix represents the coefficients of the convex combination of value vectors affiliated with each
query, which can be used as a signifier of which embeddings ¢ receives information from.

Visualization of find’ Alignment for hop,4 and Depth L = 6 (Figure 10). The outputs of self-attention matrices are
often highly structured matrices that reveal which relationships between tokens are encoded and how information is shared
within the model (Li & McClelland, 2022; Clark et al., 2019; Rogers et al., 2021). We plot several self-attention matrices
associated with a depth L = 6, heads /1 = 4 transformer trained in the infinite-sample regime and evaluated on a single
sample X € dom(hop,) in Figure 10.

By looking at the six self-attention matrices, one can infer that all heads are “decisive” and obtain nearly all of their relevant
information from a single value embedding, rather than averages of a large number of embeddings. The top-left self-attention
matrix, which belongs to the first self-attention head, clearly associates elements with their predecessors, which is identical
the to the function of our lookUp attention head in the first layer of the hop,, construction of Theorem 4.2.

While the roles of the other heads are not immediately obvious, they can be understood by overlaying colored matrices
with non-zero cells at (i, find’; (¢)) for some j < k. For instance, the top-right attention matrix in layer ¢ = 2 corresponds
almost exactly with ﬁndﬁf (as suggested by the second-layer of our construction), and the others are closely associated with
ﬁndﬁg, find%, ﬁndi, and ﬁndi for layers ¢ = 3,4, 5, 6 respectively. This is a remarkably close correspondence to our

£—2
construction, which includes a self-attention matrix in the /th layer whose activations correspond to ﬁnd§( .

While not conclusive, this experiment suggests a strong alignment between the behaviors of this particular transformer
and our theoretical construction. This suggests a high likelihood that the transformer successfully learns to solve hop, 4 by
employing a pointer-doubling primitive. However, these results apply to only a single model, a single task, and a single
input; in the subsequent section, we generalize this interpretability analysis.

Alignment between Attention Jeads and find’ for a Single hop  Sub-Task (Figures 11 to 13). To broaden and quantify
the analysis of the previous section, we measure the extent to which each self-attention head mimics the functionality of
find’, which are partial computations of hop,, that are employed in the proof of Theorem 4.2. We use cell-wise matrix inner
products to quantify the strength of correlation between a self-attention matrix and a fixed function potentially relevant to
interpretability.

For two matrices A, B € RVXN et

2
|A® Bl|[p

A,B) = 1222
A B) = AT 131,

be their normalized element-wise inner-product, where ||-||  is the Frobenius norm and © denotes element-wise multiplica-
tion. For some function g : [N] — {0} U [N], we let (g, B) := (A9, B), where

2 {1 if g(j) = i,

J 0 otherwise.
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Self-attention matrix AL"[TZ ¢1(X), X € dom(hopie)
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Figure 10. The outputs of several internal self-attention matrices A*™ [T7s](X) € R190%100 of 5 trained multi-task transformer of depth

D = 6 evaluated on a single sample X ~ Dyp, , are plotted in grayscale. In each cell, the matrix with non-zero entries (find% (7), 1) ie[N]
for some j is included in transparent color to visualize the function of each self-attention unit.
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We use this notation to analyze experimentally how closely the self-attention matrices A%" encode the intermediate products
of the proof of Theorem 4.2, ﬁndJX. For n iid samples Xt .., X"e~ Dhopk , let

; 1< ; .
(A find?), = =3 <ﬁndJXL,AZ’h(X )> .
=1
Due to the non-negativity of A%" and find?, (AL, ﬁndj> . €10,1], and (Ab ﬁndj> , = Lonlyif Vi € [n]:

n? n7

Al"h(XL)i,z‘/ =1 < find/ i) =17

These inner products make it possible to visualize the strength of correlations of all heads in a particular model T' €
MaskTransformer%’ . With all target functions find” on a collection of random samples drawn from some Dy, -
Figure 11 visualizes the functionality of all attention units in the 4-layer, 4-head transformer 77 when evaluated on the
sub-task hop,. The figure gives several clues about how hop, is successfully computed by the trained model: the second
layer and third layer both utilize find" to determined find? jointly by the end of the third layer. The fourth layer uses the
ability to create a stable find? construction to obtain find* and hence hop 4

This plot also indicates the relative stability of this circuit interpretation of the procedure: a large number of heads are
very strongly correlated with find" or find? across the 10 samples, which indicates they are likely utilized consistently to
compute those intermediates regardless of input.

Figure 12 is a similar plot for the transformer 7 with depth L = 6, evaluated on the task hop,4. The functionalities
of the heads visualized in Figure 10 can be observed in the corresponding inner products. The collection of all inner
products presents further evidence that the pointer-doubling phenomenon occurs in the trained models, due to the increase in
compositions present in the largest inner products of deeper attention units.

While Figures 11 and 12 showcase the decisive alignment between self-attention heads and particular partial computations
find? in successfully trained models, Figure 13 demonstrates the loss of that decisiveness in poorly performing transformers.
There, we visualize the alignments of the trained depth-4 transformer 75 evaluated on hop, ¢, in which it attains a 61%
token error. While a self-attention units in the second layer coincides with find®, no strong correlations emerge deeper
in the model. Unlike the other figures, the deeper self-attention units are “indecisive,” lacking any large inner products
and failing in particular to correlate with any highly compositional targets. This provides a visual explanation of the
transformer’s failure, since it lacked the effective representational capacity needed to learn a circuit with consistent and
highly-compositional outputs.’

Alignment between Attention Heads and find’ for all hop . Sub-Tasks (Figures 14 and 15). For an even more global
lens on the mechanistic interpretability of these trained models, we visualize how the maximum inner products of each
self-attention unit change for a fixed transformer for different sub-tasks hop,,. Figures 14 and 15 do so for the depth-4
and depth-6 networks respectively. The hue of each cell (and its numerical label) corresponds to the j* with the most
correlated inner product with corresponding attention unit A*" in samples from dom(hopy,), and the opacity corresponds to
the magnitude of that inner product.

The takeaways of the previous inner product figures are apparent in these: the approximate doubling for the depth L = 6
transformer can be visualized by the vertically changing opaque colors. Conversely, a separation can be observed between
the tasks where the depth L = 4 transformer performs well and has “decisive” self-attention units deeper in the network and
those where it does not.

Moreover, the figures (especially Figure 15) demonstrate that several self-attention units have a consistent function among
samples from the same task, while adapting in function to different hop,, tasks. This is most apparent in head A = 4 of layer
¢ = 6, where the self-attention head functions as find', find®, find® or find” depending on the complexity of the task.

“Since these experiments are in the small alphabet size |X| = 4 regime, this task performs better than random guessing due to
inferential capabilities that are are powered by the high embedding dimension and do not require implementing a pointer-chasing algorithm.
We suspect that the “checkerboard” patterns are powered by this inference.
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(AL findl), 4 for depth-4 transformer and X € dom(hopy)
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Figure 11. Plots of all inner products <Aé’h (T73], ﬁndj>1 0.4 forn = 10 samples X L ..., X' ¢ dom(hop,) for the 4-layer transformer
T
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(ALP find)),, 16 for depth-6 transformer and X € dom(hop16)
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Figure 12. Plots of all inner products (A" [T}%], ﬁndj>10 16 for n = 10 samples X' ..., X' ¢ dom(hop,g) for the 6-layer
transformer 77%.
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Layer £, head h

Figure 13. Plots of all inner products (A“"[T7%], find”) |~ for n = 10 samples

transformer 775.
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argmax;(AL", find/),, « for depth-4 transformer and X € dom(hopy)
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Figure 14. Plots of all the maximum inner products <Ae’h[T 5], find’ >n , forn = 10 fixed samples X L., X" ¢ dom(hop,)
for each &k € [16] for the 4-layer transformer T7%. The hue corresponds to the index of the largest inner product j* =
arg max; <Ae’h (T3], find? >n .» While the opacity is determined by the magnitude of the correlation.
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argmax;(AL", find/),, « for depth-6 transformer and X € dom(hopy)
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Figure 15. Plots of all the maximum inner products <A€’h[Tf,%}, ﬁndj>n , forn =10 fixed samples X', ..., X' ¢ dom(hop,) for
each k € [16] for the 6-layer transformer T7%.
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G.5 Finite-Sample Experiments (Empirical Claim G.3; Figures 16 to 19)

While most of our multi-hop experiments reside in the infinite-sample regime (where new samples are generated for every
batch), we also trained several transformers on 7.4, € {1000, 3000} samples to evaluate whether generalization is possible
in this domain, especially when the number of model parameters far exceeds the number of training samples. The two
training set sizes expose a sharp threshold between two different generalization modes: low accuracy due to overfitting
for most models on most tasks when 7,5, = 1000 and high accuracy approaching the infinite-sample regime when
Ntrain = 9000.

Figure 16 compares the infinite-sample transformers 777 with the 3000-sample models Ti%)o. 3000 training samples are
sufficient to obtain comparable (if slightly worse) generalization error rates across model depths L and task complexities k.
This supports a hypothesis that the existence of a small transformer that perfectly fits the data enables larger transformers to
actually realize such architectures in the over-parameterized regime.

On the other hand, Figure 17 demonstrates that transformers trained on n;,i, = 1000 samples suffer poor performance on
most tasks due to overfitting. While all models perform poorly on hop,, sub-tasks for large k, a depth-separation exists for
simpler sub-tasks like hops. This suggests a positive inductive bias of deep transformers for simple compositional decision
rules, which enables far better performance than other models in the overfitting regime.

To investigate this gap in performance, we contrast the self-attention inner products of depth-4 7,/%°° and depth-6 T 3"

on the task hop; in Figures 18 and 19. The 6-layer model obtains a far superior classification error on the sub-task, and
the interpretability plot establishes a plausible circuit it implements: It uses self-attention heads with find" functionality
consecutively in layers 4, 5, and 6, which enables the robust retrieval of find® and hops. On the other hand, the 4-layer plot
exhibits poor performance and only has two layers with find* functionality; this justifies the relatively strong performance
of T4179100 on hop, and its poor performance on hops.

While neither model learns any kind of pointer-doubling construction, the 6-layer model is still able to learn a simple
construction of hop, that the 4-layer model misses. The representational suitability of deeper models to compositional
reasoning may thus provide a favorable inductive bias for learning the task in a setting with little data.

Evaluation of L-depth, 4-headed, 3000-sample intransformers on hopg
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Figure 16. Comparison between the errors erry (7}'y,) of transformers trained in the infinite sample regime (dashed line) and on
Nitrain = 3000 samples (solid line) on the multi-hop task, evaluated on n = 100 samples per hop,, task.
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Evaluation of L-depth, 4-headed, 1000-sample intransformers on hopg
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Figure 17. Comparison between the errors erry (7}';) of transformers trained in the infinite sample regime (dashed line) and on
Ntrain = 1000 samples (solid line) on the multi-hop task, evaluated on n = 100 samples per hop,, task.

(AL findl), 3 for depth-4 transformer and X € dom(hops), trained on n; = 1000 samples
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Figure 18. Plots of all inner products <A£’h[Tj‘9100], find’ > 10.5 for n = 10 samples X 1 ..., X ¢ dom(hop,) for the 4-layer trans-

1000
former Ty 4.
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(AL findl), 3 for depth-6 transformer and X € dom(hops), trained on ny = 1000 samples
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Figure 19. Plots of all inner products <Ae'h[Tj,%00], find? >1073 for n = 10 samples X', ..., X'® € dom(hop,) for the 6-layer trans-
former T41,%0°.
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