ProSparse: Introducing and Enhancing Intrinsic Activation Sparsity
within Large Language Models

Anonymous ACL submission

Abstract

Activation sparsity refers to the existence
of considerable weakly-contributed elements
among activation outputs. As a prevalent prop-
erty of the models using the ReLU activa-
tion function, it has been proven a promis-
ing paradigm to boost model inference effi-
ciency. Nevertheless, most large language mod-
els (LLMs) adopt activation functions with-
out intrinsic activation sparsity (e.g., GELU
and Swish). Some recent efforts have ex-
plored introducing ReLLU or its variants as the
substitutive activation function to help LLMs
achieve activation sparsity and inference ac-
celeration, but few can simultaneously obtain
high sparsity and comparable model perfor-
mance. This paper introduces a lossless spar-
sification method named “ProSparse” to push
LLM:s for higher activation sparsity without de-
creasing model performance. Specifically, after
substituting the activation function of LLMs
with ReLU, ProSparse adopts progressive spar-
sity regularization with a factor smoothly in-
creasing along sine curves in multiple stages.
This can enhance activation sparsity and al-
leviate performance degradation by avoiding
radical shifts in activation distribution. With
ProSparse, we obtain high sparsity of 89.32%
and 88.80% for LLaMA2-7B and LLaMA2-
13B, respectively, achieving comparable per-
formance to their original Swish-activated ver-
sions. Our inference acceleration experiments
further demonstrate the practical acceleration
brought by higher activation sparsity.

1 Introduction

Recent years have witnessed the significant break-
through made by large language models (LLMs),
and these LLMs display commendable perfor-
mance across a wide range of NLP tasks (Brown
et al., 2020; Wei et al., 2021; Ouyang et al., 2022;
OpenAl, 2023; Touvron et al., 2023a,b; Achiam
et al., 2023). Nevertheless, the formidable compu-
tational costs required by LLM deployment and

inference pose a considerable challenge to the
wider application of LLMs (Aminabadi et al., 2022;
Pope et al., 2023). Among various techniques for
handling this challenge, the utilization of activa-
tion sparsity is a promising one, for its effective-
ness in enhancing inference efficiency (Liu et al.,
2023; Song et al., 2023) by leveraging the weakly-
contributed elements among the outputs of LLM
activation functions.

Using ReLLU, which naturally outputs zero ele-
ments, as the activation function is a straightfor-
ward method to achieve intrinsic activation spar-
sity and widely adopted in early LLMs (Raffel
et al., 2020; Zhang et al., 2022a). However, recent
LLMs predominantly favor GELU and Swish (Tou-
vron et al., 2023a; Chowdhery et al., 2023; Al-
mazrouei et al., 2023), and thus lack intrinsic ac-
tivation sparsity. To pursue the sparsity-based in-
ference acceleration, ReLUfication (Zhang et al.,
2022b; Mirzadeh et al., 2023) has been explored
to introduce the ReLLU-based intrinsic activation
sparsity into non-ReLU LLMs. Preliminary Re-
LUfication methods (Zhang et al., 2022b, 2024)
directly substitute the activation functions of non-
ReLU LLMs with ReLU. Since activation function
substitution cannot overcome the inherent limita-
tion imposed by the original non-ReL.U activation
distribution, Mirzadeh et al. (2023) further intro-
duce the inserted and shifted ReLU functions to
enforce higher sparsity through radically shifting
the activation distribution. Despite the promise of
ReLUfication, existing efforts fail to achieve sat-
isfactory activation sparsity and risk performance
degradation caused by ReL.Ufication.

In this paper, we propose a lossless progressive
ReLUfication method to help non-ReLLU LL.Ms ob-
tain high activation sparsity without compromising
performance. We name the method “ProSparse”,
which includes three steps shown in Figure 1: ac-
tivation function substitution, progressive sparsity
regularization, and activation threshold shifting.
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Figure 1: The overall architecture of ProSparse, which includes three steps: activation function substitution,
progressive sparsity regularization, and activation threshold shifting.

The first step is to replace the activation function of
non-ReLU LLMs with ReL.U and then apply con-
tinual training for adapting LLM to the new ReLU
activation. As discussed above, this can hardly
achieve satisfactory sparsity. Therefore, in the
second step, we apply sparsity regularization (Ma
et al., 2019) to the intermediate activation outputs
of the feed-forward networks (FFNs) within LLMs
to seek higher activation sparsity. Considering the
potential performance risks of forcing the fixed reg-
ularization factor (Ma et al., 2019; Li et al., 2020),
we progressively increase the regularization factor
in multiple stages. Concretely, the factor is set to
a low constant value for the warmup stage. Next,
during each subsequent stage, the factor undergoes
a gradual increase along a gentle sine curve. Fol-
lowing the cosine annealing learning rate sched-
uler (Loshchilov and Hutter, 2016), such progres-
sive sparsity regularization can provide more time
for the model to adapt to increasing regulariza-
tion and avoid a radical shift in activation distribu-
tion, thereby alleviating performance degradation.
The final step, inspired by FATReLU (Kurtz et al.,
2020), modifies the vanilla ReLU by shifting its
activation threshold to a positive value. This prunes
less influential neurons to further improve sparsity.

In our experiments, we apply ProSparse to the
ReL Ufication of Swish-activated LLaMA?2 (Tou-
vron et al., 2023b).  Activation sparsity of
89.32% and 88.80% are successfully achieved for
LLaMAZ2-7B and LLaMA2-13B respectively, with
lossless performance on various LLM benchmarks.

Furthermore, we demonstrate the practical infer-
ence acceleration effect of higher activation spar-
sity by applying an approximate algorithm and an
accurate algorithm to the inference of models with
different sparsity. For the approximate one, we
use PowerInfer (Song et al., 2023), which achieves
state-of-the-art speedup ratios tailored for sparsely-
activated LLMs at the expense of potentially inac-
curate inference due to the mistakes of activation
predictors. For the accurate one, we implement
two GPU operators that leverage the input-side
and output-side sparsity during the computation
of ReLU-activated FFN layers. The experimental
results demonstrate that those models with higher
sparsity can achieve more significant inference ac-
celeration with both algorithms.

In summary, we make the following contribu-
tions in this paper: (1) We propose ProSparse,
a lossless ReLUfication method that can con-
verts non-ReLU LLMs into much sparser ReL.U-
activated LLMs without decreasing model per-
formance. (2) Sparsely-activated versions of
LLaMA2-7B and LLaMA2-13B comparable to
their original Swish-activated versions in perfor-
mance are both obtained and will be made avail-
able. (3) We demonstrate the practical inference
acceleration effect of higher activation sparsity that
ProSparse can reach.

2 Related Works

Here we mainly introduce works on improving
LLM inference efficiency. More details on LLMs



can refer to the existing surveys (Bommasani et al.,
2021; Zhao et al., 2023). More related works about
L regularization are listed in Appendix A.

Despite the commendable performance of LLMs,
the sustainable increase in the scale of model pa-
rameters brings the exponential growth of inference
computations, making the deployment of LLMs
a formidable challenge (Kaplan et al., 2020; Liu
et al., 2023). To reduce the computational costs
required by the inference of such large models, var-
ious model compression methods have been pro-
posed, such as quantization (Han et al., 2015a; Ja-
cob et al., 2018; Nagel et al., 2019; Zhao et al.,
2019; Bai et al., 2022; Xiao et al., 2023; Yao et al.,
2023), pruning (Han et al., 2015a,b; Molchanov
et al., 2016; Hoefler et al., 2021; Ma et al., 2023;
Sun et al., 2023; Frantar and Alistarh, 2023; Xia
et al., 2023), and distillation (Hinton et al., 2015;
Tang et al., 2019; Touvron et al., 2021; Gu et al.,
2023; Hsieh et al., 2023). Efficient sampling meth-
ods have also been proposed to achieve faster infer-
ence decoding speed (Leviathan et al., 2023; Wang
et al., 2023; Chen et al., 2023; Miao et al., 2023).

In general, none of the above methods involve
leveraging the intrinsic mechanisms within LLMs
to achieve inference acceleration. To this end, some
recent works (Li et al., 2022; Liu et al., 2023; Song
et al., 2023) notice the intrinsic activation sparsity
within some LLMs and exploit this sparsity for
inference acceleration. Activation sparsity refers
to the phenomenon where certain model parame-
ters, corresponding to those zero or small elements
in activation outputs, have a weak impact on fi-
nal LLM outputs given a specific input. These
weakly-contributed parameters are regarded as in-
activated and can thus be skipped during inference
to achieve sparse computation, without redundant
computational resources spent on them. Therefore,
the utilization of activation sparsity is orthogonal
to model compression and efficient sampling, and
these approaches can be easily accumulated.

Previous studies have marked activation spar-
sity as a prevalent phenomenon existing in almost
any ReLU-activated Transformer architecture (Li
et al., 2022), from LLMs (e.g., TS (Raffel et al.,
2020) and OPT (Zhang et al., 2022a)) to some vi-
sion models (e.g., ViT (Dosovitskiy et al., 2020)).
However, recent LLMs such as Falcon (Almazrouei
et al., 2023) and LLaMa (Touvron et al., 2023b)
prevalently adopt non-ReL.U activation functions
such as GELU (Hendrycks and Gimpel, 2016) and

Swish (Elfwing et al., 2018) and do not exhibit
activation sparsity. Therefore, to leverage the mer-
its of activation sparsity without training a ReLLU-
activated LLM from scratch, many works con-
duct ReLUfication, which introduces sparse ReLU-
based activations into non-ReLU LLMs. Zhang
et al. (2022b) train the GELU-activated BERT (De-
vlin et al., 2018) into a ReLLU-activated version
after a direct substitution of the activation function.
Zhang et al. (2024) apply a similar paradigm to
Falcon and LLaMA, which are activated by GELU
and Swish respectively. Since activation substitu-
tion cannot reach satisfactory sparsity, mainly due
to the unhandled inherent limitation of the original
non-ReL.U activation distribution, Mirzadeh et al.
(2023) introduce the inserted and shifted ReLU
activation functions and conduct a radical shift in
activation distribution. Although these shifted op-
erations are claimed to achieve sparsity of nearly
95%, we cannot replicate the results in our experi-
ments (Section 4.2) and the sparsity is still limited.

As discussed above, we can clearly recognize
the promise of activation sparsity and also observe
the key challenge of leveraging ReL.Ufication to
achieve activation sparsity: how to concurrently
achieve high sparsity and lossless performance. To
this end, this paper introduces ProSparse, a ReLU-
fication method that can obtain high ReLLU-based
activation sparsity for non-ReLU LLMs without
performance degradation.

3 Methodology

3.1 Definitions and Notations

For the convenience of subsequent demonstrations,
here we define activation sparsity within LLMs in
detail. Since the activation function mainly exists
in the FFN layers of LLMs, we first formalize the
computation process of FENs. Given the hidden
dimension d,,,,4¢; and the FFN intermediate dimen-
sion d , the computation process of a gated FFN
(i.e., the most widely adopted FFN architecture in
recent Transformer-based LLLMs (Dauphin et al.,
2017; Shazeer, 2020)) can be formalized as:
s=o0(xW7T), x; =s0o (xWT),

S
)
FFN(x) = x; W7,

where x € Rmodel g x; € R%f, o, and ® de-
note the input hidden states, the gating scores,
the intermediate outputs, the activation function,
and the element-wise multiplication respectively.



W,, W, € R *dmodet and Wy € Rmoderdys
are learnable weights.

We define the activation sparsity (hereinafter
abbreviated as sparsity) as the ratio of zero ele-
ments (i.e., inactivated elements) in x; for a spe-
cific input x. However, since the sparsity often
varies in different layers for different inputs, we
evaluate the sparsity of the whole LLM using the
average sparsity, defined as the average value of
sparsity across all layers in an LLM on a suffi-
ciently large amount of input data.

In this paper, we focus on the task of ReLUfi-
cation, namely converting an LLM using a non-
RELU activation function o (e.g., GELU or Swish)
into a ReLLU-activated one, while making the acti-
vation sparsity as high as possible and mitigating
performance degradation.

3.2 ProSparse: Lossless ReLUfication

We propose ProSparse to achieve the above targets.
In ProSparse, three steps are carefully designed to
introduce and enhance the intrinsic activation spar-
sity for a non-ReLLU LLLM: (1) activation function
substitution; (2) progressive sparsity regularization;
(3) activation threshold shifting.

Activation Function Substitution For lack of
attention to activation sparsity, a majority of re-
cent mainstream LLLMs adopt non-ReLLU activation
functions such as GELU and Swish that output few
zero elements (i.e., low activation sparsity accord-
ing to the above definition). Therefore, the first
step of ProSparse is to introduce intrinsic sparsity
through activation function substitution, which re-
places the FFN activation function o with ReLU,
namely o(z) = max(z,0), followed by continual
training. This can make the ratio of zero activa-
tion elements significantly larger and preliminarily
adapt the LLM to new ReLU activation.

Progressive Sparsity Regularization Neverthe-
less, activation function substitution by nature does
not change the activation distribution, which will
potentially limit the sparsity to relatively low val-
ues. To push for higher sparsity, a typical method is
L sparsity regularization (Li et al., 2022), which
introduces the L; regularization loss as an extra
training target. Given the intermediate output x;
of the ¢-th FFN layer in an LLM, the regularization
loss is defined as:

Lreg = A |xall1, 2)

reg

Algorithm 1 The process of progressive sparsity
regularization in ProSparse.

Require: The total number of stages S > 1.

Require: A sequence of peak A values {\;}5,
SLO< A <X <. < Ag.

Require: Accumulated step numbers of respective
stages {Ti}gq:l, st.0< T <Ty <...<Tg.

1: // warmup stage
2: fort < 1to 17 do
3: A\
4: end for
5: // incremental stages
6: fori < 2to S do
7. fort < T, 1 +1toT;do
8 0 gfsin(—% + i) +1]
9: A= X1+ (N = Aic1)
10:  end for
11: end for
where || - || is the L; norm operator and A is the

regularization factor. For an LLM with K FFN
layers, the total regularization loss is summed from

the losses of all layers, namely L., = Y. | Ll

Considering the potentially unstable training and
performance degradation due to fixed regulariza-
tion factors (Georgiadis, 2019; Kurtz et al., 2020;
Li et al., 2022), we propose the progressive spar-
sity regularization, where the factor A is carefully
scheduled to gently increase in multiple stages, as
displayed in Algorithm 1.

Concretely, for the warmup stage, we set A to a
constant value, which is relatively small to prevent
radical activation distribution shifts and introduce
higher preliminary sparsity. Next, for each of the
remaining stages (hereinafter called incremental
stages), A is scheduled to increase along a smooth
sine curve from a trough value to a peak value. In-
spired by the cosine annealing scheduler for learn-
ing rates (Loshchilov and Hutter, 2016), we choose
the sine function for A increase owing to its spe-
cial trend. Specifically, the sine function has small
derivatives near the trough and the peak, thereby A
will not increase radically around these two points.
This provides the LLMs with more time to adapt
the activation distributions to the newly increased
L regularization. Notably, each stage is accompa-
nied by certain steps of training. The step number
and peak value of each stage are chosen according
to the target sparsity and stability requirements.



Activation Threshold Shifting As demonstrated
by recent works, there exist considerable amounts
of non-zero low elements in the activation outputs,
which have little influence on final results and thus
can be pruned for higher sparsity (Zhang et al.,
2024). Therefore, following FATReLU (Kurtz
et al., 2020), we modify the ReLU by shifting the
activation threshold, i.e.,

r whenx > 1T,

o(z) = { (3)

0 otherwise,

where 1" > 0 is a positive threshold. As long as
T is properly chosen (see Appendix G), such an
adjustment can increase sparsity with negligible
losses (Zhang et al., 2024).

3.3 Practical Inference Acceleration Test

To go further beyond former theoretical accelera-
tion analyses based on FLOPs (Floating Point of
Operations) (Mirzadeh et al., 2023) and establish
the practical value of ProSparse, we compare the
acceleration effects of LLMs with different sparsity
on real GPU hardware. For comprehensiveness, we
introduce two categories of acceleration algorithms
based on activation sparsity: an approximate algo-
rithm and an accurate algorithm.

Approximate Acceleration Algorithms Utiliz-
ing activation sparsity, recent approximate accel-
eration algorithms predominantly rely on activa-
tion predictors, typically small neural networks, to
forecast the activation distributions indicated by
the sparse intermediate outputs x; given a specific
input x (Liu et al., 2023; Song et al., 2023). In
this way, they can make wiser hardware allocation
or computation policies to avoid resource waste
on weakly-contributed parameters. However, their
efficiency and accuracy largely depend on the pre-
dictors’ performance, and invalid predictions can
cause suboptimal hardware allocation or even in-
ference inaccuracy.

Therefore, to test a sparse LLM’s practical ac-
celeration value with approximate algorithms, we
focus on three metrics: the activation recall (here-
inafter abbreviated as recall), the predicted sparsity,
and the inference speed. The former two metrics
evaluate the performance of activation predictors
as well as the activation predictability of a sparse
LLM (Zhang et al., 2024).

Concretely, the recall refers to the average ratio
of correctly predicted activated elements among all

the truly activated elements in x;. The predicted
sparsity is calculated as the ratio of predicted in-
activated elements among all the elements in x;.
Predictors with higher recall and predicted sparsity
can help an acceleration framework obtain a bet-
ter grasp of activation distribution and thus make
wiser policies for faster inference as well as low
inference inaccuracies (Liu et al., 2023).

For inference speed, we adopt PowerInfer (Song
et al.,, 2023), a state-of-the-art approximate al-
gorithm as a representative to measure practical
speedup ratios. Refer to Appendix B for more in-
troductions of approximate algorithms.

Accurate Acceleration Algorithms To achieve
acceleration without potential inference inaccura-
cies, we implement two hardware-efficient sparse
GPU operators with system-level optimizations,
such as operator fusion, coalesced memory access,
and vectorization, thereby exploiting input-side and
output-side sparsity in Equation 1.

Concretely, we reorganize a ReLU-activated
gated FEN into three major steps and our two oper-
ators are responsible for the step (2) and (3) respec-
tively: (1) A dense matrix-vector multiplication
operator xW ! which can be directly supported by
vendor libraries such as cuBLAS; (2) A fused op-
erator of ReLU and s ® (xW7) with output-side
sparsity; (3) A sparse matrix-vector multiplication
operator x; W1 with input-side sparsity.

We adopt the single-step speedup ratios of steps
(2) and (3) with these two operators respectively to
reflect the practical accurate acceleration potential
of sparse LLMs. Refer to Appendix C for imple-
mentation details of our operators.

4 Experiments

4.1 Experimental Settings

Pre-Training Datasets We use a mixed dataset
consisting of both language modeling datasets and
instruction tuning datasets. The language mod-
eling datasets are directly cleaned and filtered
from raw corpus, including StarCoder (Li et al.,
2023), Wikipedia (Wikimedia Foundation, 2022),
Pile (Gao et al., 2020), and other collected datasets.
The instruction tuning datasets mainly involve in-
put instructions and annotated target answers, in-
cluding UltraChat (Ding et al., 2023), multiple-
choice QA data of P3 (Sanh et al., 2021) (Choice
P3), PAQ (Lewis et al., 2021), Unnatural Instruc-
tions (Honovich et al., 2022), Flan (Longpre et al.,



Average Code Commonsense

Reading

Setting Sparsity | Generation  Reasoning ~ Comprehension GSM8K MMLU BBH AGIEval | Average
Original-7B - 16.37 69.59 61.87 1296 4445 3296 27.53 37.96
ReluLLaMA-7B | 66.98 15.85 69.64 70.54 5.84 38.64 35.07 27.73 37.62
Vanilla ReLU-7B | 66.04 21.31 70.73 73.22 1122 4922 36.11 28.01 41.40
Shifted ReLU-7B | 69.59 20.50 70.09 73.17 13.87 4854 3520 2794 41.33
Fixed L;-7B 91.46 18.85 66.01 55.39 2.27 3228 3140 2648 33.24
ProSparse-7B* 88.11 19.47 66.29 63.33 1274 4521 33.59 27.55 38.31
ProSparse-7B 89.32 19.42 66.27 63.50 12.13 4548 3499 27.46 38.46
Original-13B - 20.19 72.58 71.55 2221  54.69 37.89 29.33 44.06
ReluLLaMA-13B| 71.56 20.19 70.44 73.29 18.50  50.58 3797 28.22 42.74
ProSparse-13B* | 87.97 29.03 69.75 67.54 2540 5478 40.20 28.76 45.07
ProSparse-13B 88.80 28.42 69.76 66.91 26.31 5435 3990 28.67 44.90

Table 1: The overall experimental results with comparisons of activation sparsity (%) and downstream performance
(%). “Original” refers to the original Swish-activated LLaMA2 versions in (Touvron et al., 2023b). “ProSparse-7B*”
and “ProSparse-13B*” denote the ProSparse versions without activation threshold shifting.

2023), Super-Natural Instructions (Wang et al.,
2022), and other collected datasets.

Evaluation Benchmarks To evaluate the task-
specific performance of the LLMs obtained by
ProSparse, we introduce the following benchmarks.

Code Generation: We compute the average
pass@1 scores on HumanEval (0-shot) (Chen et al.,
2021) and MBPP (3-shot) (Austin et al., 2021).

Commonsense Reasoning: We report the aver-
age 0-shot perplexity (PPL) on PIQA (Bisk et al.,
2020), SIQA (Sap et al., 2019), HellaSwag (Zellers
et al., 2019), WinoGrande (Sakaguchi et al., 2020),
and COPA (Roemmele et al., 2011).

Reading Comprehension: We compute the av-
erage 0-shot PPL on BoolQ (Clark et al., 2019),
0-shot accuracy on LAMBADA (Paperno et al.,
2016) and TyDi QA (Clark et al., 2020).

Other Popular Benchmarks: We report the
average accuracies on GSMS8K (8-shot) (Cobbe
et al., 2021), MMLU (5-shot) (Hendrycks et al.,
2020), Big Bench Hard (BBH) (3-shot) (Suzgun
et al., 2022), and the average PPL on AGI-Eval
(0-shot) (Zhong et al., 2023).

4.2 Overall Results

With ProSparse, we conduct ReL.Ufication on
Swish-activated LLaMA2-7B and LLaMA2-13B.
To demonstrate the advantage of ProSparse, we
introduce the following baseline methods:

Vanilla ReLLU (Zhang et al., 2024) simply re-
places the Swish function with ReLU and intro-
duces continual training to recover performance.

Shifted ReLU (Mirzadeh et al., 2023) is used
to break the bottleneck of vanilla ReLU for higher
sparsity. Specifically, this is done by subtracting

a constant scalar b from the input hidden states
before the ReLU operator: s = ReLU(xW? — b).
This results in a radical left shift in the activation
distribution and thus substantially boosts sparsity.

Fixed L; imposes an L; regularization loss
on the basis of vanilla ReLU. Different from
ProSparse, the regularization factor A is kept con-
stant throughout the training process.

For fairness, all the average sparsity values are
computed on the same mixed dataset for ProSparse
pre-training and all models are trained with the
same number of tokens. The value of A for fixed
L, is set to the average value of the factor dur-
ing the last incremental stage of ProSparse and the
bias b for shifted ReLLU is tuned to ensure best
performance. We also compare our models with
the open ReluLLaMA' and the original Swish-
activated LLaMA?2 versions>. For more hyper-
parameters, see Appendix appendices F to H.

The results are shown in Table 1 (See Ap-
pendix E for performance on each independent
benchmark). As demonstrated by the average spar-
sity and performance scores, ProSparse is the only
ReLUfication method that simultaneously achieves
high sparsity and comparable downstream per-
formance to the original LLaMA2. By contrast,
Vanilla ReLU and Shifted ReLLU can give higher
performance at the expense of low sparsity, while
Fixed L obtains the highest sparsity with a signifi-
cant performance degradation.

To delve deeper into the training dynamics of dif-
ferent ReL Ufication methods, we plot the trends of
sparsity for each method in Figure 2. (1) Among

"https://huggingface.co/SparseLLM/RelulLaMA-7B
2https ://huggingface.co/meta-1lama/Llama-2-7b
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Setting Average | Activation Predicted Powerlnfer | Step (2) Step(2) Step(3) Step (3)
Sparsity Recall Sparsity Speed Time Speedup Time Speedup
ReluLLaMA-7B 66.98 90.89 58.95 11.37 67.12 1.35 63.00 1.32
Vanilla ReLU-7B 66.04 87.72 72.57 12.04 67.85 1.33 63.28 1.31
Fixed L;-7B 91.46 94.51 82.85 19.62 40.99 221 54.19 1.53
ProSparse-7B* 88.11 93.46 75.24 16.30 46.66 1.94 55.56 1.49
ProSparse-7B 89.32 92.34 78.75 - 45.38 2.00 55.05 1.51
ReluLLaMA-13B | 71.56 86.41 71.93 6.59 69.92 1.88 75.47 1.51
ProSparse-13B* 87.97 91.02 77.93 8.67 55.29 2.38 67.50 1.68
ProSparse-13B 88.80 91.11 78.28 - 53.78 2.44 66.73 1.70

* The average time for step (2) and (3) without sparse GPU operators is about 90.55 and 82.92 (us) for 7B, 131.36 and
113.68 (us) for 13B respectively under all sparsity. Shifted ReLU versions are not tested since PowerInfer and our sparse
operators do not support this variant at present. ProSparse versions with activation threshold shifting are not supported by

Powerlnfer, either.

Table 2: The comparison of activation recalls (%), predicted sparsity (%), Powerlnfer inference speeds (tokens per
second), and single-step time (us) with our sparse GPU operators among LL.Ms with different sparsity. “Step (2)”
and “Step (3)” correspond to the steps in Section 3.3. “Time” means the average wall-clock time (us) cost by each
step with our sparse GPU operators, and “Speedup” is the speedup ratio to the setting without operators.
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Figure 2: The trend of sparsity (7B models) along the
training process. “Shifted” denotes Shited ReL.U and
b = 0.1 corresponds to the results in Table 1.

the settings involved, the trend of sparsity is
incremental iff non-zero 1, regularization is ap-
plied.? (2) Though ProSparse does not achieve
high sparsity at first, the warmup stage quickly pro-
duces a considerable sparsity increase, and then
the sparsity consistently grows in a smooth trend.
Finally, the activation threshold shifting makes
a marginal contribution to sparsity. Such a sta-
ble increase in sparsity avoids radical activation
disturbances and provides enough time for adapt-
ing the activation distribution, which is the key to
ProSparse’s lossless performance.

4.3 The Acceleration Effect of Sparsity

Approximate Acceleration Algorithm In this
section, we train the activation predictors for each
sparse LLM obtained by the above ReLUfica-

3We did not reproduce the flat sparsity trend claimed in the
paper of Shifted ReLU (Mirzadeh et al., 2023).

tion methods and compare the recalls, predicted
sparsity, and actual inference speeds on PowerIn-
fer (Song et al., 2023). As the FFN in each Trans-
former layer has different activation distributions as
well as different predictors, the former two metrics
are averaged from the results of all layers. Refer to
Appendix D for training details of predictors.

As demonstrated by the results shown in Table 2,
an increased activation sparsity can considerably
improve the activation recall, the predicted sparsity,
and the inference speed of PowerlInfer. This reveals
the significant practical values of more sparsely
activated LLMs in improving the inference speed
with predictor-based approximate acceleration al-
gorithms and mitigating the inaccurate inference
problem. ProSparse, which reaches a high sparsity
without performance degradation, can thus gain the
most benefits among the above settings concerned.

Accurate Acceleration Algorithm Furthermore,
with LLMs of different sparsity, we measure the
average single-step wall-clock time spent by our
two sparse GPU operators, which are responsible
for step (2) and step (3) in Section 3.3 respectively.
As demonstrated in Table 2, higher activation spar-
sity can make accurate algorithms based on GPU
operators more efficient. Besides, our two sparse
GPU operators also display satisfactory speedup
ratios up to 2.44 and 1.70 respectively with better
acceleration effects for larger models.

4.4 Dataset-Wise Analysis

Despite the satisfactory average sparsity, there still
exist gaps between the mixed pre-training dataset
and the actual input texts that the model will en-



. . e . Choice Unnatural Super-Natural
Setting Mixed | StarCoder Wikipedia Pile | UltraChat P3 PAQ Flan Instructions  Instructions
ReluLLaMA-7B | 66.98 | 66.60 67.16  67.35| 6791 67.35 66.98 67.35 66.42 66.98
Vanilla ReLU-7B | 66.04 | 65.86 65.67 65.86| 67.16 66.42 66.23 65.86 65.49 65.86
Shifted ReLU-7B | 69.59 | 69.59 69.03 69.03| 70.52  69.78 69.40 69.22 69.22 69.03
Fixed L,-7B 9146 | 91.23 8797 8797| 95.45 99.33 98.58 93.52 96.20 98.01
ProSparse-7B* | 88.11 88.20 83.30 84.24| 91.23 97.94 96.74 90.76 93.00 95.71
ProSparse-7B 89.32 | 89.13 84.33 8535| 93.66 98.33 97.28 91.74 93.80 96.32
ReluLLaMA-13B | 71.56 | 71.33 7145  71.56| 7227  71.80 71.21 71.56 70.85 71.33
ProSparse-13B* | 87.97 | 87.50 81.64 83.06| 92.45 98.41 97.54 91.65 92.92 96.40
ProSparse-13B | 88.80 | 88.63 83.65 84.12| 92.65 98.73 97.99 92.54 93.66 96.92

Table 3: The average sparsity (%) on our mixed pre-training dataset (denoted as “Mixed”) and its components.

counter in real-life applications. To investigate the
sparsity of our model under different scenarios, we
compute the sparsity on each component of the
mixed dataset respectively.

As demonstrated in Table 3, the sparse LLMs ob-
tained through L regularization (i.e., Fixed L; and
ProSparse) have a pronounced property of incon-
sistent dataset-wise sparsity. Concretely, the spar-
sity on instruction tuning datasets is significantly
higher than those on language modeling datasets
(i.e., StarCoder, Wikipedia, and Pile). Considering
the contents of datasets, we come to the follow-
ing assumption: the more formatted a dataset is,
the higher sparsity L-regularized models can
achieve. Plain text datasets including Wikipedia
and Pile have the lowest sparsity, followed by the
more formatted code dataset StarCoder. Among
instruction tuning datasets, QA datasets (Choice P3
and PAQ) with the most monotonic input-output
formats obtain the highest sparsity. By contrast,
the sparsity is relatively lower on UltraChat and
Flan, covering general dialogues and a wide variety
of tasks respectively. Notably, dialogues and tasks
with formatted instructions cover a majority of in-
put contents of conversational Al, the mainstream
application form of LLMs. Such higher sparsity on
instruction tuning data will endow ProSparse with
more significant practical values.

4.5 Layer-Wise Analysis

Another problem worth concern is the layer-wise
sparsity, which may potentially impact the load bal-
ance issue and the design of inference frameworks.
Therefore, we compute the sparsity of each layer
for ProSparse models, as shown in Figure 3.

From the tendency of the line chart, we clearly
observe layer-wise sparsity imbalance in that lower
layers are significantly denser than higher layers.
Nevertheless, the activation threshold shifting can
considerably improve the sparsity of lower layers
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Figure 3: The layer-wise sparsity of ProSparse models.
The marker “*” denotes the settings without activation
threshold shifting.

with little impact on higher layers. Although this
technique only contributes marginally to the aver-
age sparsity, it is still indispensable in alleviating
the layer-wise sparsity imbalance issue.

5 Conclusion

In this work, we propose ProSparse, a lossless Re-
LUfication method for introducing and enhancing
intrinsic activation sparsity from non-ReLU LLM
checkpoints without impairing performance. Exten-
sive experiments not only demonstrate the advan-
tage of ProSparse over existing methods but also
reveal its practical values in inference acceleration
with both approximate algorithms and accurate al-
gorithms. Deeper analyses of the sparsity trends,
dataset-wise sparsity, and layer-wise sparsity in-
dicate the reasonableness of progressive sparsity
regularization in smoothing training dynamics, the
ProSparse’s high-sparsity bias for more practical
instruction tuning datasets, and the effectiveness
of activation threshold shifting in alleviating layer-
wise sparsity imbalance.



Limitations

Firstly, the scales of LLMs involved in this work,
including 7B and 13B, are relatively limited. For
more comprehensive studies, both small-scale mod-
els (e.g., 2B or less) and huge-scale models (e.g.,
70B or more) are supposed to be tested.

Next, we only focus on the sparsity-based ac-
celeration of step (2) and step (3) of FFN, leav-
ing a considerable ratio of LLM computation un-
optimized. Actually, there already exist prelimi-
nary works in the sparsification of the attention
layers (Shen et al., 2023; Wortsman et al., 2023).
For future works, we will continue to explore how
to introduce and enhance sparsity in FEN step (1)
as well as the attention layer.

Finally, although the step number of training
stages can be easily determined through the valida-
tion loss or performance, it is still quite empirical
and expensive to search for the best group of peak
regularization factors. In the future, we will try
to find the quantitative relationships between the
sparsity and the L regularization factor. In this
way, it will be much easier to locate proper factors
according to the target sparsity.

Ethics Statement

The authors of this work declare that they have no
conflict of interest. Besides, no animal or human
being is involved as the study objective in any part
of this article.

Moreover, we use the open-source LLM
LLaMA?2 (Touvron et al., 2023b) in this paper,
which is licensed under the Meta LLAMA 2 Com-
munity License. Our usage purpose is only limited
to academic research and does not violate the Ac-
ceptable Use Policy for the Llama Materials*,
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A Extended Related Works of L,
Regularization

L regularization is a classical technique widely
used in statistical learning such as linear regres-
sion (Tibshirani, 1996; Hastie et al., 2009). With
the advent of deep learning, researchers also ex-
plore paradigms of applying L; regularization to
neural networks. One prominent usage is model
pruning (Cheng et al., 2017). Specifically, a term of
loss calculated as the L norm of the sparsification
target is added to the optimization target function
to prompt sparse weights for faster computation.
This has helped acceleration in various conven-
tional neural networks (Han et al., 2015b; Zhao
et al., 2016; Wen et al., 2016; Scardapane et al.,
2017; Ma et al., 2019; Wang et al., 2019) as well as
Transformer-based models (Zhu et al., 2021; Prase-
tyo et al., 2023). Inspired by these works, some
researchers also try to adopt L; regularization for
activation sparsity, mainly in ReLLU-activated con-
volutional networks (Georgiadis, 2019; Kurtz et al.,
2020) and Transformer (Li et al., 2022).

To the best of our knowledge, ProSparse is the
first work using a dynamic L regularization fac-
tor for prompting activation sparsity in neural net-
works. By contrast, a majority of the former works
adopt fixed factors. For more adaptive control,
some of them introduce group regularization (Yuan
and Lin, 2006), namely using different factors for
different parameter groups. Nevertheless, without
dynamic factors, these paradigms can cause a sub-
stantial shift in activation distribution and thus po-
tentially risk performance degradation. The work
most related to ProSparse is Wang et al. (2019),
which introduces incremental regularization fac-
tors that change for different parameter groups at
each iteration. While they focus on the pruning of
convolutional networks, ProSparse handles a dis-
tinct scenario of prompting activation sparsity in
Transformer-based LL.Ms and adopts a completely
different strategy consisting of a progressively in-
cremental factor.

B Extented Introduction of Approximate
Acceleration Algorithms

Existing approximate algorithms are mostly de-
pendent on activation predictors, which are small
neural networks to predict the intermediate activa-
tions x; based on the input hidden states x (Liu
et al., 2023; Song et al., 2023). If one element at
a specific position of x; is predicted to be zero,
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then all the computations associated with this po-
sition can be saved with little or no hardware re-
sources allocated. This is the key mechanism with
which approximate algorithms can often reach a
high hardware utilization rate and speedup ratio.

Nevertheless, such a predictor-dependent accel-
eration effect is largely dependent on the perfor-
mance of the pre-trained activation predictors. For
example, a typical bad case is that an actually acti-
vated element in x; is predicted to be inactivated.
This can bring about negative results including un-
wise hardware resource allocation and erroneously
ignored intermediate logits, which limits the practi-
cal speedup ratios and even causes inference inac-
curacies. Therefore, a sparse LLM can gain more
benefits from approximate algorithms if its activa-
tion distribution is more predictable by the activa-
tion predictor.

To test a sparse LLLM’s practical acceleration
value with approximate algorithms, we involve the
predictability of its activation distribution, which
is evaluated by the performance of its specifically
pre-trained activation predictor. This involves two
key metrics: the activation recall and the predicted
sparsity. A predictor with higher recall will miss
less truly activated elements, therefore reducing
inference inaccuracies and bringing about wiser
hardware allocation. Under comparable recalls, a
higher predicted sparsity indicates fewer elements
to be falsely predicted activated, which largely al-
leviates the waste of computational resources.

C Implementation Details of Sparse GPU
Operators

Input-Side Sparse Operator. The input-side
sparse operator is a sparse matrix-vector multipli-
cation operator for accelerating x; W1, where the
input x; is sparse. Due to the sparsity of input, any
operation involving a zero element in x; can be
omitted. Compared with a standard implementa-
tion of matrix-vector multiplication, both memory
access and computation of the sparse operator will
decrease with the sparsity increasing.
Output-Side Sparse Operator. The output-
side sparse operator is a fused operator consist-
ing of ReLU, sparse matrix-vector multiplication,
and element-wise multiplication, for accelerating
s ® (xW7T), where s is sparse. The sparsity of s
can be propagated to the output of xW7 through
element-wise multiplication, which means that
the computation of matrix-vector multiplication



in xW7' can be skipped whenever a result element
will be multiplied by zero of sparse s. In addi-
tion, we postpone the ReLU activation function
in o(xW1) into this operator so that o can be
implicitly performed along with the element-wise
multiplication. These operations are fused into a
single operator, thereby reducing the data move-
ment between operations.

For implementation, we first load the result of
xWT', determine which elements are greater than
zero (or a positive threshold after activation thresh-
old shifting), and then select the corresponding
columns of W' to load from GPU memory, per-
forming multiplication operations with x. As the
matrix W1 is sparse by column, we store the ma-
trix in a column-major format to coalesce memory
access and fully utilize vectorized loads/store in-
structions. After this step, we get the sparse result
vector of xW7 and multiply the corresponding
elements with activated elements of s, with other
elements filled with zeros directly. Finally, the
result vector x; is obtained.

D Training Details of Activation
Predictors

Following Deja Vu (Liu et al., 2023), the predictor
is a two-layer FFN, composed of two linear projec-
tion layers with a ReLU activation in between them.
Notably, as each layer of a sparse LLM has differ-
ent activation distributions, we should introduce the
same number of predictors as that of Transformer
layers. For predictor training, we first collect train-
ing data with about 400,000 pairs of input hidden
states x and intermediate activations x; at the cor-
responding layer. Next, we train the predictor on
95% pairs with the binary cross entropy loss and
compute the predictability metrics on the remain-
ing 5% pairs. We reserve the checkpoint with the
highest recall to ensure the best inference accuracy
with the least falsely ignored activations.

E performance on Independent
Benchmarks

In this section, we report the performance on each
independent benchmark of Code Generation, Com-
monsense Reasoning, and Reading Comprehen-
sion, as displayed in Table 5.

F Important Hyperparameters

We provide the important hyperparameters for
ProSparse training, as shown in Table 4. Note
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that the peak regularization factors of two con-
tiguous stages can be set to the same value to in-
troduce an extra constant-factor stage, mainly for
stability requirements. All the baseline models
are trained with the same number of tokens and
the same mixed pre-training dataset as ProSparse.
We use a cosine annealing learning rate scheduler
throughout the training process and the peak learn-
ing rates are 3e —5 and 5e—5 for ProSparse-7B and
ProSparse-13B respectively. The context length is
4,096 for all settings.

All the 7B models are trained on 8 A100 GPUs
for about 10 days. All the 13B models are trained
on 32 A100 GPUs for about 20-30 days. The LLMs
of each method involved in this paper are trained
once due to the formidable training costs.

G Effect of Different Thresholds in
Activation Threshold Shifting

As mentioned in Section 3.2, the threshold T is an
important hyper-parameter in activation threshold
shifting, the last step of ProSparse. In the overall
experimental results, we choose 1" = 0.01 for both
ProSparse-7B and ProSparse-13B to balance the
sparsity and performance. For comprehensiveness,
we list the results under other thresholds in Table 6.
As can be observed, a small 7" results in a quite
limited sparsity improvement compared with the
version without activation threshold shifting, while
a large T' can cause non-negligible performance
degradation. Therefore, we choose 7' = 0.01 to
strike a balance.

H Effect of Different Biases in Shifted
ReLLU

In the overall experimental results, we set b = 0.1
for Shifted ReLLU-7B, which guarantees the best
average performance. In this section, we list the re-
sults of Shifted ReLU-7B under different bias b in
Table 7. With the increase of bias b, the final spar-
sity of Shifted ReLU models increases marginally,
but the performance also suffers from consistent
drops. Therefore, the choice of b in Shifted ReLU is
also a trade-off between sparsity and performance.



ProSparse-7B ‘ ProSparse-13B

Stage Number % Ai T; Accumulated Token (B) \ Stage Number ¢ i T; Accumulated Token (B)
0 0 5,000 10.49 0 0 5,500 46.14
1 5e —3 6,000 12.58 1 5e —3 6,750 56.62
2 5e —2 10,000 20.97 2 le—2 10,750 90.18
3 5e —2 12,000 25.17 3 le—2 11,000 92.27
4 5¢ —1 16,000 33.55 4 2e —2 15,000 125.83
5 5e —1 16,500 34.60 5 2e —2 16,000 134.22

Table 4: The important hyperparameters for training ProSparse models. For simplicity, the Oth stage refers to the
continual training in activation function substitution. The 1st stage is the warmup stage with a fixed regularization
factor \. The remaining stages are incremental stages with an increasing .

Setting ‘HumanEval MBPP‘PIQA SIQA HellaSwag WinoGrande COPA‘BOO]Q LAMBADA TyDi QA
Original-7B 10.98 21.77 |78.40 47.70  75.67 67.17 79.00 | 75.99 72.81 36.82
ReluLLaMA-7B 12.20 19.51 |77.86 49.54  72.85 64.96 83.00 | 78.10 70.33 63.18
Vanilla ReLU-7B 18.29 24.33 |78.35 50.36  74.29 64.64 86.00 | 79.42 69.55 70.68
Shifted ReLU-7B 17.07 23.92 |78.40 50.31 73.80 63.93 84.00 | 78.84 69.09 71.59
Fixed L1-7B 17.07 20.64 | 76.06 44.32 68.30 63.38 78.00 | 52.08 65.01 49.09
ProSparse-7B* 16.46 22.48 |75.79 43,50  71.08 64.09 77.00 | 62.48 67.73 59.77
ProSparse-7B 16.46 22.38 | 75.68 43.55 71.09 64.01 77.00 | 62.51 68.21 59.77
Original-13B 16.46 23.92 7938 4790  79.12 70.48 86.00 | 82.54 76.21 55.91
ReluLLaMA-13B 17.07 23.31 | 78.40 47.13 76.60 69.06 81.00 | 81.16 73.49 65.23
ProSparse-13B* 25.61 3244 177.04 4514 7591 68.67 82.00 | 79.27 71.08 52.27
ProSparse-13B 23.78 33.06 | 77.26 4529  75.88 68.35 82.00 | 78.93 71.36 50.45

Table 5: The performance on each independent benchmark.

Setting Average| Code  Commonsense ~ Reading — oyar MMLU BBH AGI Eval|Average
Sparsity |Generation Reasoning ~Comprehension
ProSparse-7B* 88.11 19.47 66.29 63.33 12.74 4521 33.59 2755 | 38.31
ProSparse-7B T' = 0.005 | 88.62 19.68 66.23 62.59 12.05 4495 3443 2746 | 38.20
ProSparse-7B T" = 0.01 89.32 19.42 66.27 63.50 12.13 4548 3499 2746 | 38.46
ProSparse-7B T' = 0.02 90.35 18.39 66.09 62.93 12.59 45.02 3434 27.14 | 38.07
ProSparse-7B T" = 0.03 90.95 18.65 66.24 62.72 12.13  44.83 3492 2736 | 38.12
ProSparse-13B* 87.97 29.03 69.75 67.54 2540 5478 40.20 28.76 | 45.07
ProSparse-13B 7" = 0.005| 88.24 29.04 69.69 67.62 2623 54775 3952 28.74 | 45.08
ProSparse-13B 7' = 0.01 | 88.80 28.42 69.76 66.91 2631 5435 3990 28.67 | 44.90
ProSparse-13B 7" = 0.02 | 89.40 29.29 69.63 65.28 2494 5488 39.79 28.88 | 44.67
ProSparse-13B 7" = 0.03 | 90.23 28.12 69.28 64.79 25.85 54.68 40.08 28.71 | 44.50

Table 6: The sparsity and performance under different thresholds T" of activation threshold shifting.

Setting ‘g“’era.ge Code Commonsense ~ Reading — oyier MMLU BBH AGI Eval|Average
parsity |Generation Reasoning Comprehension

Shifted ReLU-7B b = 0.1| 69.59 20.50 70.09 73.17 13.87 48.54 3520 2794 | 41.33

Shifted ReLU-7B b = 0.3| 70.34 21.05 70.70 72.03 1433  48.03 34.11 27.58 | 41.12

Shifted ReLU-7B b = 0.5| 71.64 20.59 70.25 73.69 13.27 46.55 3529 2721 | 40.98

Shifted ReLU-7B b = 1.0| 74.81 18.05 70.96 70.64 11.83 46.07 3548 27.46 | 40.07

Table 7: The sparsity and performance under different bias b of Shifted ReLU.
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