
ProSparse: Introducing and Enhancing Intrinsic Activation Sparsity
within Large Language Models

Anonymous ACL submission

Abstract

Activation sparsity refers to the existence001
of considerable weakly-contributed elements002
among activation outputs. As a prevalent prop-003
erty of the models using the ReLU activa-004
tion function, it has been proven a promis-005
ing paradigm to boost model inference effi-006
ciency. Nevertheless, most large language mod-007
els (LLMs) adopt activation functions with-008
out intrinsic activation sparsity (e.g., GELU009
and Swish). Some recent efforts have ex-010
plored introducing ReLU or its variants as the011
substitutive activation function to help LLMs012
achieve activation sparsity and inference ac-013
celeration, but few can simultaneously obtain014
high sparsity and comparable model perfor-015
mance. This paper introduces a lossless spar-016
sification method named “ProSparse” to push017
LLMs for higher activation sparsity without de-018
creasing model performance. Specifically, after019
substituting the activation function of LLMs020
with ReLU, ProSparse adopts progressive spar-021
sity regularization with a factor smoothly in-022
creasing along sine curves in multiple stages.023
This can enhance activation sparsity and al-024
leviate performance degradation by avoiding025
radical shifts in activation distribution. With026
ProSparse, we obtain high sparsity of 89.32%027
and 88.80% for LLaMA2-7B and LLaMA2-028
13B, respectively, achieving comparable per-029
formance to their original Swish-activated ver-030
sions. Our inference acceleration experiments031
further demonstrate the practical acceleration032
brought by higher activation sparsity.033

1 Introduction034

Recent years have witnessed the significant break-035

through made by large language models (LLMs),036

and these LLMs display commendable perfor-037

mance across a wide range of NLP tasks (Brown038

et al., 2020; Wei et al., 2021; Ouyang et al., 2022;039

OpenAI, 2023; Touvron et al., 2023a,b; Achiam040

et al., 2023). Nevertheless, the formidable compu-041

tational costs required by LLM deployment and042

inference pose a considerable challenge to the 043

wider application of LLMs (Aminabadi et al., 2022; 044

Pope et al., 2023). Among various techniques for 045

handling this challenge, the utilization of activa- 046

tion sparsity is a promising one, for its effective- 047

ness in enhancing inference efficiency (Liu et al., 048

2023; Song et al., 2023) by leveraging the weakly- 049

contributed elements among the outputs of LLM 050

activation functions. 051

Using ReLU, which naturally outputs zero ele- 052

ments, as the activation function is a straightfor- 053

ward method to achieve intrinsic activation spar- 054

sity and widely adopted in early LLMs (Raffel 055

et al., 2020; Zhang et al., 2022a). However, recent 056

LLMs predominantly favor GELU and Swish (Tou- 057

vron et al., 2023a; Chowdhery et al., 2023; Al- 058

mazrouei et al., 2023), and thus lack intrinsic ac- 059

tivation sparsity. To pursue the sparsity-based in- 060

ference acceleration, ReLUfication (Zhang et al., 061

2022b; Mirzadeh et al., 2023) has been explored 062

to introduce the ReLU-based intrinsic activation 063

sparsity into non-ReLU LLMs. Preliminary Re- 064

LUfication methods (Zhang et al., 2022b, 2024) 065

directly substitute the activation functions of non- 066

ReLU LLMs with ReLU. Since activation function 067

substitution cannot overcome the inherent limita- 068

tion imposed by the original non-ReLU activation 069

distribution, Mirzadeh et al. (2023) further intro- 070

duce the inserted and shifted ReLU functions to 071

enforce higher sparsity through radically shifting 072

the activation distribution. Despite the promise of 073

ReLUfication, existing efforts fail to achieve sat- 074

isfactory activation sparsity and risk performance 075

degradation caused by ReLUfication. 076

In this paper, we propose a lossless progressive 077

ReLUfication method to help non-ReLU LLMs ob- 078

tain high activation sparsity without compromising 079

performance. We name the method “ProSparse”, 080

which includes three steps shown in Figure 1: ac- 081

tivation function substitution, progressive sparsity 082

regularization, and activation threshold shifting. 083

1

x

W1
T

xW1
T

Ws
T

Swish

xWs
T

s

W2
T

FFN
Outputs

x1

(a) Swish-Activated Gated FFN

x

W1
T

xW1
T

Ws
T

ReLU

xWs
T

s

W2
T x1

(b) Activation Function Substitution (c) Progressive Sparsity Regularization

L1 Regularized

Training Step

λ

Warmup
Stage

Training Step

λ

(d) Activation Threshold Shifting

0 x

σ(x)

ReLU

0 x

σ(x)

FATReLU

T

strongly-contributed parameters

activated elements

weakly-contributed parameters

inactivated elements

matrix
multiplication

element-wise
multiplication

Incremental
Stages

FFN
Outputs

Figure 1: The overall architecture of ProSparse, which includes three steps: activation function substitution,
progressive sparsity regularization, and activation threshold shifting.

The first step is to replace the activation function of084

non-ReLU LLMs with ReLU and then apply con-085

tinual training for adapting LLM to the new ReLU086

activation. As discussed above, this can hardly087

achieve satisfactory sparsity. Therefore, in the088

second step, we apply sparsity regularization (Ma089

et al., 2019) to the intermediate activation outputs090

of the feed-forward networks (FFNs) within LLMs091

to seek higher activation sparsity. Considering the092

potential performance risks of forcing the fixed reg-093

ularization factor (Ma et al., 2019; Li et al., 2020),094

we progressively increase the regularization factor095

in multiple stages. Concretely, the factor is set to096

a low constant value for the warmup stage. Next,097

during each subsequent stage, the factor undergoes098

a gradual increase along a gentle sine curve. Fol-099

lowing the cosine annealing learning rate sched-100

uler (Loshchilov and Hutter, 2016), such progres-101

sive sparsity regularization can provide more time102

for the model to adapt to increasing regulariza-103

tion and avoid a radical shift in activation distribu-104

tion, thereby alleviating performance degradation.105

The final step, inspired by FATReLU (Kurtz et al.,106

2020), modifies the vanilla ReLU by shifting its107

activation threshold to a positive value. This prunes108

less influential neurons to further improve sparsity.109

In our experiments, we apply ProSparse to the110

ReLUfication of Swish-activated LLaMA2 (Tou-111

vron et al., 2023b). Activation sparsity of112

89.32% and 88.80% are successfully achieved for113

LLaMA2-7B and LLaMA2-13B respectively, with114

lossless performance on various LLM benchmarks.115

Furthermore, we demonstrate the practical infer- 116

ence acceleration effect of higher activation spar- 117

sity by applying an approximate algorithm and an 118

accurate algorithm to the inference of models with 119

different sparsity. For the approximate one, we 120

use PowerInfer (Song et al., 2023), which achieves 121

state-of-the-art speedup ratios tailored for sparsely- 122

activated LLMs at the expense of potentially inac- 123

curate inference due to the mistakes of activation 124

predictors. For the accurate one, we implement 125

two GPU operators that leverage the input-side 126

and output-side sparsity during the computation 127

of ReLU-activated FFN layers. The experimental 128

results demonstrate that those models with higher 129

sparsity can achieve more significant inference ac- 130

celeration with both algorithms. 131

In summary, we make the following contribu- 132

tions in this paper: (1) We propose ProSparse, 133

a lossless ReLUfication method that can con- 134

verts non-ReLU LLMs into much sparser ReLU- 135

activated LLMs without decreasing model per- 136

formance. (2) Sparsely-activated versions of 137

LLaMA2-7B and LLaMA2-13B comparable to 138

their original Swish-activated versions in perfor- 139

mance are both obtained and will be made avail- 140

able. (3) We demonstrate the practical inference 141

acceleration effect of higher activation sparsity that 142

ProSparse can reach. 143

2 Related Works 144

Here we mainly introduce works on improving 145

LLM inference efficiency. More details on LLMs 146

2

can refer to the existing surveys (Bommasani et al.,147

2021; Zhao et al., 2023). More related works about148

L1 regularization are listed in Appendix A.149

Despite the commendable performance of LLMs,150

the sustainable increase in the scale of model pa-151

rameters brings the exponential growth of inference152

computations, making the deployment of LLMs153

a formidable challenge (Kaplan et al., 2020; Liu154

et al., 2023). To reduce the computational costs155

required by the inference of such large models, var-156

ious model compression methods have been pro-157

posed, such as quantization (Han et al., 2015a; Ja-158

cob et al., 2018; Nagel et al., 2019; Zhao et al.,159

2019; Bai et al., 2022; Xiao et al., 2023; Yao et al.,160

2023), pruning (Han et al., 2015a,b; Molchanov161

et al., 2016; Hoefler et al., 2021; Ma et al., 2023;162

Sun et al., 2023; Frantar and Alistarh, 2023; Xia163

et al., 2023), and distillation (Hinton et al., 2015;164

Tang et al., 2019; Touvron et al., 2021; Gu et al.,165

2023; Hsieh et al., 2023). Efficient sampling meth-166

ods have also been proposed to achieve faster infer-167

ence decoding speed (Leviathan et al., 2023; Wang168

et al., 2023; Chen et al., 2023; Miao et al., 2023).169

In general, none of the above methods involve170

leveraging the intrinsic mechanisms within LLMs171

to achieve inference acceleration. To this end, some172

recent works (Li et al., 2022; Liu et al., 2023; Song173

et al., 2023) notice the intrinsic activation sparsity174

within some LLMs and exploit this sparsity for175

inference acceleration. Activation sparsity refers176

to the phenomenon where certain model parame-177

ters, corresponding to those zero or small elements178

in activation outputs, have a weak impact on fi-179

nal LLM outputs given a specific input. These180

weakly-contributed parameters are regarded as in-181

activated and can thus be skipped during inference182

to achieve sparse computation, without redundant183

computational resources spent on them. Therefore,184

the utilization of activation sparsity is orthogonal185

to model compression and efficient sampling, and186

these approaches can be easily accumulated.187

Previous studies have marked activation spar-188

sity as a prevalent phenomenon existing in almost189

any ReLU-activated Transformer architecture (Li190

et al., 2022), from LLMs (e.g., T5 (Raffel et al.,191

2020) and OPT (Zhang et al., 2022a)) to some vi-192

sion models (e.g., ViT (Dosovitskiy et al., 2020)).193

However, recent LLMs such as Falcon (Almazrouei194

et al., 2023) and LLaMa (Touvron et al., 2023b)195

prevalently adopt non-ReLU activation functions196

such as GELU (Hendrycks and Gimpel, 2016) and197

Swish (Elfwing et al., 2018) and do not exhibit 198

activation sparsity. Therefore, to leverage the mer- 199

its of activation sparsity without training a ReLU- 200

activated LLM from scratch, many works con- 201

duct ReLUfication, which introduces sparse ReLU- 202

based activations into non-ReLU LLMs. Zhang 203

et al. (2022b) train the GELU-activated BERT (De- 204

vlin et al., 2018) into a ReLU-activated version 205

after a direct substitution of the activation function. 206

Zhang et al. (2024) apply a similar paradigm to 207

Falcon and LLaMA, which are activated by GELU 208

and Swish respectively. Since activation substitu- 209

tion cannot reach satisfactory sparsity, mainly due 210

to the unhandled inherent limitation of the original 211

non-ReLU activation distribution, Mirzadeh et al. 212

(2023) introduce the inserted and shifted ReLU 213

activation functions and conduct a radical shift in 214

activation distribution. Although these shifted op- 215

erations are claimed to achieve sparsity of nearly 216

95%, we cannot replicate the results in our experi- 217

ments (Section 4.2) and the sparsity is still limited. 218

As discussed above, we can clearly recognize 219

the promise of activation sparsity and also observe 220

the key challenge of leveraging ReLUfication to 221

achieve activation sparsity: how to concurrently 222

achieve high sparsity and lossless performance. To 223

this end, this paper introduces ProSparse, a ReLU- 224

fication method that can obtain high ReLU-based 225

activation sparsity for non-ReLU LLMs without 226

performance degradation. 227

3 Methodology 228

3.1 Definitions and Notations 229

For the convenience of subsequent demonstrations, 230

here we define activation sparsity within LLMs in 231

detail. Since the activation function mainly exists 232

in the FFN layers of LLMs, we first formalize the 233

computation process of FFNs. Given the hidden 234

dimension dmodel and the FFN intermediate dimen- 235

sion dff , the computation process of a gated FFN 236

(i.e., the most widely adopted FFN architecture in 237

recent Transformer-based LLMs (Dauphin et al., 238

2017; Shazeer, 2020)) can be formalized as: 239

s = σ(xWT
s), x1 = s⊙ (xWT

1),

FFN(x) = x1W
T
2 ,

(1) 240

where x ∈ Rdmodel , s,x1 ∈ Rdff , σ, and ⊙ de- 241

note the input hidden states, the gating scores, 242

the intermediate outputs, the activation function, 243

and the element-wise multiplication respectively. 244

3

Ws,W1 ∈ Rdff×dmodel and W2 ∈ Rdmodel×dff245

are learnable weights.246

We define the activation sparsity (hereinafter247

abbreviated as sparsity) as the ratio of zero ele-248

ments (i.e., inactivated elements) in x1 for a spe-249

cific input x. However, since the sparsity often250

varies in different layers for different inputs, we251

evaluate the sparsity of the whole LLM using the252

average sparsity, defined as the average value of253

sparsity across all layers in an LLM on a suffi-254

ciently large amount of input data.255

In this paper, we focus on the task of ReLUfi-256

cation, namely converting an LLM using a non-257

RELU activation function σ (e.g., GELU or Swish)258

into a ReLU-activated one, while making the acti-259

vation sparsity as high as possible and mitigating260

performance degradation.261

3.2 ProSparse: Lossless ReLUfication262

We propose ProSparse to achieve the above targets.263

In ProSparse, three steps are carefully designed to264

introduce and enhance the intrinsic activation spar-265

sity for a non-ReLU LLM: (1) activation function266

substitution; (2) progressive sparsity regularization;267

(3) activation threshold shifting.268

Activation Function Substitution For lack of269

attention to activation sparsity, a majority of re-270

cent mainstream LLMs adopt non-ReLU activation271

functions such as GELU and Swish that output few272

zero elements (i.e., low activation sparsity accord-273

ing to the above definition). Therefore, the first274

step of ProSparse is to introduce intrinsic sparsity275

through activation function substitution, which re-276

places the FFN activation function σ with ReLU,277

namely σ(x) = max(x, 0), followed by continual278

training. This can make the ratio of zero activa-279

tion elements significantly larger and preliminarily280

adapt the LLM to new ReLU activation.281

Progressive Sparsity Regularization Neverthe-282

less, activation function substitution by nature does283

not change the activation distribution, which will284

potentially limit the sparsity to relatively low val-285

ues. To push for higher sparsity, a typical method is286

L1 sparsity regularization (Li et al., 2022), which287

introduces the L1 regularization loss as an extra288

training target. Given the intermediate output x1289

of the i-th FFN layer in an LLM, the regularization290

loss is defined as:291

Lireg = λ · ||x1||1, (2)292

Algorithm 1 The process of progressive sparsity
regularization in ProSparse.

Require: The total number of stages S ≥ 1.
Require: A sequence of peak λ values {λi}Si=1,

s.t. 0 < λ1 ≤ λ2 ≤ ... ≤ λS .
Require: Accumulated step numbers of respective

stages {Ti}Si=1, s.t. 0 < T1 < T2 < ... < TS .
1: // warmup stage
2: for t← 1 to T1 do
3: λ← λ1

4: end for
5: // incremental stages
6: for i← 2 to S do
7: for t← Ti−1 + 1 to Ti do
8: η ← 1

2 [sin(−
π
2 + t−Ti−1

Ti−Ti−1
π) + 1]

9: λ← λi−1 + η(λi − λi−1)
10: end for
11: end for

where || · ||1 is the L1 norm operator and λ is the 293

regularization factor. For an LLM with K FFN 294

layers, the total regularization loss is summed from 295

the losses of all layers, namely Lreg =
∑K

i=1 Lireg. 296

Considering the potentially unstable training and 297

performance degradation due to fixed regulariza- 298

tion factors (Georgiadis, 2019; Kurtz et al., 2020; 299

Li et al., 2022), we propose the progressive spar- 300

sity regularization, where the factor λ is carefully 301

scheduled to gently increase in multiple stages, as 302

displayed in Algorithm 1. 303

Concretely, for the warmup stage, we set λ to a 304

constant value, which is relatively small to prevent 305

radical activation distribution shifts and introduce 306

higher preliminary sparsity. Next, for each of the 307

remaining stages (hereinafter called incremental 308

stages), λ is scheduled to increase along a smooth 309

sine curve from a trough value to a peak value. In- 310

spired by the cosine annealing scheduler for learn- 311

ing rates (Loshchilov and Hutter, 2016), we choose 312

the sine function for λ increase owing to its spe- 313

cial trend. Specifically, the sine function has small 314

derivatives near the trough and the peak, thereby λ 315

will not increase radically around these two points. 316

This provides the LLMs with more time to adapt 317

the activation distributions to the newly increased 318

L1 regularization. Notably, each stage is accompa- 319

nied by certain steps of training. The step number 320

and peak value of each stage are chosen according 321

to the target sparsity and stability requirements. 322

4

Activation Threshold Shifting As demonstrated323

by recent works, there exist considerable amounts324

of non-zero low elements in the activation outputs,325

which have little influence on final results and thus326

can be pruned for higher sparsity (Zhang et al.,327

2024). Therefore, following FATReLU (Kurtz328

et al., 2020), we modify the ReLU by shifting the329

activation threshold, i.e.,330

σ(x) =

{
x when x ≥ T,

0 otherwise,
(3)331

where T > 0 is a positive threshold. As long as332

T is properly chosen (see Appendix G), such an333

adjustment can increase sparsity with negligible334

losses (Zhang et al., 2024).335

3.3 Practical Inference Acceleration Test336

To go further beyond former theoretical accelera-337

tion analyses based on FLOPs (Floating Point of338

Operations) (Mirzadeh et al., 2023) and establish339

the practical value of ProSparse, we compare the340

acceleration effects of LLMs with different sparsity341

on real GPU hardware. For comprehensiveness, we342

introduce two categories of acceleration algorithms343

based on activation sparsity: an approximate algo-344

rithm and an accurate algorithm.345

Approximate Acceleration Algorithms Utiliz-346

ing activation sparsity, recent approximate accel-347

eration algorithms predominantly rely on activa-348

tion predictors, typically small neural networks, to349

forecast the activation distributions indicated by350

the sparse intermediate outputs x1 given a specific351

input x (Liu et al., 2023; Song et al., 2023). In352

this way, they can make wiser hardware allocation353

or computation policies to avoid resource waste354

on weakly-contributed parameters. However, their355

efficiency and accuracy largely depend on the pre-356

dictors’ performance, and invalid predictions can357

cause suboptimal hardware allocation or even in-358

ference inaccuracy.359

Therefore, to test a sparse LLM’s practical ac-360

celeration value with approximate algorithms, we361

focus on three metrics: the activation recall (here-362

inafter abbreviated as recall), the predicted sparsity,363

and the inference speed. The former two metrics364

evaluate the performance of activation predictors365

as well as the activation predictability of a sparse366

LLM (Zhang et al., 2024).367

Concretely, the recall refers to the average ratio368

of correctly predicted activated elements among all369

the truly activated elements in x1. The predicted 370

sparsity is calculated as the ratio of predicted in- 371

activated elements among all the elements in x1. 372

Predictors with higher recall and predicted sparsity 373

can help an acceleration framework obtain a bet- 374

ter grasp of activation distribution and thus make 375

wiser policies for faster inference as well as low 376

inference inaccuracies (Liu et al., 2023). 377

For inference speed, we adopt PowerInfer (Song 378

et al., 2023), a state-of-the-art approximate al- 379

gorithm as a representative to measure practical 380

speedup ratios. Refer to Appendix B for more in- 381

troductions of approximate algorithms. 382

Accurate Acceleration Algorithms To achieve 383

acceleration without potential inference inaccura- 384

cies, we implement two hardware-efficient sparse 385

GPU operators with system-level optimizations, 386

such as operator fusion, coalesced memory access, 387

and vectorization, thereby exploiting input-side and 388

output-side sparsity in Equation 1. 389

Concretely, we reorganize a ReLU-activated 390

gated FFN into three major steps and our two oper- 391

ators are responsible for the step (2) and (3) respec- 392

tively: (1) A dense matrix-vector multiplication 393

operator xWT
s which can be directly supported by 394

vendor libraries such as cuBLAS; (2) A fused op- 395

erator of ReLU and s⊙ (xWT
1) with output-side 396

sparsity; (3) A sparse matrix-vector multiplication 397

operator x1W
T
2 with input-side sparsity. 398

We adopt the single-step speedup ratios of steps 399

(2) and (3) with these two operators respectively to 400

reflect the practical accurate acceleration potential 401

of sparse LLMs. Refer to Appendix C for imple- 402

mentation details of our operators. 403

4 Experiments 404

4.1 Experimental Settings 405

Pre-Training Datasets We use a mixed dataset 406

consisting of both language modeling datasets and 407

instruction tuning datasets. The language mod- 408

eling datasets are directly cleaned and filtered 409

from raw corpus, including StarCoder (Li et al., 410

2023), Wikipedia (Wikimedia Foundation, 2022), 411

Pile (Gao et al., 2020), and other collected datasets. 412

The instruction tuning datasets mainly involve in- 413

put instructions and annotated target answers, in- 414

cluding UltraChat (Ding et al., 2023), multiple- 415

choice QA data of P3 (Sanh et al., 2021) (Choice 416

P3), PAQ (Lewis et al., 2021), Unnatural Instruc- 417

tions (Honovich et al., 2022), Flan (Longpre et al., 418

5

Setting Average Code Commonsense Reading GSM8K MMLU BBH AGI Eval AverageSparsity Generation Reasoning Comprehension

Original-7B - 16.37 69.59 61.87 12.96 44.45 32.96 27.53 37.96
ReluLLaMA-7B 66.98 15.85 69.64 70.54 5.84 38.64 35.07 27.73 37.62
Vanilla ReLU-7B 66.04 21.31 70.73 73.22 11.22 49.22 36.11 28.01 41.40
Shifted ReLU-7B 69.59 20.50 70.09 73.17 13.87 48.54 35.20 27.94 41.33
Fixed L1-7B 91.46 18.85 66.01 55.39 2.27 32.28 31.40 26.48 33.24
ProSparse-7B∗ 88.11 19.47 66.29 63.33 12.74 45.21 33.59 27.55 38.31
ProSparse-7B 89.32 19.42 66.27 63.50 12.13 45.48 34.99 27.46 38.46

Original-13B - 20.19 72.58 71.55 22.21 54.69 37.89 29.33 44.06
ReluLLaMA-13B 71.56 20.19 70.44 73.29 18.50 50.58 37.97 28.22 42.74
ProSparse-13B∗ 87.97 29.03 69.75 67.54 25.40 54.78 40.20 28.76 45.07
ProSparse-13B 88.80 28.42 69.76 66.91 26.31 54.35 39.90 28.67 44.90

Table 1: The overall experimental results with comparisons of activation sparsity (%) and downstream performance
(%). “Original” refers to the original Swish-activated LLaMA2 versions in (Touvron et al., 2023b). “ProSparse-7B∗”
and “ProSparse-13B∗” denote the ProSparse versions without activation threshold shifting.

2023), Super-Natural Instructions (Wang et al.,419

2022), and other collected datasets.420

Evaluation Benchmarks To evaluate the task-421

specific performance of the LLMs obtained by422

ProSparse, we introduce the following benchmarks.423

Code Generation: We compute the average424

pass@1 scores on HumanEval (0-shot) (Chen et al.,425

2021) and MBPP (3-shot) (Austin et al., 2021).426

Commonsense Reasoning: We report the aver-427

age 0-shot perplexity (PPL) on PIQA (Bisk et al.,428

2020), SIQA (Sap et al., 2019), HellaSwag (Zellers429

et al., 2019), WinoGrande (Sakaguchi et al., 2020),430

and COPA (Roemmele et al., 2011).431

Reading Comprehension: We compute the av-432

erage 0-shot PPL on BoolQ (Clark et al., 2019),433

0-shot accuracy on LAMBADA (Paperno et al.,434

2016) and TyDi QA (Clark et al., 2020).435

Other Popular Benchmarks: We report the436

average accuracies on GSM8K (8-shot) (Cobbe437

et al., 2021), MMLU (5-shot) (Hendrycks et al.,438

2020), Big Bench Hard (BBH) (3-shot) (Suzgun439

et al., 2022), and the average PPL on AGI-Eval440

(0-shot) (Zhong et al., 2023).441

4.2 Overall Results442

With ProSparse, we conduct ReLUfication on443

Swish-activated LLaMA2-7B and LLaMA2-13B.444

To demonstrate the advantage of ProSparse, we445

introduce the following baseline methods:446

Vanilla ReLU (Zhang et al., 2024) simply re-447

places the Swish function with ReLU and intro-448

duces continual training to recover performance.449

Shifted ReLU (Mirzadeh et al., 2023) is used450

to break the bottleneck of vanilla ReLU for higher451

sparsity. Specifically, this is done by subtracting452

a constant scalar b from the input hidden states 453

before the ReLU operator: s = ReLU(xWT
s − b). 454

This results in a radical left shift in the activation 455

distribution and thus substantially boosts sparsity. 456

Fixed L1 imposes an L1 regularization loss 457

on the basis of vanilla ReLU. Different from 458

ProSparse, the regularization factor λ is kept con- 459

stant throughout the training process. 460

For fairness, all the average sparsity values are 461

computed on the same mixed dataset for ProSparse 462

pre-training and all models are trained with the 463

same number of tokens. The value of λ for fixed 464

L1 is set to the average value of the factor dur- 465

ing the last incremental stage of ProSparse and the 466

bias b for shifted ReLU is tuned to ensure best 467

performance. We also compare our models with 468

the open ReluLLaMA1 and the original Swish- 469

activated LLaMA2 versions2. For more hyper- 470

parameters, see Appendix appendices F to H. 471

The results are shown in Table 1 (See Ap- 472

pendix E for performance on each independent 473

benchmark). As demonstrated by the average spar- 474

sity and performance scores, ProSparse is the only 475

ReLUfication method that simultaneously achieves 476

high sparsity and comparable downstream per- 477

formance to the original LLaMA2. By contrast, 478

Vanilla ReLU and Shifted ReLU can give higher 479

performance at the expense of low sparsity, while 480

Fixed L1 obtains the highest sparsity with a signifi- 481

cant performance degradation. 482

To delve deeper into the training dynamics of dif- 483

ferent ReLUfication methods, we plot the trends of 484

sparsity for each method in Figure 2. (1) Among 485

1https://huggingface.co/SparseLLM/ReluLLaMA-7B
2https://huggingface.co/meta-llama/Llama-2-7b

6

https://huggingface.co/SparseLLM/ReluLLaMA-7B
https://huggingface.co/meta-llama/Llama-2-7b

Setting Average Activation Predicted PowerInfer Step (2) Step (2) Step (3) Step (3)
Sparsity Recall Sparsity Speed Time Speedup Time Speedup

ReluLLaMA-7B 66.98 90.89 58.95 11.37 67.12 1.35 63.00 1.32
Vanilla ReLU-7B 66.04 87.72 72.57 12.04 67.85 1.33 63.28 1.31
Fixed L1-7B 91.46 94.51 82.85 19.62 40.99 2.21 54.19 1.53
ProSparse-7B∗ 88.11 93.46 75.24 16.30 46.66 1.94 55.56 1.49
ProSparse-7B 89.32 92.34 78.75 - 45.38 2.00 55.05 1.51

ReluLLaMA-13B 71.56 86.41 71.93 6.59 69.92 1.88 75.47 1.51
ProSparse-13B∗ 87.97 91.02 77.93 8.67 55.29 2.38 67.50 1.68
ProSparse-13B 88.80 91.11 78.28 - 53.78 2.44 66.73 1.70

∗ The average time for step (2) and (3) without sparse GPU operators is about 90.55 and 82.92 (us) for 7B, 131.36 and
113.68 (us) for 13B respectively under all sparsity. Shifted ReLU versions are not tested since PowerInfer and our sparse
operators do not support this variant at present. ProSparse versions with activation threshold shifting are not supported by
PowerInfer, either.

Table 2: The comparison of activation recalls (%), predicted sparsity (%), PowerInfer inference speeds (tokens per
second), and single-step time (us) with our sparse GPU operators among LLMs with different sparsity. “Step (2)”
and “Step (3)” correspond to the steps in Section 3.3. “Time” means the average wall-clock time (us) cost by each
step with our sparse GPU operators, and “Speedup” is the speedup ratio to the setting without operators.

ProSparse

Vanilla ReLU

Fixed L1

Shifted b = 0.3

Shifted b = 0.5

Shifted b = 1.0

I. activation function
substitution
(zero factor)

II. warmup stage
(fixed factor)

III. incremental stages
(increasing factor)

6000

Shifted b = 0.1

IV. activation
threshold shifting

training steps

sp
a
rs

it
y
 (

%
)

Figure 2: The trend of sparsity (7B models) along the
training process. “Shifted” denotes Shited ReLU and
b = 0.1 corresponds to the results in Table 1.

the settings involved, the trend of sparsity is486

incremental iff non-zero L1 regularization is ap-487

plied.3 (2) Though ProSparse does not achieve488

high sparsity at first, the warmup stage quickly pro-489

duces a considerable sparsity increase, and then490

the sparsity consistently grows in a smooth trend.491

Finally, the activation threshold shifting makes492

a marginal contribution to sparsity. Such a sta-493

ble increase in sparsity avoids radical activation494

disturbances and provides enough time for adapt-495

ing the activation distribution, which is the key to496

ProSparse’s lossless performance.497

4.3 The Acceleration Effect of Sparsity498

Approximate Acceleration Algorithm In this499

section, we train the activation predictors for each500

sparse LLM obtained by the above ReLUfica-501

3We did not reproduce the flat sparsity trend claimed in the
paper of Shifted ReLU (Mirzadeh et al., 2023).

tion methods and compare the recalls, predicted 502

sparsity, and actual inference speeds on PowerIn- 503

fer (Song et al., 2023). As the FFN in each Trans- 504

former layer has different activation distributions as 505

well as different predictors, the former two metrics 506

are averaged from the results of all layers. Refer to 507

Appendix D for training details of predictors. 508

As demonstrated by the results shown in Table 2, 509

an increased activation sparsity can considerably 510

improve the activation recall, the predicted sparsity, 511

and the inference speed of PowerInfer. This reveals 512

the significant practical values of more sparsely 513

activated LLMs in improving the inference speed 514

with predictor-based approximate acceleration al- 515

gorithms and mitigating the inaccurate inference 516

problem. ProSparse, which reaches a high sparsity 517

without performance degradation, can thus gain the 518

most benefits among the above settings concerned. 519

Accurate Acceleration Algorithm Furthermore, 520

with LLMs of different sparsity, we measure the 521

average single-step wall-clock time spent by our 522

two sparse GPU operators, which are responsible 523

for step (2) and step (3) in Section 3.3 respectively. 524

As demonstrated in Table 2, higher activation spar- 525

sity can make accurate algorithms based on GPU 526

operators more efficient. Besides, our two sparse 527

GPU operators also display satisfactory speedup 528

ratios up to 2.44 and 1.70 respectively with better 529

acceleration effects for larger models. 530

4.4 Dataset-Wise Analysis 531

Despite the satisfactory average sparsity, there still 532

exist gaps between the mixed pre-training dataset 533

and the actual input texts that the model will en- 534

7

Setting Mixed StarCoder Wikipedia Pile UltraChat Choice PAQ Flan Unnatural Super-Natural
P3 Instructions Instructions

ReluLLaMA-7B 66.98 66.60 67.16 67.35 67.91 67.35 66.98 67.35 66.42 66.98
Vanilla ReLU-7B 66.04 65.86 65.67 65.86 67.16 66.42 66.23 65.86 65.49 65.86
Shifted ReLU-7B 69.59 69.59 69.03 69.03 70.52 69.78 69.40 69.22 69.22 69.03
Fixed L1-7B 91.46 91.23 87.97 87.97 95.45 99.33 98.58 93.52 96.20 98.01
ProSparse-7B∗ 88.11 88.20 83.30 84.24 91.23 97.94 96.74 90.76 93.00 95.71
ProSparse-7B 89.32 89.13 84.33 85.35 93.66 98.33 97.28 91.74 93.80 96.32

ReluLLaMA-13B 71.56 71.33 71.45 71.56 72.27 71.80 71.21 71.56 70.85 71.33
ProSparse-13B∗ 87.97 87.50 81.64 83.06 92.45 98.41 97.54 91.65 92.92 96.40
ProSparse-13B 88.80 88.63 83.65 84.12 92.65 98.73 97.99 92.54 93.66 96.92

Table 3: The average sparsity (%) on our mixed pre-training dataset (denoted as “Mixed”) and its components.

counter in real-life applications. To investigate the535

sparsity of our model under different scenarios, we536

compute the sparsity on each component of the537

mixed dataset respectively.538

As demonstrated in Table 3, the sparse LLMs ob-539

tained through L1 regularization (i.e., Fixed L1 and540

ProSparse) have a pronounced property of incon-541

sistent dataset-wise sparsity. Concretely, the spar-542

sity on instruction tuning datasets is significantly543

higher than those on language modeling datasets544

(i.e., StarCoder, Wikipedia, and Pile). Considering545

the contents of datasets, we come to the follow-546

ing assumption: the more formatted a dataset is,547

the higher sparsity L1-regularized models can548

achieve. Plain text datasets including Wikipedia549

and Pile have the lowest sparsity, followed by the550

more formatted code dataset StarCoder. Among551

instruction tuning datasets, QA datasets (Choice P3552

and PAQ) with the most monotonic input-output553

formats obtain the highest sparsity. By contrast,554

the sparsity is relatively lower on UltraChat and555

Flan, covering general dialogues and a wide variety556

of tasks respectively. Notably, dialogues and tasks557

with formatted instructions cover a majority of in-558

put contents of conversational AI, the mainstream559

application form of LLMs. Such higher sparsity on560

instruction tuning data will endow ProSparse with561

more significant practical values.562

4.5 Layer-Wise Analysis563

Another problem worth concern is the layer-wise564

sparsity, which may potentially impact the load bal-565

ance issue and the design of inference frameworks.566

Therefore, we compute the sparsity of each layer567

for ProSparse models, as shown in Figure 3.568

From the tendency of the line chart, we clearly569

observe layer-wise sparsity imbalance in that lower570

layers are significantly denser than higher layers.571

Nevertheless, the activation threshold shifting can572

considerably improve the sparsity of lower layers573

Layer ID

S
p

a
rs

it
y
 (

%
)

S
p

a
rs

it
y
 (

%
)

ProSparse-7B*

ProSparse-7B

ProSparse-13B*

ProSparse-13B

Figure 3: The layer-wise sparsity of ProSparse models.
The marker “∗” denotes the settings without activation
threshold shifting.

with little impact on higher layers. Although this 574

technique only contributes marginally to the aver- 575

age sparsity, it is still indispensable in alleviating 576

the layer-wise sparsity imbalance issue. 577

5 Conclusion 578

In this work, we propose ProSparse, a lossless Re- 579

LUfication method for introducing and enhancing 580

intrinsic activation sparsity from non-ReLU LLM 581

checkpoints without impairing performance. Exten- 582

sive experiments not only demonstrate the advan- 583

tage of ProSparse over existing methods but also 584

reveal its practical values in inference acceleration 585

with both approximate algorithms and accurate al- 586

gorithms. Deeper analyses of the sparsity trends, 587

dataset-wise sparsity, and layer-wise sparsity in- 588

dicate the reasonableness of progressive sparsity 589

regularization in smoothing training dynamics, the 590

ProSparse’s high-sparsity bias for more practical 591

instruction tuning datasets, and the effectiveness 592

of activation threshold shifting in alleviating layer- 593

wise sparsity imbalance. 594

8

Limitations595

Firstly, the scales of LLMs involved in this work,596

including 7B and 13B, are relatively limited. For597

more comprehensive studies, both small-scale mod-598

els (e.g., 2B or less) and huge-scale models (e.g.,599

70B or more) are supposed to be tested.600

Next, we only focus on the sparsity-based ac-601

celeration of step (2) and step (3) of FFN, leav-602

ing a considerable ratio of LLM computation un-603

optimized. Actually, there already exist prelimi-604

nary works in the sparsification of the attention605

layers (Shen et al., 2023; Wortsman et al., 2023).606

For future works, we will continue to explore how607

to introduce and enhance sparsity in FFN step (1)608

as well as the attention layer.609

Finally, although the step number of training610

stages can be easily determined through the valida-611

tion loss or performance, it is still quite empirical612

and expensive to search for the best group of peak613

regularization factors. In the future, we will try614

to find the quantitative relationships between the615

sparsity and the L1 regularization factor. In this616

way, it will be much easier to locate proper factors617

according to the target sparsity.618

Ethics Statement619

The authors of this work declare that they have no620

conflict of interest. Besides, no animal or human621

being is involved as the study objective in any part622

of this article.623

Moreover, we use the open-source LLM624

LLaMA2 (Touvron et al., 2023b) in this paper,625

which is licensed under the Meta LLAMA 2 Com-626

munity License. Our usage purpose is only limited627

to academic research and does not violate the Ac-628

ceptable Use Policy for the Llama Materials4.629

References630

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama631
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,632
Diogo Almeida, Janko Altenschmidt, Sam Altman,633
Shyamal Anadkat, et al. 2023. GPT-4 technical re-634
port. arXiv preprint arXiv:2303.08774.635

Ebtesam Almazrouei, Hamza Alobeidli, Abdulaziz Al-636
shamsi, Alessandro Cappelli, Ruxandra Cojocaru,637
Mérouane Debbah, Étienne Goffinet, Daniel Hess-638
low, Julien Launay, Quentin Malartic, et al. 2023.639
The Falcon series of open language models. arXiv640
preprint arXiv:2311.16867.641

4https://llama.meta.com/use-policy

Reza Yazdani Aminabadi, Samyam Rajbhandari, Am- 642
mar Ahmad Awan, Cheng Li, Du Li, Elton Zheng, 643
Olatunji Ruwase, Shaden Smith, Minjia Zhang, Jeff 644
Rasley, et al. 2022. DeepSpeed-Inference: enabling 645
efficient inference of Transformer models at unprece- 646
dented scale. In SC22: International Conference for 647
High Performance Computing, Networking, Storage 648
and Analysis, pages 1–15. IEEE. 649

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten 650
Bosma, Henryk Michalewski, David Dohan, Ellen 651
Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. 2021. 652
Program synthesis with large language models. arXiv 653
preprint arXiv:2108.07732. 654

Haoli Bai, Lu Hou, Lifeng Shang, Xin Jiang, Irwin King, 655
and Michael R Lyu. 2022. Towards efficient post- 656
training quantization of pre-trained language models. 657
Advances in Neural Information Processing Systems, 658
35:1405–1418. 659

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, 660
et al. 2020. PIQA: Reasoning about physical com- 661
monsense in natural language. In Proceedings of the 662
AAAI conference on artificial intelligence, volume 34, 663
pages 7432–7439. 664

Rishi Bommasani, Drew A Hudson, Ehsan Adeli, 665
Russ Altman, Simran Arora, Sydney von Arx, 666
Michael S Bernstein, Jeannette Bohg, Antoine Bosse- 667
lut, Emma Brunskill, et al. 2021. On the opportuni- 668
ties and risks of foundation models. arXiv preprint 669
arXiv:2108.07258. 670

Tom Brown, Benjamin Mann, Nick Ryder, Melanie 671
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind 672
Neelakantan, Pranav Shyam, Girish Sastry, Amanda 673
Askell, et al. 2020. Language models are few-shot 674
learners. Advances in neural information processing 675
systems, 33:1877–1901. 676

Charlie Chen, Sebastian Borgeaud, Geoffrey Irving, 677
Jean-Baptiste Lespiau, Laurent Sifre, and John 678
Jumper. 2023. Accelerating large language model 679
decoding with speculative sampling. arXiv preprint 680
arXiv:2302.01318. 681

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming 682
Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka- 683
plan, Harri Edwards, Yuri Burda, Nicholas Joseph, 684
Greg Brockman, et al. 2021. Evaluating large 685
language models trained on code. arXiv preprint 686
arXiv:2107.03374. 687

Yu Cheng, Duo Wang, Pan Zhou, and Tao Zhang. 688
2017. A survey of model compression and accel- 689
eration for deep neural networks. arXiv preprint 690
arXiv:1710.09282. 691

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, 692
Maarten Bosma, Gaurav Mishra, Adam Roberts, Paul 693
Barham, Hyung Won Chung, Charles Sutton, Sebas- 694
tian Gehrmann, et al. 2023. PaLM: Scaling language 695
modeling with pathways. Journal of Machine Learn- 696
ing Research, 24(240):1–113. 697

9

https://arxiv.org/pdf/2303.08774.pdf
https://arxiv.org/pdf/2303.08774.pdf
https://arxiv.org/pdf/2303.08774.pdf
https://arxiv.org/pdf/2311.16867.pdf
https://llama.meta.com/use-policy
https://ieeexplore.ieee.org/abstract/document/10046087
https://ieeexplore.ieee.org/abstract/document/10046087
https://ieeexplore.ieee.org/abstract/document/10046087
https://ieeexplore.ieee.org/abstract/document/10046087
https://ieeexplore.ieee.org/abstract/document/10046087
https://arxiv.org/pdf/2108.07732.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/096347b4efc264ae7f07742fea34af1f-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/096347b4efc264ae7f07742fea34af1f-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/096347b4efc264ae7f07742fea34af1f-Paper-Conference.pdf
https://ojs.aaai.org/index.php/AAAI/article/view/6239/6095
https://ojs.aaai.org/index.php/AAAI/article/view/6239/6095
https://ojs.aaai.org/index.php/AAAI/article/view/6239/6095
https://arxiv.org/pdf/2108.07258.pdf
https://arxiv.org/pdf/2108.07258.pdf
https://arxiv.org/pdf/2108.07258.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://arxiv.org/pdf/2302.01318.pdf
https://arxiv.org/pdf/2302.01318.pdf
https://arxiv.org/pdf/2302.01318.pdf
https://arxiv.org/pdf/2107.03374.pdf
https://arxiv.org/pdf/2107.03374.pdf
https://arxiv.org/pdf/2107.03374.pdf
https://arxiv.org/pdf/1710.09282.pdf
https://arxiv.org/pdf/1710.09282.pdf
https://arxiv.org/pdf/1710.09282.pdf
https://www.jmlr.org/papers/volume24/22-1144/22-1144.pdf
https://www.jmlr.org/papers/volume24/22-1144/22-1144.pdf
https://www.jmlr.org/papers/volume24/22-1144/22-1144.pdf

Christopher Clark, Kenton Lee, Ming-Wei Chang,698
Tom Kwiatkowski, Michael Collins, and Kristina699
Toutanova. 2019. BoolQ: Exploring the surprising700
difficulty of natural yes/no questions. In Proceedings701
of the 2019 Conference of the North American Chap-702
ter of the Association for Computational Linguistics:703
Human Language Technologies, Volume 1 (Long and704
Short Papers), pages 2924–2936.705

Jonathan H Clark, Eunsol Choi, Michael Collins, Dan706
Garrette, Tom Kwiatkowski, Vitaly Nikolaev, and707
Jennimaria Palomaki. 2020. TyDi QA: A benchmark708
for information-seeking question answering in typo-709
logically diverse languages. Transactions of the As-710
sociation for Computational Linguistics, 8:454–470.711

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,712
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias713
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro714
Nakano, et al. 2021. Training verifiers to solve math715
word problems. arXiv preprint arXiv:2110.14168.716

Yann N Dauphin, Angela Fan, Michael Auli, and David717
Grangier. 2017. Language modeling with gated con-718
volutional networks. In International conference on719
machine learning, pages 933–941. PMLR.720

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and721
Kristina Toutanova. 2018. BERT: Pre-training of722
deep bidirectional Transformers for language under-723
standing. arXiv preprint arXiv:1810.04805.724

Ning Ding, Yulin Chen, Bokai Xu, Yujia Qin, Zhi725
Zheng, Shengding Hu, Zhiyuan Liu, Maosong Sun,726
and Bowen Zhou. 2023. Enhancing chat language727
models by scaling high-quality instructional conver-728
sations. arXiv preprint arXiv:2305.14233.729

Alexey Dosovitskiy, Lucas Beyer, Alexander730
Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,731
Thomas Unterthiner, Mostafa Dehghani, Matthias732
Minderer, Georg Heigold, Sylvain Gelly, et al. 2020.733
An image is worth 16x16 words: Transformers734
for image recognition at scale. In International735
Conference on Learning Representations.736

Stefan Elfwing, Eiji Uchibe, and Kenji Doya. 2018.737
Sigmoid-weighted linear units for neural network738
function approximation in reinforcement learning.739
Neural networks, 107:3–11.740

Elias Frantar and Dan Alistarh. 2023. SparseGPT: Mas-741
sive language models can be accurately pruned in742
one-shot. In International Conference on Machine743
Learning, pages 10323–10337. PMLR.744

Leo Gao, Stella Biderman, Sid Black, Laurence Gold-745
ing, Travis Hoppe, Charles Foster, Jason Phang, Ho-746
race He, Anish Thite, Noa Nabeshima, et al. 2020.747
The Pile: An 800GB dataset of diverse text for lan-748
guage modeling. arXiv preprint arXiv:2101.00027.749

Georgios Georgiadis. 2019. Accelerating convolutional750
neural networks via activation map compression. In751
Proceedings of the IEEE/CVF Conference on Com-752
puter Vision and Pattern Recognition, pages 7085–753
7095.754

Yuxian Gu, Li Dong, Furu Wei, and Minlie Huang. 755
2023. Knowledge distillation of large language mod- 756
els. arXiv preprint arXiv:2306.08543. 757

Song Han, Huizi Mao, and William J Dally. 2015a. 758
Deep compression: Compressing deep neural net- 759
works with pruning, trained quantization and huff- 760
man coding. arXiv preprint arXiv:1510.00149. 761

Song Han, Jeff Pool, John Tran, and William Dally. 762
2015b. Learning both weights and connections for 763
efficient neural network. Advances in neural infor- 764
mation processing systems, 28. 765

Trevor Hastie, Robert Tibshirani, Jerome H Friedman, 766
and Jerome H Friedman. 2009. The elements of statis- 767
tical learning: data mining, inference, and prediction, 768
volume 2. Springer. 769

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, 770
Mantas Mazeika, Dawn Song, and Jacob Steinhardt. 771
2020. Measuring massive multitask language under- 772
standing. arXiv preprint arXiv:2009.03300. 773

Dan Hendrycks and Kevin Gimpel. 2016. Gaus- 774
sian error linear units (GELUs). arXiv preprint 775
arXiv:1606.08415. 776

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2015. 777
Distilling the knowledge in a neural network. arXiv 778
preprint arXiv:1503.02531. 779

Torsten Hoefler, Dan Alistarh, Tal Ben-Nun, Nikoli Dry- 780
den, and Alexandra Peste. 2021. Sparsity in deep 781
learning: Pruning and growth for efficient inference 782
and training in neural networks. The Journal of Ma- 783
chine Learning Research, 22(1):10882–11005. 784

Or Honovich, Thomas Scialom, Omer Levy, and Timo 785
Schick. 2022. Unnatural instructions: Tuning lan- 786
guage models with (almost) no human labor. arXiv 787
preprint arXiv:2212.09689. 788

Cheng-Yu Hsieh, Chun-Liang Li, Chih-Kuan Yeh, 789
Hootan Nakhost, Yasuhisa Fujii, Alexander Ratner, 790
Ranjay Krishna, Chen-Yu Lee, and Tomas Pfister. 791
2023. Distilling step-by-step! outperforming larger 792
language models with less training data and smaller 793
model sizes. arXiv preprint arXiv:2305.02301. 794

Benoit Jacob, Skirmantas Kligys, Bo Chen, Meng- 795
long Zhu, Matthew Tang, Andrew Howard, Hartwig 796
Adam, and Dmitry Kalenichenko. 2018. Quanti- 797
zation and training of neural networks for efficient 798
integer-arithmetic-only inference. In Proceedings of 799
the IEEE conference on computer vision and pattern 800
recognition, pages 2704–2713. 801

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B 802
Brown, Benjamin Chess, Rewon Child, Scott Gray, 803
Alec Radford, Jeffrey Wu, and Dario Amodei. 2020. 804
Scaling laws for neural language models. arXiv 805
preprint arXiv:2001.08361. 806

10

https://aclanthology.org/N19-1300.pdf
https://aclanthology.org/N19-1300.pdf
https://aclanthology.org/N19-1300.pdf
https://aclanthology.org/2020.tacl-1.30.pdf
https://aclanthology.org/2020.tacl-1.30.pdf
https://aclanthology.org/2020.tacl-1.30.pdf
https://aclanthology.org/2020.tacl-1.30.pdf
https://aclanthology.org/2020.tacl-1.30.pdf
https://arxiv.org/pdf/2110.14168.pdf
https://arxiv.org/pdf/2110.14168.pdf
https://arxiv.org/pdf/2110.14168.pdf
https://proceedings.mlr.press/v70/dauphin17a/dauphin17a.pdf
https://proceedings.mlr.press/v70/dauphin17a/dauphin17a.pdf
https://proceedings.mlr.press/v70/dauphin17a/dauphin17a.pdf
https://arxiv.org/pdf/1810.04805.pdf
https://arxiv.org/pdf/1810.04805.pdf
https://arxiv.org/pdf/1810.04805.pdf
https://arxiv.org/pdf/1810.04805.pdf
https://arxiv.org/pdf/1810.04805.pdf
https://arxiv.org/pdf/2305.14233.pdf
https://arxiv.org/pdf/2305.14233.pdf
https://arxiv.org/pdf/2305.14233.pdf
https://arxiv.org/pdf/2305.14233.pdf
https://arxiv.org/pdf/2305.14233.pdf
https://openreview.net/pdf?id=YicbFdNTTy
https://openreview.net/pdf?id=YicbFdNTTy
https://openreview.net/pdf?id=YicbFdNTTy
https://www.sciencedirect.com/science/article/pii/S0893608017302976
https://www.sciencedirect.com/science/article/pii/S0893608017302976
https://www.sciencedirect.com/science/article/pii/S0893608017302976
https://proceedings.mlr.press/v202/frantar23a/frantar23a.pdf
https://proceedings.mlr.press/v202/frantar23a/frantar23a.pdf
https://proceedings.mlr.press/v202/frantar23a/frantar23a.pdf
https://proceedings.mlr.press/v202/frantar23a/frantar23a.pdf
https://proceedings.mlr.press/v202/frantar23a/frantar23a.pdf
https://arxiv.org/pdf/2101.00027.pdf
https://arxiv.org/pdf/2101.00027.pdf
https://arxiv.org/pdf/2101.00027.pdf
https://openaccess.thecvf.com/content_CVPR_2019/papers/Georgiadis_Accelerating_Convolutional_Neural_Networks_via_Activation_Map_Compression_CVPR_2019_paper.pdf
https://openaccess.thecvf.com/content_CVPR_2019/papers/Georgiadis_Accelerating_Convolutional_Neural_Networks_via_Activation_Map_Compression_CVPR_2019_paper.pdf
https://openaccess.thecvf.com/content_CVPR_2019/papers/Georgiadis_Accelerating_Convolutional_Neural_Networks_via_Activation_Map_Compression_CVPR_2019_paper.pdf
https://arxiv.org/pdf/2306.08543.pdf
https://arxiv.org/pdf/2306.08543.pdf
https://arxiv.org/pdf/2306.08543.pdf
https://arxiv.org/pdf/1510.00149.pdf
https://arxiv.org/pdf/1510.00149.pdf
https://arxiv.org/pdf/1510.00149.pdf
https://arxiv.org/pdf/1510.00149.pdf
https://arxiv.org/pdf/1510.00149.pdf
https://proceedings.neurips.cc/paper_files/paper/2015/file/ae0eb3eed39d2bcef4622b2499a05fe6-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2015/file/ae0eb3eed39d2bcef4622b2499a05fe6-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2015/file/ae0eb3eed39d2bcef4622b2499a05fe6-Paper.pdf
https://link.springer.com/content/pdf/10.1007/978-0-387-21606-5.pdf
https://link.springer.com/content/pdf/10.1007/978-0-387-21606-5.pdf
https://link.springer.com/content/pdf/10.1007/978-0-387-21606-5.pdf
https://arxiv.org/pdf/2009.03300.pdf
https://arxiv.org/pdf/2009.03300.pdf
https://arxiv.org/pdf/2009.03300.pdf
https://arxiv.org/pdf/1606.08415.pdf
https://arxiv.org/pdf/1606.08415.pdf
https://arxiv.org/pdf/1606.08415.pdf
https://arxiv.org/pdf/1503.02531.pdf
https://dl.acm.org/doi/pdf/10.5555/3546258.3546499
https://dl.acm.org/doi/pdf/10.5555/3546258.3546499
https://dl.acm.org/doi/pdf/10.5555/3546258.3546499
https://dl.acm.org/doi/pdf/10.5555/3546258.3546499
https://dl.acm.org/doi/pdf/10.5555/3546258.3546499
https://arxiv.org/pdf/2212.09689.pdf
https://arxiv.org/pdf/2212.09689.pdf
https://arxiv.org/pdf/2212.09689.pdf
https://arxiv.org/pdf/2305.02301.pdf
https://arxiv.org/pdf/2305.02301.pdf
https://arxiv.org/pdf/2305.02301.pdf
https://arxiv.org/pdf/2305.02301.pdf
https://arxiv.org/pdf/2305.02301.pdf
https://openaccess.thecvf.com/content_cvpr_2018/papers/Jacob_Quantization_and_Training_CVPR_2018_paper.pdf
https://openaccess.thecvf.com/content_cvpr_2018/papers/Jacob_Quantization_and_Training_CVPR_2018_paper.pdf
https://openaccess.thecvf.com/content_cvpr_2018/papers/Jacob_Quantization_and_Training_CVPR_2018_paper.pdf
https://openaccess.thecvf.com/content_cvpr_2018/papers/Jacob_Quantization_and_Training_CVPR_2018_paper.pdf
https://openaccess.thecvf.com/content_cvpr_2018/papers/Jacob_Quantization_and_Training_CVPR_2018_paper.pdf
https://arxiv.org/abs/2001.08361

Mark Kurtz, Justin Kopinsky, Rati Gelashvili, Alexan-807
der Matveev, John Carr, Michael Goin, William Leis-808
erson, Sage Moore, Nir Shavit, and Dan Alistarh.809
2020. Inducing and exploiting activation sparsity810
for fast inference on deep neural networks. In In-811
ternational Conference on Machine Learning, pages812
5533–5543. PMLR.813

Yaniv Leviathan, Matan Kalman, and Yossi Matias.814
2023. Fast inference from Transformers via spec-815
ulative decoding. In International Conference on816
Machine Learning, pages 19274–19286. PMLR.817

Patrick Lewis, Yuxiang Wu, Linqing Liu, Pasquale Min-818
ervini, Heinrich Küttler, Aleksandra Piktus, Pontus819
Stenetorp, and Sebastian Riedel. 2021. PAQ: 65 mil-820
lion probably-asked questions and what you can do821
with them. Transactions of the Association for Com-822
putational Linguistics, 9:1098–1115.823

Gen Li, Yuantao Gu, and Jie Ding. 2020. The efficacy of824
l1 regularization in two-layer neural networks. arXiv825
preprint arXiv:2010.01048.826

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas827
Muennighoff, Denis Kocetkov, Chenghao Mou, Marc828
Marone, Christopher Akiki, Jia Li, Jenny Chim, et al.829
2023. StarCoder: may the source be with you! arXiv830
preprint arXiv:2305.06161.831

Zonglin Li, Chong You, Srinadh Bhojanapalli, Daliang832
Li, Ankit Singh Rawat, Sashank J Reddi, Ke Ye,833
Felix Chern, Felix Yu, Ruiqi Guo, et al. 2022.834
Large models are parsimonious learners: Activa-835
tion sparsity in trained Transformers. arXiv preprint836
arXiv:2210.06313.837

Zichang Liu, Jue Wang, Tri Dao, Tianyi Zhou, Binhang838
Yuan, Zhao Song, Anshumali Shrivastava, Ce Zhang,839
Yuandong Tian, Christopher Re, et al. 2023. Deja840
Vu: Contextual sparsity for efficient LLMs at infer-841
ence time. In International Conference on Machine842
Learning, pages 22137–22176. PMLR.843

Shayne Longpre, Le Hou, Tu Vu, Albert Webson,844
Hyung Won Chung, Yi Tay, Denny Zhou, Quoc V. Le,845
Barret Zoph, Jason Wei, and Adam Roberts. 2023.846
The Flan collection: designing data and methods for847
effective instruction tuning. In Proceedings of the848
40th International Conference on Machine Learning.849
JMLR.org.850

Ilya Loshchilov and Frank Hutter. 2016. SGDR:851
Stochastic gradient descent with warm restarts. In In-852
ternational Conference on Learning Representations.853

Rongrong Ma, Jianyu Miao, Lingfeng Niu, and Peng854
Zhang. 2019. Transformed l1 regularization for learn-855
ing sparse deep neural networks. Neural Networks,856
119:286–298.857

Xinyin Ma, Gongfan Fang, and Xinchao Wang. 2023.858
LLM-Pruner: On the structural pruning of large lan-859
guage models. arXiv preprint arXiv:2305.11627.860

Xupeng Miao, Gabriele Oliaro, Zhihao Zhang, Xinhao 861
Cheng, Zeyu Wang, Rae Ying Yee Wong, Zhuoming 862
Chen, Daiyaan Arfeen, Reyna Abhyankar, and Zhi- 863
hao Jia. 2023. SpecInfer: Accelerating generative 864
LLM serving with speculative inference and token 865
tree verification. arXiv preprint arXiv:2305.09781. 866

Iman Mirzadeh, Keivan Alizadeh, Sachin Mehta, 867
Carlo C Del Mundo, Oncel Tuzel, Golnoosh Samei, 868
Mohammad Rastegari, and Mehrdad Farajtabar. 869
2023. ReLU strikes back: Exploiting activation 870
sparsity in large language models. arXiv preprint 871
arXiv:2310.04564. 872

Pavlo Molchanov, Stephen Tyree, Tero Karras, Timo 873
Aila, and Jan Kautz. 2016. Pruning convolutional 874
neural networks for resource efficient inference. In 875
International Conference on Learning Representa- 876
tions. 877

Markus Nagel, Mart van Baalen, Tijmen Blankevoort, 878
and Max Welling. 2019. Data-free quantization 879
through weight equalization and bias correction. In 880
Proceedings of the IEEE/CVF International Confer- 881
ence on Computer Vision, pages 1325–1334. 882

OpenAI. 2023. ChatGPT. 883

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, 884
Carroll Wainwright, Pamela Mishkin, Chong Zhang, 885
Sandhini Agarwal, Katarina Slama, Alex Ray, et al. 886
2022. Training language models to follow instruc- 887
tions with human feedback. Advances in Neural 888
Information Processing Systems, 35:27730–27744. 889

Denis Paperno, Germán Kruszewski, Angeliki Lazari- 890
dou, Ngoc-Quan Pham, Raffaella Bernardi, Sandro 891
Pezzelle, Marco Baroni, Gemma Boleda, and Raquel 892
Fernández. 2016. The LAMBADA dataset: Word 893
prediction requiring a broad discourse context. In 894
Proceedings of the 54th Annual Meeting of the As- 895
sociation for Computational Linguistics (Volume 1: 896
Long Papers), pages 1525–1534. 897

Reiner Pope, Sholto Douglas, Aakanksha Chowdhery, 898
Jacob Devlin, James Bradbury, Jonathan Heek, Kefan 899
Xiao, Shivani Agrawal, and Jeff Dean. 2023. Effi- 900
ciently scaling Transformer inference. Proceedings 901
of Machine Learning and Systems, 5. 902

Yogi Prasetyo, Novanto Yudistira, and Agus Wahyu 903
Widodo. 2023. Sparse then prune: Toward 904
efficient vision Transformers. arXiv preprint 905
arXiv:2307.11988. 906

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine 907
Lee, Sharan Narang, Michael Matena, Yanqi Zhou, 908
Wei Li, and Peter J Liu. 2020. Exploring the limits 909
of transfer learning with a unified text-to-text Trans- 910
former. The Journal of Machine Learning Research, 911
21(1):5485–5551. 912

Melissa Roemmele, Cosmin Adrian Bejan, and An- 913
drew S Gordon. 2011. Choice of plausible alter- 914
natives: An evaluation of commonsense causal rea- 915
soning. In 2011 AAAI Spring Symposium Series. 916

11

https://proceedings.mlr.press/v119/kurtz20a/kurtz20a.pdf
https://proceedings.mlr.press/v119/kurtz20a/kurtz20a.pdf
https://proceedings.mlr.press/v119/kurtz20a/kurtz20a.pdf
https://proceedings.mlr.press/v202/leviathan23a/leviathan23a.pdf
https://proceedings.mlr.press/v202/leviathan23a/leviathan23a.pdf
https://proceedings.mlr.press/v202/leviathan23a/leviathan23a.pdf
https://aclanthology.org/2021.tacl-1.65.pdf
https://aclanthology.org/2021.tacl-1.65.pdf
https://aclanthology.org/2021.tacl-1.65.pdf
https://aclanthology.org/2021.tacl-1.65.pdf
https://aclanthology.org/2021.tacl-1.65.pdf
https://arxiv.org/pdf/2010.01048.pdf
https://arxiv.org/pdf/2010.01048.pdf
https://arxiv.org/pdf/2010.01048.pdf
https://arxiv.org/pdf/2305.06161.pdf
https://arxiv.org/pdf/2210.06313.pdf
https://arxiv.org/pdf/2210.06313.pdf
https://arxiv.org/pdf/2210.06313.pdf
https://proceedings.mlr.press/v202/liu23am/liu23am.pdf
https://proceedings.mlr.press/v202/liu23am/liu23am.pdf
https://proceedings.mlr.press/v202/liu23am/liu23am.pdf
https://proceedings.mlr.press/v202/liu23am/liu23am.pdf
https://proceedings.mlr.press/v202/liu23am/liu23am.pdf
https://openreview.net/pdf?id=ZX4uS605XV
https://openreview.net/pdf?id=ZX4uS605XV
https://openreview.net/pdf?id=ZX4uS605XV
https://arxiv.org/pdf/1608.03983.pdf
https://arxiv.org/pdf/1608.03983.pdf
https://arxiv.org/pdf/1608.03983.pdf
https://www.sciencedirect.com/science/article/pii/S0893608019302321
https://www.sciencedirect.com/science/article/pii/S0893608019302321
https://www.sciencedirect.com/science/article/pii/S0893608019302321
https://arxiv.org/pdf/2305.11627.pdf
https://arxiv.org/pdf/2305.11627.pdf
https://arxiv.org/pdf/2305.11627.pdf
https://arxiv.org/pdf/2305.09781
https://arxiv.org/pdf/2305.09781
https://arxiv.org/pdf/2305.09781
https://arxiv.org/pdf/2305.09781
https://arxiv.org/pdf/2305.09781
https://arxiv.org/pdf/2310.04564.pdf
https://arxiv.org/pdf/2310.04564.pdf
https://arxiv.org/pdf/2310.04564.pdf
https://openreview.net/pdf?id=SJGCiw5gl
https://openreview.net/pdf?id=SJGCiw5gl
https://openreview.net/pdf?id=SJGCiw5gl
https://openaccess.thecvf.com/content_ICCV_2019/papers/Nagel_Data-Free_Quantization_Through_Weight_Equalization_and_Bias_Correction_ICCV_2019_paper.pdf
https://openaccess.thecvf.com/content_ICCV_2019/papers/Nagel_Data-Free_Quantization_Through_Weight_Equalization_and_Bias_Correction_ICCV_2019_paper.pdf
https://openaccess.thecvf.com/content_ICCV_2019/papers/Nagel_Data-Free_Quantization_Through_Weight_Equalization_and_Bias_Correction_ICCV_2019_paper.pdf
https://openai.com/blog/chatgpt
https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf
https://aclanthology.org/P16-1144.pdf
https://aclanthology.org/P16-1144.pdf
https://aclanthology.org/P16-1144.pdf
https://proceedings.mlsys.org/paper_files/paper/2023/file/523f87e9d08e6071a3bbd150e6da40fb-Paper-mlsys2023.pdf
https://proceedings.mlsys.org/paper_files/paper/2023/file/523f87e9d08e6071a3bbd150e6da40fb-Paper-mlsys2023.pdf
https://proceedings.mlsys.org/paper_files/paper/2023/file/523f87e9d08e6071a3bbd150e6da40fb-Paper-mlsys2023.pdf
https://arxiv.org/pdf/2307.11988.pdf
https://arxiv.org/pdf/2307.11988.pdf
https://arxiv.org/pdf/2307.11988.pdf
https://dl.acm.org/doi/pdf/10.5555/3455716.3455856
https://dl.acm.org/doi/pdf/10.5555/3455716.3455856
https://dl.acm.org/doi/pdf/10.5555/3455716.3455856
https://dl.acm.org/doi/pdf/10.5555/3455716.3455856
https://dl.acm.org/doi/pdf/10.5555/3455716.3455856
https://cdn.aaai.org/ocs/2418/2418-10878-1-PB.pdf
https://cdn.aaai.org/ocs/2418/2418-10878-1-PB.pdf
https://cdn.aaai.org/ocs/2418/2418-10878-1-PB.pdf
https://cdn.aaai.org/ocs/2418/2418-10878-1-PB.pdf
https://cdn.aaai.org/ocs/2418/2418-10878-1-PB.pdf

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhaga-917
vatula, and Yejin Choi. 2020. WinoGrande: An ad-918
versarial winograd schema challenge at scale. In919
Proceedings of the AAAI Conference on Artificial920
Intelligence, volume 34, pages 8732–8740.921

Victor Sanh, Albert Webson, Colin Raffel, Stephen922
Bach, Lintang Sutawika, Zaid Alyafeai, Antoine923
Chaffin, Arnaud Stiegler, Arun Raja, Manan Dey,924
et al. 2021. Multitask prompted training enables925
zero-shot task generalization. In International Con-926
ference on Learning Representations.927

Maarten Sap, Hannah Rashkin, Derek Chen, Ronan928
Le Bras, and Yejin Choi. 2019. SocialIQA: Com-929
monsense reasoning about social interactions. In930
Proceedings of the 2019 Conference on Empirical931
Methods in Natural Language Processing and the 9th932
International Joint Conference on Natural Language933
Processing (EMNLP-IJCNLP), pages 4463–4473.934

Simone Scardapane, Danilo Comminiello, Amir Hus-935
sain, and Aurelio Uncini. 2017. Group sparse regular-936
ization for deep neural networks. Neurocomputing,937
241:81–89.938

Noam Shazeer. 2020. GLU variants improve Trans-939
former. arXiv preprint arXiv:2002.05202.940

Kai Shen, Junliang Guo, Xu Tan, Siliang Tang,941
Rui Wang, and Jiang Bian. 2023. A study on942
ReLU and Softmax in Transformer. arXiv preprint943
arXiv:2302.06461.944

Yixin Song, Zeyu Mi, Haotong Xie, and Haibo Chen.945
2023. PowerInfer: Fast large language model serv-946
ing with a consumer-grade GPU. arXiv preprint947
arXiv:2312.12456.948

Mingjie Sun, Zhuang Liu, Anna Bair, and J Zico949
Kolter. 2023. A simple and effective pruning ap-950
proach for large language models. arXiv preprint951
arXiv:2306.11695.952

Mirac Suzgun, Nathan Scales, Nathanael Schärli, Se-953
bastian Gehrmann, Yi Tay, Hyung Won Chung,954
Aakanksha Chowdhery, Quoc V Le, Ed H Chi, Denny955
Zhou, et al. 2022. Challenging big-bench tasks and956
whether chain-of-thought can solve them. arXiv957
preprint arXiv:2210.09261.958

Raphael Tang, Yao Lu, Linqing Liu, Lili Mou, Olga959
Vechtomova, and Jimmy Lin. 2019. Distilling task-960
specific knowledge from bert into simple neural net-961
works. arXiv preprint arXiv:1903.12136.962

Robert Tibshirani. 1996. Regression shrinkage and se-963
lection via the Lasso. Journal of the Royal Statistical964
Society Series B: Statistical Methodology, 58(1):267–965
288.966

Hugo Touvron, Matthieu Cord, Matthijs Douze, Fran-967
cisco Massa, Alexandre Sablayrolles, and Hervé Jé-968
gou. 2021. Training data-efficient image Transform-969
ers & distillation through attention. In International970
conference on machine learning, pages 10347–10357.971
PMLR.972

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier 973
Martinet, Marie-Anne Lachaux, Timothée Lacroix, 974
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal 975
Azhar, et al. 2023a. LLaMA: Open and effi- 976
cient foundation language models. arXiv preprint 977
arXiv:2302.13971. 978

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al- 979
bert, Amjad Almahairi, Yasmine Babaei, Nikolay 980
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti 981
Bhosale, et al. 2023b. LLaMA 2: Open founda- 982
tion and fine-tuned chat models. arXiv preprint 983
arXiv:2307.09288. 984

Huan Wang, Qiming Zhang, Yuehai Wang, Lu Yu, and 985
Haoji Hu. 2019. Structured pruning for efficient 986
ConvNets via incremental regularization. In 2019 987
International Joint Conference on Neural Networks 988
(IJCNN), pages 1–8. IEEE. 989

Yiding Wang, Kai Chen, Haisheng Tan, and Kun Guo. 990
2023. Tabi: An efficient multi-level inference sys- 991
tem for large language models. In Proceedings of 992
the Eighteenth European Conference on Computer 993
Systems, pages 233–248. 994

Yizhong Wang, Swaroop Mishra, Pegah Alipoormo- 995
labashi, Yeganeh Kordi, Amirreza Mirzaei, Atharva 996
Naik, Arjun Ashok, Arut Selvan Dhanasekaran, An- 997
jana Arunkumar, David Stap, et al. 2022. Super- 998
NaturalInstructions: Generalization via declarative 999
instructions on 1600+ NLP tasks. In Proceedings 1000
of the 2022 Conference on Empirical Methods in 1001
Natural Language Processing, pages 5085–5109. 1002

Jason Wei, Maarten Bosma, Vincent Y Zhao, Kelvin 1003
Guu, Adams Wei Yu, Brian Lester, Nan Du, An- 1004
drew M Dai, and Quoc V Le. 2021. Finetuned lan- 1005
guage models are zero-shot learners. arXiv preprint 1006
arXiv:2109.01652. 1007

Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, 1008
and Hai Li. 2016. Learning structured sparsity in 1009
deep neural networks. Advances in neural informa- 1010
tion processing systems, 29. 1011

Wikimedia Foundation. 2022. Wikimedia downloads. 1012

Mitchell Wortsman, Jaehoon Lee, Justin Gilmer, and 1013
Simon Kornblith. 2023. Replacing softmax with 1014
ReLU in vision Transformers. arXiv preprint 1015
arXiv:2309.08586. 1016

Mengzhou Xia, Tianyu Gao, Zhiyuan Zeng, and Danqi 1017
Chen. 2023. Sheared LLaMA: Accelerating lan- 1018
guage model pre-training via structured pruning. 1019
arXiv preprint arXiv:2310.06694. 1020

Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu, 1021
Julien Demouth, and Song Han. 2023. Smoothquant: 1022
Accurate and efficient post-training quantization for 1023
large language models. In International Conference 1024
on Machine Learning, pages 38087–38099. PMLR. 1025

12

https://cdn.aaai.org/ojs/6399/6399-13-9624-1-10-20200517.pdf
https://cdn.aaai.org/ojs/6399/6399-13-9624-1-10-20200517.pdf
https://cdn.aaai.org/ojs/6399/6399-13-9624-1-10-20200517.pdf
https://openreview.net/pdf?id=9Vrb9D0WI4
https://openreview.net/pdf?id=9Vrb9D0WI4
https://openreview.net/pdf?id=9Vrb9D0WI4
https://aclanthology.org/D19-1454.pdf
https://aclanthology.org/D19-1454.pdf
https://aclanthology.org/D19-1454.pdf
https://www.sciencedirect.com/science/article/pii/S0925231217302990
https://www.sciencedirect.com/science/article/pii/S0925231217302990
https://www.sciencedirect.com/science/article/pii/S0925231217302990
https://arxiv.org/pdf/2002.05202.pdf
https://arxiv.org/pdf/2002.05202.pdf
https://arxiv.org/pdf/2002.05202.pdf
https://arxiv.org/pdf/2302.06461.pdf
https://arxiv.org/pdf/2302.06461.pdf
https://arxiv.org/pdf/2302.06461.pdf
https://arxiv.org/pdf/2312.12456.pdf
https://arxiv.org/pdf/2312.12456.pdf
https://arxiv.org/pdf/2312.12456.pdf
https://arxiv.org/pdf/2306.11695.pdf
https://arxiv.org/pdf/2306.11695.pdf
https://arxiv.org/pdf/2306.11695.pdf
https://arxiv.org/pdf/2210.09261.pdf
https://arxiv.org/pdf/2210.09261.pdf
https://arxiv.org/pdf/2210.09261.pdf
https://arxiv.org/pdf/1903.12136.pdf
https://arxiv.org/pdf/1903.12136.pdf
https://arxiv.org/pdf/1903.12136.pdf
https://arxiv.org/pdf/1903.12136.pdf
https://arxiv.org/pdf/1903.12136.pdf
https://watermark.silverchair.com/jrsssb_58_1_267.pdf
https://watermark.silverchair.com/jrsssb_58_1_267.pdf
https://watermark.silverchair.com/jrsssb_58_1_267.pdf
http://proceedings.mlr.press/v139/touvron21a/touvron21a.pdf
http://proceedings.mlr.press/v139/touvron21a/touvron21a.pdf
http://proceedings.mlr.press/v139/touvron21a/touvron21a.pdf
https://arxiv.org/pdf/2302.13971.pdf
https://arxiv.org/pdf/2302.13971.pdf
https://arxiv.org/pdf/2302.13971.pdf
https://arxiv.org/pdf/2307.09288.pdf
https://arxiv.org/pdf/2307.09288.pdf
https://arxiv.org/pdf/2307.09288.pdf
https://arxiv.org/pdf/1804.09461.pdf
https://arxiv.org/pdf/1804.09461.pdf
https://arxiv.org/pdf/1804.09461.pdf
https://dl.acm.org/doi/abs/10.1145/3552326.3587438
https://dl.acm.org/doi/abs/10.1145/3552326.3587438
https://dl.acm.org/doi/abs/10.1145/3552326.3587438
https://aclanthology.org/2022.emnlp-main.340.pdf
https://aclanthology.org/2022.emnlp-main.340.pdf
https://aclanthology.org/2022.emnlp-main.340.pdf
https://aclanthology.org/2022.emnlp-main.340.pdf
https://aclanthology.org/2022.emnlp-main.340.pdf
https://arxiv.org/pdf/2109.01652
https://arxiv.org/pdf/2109.01652
https://arxiv.org/pdf/2109.01652
https://proceedings.neurips.cc/paper_files/paper/2016/file/41bfd20a38bb1b0bec75acf0845530a7-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2016/file/41bfd20a38bb1b0bec75acf0845530a7-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2016/file/41bfd20a38bb1b0bec75acf0845530a7-Paper.pdf
https://dumps.wikimedia.org
https://arxiv.org/pdf/2309.08586.pdf
https://arxiv.org/pdf/2309.08586.pdf
https://arxiv.org/pdf/2309.08586.pdf
https://arxiv.org/pdf/2310.06694.pdf
https://arxiv.org/pdf/2310.06694.pdf
https://arxiv.org/pdf/2310.06694.pdf
https://proceedings.mlr.press/v202/xiao23c/xiao23c.pdf
https://proceedings.mlr.press/v202/xiao23c/xiao23c.pdf
https://proceedings.mlr.press/v202/xiao23c/xiao23c.pdf
https://proceedings.mlr.press/v202/xiao23c/xiao23c.pdf
https://proceedings.mlr.press/v202/xiao23c/xiao23c.pdf

Zhewei Yao, Cheng Li, Xiaoxia Wu, Stephen Youn,1026
and Yuxiong He. 2023. A comprehensive study on1027
post-training quantization for large language models.1028
arXiv preprint arXiv:2303.08302.1029

Ming Yuan and Yi Lin. 2006. Model selection and esti-1030
mation in regression with grouped variables. Journal1031
of the Royal Statistical Society Series B: Statistical1032
Methodology, 68(1):49–67.1033

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali1034
Farhadi, and Yejin Choi. 2019. HellaSwag: Can1035
a machine really finish your sentence? In Proceed-1036
ings of the 57th Annual Meeting of the Association1037
for Computational Linguistics, pages 4791–4800.1038

Susan Zhang, Stephen Roller, Naman Goyal, Mikel1039
Artetxe, Moya Chen, Shuohui Chen, Christopher De-1040
wan, Mona Diab, Xian Li, Xi Victoria Lin, et al.1041
2022a. OPT: Open pre-trained Transformer language1042
models. arXiv preprint arXiv:2205.01068.1043

Zhengyan Zhang, Yankai Lin, Zhiyuan Liu, Peng Li,1044
Maosong Sun, and Jie Zhou. 2022b. MoEfication:1045
Transformer feed-forward layers are mixtures of ex-1046
perts. In Findings of the Association for Computa-1047
tional Linguistics: ACL 2022, pages 877–890.1048

Zhengyan Zhang, Yixin Song, Guanghui Yu, Xu Han,1049
Yankai Lin, Chaojun Xiao, Chenyang Song, Zhiyuan1050
Liu, Zeyu Mi, and Maosong Sun. 2024. Relu2 wins:1051
Discovering efficient activation functions for sparse1052
llms. arXiv preprint arXiv:2402.03804.1053

Hang Zhao, Orazio Gallo, Iuri Frosio, and Jan Kautz.1054
2016. Loss functions for image restoration with neu-1055
ral networks. IEEE Transactions on computational1056
imaging, 3(1):47–57.1057

Ritchie Zhao, Yuwei Hu, Jordan Dotzel, Chris De Sa,1058
and Zhiru Zhang. 2019. Improving neural network1059
quantization without retraining using outlier channel1060
splitting. In International conference on machine1061
learning, pages 7543–7552. PMLR.1062

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang,1063
Xiaolei Wang, Yupeng Hou, Yingqian Min, Beichen1064
Zhang, Junjie Zhang, Zican Dong, et al. 2023. A1065
survey of large language models. arXiv preprint1066
arXiv:2303.18223.1067

Wanjun Zhong, Ruixiang Cui, Yiduo Guo, Yaobo Liang,1068
Shuai Lu, Yanlin Wang, Amin Saied, Weizhu Chen,1069
and Nan Duan. 2023. AGIEval: A human-centric1070
benchmark for evaluating foundation models. arXiv1071
preprint arXiv:2304.06364.1072

Mingjian Zhu, Yehui Tang, and Kai Han. 2021.1073
Vision Transformer pruning. arXiv preprint1074
arXiv:2104.08500.1075

13

https://arxiv.org/pdf/2303.08302.pdf
https://arxiv.org/pdf/2303.08302.pdf
https://arxiv.org/pdf/2303.08302.pdf
https://academic.oup.com/jrsssb/article-pdf/68/1/49/49794691/jrsssb_68_1_49.pdf
https://academic.oup.com/jrsssb/article-pdf/68/1/49/49794691/jrsssb_68_1_49.pdf
https://academic.oup.com/jrsssb/article-pdf/68/1/49/49794691/jrsssb_68_1_49.pdf
https://aclanthology.org/P19-1472.pdf
https://aclanthology.org/P19-1472.pdf
https://aclanthology.org/P19-1472.pdf
https://arxiv.org/pdf/2205.01068.pdf
https://arxiv.org/pdf/2205.01068.pdf
https://arxiv.org/pdf/2205.01068.pdf
https://aclanthology.org/2022.findings-acl.71.pdf
https://aclanthology.org/2022.findings-acl.71.pdf
https://aclanthology.org/2022.findings-acl.71.pdf
https://aclanthology.org/2022.findings-acl.71.pdf
https://aclanthology.org/2022.findings-acl.71.pdf
https://arxiv.org/pdf/2402.03804.pdf
https://arxiv.org/pdf/2402.03804.pdf
https://arxiv.org/pdf/2402.03804.pdf
https://arxiv.org/pdf/2402.03804.pdf
https://arxiv.org/pdf/2402.03804.pdf
https://ieeexplore.ieee.org/abstract/document/7797130
https://ieeexplore.ieee.org/abstract/document/7797130
https://ieeexplore.ieee.org/abstract/document/7797130
http://proceedings.mlr.press/v97/zhao19c/zhao19c.pdf
http://proceedings.mlr.press/v97/zhao19c/zhao19c.pdf
http://proceedings.mlr.press/v97/zhao19c/zhao19c.pdf
http://proceedings.mlr.press/v97/zhao19c/zhao19c.pdf
http://proceedings.mlr.press/v97/zhao19c/zhao19c.pdf
https://arxiv.org/pdf/2303.18223.pdf
https://arxiv.org/pdf/2303.18223.pdf
https://arxiv.org/pdf/2303.18223.pdf
https://arxiv.org/pdf/2304.06364.pdf
https://arxiv.org/pdf/2304.06364.pdf
https://arxiv.org/pdf/2304.06364.pdf
https://arxiv.org/pdf/2104.08500.pdf

A Extended Related Works of L11076

Regularization1077

L1 regularization is a classical technique widely1078

used in statistical learning such as linear regres-1079

sion (Tibshirani, 1996; Hastie et al., 2009). With1080

the advent of deep learning, researchers also ex-1081

plore paradigms of applying L1 regularization to1082

neural networks. One prominent usage is model1083

pruning (Cheng et al., 2017). Specifically, a term of1084

loss calculated as the L1 norm of the sparsification1085

target is added to the optimization target function1086

to prompt sparse weights for faster computation.1087

This has helped acceleration in various conven-1088

tional neural networks (Han et al., 2015b; Zhao1089

et al., 2016; Wen et al., 2016; Scardapane et al.,1090

2017; Ma et al., 2019; Wang et al., 2019) as well as1091

Transformer-based models (Zhu et al., 2021; Prase-1092

tyo et al., 2023). Inspired by these works, some1093

researchers also try to adopt L1 regularization for1094

activation sparsity, mainly in ReLU-activated con-1095

volutional networks (Georgiadis, 2019; Kurtz et al.,1096

2020) and Transformer (Li et al., 2022).1097

To the best of our knowledge, ProSparse is the1098

first work using a dynamic L1 regularization fac-1099

tor for prompting activation sparsity in neural net-1100

works. By contrast, a majority of the former works1101

adopt fixed factors. For more adaptive control,1102

some of them introduce group regularization (Yuan1103

and Lin, 2006), namely using different factors for1104

different parameter groups. Nevertheless, without1105

dynamic factors, these paradigms can cause a sub-1106

stantial shift in activation distribution and thus po-1107

tentially risk performance degradation. The work1108

most related to ProSparse is Wang et al. (2019),1109

which introduces incremental regularization fac-1110

tors that change for different parameter groups at1111

each iteration. While they focus on the pruning of1112

convolutional networks, ProSparse handles a dis-1113

tinct scenario of prompting activation sparsity in1114

Transformer-based LLMs and adopts a completely1115

different strategy consisting of a progressively in-1116

cremental factor.1117

B Extented Introduction of Approximate1118

Acceleration Algorithms1119

Existing approximate algorithms are mostly de-1120

pendent on activation predictors, which are small1121

neural networks to predict the intermediate activa-1122

tions x1 based on the input hidden states x (Liu1123

et al., 2023; Song et al., 2023). If one element at1124

a specific position of x1 is predicted to be zero,1125

then all the computations associated with this po- 1126

sition can be saved with little or no hardware re- 1127

sources allocated. This is the key mechanism with 1128

which approximate algorithms can often reach a 1129

high hardware utilization rate and speedup ratio. 1130

Nevertheless, such a predictor-dependent accel- 1131

eration effect is largely dependent on the perfor- 1132

mance of the pre-trained activation predictors. For 1133

example, a typical bad case is that an actually acti- 1134

vated element in x1 is predicted to be inactivated. 1135

This can bring about negative results including un- 1136

wise hardware resource allocation and erroneously 1137

ignored intermediate logits, which limits the practi- 1138

cal speedup ratios and even causes inference inac- 1139

curacies. Therefore, a sparse LLM can gain more 1140

benefits from approximate algorithms if its activa- 1141

tion distribution is more predictable by the activa- 1142

tion predictor. 1143

To test a sparse LLM’s practical acceleration 1144

value with approximate algorithms, we involve the 1145

predictability of its activation distribution, which 1146

is evaluated by the performance of its specifically 1147

pre-trained activation predictor. This involves two 1148

key metrics: the activation recall and the predicted 1149

sparsity. A predictor with higher recall will miss 1150

less truly activated elements, therefore reducing 1151

inference inaccuracies and bringing about wiser 1152

hardware allocation. Under comparable recalls, a 1153

higher predicted sparsity indicates fewer elements 1154

to be falsely predicted activated, which largely al- 1155

leviates the waste of computational resources. 1156

C Implementation Details of Sparse GPU 1157

Operators 1158

Input-Side Sparse Operator. The input-side 1159

sparse operator is a sparse matrix-vector multipli- 1160

cation operator for accelerating x1W
T
2 , where the 1161

input x1 is sparse. Due to the sparsity of input, any 1162

operation involving a zero element in x1 can be 1163

omitted. Compared with a standard implementa- 1164

tion of matrix-vector multiplication, both memory 1165

access and computation of the sparse operator will 1166

decrease with the sparsity increasing. 1167

Output-Side Sparse Operator. The output- 1168

side sparse operator is a fused operator consist- 1169

ing of ReLU, sparse matrix-vector multiplication, 1170

and element-wise multiplication, for accelerating 1171

s ⊙ (xWT
1), where s is sparse. The sparsity of s 1172

can be propagated to the output of xWT
1 through 1173

element-wise multiplication, which means that 1174

the computation of matrix-vector multiplication 1175

14

in xWT
1 can be skipped whenever a result element1176

will be multiplied by zero of sparse s. In addi-1177

tion, we postpone the ReLU activation function1178

in σ(xWT
s) into this operator so that σ can be1179

implicitly performed along with the element-wise1180

multiplication. These operations are fused into a1181

single operator, thereby reducing the data move-1182

ment between operations.1183

For implementation, we first load the result of1184

xWT
s , determine which elements are greater than1185

zero (or a positive threshold after activation thresh-1186

old shifting), and then select the corresponding1187

columns of WT
1 to load from GPU memory, per-1188

forming multiplication operations with x. As the1189

matrix WT
1 is sparse by column, we store the ma-1190

trix in a column-major format to coalesce memory1191

access and fully utilize vectorized loads/store in-1192

structions. After this step, we get the sparse result1193

vector of xWT
1 and multiply the corresponding1194

elements with activated elements of s, with other1195

elements filled with zeros directly. Finally, the1196

result vector x1 is obtained.1197

D Training Details of Activation1198

Predictors1199

Following Deja Vu (Liu et al., 2023), the predictor1200

is a two-layer FFN, composed of two linear projec-1201

tion layers with a ReLU activation in between them.1202

Notably, as each layer of a sparse LLM has differ-1203

ent activation distributions, we should introduce the1204

same number of predictors as that of Transformer1205

layers. For predictor training, we first collect train-1206

ing data with about 400,000 pairs of input hidden1207

states x and intermediate activations x1 at the cor-1208

responding layer. Next, we train the predictor on1209

95% pairs with the binary cross entropy loss and1210

compute the predictability metrics on the remain-1211

ing 5% pairs. We reserve the checkpoint with the1212

highest recall to ensure the best inference accuracy1213

with the least falsely ignored activations.1214

E performance on Independent1215

Benchmarks1216

In this section, we report the performance on each1217

independent benchmark of Code Generation, Com-1218

monsense Reasoning, and Reading Comprehen-1219

sion, as displayed in Table 5.1220

F Important Hyperparameters1221

We provide the important hyperparameters for1222

ProSparse training, as shown in Table 4. Note1223

that the peak regularization factors of two con- 1224

tiguous stages can be set to the same value to in- 1225

troduce an extra constant-factor stage, mainly for 1226

stability requirements. All the baseline models 1227

are trained with the same number of tokens and 1228

the same mixed pre-training dataset as ProSparse. 1229

We use a cosine annealing learning rate scheduler 1230

throughout the training process and the peak learn- 1231

ing rates are 3e−5 and 5e−5 for ProSparse-7B and 1232

ProSparse-13B respectively. The context length is 1233

4,096 for all settings. 1234

All the 7B models are trained on 8 A100 GPUs 1235

for about 10 days. All the 13B models are trained 1236

on 32 A100 GPUs for about 20-30 days. The LLMs 1237

of each method involved in this paper are trained 1238

once due to the formidable training costs. 1239

G Effect of Different Thresholds in 1240

Activation Threshold Shifting 1241

As mentioned in Section 3.2, the threshold T is an 1242

important hyper-parameter in activation threshold 1243

shifting, the last step of ProSparse. In the overall 1244

experimental results, we choose T = 0.01 for both 1245

ProSparse-7B and ProSparse-13B to balance the 1246

sparsity and performance. For comprehensiveness, 1247

we list the results under other thresholds in Table 6. 1248

As can be observed, a small T results in a quite 1249

limited sparsity improvement compared with the 1250

version without activation threshold shifting, while 1251

a large T can cause non-negligible performance 1252

degradation. Therefore, we choose T = 0.01 to 1253

strike a balance. 1254

H Effect of Different Biases in Shifted 1255

ReLU 1256

In the overall experimental results, we set b = 0.1 1257

for Shifted ReLU-7B, which guarantees the best 1258

average performance. In this section, we list the re- 1259

sults of Shifted ReLU-7B under different bias b in 1260

Table 7. With the increase of bias b, the final spar- 1261

sity of Shifted ReLU models increases marginally, 1262

but the performance also suffers from consistent 1263

drops. Therefore, the choice of b in Shifted ReLU is 1264

also a trade-off between sparsity and performance. 1265

15

ProSparse-7B ProSparse-13B

Stage Number i λi Ti Accumulated Token (B) Stage Number i λi Ti Accumulated Token (B)

0 0 5,000 10.49 0 0 5,500 46.14
1 5e− 3 6,000 12.58 1 5e− 3 6,750 56.62
2 5e− 2 10,000 20.97 2 1e− 2 10,750 90.18
3 5e− 2 12,000 25.17 3 1e− 2 11,000 92.27
4 5e− 1 16,000 33.55 4 2e− 2 15,000 125.83
5 5e− 1 16,500 34.60 5 2e− 2 16,000 134.22

Table 4: The important hyperparameters for training ProSparse models. For simplicity, the 0th stage refers to the
continual training in activation function substitution. The 1st stage is the warmup stage with a fixed regularization
factor λ. The remaining stages are incremental stages with an increasing λ.

Setting HumanEval MBPP PIQA SIQA HellaSwag WinoGrande COPA BoolQ LAMBADA TyDi QA

Original-7B 10.98 21.77 78.40 47.70 75.67 67.17 79.00 75.99 72.81 36.82
ReluLLaMA-7B 12.20 19.51 77.86 49.54 72.85 64.96 83.00 78.10 70.33 63.18
Vanilla ReLU-7B 18.29 24.33 78.35 50.36 74.29 64.64 86.00 79.42 69.55 70.68
Shifted ReLU-7B 17.07 23.92 78.40 50.31 73.80 63.93 84.00 78.84 69.09 71.59
Fixed L1-7B 17.07 20.64 76.06 44.32 68.30 63.38 78.00 52.08 65.01 49.09
ProSparse-7B∗ 16.46 22.48 75.79 43.50 71.08 64.09 77.00 62.48 67.73 59.77
ProSparse-7B 16.46 22.38 75.68 43.55 71.09 64.01 77.00 62.51 68.21 59.77

Original-13B 16.46 23.92 79.38 47.90 79.12 70.48 86.00 82.54 76.21 55.91
ReluLLaMA-13B 17.07 23.31 78.40 47.13 76.60 69.06 81.00 81.16 73.49 65.23
ProSparse-13B∗ 25.61 32.44 77.04 45.14 75.91 68.67 82.00 79.27 71.08 52.27
ProSparse-13B 23.78 33.06 77.26 45.29 75.88 68.35 82.00 78.93 71.36 50.45

Table 5: The performance on each independent benchmark.

Setting Average Code Commonsense Reading GSM8K MMLU BBH AGI Eval AverageSparsity Generation Reasoning Comprehension

ProSparse-7B∗ 88.11 19.47 66.29 63.33 12.74 45.21 33.59 27.55 38.31
ProSparse-7B T = 0.005 88.62 19.68 66.23 62.59 12.05 44.95 34.43 27.46 38.20
ProSparse-7B T = 0.01 89.32 19.42 66.27 63.50 12.13 45.48 34.99 27.46 38.46
ProSparse-7B T = 0.02 90.35 18.39 66.09 62.93 12.59 45.02 34.34 27.14 38.07
ProSparse-7B T = 0.03 90.95 18.65 66.24 62.72 12.13 44.83 34.92 27.36 38.12

ProSparse-13B∗ 87.97 29.03 69.75 67.54 25.40 54.78 40.20 28.76 45.07
ProSparse-13B T = 0.005 88.24 29.04 69.69 67.62 26.23 54.75 39.52 28.74 45.08
ProSparse-13B T = 0.01 88.80 28.42 69.76 66.91 26.31 54.35 39.90 28.67 44.90
ProSparse-13B T = 0.02 89.40 29.29 69.63 65.28 24.94 54.88 39.79 28.88 44.67
ProSparse-13B T = 0.03 90.23 28.12 69.28 64.79 25.85 54.68 40.08 28.71 44.50

Table 6: The sparsity and performance under different thresholds T of activation threshold shifting.

Setting Average Code Commonsense Reading GSM8K MMLU BBH AGI Eval AverageSparsity Generation Reasoning Comprehension

Shifted ReLU-7B b = 0.1 69.59 20.50 70.09 73.17 13.87 48.54 35.20 27.94 41.33
Shifted ReLU-7B b = 0.3 70.34 21.05 70.70 72.03 14.33 48.03 34.11 27.58 41.12
Shifted ReLU-7B b = 0.5 71.64 20.59 70.25 73.69 13.27 46.55 35.29 27.21 40.98
Shifted ReLU-7B b = 1.0 74.81 18.05 70.96 70.64 11.83 46.07 35.48 27.46 40.07

Table 7: The sparsity and performance under different bias b of Shifted ReLU.

16

