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ABSTRACT

Although continuous unsupervised domain adaptation (CUDA) has shown success
in dealing with non-stationary data, catastrophic forgetting is still a challenge hin-
dering its full potential. The current state-of-the-art (SOTA) focuses on training a
single model to simultaneously perform adaptation (e.g., domain alignment) and
knowledge retention (i.e., minimizing replay loss). However, the two conflicting
objectives result in a hyper-parameter, which is difficult to tune yet significantly
affecting model performance. Therefore, we propose to use two separate models
so that one model is dedicated to the retention of historical knowledge (i.e., high
stability) while the other to the adaptation to future domains (i.e., high plasticity).
This allows the algorithm to forget to achieve better overall performance: dubbed
as Forget to Learn (F2L), Specifically, F2L decomposes the training process into
specialist model and generalist model, and uses knowledge distillation to transfer
knowledge between the two models. We demonstrate the superiority of F2L com-
pared to current CUDA trends (i.e., multi-task learning and single-task constrained
learning) on different continuous unsupervised domain adaptation datasets.

1 INTRODUCTION

Continuous Unsupervised Domain Adaptation (CUDA) is a generalization of the traditional Domain
Adaptation (DA) problem. However, in (CUDA), instead of dealing with a single target domain, the
model must continuously adapt to sequentially and smoothly varying target domains. One famous
realization of the CUDA problem is computer vision for self-driving cars under continuously and
smoothly varying environments. A Deep learning vision algorithm pre-trained on images taken dur-
ing the noon needs to continuously adapt to new lightning conditions due to the variation of sun
position throughout the day. CUDA can deal with these kinds of problems without requiring extra
labeling efforts. Hoffman et al. (2014) and Wulfmeier et al. (2018) represent early successful at-
tempts to solve this problem. Hoffman et al. (2014) crafted domain invariant kernels using subspace
alignment (SA) or Geodesic flow kernel (GFK) for each target domain. During inference and for
each target, the corresponding learned kernel is used in any kernel machine for classification or re-
gression. In recent years, more focus is made on directly training deep learning models to extract
domain invariant features. Wulfmeier et al. (2018), inspired by Tzeng et al. (2017), have proposed
an adversarial framework that breaks down CUDA continuous shifts into smaller incremental shifts.
By adapting to each incremental shift and employing Adversarial Discriminative Domain Adap-
tation (ADDA) by Tzeng et al. (2017), they were able to adapt to the continuous shift. However,
despite the success of these early attempts, they shared a significant drawback: the inability to handle
catastrophic forgetting.

Catastrophic forgetting is a problem that presents itself in machine learning models both in a su-
pervised setting (i.e., continuous learning) and in unsupervised settings such as CUDA. In case of
Wulfmeier et al. (2018), the model Mt is adapted to the new current target domain Dt

T without any
consideration of its performance on the previous domains [D0, ...., D

t−2
T , Dt−1

T ]. Accordingly, the
model forgets most of its knowledge on the previous domain and performs very poorly when tested
on them. This is a direct consequence of catastrophic forgetting. Many have extending the work
done Wulfmeier et al. (2018) to find a way around such problem. Kim et al. (2020) proposed storing
a few convolution layers (i.e., Target-specific Memory) from each model at each adaptation step,
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and later during inference on a certain domain, the corresponding Target-specific Memory should
be used. Although this is an effective approach, it assumes that the domain identity is given during
inference, which is not necessarily true. To solve this issue, Schutera et al. (2021) proposed training
a domain classifier. This domain classifier is trained to predict the domain index during inference.
Once the domain index is known, and since all previous models are stored, [M0,M1,M2, ....,Mt]
the right model can be selected, and thus catastrophic forgetting is avoided. One drawback of such
an approach is that training of such domain classifier requires access to all future targets. Wang
et al. (2020) proposed another approach that effectively can deal with catastrophic forgetting but
also conditioned on the access to all future targets’ data. They proposed training a regressor as the
discriminator instead of the traditional binary classifier in the traditional DA approaches. In their
approach, the regressor attempts to predict the domain index instead of just differentiating the source
from the current target domain. Although these methods can be useful in alleviating catastrophic
forgetting, they do not comply with the streaming nature of the general CUDA problem, where target
data are assumed to arrive sequentially over time.

Multi-task approach has been the mainstream approach to addressing the problem of catastrophic
forgetting. Bobu et al. (2018), proposed extending Wulfmeier et al. (2018) by utilizing an extra loss
term denoted the replay loss. The usage of replay loss has been extensively studied in continuous-
supervised learning settings Yoon et al. (2021). This replay loss encourages the model to retain
previous experiences and stores previous pseudo-labeled samples in a memory buffer. Later in the
adaptation step, the model simultaneously tries to be consistent with the previous experience (i.e.,
minimize the replay loss) as well as align the new target features with the source features. Similar
to Wulfmeier et al. (2018), the alignment is done via training the discriminator and encoder in a
two-player zero-sum game. The success of the multi-task approach (i.e., replay loss and adversarial
alignment), proposed by Bobu et al. (2018), motivated utilizing the same technique in different
CUDA settings. Rostami (2021) used the same multi-task objective function proposed by Bobu
et al. (2018). However, instead of assuming access to the source data during training, they fitted
a Gaussian mixture model to approximate the source data and source encoder distribution. They
relied on a memory bank to store samples from previous domains to resist forgetting. Rakshit et al.
(2022) slightly modified Bobu et al. (2018) objective. Instead of aligning the source distribution
with the current target, they proposed aligning an auxiliary source domain with the current target.
The auxiliary source domain is a union of the source domain and pseudo-labeled samples from the
previous domain. Although approaches based on multi-task training (e.g., Bobu et al. (2018)) can
effectively reduce catastrophic forgetting, it still relies on finding an optimum trade-off between the
two tasks at hand. In the original article Bobu et al. (2018), the authors multiplied the replay loss
by weighing factor λ that was found using grid search on a labeled validation target dataset, which
does not comply with the unsupervised nature of CUDA.

Huang et al. (2021) and Tang et al. (2021) treat the replay loss as a constraint to turn the multi-task
problem into a constrained single task problem. This approach eliminates the hyper-parameter bal-
ancing between two conflicting objectives. By doing so, and during adapting, the model parameters
are only allowed to change if the replay loss term does not increase. Note, in this formulation, the
need for deciding the optimum λ value is eliminated. However, the downside of this approach is
(1) the complexity of solving such a constrained optimization problem (i.e., quadratic programming
problem in the number of the model parameters, refer to the original article for more details), (2)
this constrained optimization approach can limit model plasticity. This is especially critical due to
machine learning systems’ vulnerability to the stability-plasticity dilemma Delange et al. (2021),
and Mermillod et al. (2013). Stability refers to the neural network’s ability to remember the previ-
ous experience, while plasticity refers to the neural network’s capacity to acquire new knowledge
continuously. Hard constrained optimization in Huang et al. (2021) or overly emphasized replay
loss in Bobu et al. (2018) can significantly deteriorate model plasticity.

In the above-reviewed literature, two main approaches for solving catastrophic forgetting in the
CUDA setting have been proposed, unconstrained multi-task optimization and single-task con-
strained optimization. Both approaches follow different techniques in an attempt to train a single
model that can simultaneously adapt to future domains as well as remember previous domains. Un-
fortunately, neural networks are susceptible to the stability-plasticity dilemma. Accordingly, the two
conflicting objectives - stability (i.e., remembering previous domains) and plasticity (i.e., acquiring
new knowledge) -are unrealistic goals for a single model, and therefore we propose a fundamentally
new approach that trains two different models to overcome this dilemma. The first model, which
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we refer to as the domain specialist, is permitted to forget in order to give it a better chance to ac-
quire new knowledge. Hence, we call our approach as Forget to Learn (F2L). The second model
is continuously learning and accumulating knowledge from the domain specialist model. Since the
second model is accumulating knowledge, it resists forgetting and can be used on any previous do-
main at any point in time; thus, it is called the generalist. F2L is as simple as Bobu et al. (2018),
requires no λ hyper-parameter tuning as Huang et al. (2021) and achieves a better stability-plasticity
trade-off than both. To the best of our knowledge, F2L is the first attempt to address the issue of the
plasticity-elasticity dilemma in continuous unsupervised domain adaptation.

2 THE METHOD

We propose to train two separate models to tackle the stability-plasticity dilemma. This is done by
disjointing the learning objective. To do so, we train two encoders, which we refer to as Domain-
Specialist (E) and Generalist (Ê). By allowing the Domain-Specialist to forget, we can achieve
superior performance in terms of both stability and plasticity.

2.1 LOSS FUNCTIONS

The existing works, such as Bobu et al. (2018) and Huang et al. (2021), attempt to balance between
the domain alignment task and the knowledge retention task. The two tasks are defined with re-
spective loss functions. The domain alignment task trains the current target encoder (Êt

T ) to adapt
from the source domain (D0) to the new current target domain (Dt

T ) by minimizing the discrep-
ancy between the source domain representation and the target domain representation Êt

T (X
t
t ) by

minimizing the following loss function:

d
[
Ê0 (X0) , Êt

T

(
Xt

t

)]
(1)

where Ê0 is the pre-trained source encoder and d is a distance metric that represents the
misalignment between the two domains. Bobu et al. (2018) used ADDA approach proposed
by.Tzeng et al. (2017) for the evaluation and minimization of d. Xt

T is the current target
unlabeled streaming dataset (Xt

T ) ∼ pDt
T
(x) while X0 is the source domain dataset X0 ∼

pD0
(x, y). pD0

(x, y) and pDt
T
(x, y) is the joint probability distribution in the input and label

space for the source (D0) and target (Dt
T ) domains respectively. (X0, Y0), and (Xt

t ) are de-

fined as follow. (X0, Y0) :=
{
(x1, y1) , . . . , (xN , yN ) | (xi, yi)

iid∼ pD0(x, y),∀i
}

and (Xt
t ) :={

(x1) , . . . , (xN ) | (xi)
iid∼ pDt

T
(x),∀i

}
.

On the other hand, the knowledge retention task tries to retain knowledge from previously trained
tasks by assuring consistency between previous models {Eτ

T | τ ∈ [0 → t − 1]} predictions
Y t
p = C0(Êτ

T (X
t
p)) and current model predictions C0(Êt

T (X
t
p)). (Xt

p, Y
t
p ) ∈ Mt are previous

experiences from a memory buffer Mt. Xt
p ⊂ Xt

T , Xt
p

K∼ pDt
T
(x) and K is the memory buffer

size per domain. Cross-entropy loss, as given below, is commonly used to train the model for the
memory retention task:

CE
[
C0

(
Êt

T

(
Xt

p

))
, Y t

p

]
, (2)

where C0 is the source domain classifier, CE is cross-entropy loss,

Bobu et al. (2018) try to balance between the two objectives by combining the two loss functions
with a hyper-parameter λ, and minimize the following multi-task loss:

Êt∗
T = argminÊT

{
d
[
Ê0 (X0) , Êt

T

(
Xt

t

)]
+ λ ∗ CE

[
C0

(
Êt

T

(
Xt

p

))
, Y t

p

]}
. (3)

The performance of this approach turned out overly sensitive to the hyper-parameter λ as discussed
in the following sections. An alternative approach is to treat one of the two objectives as a constraint.
Tang et al. (2021) proposed two major modifications: (1) for domain alignment, they used a unified
contrastive loss instead of the adversarial ADDA-based alignment and (2) they dropped the retention
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loss term from the multi-task loss and instead used a target memorization (TM) constraint as follows
1:

mingw
1
2 ∥gw − gt∥22

subject to ⟨gw, gdm⟩ :=
〈
gw,

∂CE
[
C0

(
Êt

T (X
t
p)

)
,Y t

p

]
∂θt

〉
≥ 0,

(4)

where gt is the gradient for the alignment loss (i.e., contrastive loss in the original paper), gw is the
gradient to update the network, gdm is the gradient of replay loss, (i.e., antiforgetting term), and θt

is the parameterization of the encoder Êt
T .

2.2 FORGET TO LEARN (F2L)

As explained earlier, the current trend in the literature is to simultaneously train a single encoder to
fulfill the following two conflicting objectives: (1) adapt to future domains and (2) retain knowledge
from previous domains. Instead, in the present study, we propose a disjoint training approach (i.e.,
adaptation-distillation training). We train two encoders: the domain specialist Et

T and the generalist
encoder Êt

T for each target domain (Dt). The training can be divided into three steps, as shown in
Figure 1. These steps are: (1) the domain specialist encoder training at the top (i.e., the adaptation
step), (2) memory update at the middle, and at the bottom, (3) the generalist encoder training (i.e.,
the distillation step).

Figure 1: The proposed F2L disjoint (adaptation-distillation) training

As in Bobu et al. (2018), the training starts with training the classifier C0 and source specialist en-
coder E0 on the labeled source data (X0, Y0) ∼ pD0

(x, y). Once C0 is trained, it is frozen and used
as it is. For next adaptation steps, and as in Wulfmeier et al. (2018), the domain-specialist encoder is
trained with only plasticity in mind; thus, such an encoder has a high capability of adapting to infi-
nite adaptation steps. The training of such an encoder is equivalent to setting λ to zero in Eq. 3.This
Leads to the objective in Eq. 5.

Et∗

T = argminEt
T

{
d
[
E0 (X0) , E

t
T

(
Xt

t

)]}
(5)

For the distance metric d, and following Wulfmeier et al. (2018), we use Tzeng et al. (2017) ADDA
approach to calculate and minimize GAN loss. However, fundamentally different traditional unsu-
pervised domain adaptation UDA can be utilized (e.g., MMD Tzeng et al. (2014), Jensen–Shannon

1The notation and gradient shown here are slightly different from the original paper due to difference in the
memory buffer construction. Also, in the original paper, there is an extra constraint called Source Discrimina-
tive Constraint. Such constrain is omitted for this discussion for brevity.
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divergenceShui et al. (2020), Wasserstein distanceDamodaran et al. (2018) or CORAL distanceSun
& Saenko (2016) among others Kashyap et al. (2020)).

Once the domain specialist encoder is trained, it is used in the memory update step.In the memory
update step, a representative subset of the training data (Xt

p) of the current domain along with their
crosponding pseudo labels are stored in the memory buffer (Mt).

Mt ←
{
Mt−1 ∪

(
Xt

p, Y
t
p

)}
(6)

In the present study, we randomly select a fixed-size subset of K samples from the current target
Domain Xt

p
K∼ pDt

T
(x). Afterward, the pseudo-labels (Y t

p ) are obtained with the trained specialist.

Y t
p = argmax

[
C0

(
Et∗

T

(
Xt

p

))]
, . (7)

K is the memory buffer size per domain and is determined according to the memory budget allowed.
However we use random sampling in this paper we use random sampling, more advanced selection
(i.e., coreset) techniques can be utilized to optimize the memory budget utilization Guo et al. (2022).

After the memory update, the generalist encoder is trained on all the samples in the updated memory
as follows:

Êt
T

∗
= argmin

(
CE

[
C0

(
Êt

T

(
Xt

p

))
, Y t

p

])
, (8)

where (Xt
p, Y

t
p ) ∈ Mt and Ĉ0 is the pre-trained and frozen source classifier. Equation 8 can be

considered as a knowledge distillation step where the current generalist (Êt
T ) is a student of mul-

tiple teachers (i.e., all the previous trained domain specialist encoders
[
E0∗

T , E1∗

T , . . . , Et∗

T

]
). The

distillation loss used in this study is the usual cross-entropy, as indicated in Eq. 8 It is worth noticing
that Eq. 8 is the second term in Eq. 3 without the trade-off parameter λ.

Figure 1 illustrates the overall F2L training procedures and Figure 7 in the Appendix illustrates a
side-by-side comparison with our proposed approach and Bobu et al. (2018) approach. Algorithm 1
summarizes the entire training procedure of our proposed approach.

Since the Generalist model in F2L is trained with pseudo-labeled samples from all previous domains,
stability is no longer an issue. The only issue that should be taken into consideration is the quality
of pseudo labels. However, since the pseudo labels in the current approach are generated from the
domain-specialist model (i.e., the high plasticity encoder), the quality of the pseudo is expected to
be at its highest. It is critical to notice that pseudo labels’ quality depends not only on the model’s
plasticity but also on the traditional UDA’s success in line 9 Alg. 1. Accordingly, the success of F2L
or any rehearsal-based CUDA is conditioned on defining the right distance metric in Eq. 5 and the
ability to minimize it.

There is no weight sharing between E0 and Et
T . DDt−1

T , Et−1
T and Et

T are used to initialize DDt
T ,

Et
T and Êt

T respectively. DDt
T is the domain discriminator that is used for calculating and mini-

mizing the distance (d) in Equation 5 as proposed in Tzeng et al. (2017).

3 RELATED WORK

3.1 CONTINUOUS LEARNING

Continuous learning is concerned with designing training techniques that allow the model to learn
continuously from new experiences without forgetting previous experiences. These training tech-
niques can be categorized into (1) rehearsal, (2) regularization (3) parameters isolation/expanding-
based techniques Kemker et al. (2018). However, these techniques are designed for supervised
settings, mostly class incremental settings van de Ven & Tolias (2019), and thus cannot be directly
applied to the CUDA problem.

3.2 KNOWLEDGE DISTILLATION

Knowledge distillation deals with transferring knowledge from one model (i.e., teacher), to another
model (i.e., student). Such transfer could be desired for model compression in cases where the
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Algorithm 1 : illustrates the complete training procedures for (N) adaptation steps.

1: Randomly Initialize E0 and C0

2: (X0, Y0) ∼ pD0
(x, y)

3: Train E0, C0 using cross-entropy loss {C0 [(E0 (X0,)] , Y0}
4: Update the Memory. M0 =

{(
X0

p , Y
0
p

)}
where Y 0

p = argmax {C0 [(E0 (X0)]]}
5: For t=1→N
6: Xt

T ∼ pDt
T
(x)

7: Initialize Et
T ← Et−1

T

8: Initialize DDt
T ← DDt−1

T
9: Train Et

T using the discriminator discrepancy loss d[E0(X0), E
t
T (X

t
t )]

10: Xt
T

K∼ pDt
T
(x)

11: Update the pseudo bank. Mt = {Mt−1 ∪ (Xt
t , Y

t
T )} where Y t

T = argmax {C0 [E
t
T (Xt

t )]}
12: (Xt

p, Y
t
p ) ∈Mt

13: Initialize Êt
T ← Et

T

14: Train Êt
T using cross-entropy loss CE

[
C0

(
Êt

T

(
Xt

p

))
, Y t

p

]
15: End For

student model is smaller in capacity. It also could be for improving generalization Furlanello et al.
(2018) if the models were of equivalent capacity, or model interpretability or explainability. These
techniques require the availability of labeled training data on which the teacher model was trained.
However, in F2L, such data is not available. Instead, unsupervised domain adaptation is used to train
the teacher, and then the teacher distills its knowledge to the student.

4 NUMERICAL STUDIES

4.1 ROTATING MNIST DATA SET

To validate the proposed approach’s effectiveness, we tested it on the Rotated MNIST dataset (RotM-
NIST). In this experiment, Rotated MNIST consisted of seven domains, D0, D1, . . . .D6. D0 is the
only labeled source domain, and it contains digits rotated uniformly between 0 and 45 degrees. Each
consecutive domain has an increment of 45 digits rotation angle (e.g D1 contains digits rotated uni-
formly between 45 and 90 degrees). For domain alignment, 10,000 images are randomly sampled
and rotated from the original MNIST training data set for each domain. The same is done for the
testing dataset. For rehearsal, 5000 samples are randomly sampled per domain and stored in the
memory buffer along with their corresponding pseudo labels. The same data configuration is used
for the other SOTA methods. Figure 2 shows the overall performance of F2L and Bobu et al. (2018)
approaches after each incremental adaptation step. Figure 2a shows the classification test accuracy
from the domain specialist encoder, and Figure 2b shows the ones from the generalist model. Each
row presents the performance of the ith Model (i.e., after adapting to the ith Domain) when tested
on past ([0 →t-1]), present (t) and future ([t+1 →6]) domains. The values on the diagonal represent
the accuracy of a domain after adapting to it, which is a good indicator of the model’s plasticity. On
the other hand, the values in the lower triangle under the diagonal show the accuracy of the current
model in previously seen domains and are a good measure for memory retention. In general, Fig-
ure 2 shows the effectiveness of the F2L approach. Figure 2a shows the encoder specialist’s good
plasticity as evident from consistently high accuracy score on the diagonal. However, since, as de-
scribed in Eq. 5, the specialist encoder training does not take into consideration memory retention,
the previous experience is very volatile and significantly forgotten after a few adaptation steps. For
example, observe how the accuracy on the D1 column drops significantly below row M1. On the
other hand, the generalist encoder in Figure 2b2 shows successful knowledge transfer between the
generalist and specialist encoders. To show the superiority of F2L, Figure (2c- 2e) show the per-
formance of Bobu et al. (2018) using the exact baseline model and memory resources with three
different λ values. At λ=0.01, little emphasis is given to the anti-forgetting term in Eq. 3, so the
model shows good plasticity, as evident from the high accuracy values on the diagonal. However, At

2In F2L, and during inference/testing, only the performance of the generalist is relevant.

6



Under review as a conference paper at ICLR 2023

a slightly higher value of λ (i.e., λ=0.1), a higher priority is given for the replay loss, significantly
improving knowledge retention, as evident from the values under the diagonal, but at the expense of
model plasticity. For the extreme case of λ=10, the model entirely loses its plasticity and does not
acquire any new knowledge after the second adaptation step.

(a) (b) (c)

(d) (e) (f)

Figure 2: Performance heat map after each incremental adaptation step for (a,b): The proposed F2L
disjoint (adaptation-distillation) training, (c-e): The joint multi-task training proposed by Bobu et al.
(2018). and (f): Supervised (upperbound) generalist. The remaining case of Table 1 are presented
in the appendix in Figure 8

We use the following three evaluation metrics to quantify the influence of λ in Bobu et al. (2018).
Average Peak Accuracy (APA)

APA =

∑N
t=0 acct,t

N
(9)

Average Latest Accuracy (ALA)

ALA =

∑N
t=0 accN,t

N
(10)

Average Historical Accuracy (AHA) (known as Backward transfer BWT in Dı́az-Rodrı́guez et al.
(2018) )

AHA =
2 ∗

∑N
j=1

∑j−1
t=0 accj,t

N ∗ ( N + 1)
(11)

Average Drop in Accuracy (ADiA) (also known as Backward transfer BWT in (Lopez-Paz & Ran-
zato, 2017) )

ADiA =

∑N
t=0 accN,i−acct,t

N
, (12)

where N is the number of target domains and accx,y is the accuracy of the model Mx after adapting
to Dx when tested on the Dy test dataset. Intuitively, APA is the average of the diagonal in Figure 2,
and a high value of APA indicates high model plasticity. AHA is the average lower triangular value
of Figure 2, excluding the diagonal. ADiA is the difference between the diagonal values and the last
row values. A higher value of AHA or ADiA indicates better stability. Note for the F2L approach,
APA and AHA are calculated solely from the generalist accuracies in Figure 2b. However, for the
sake of fair comparison, when calculating the ADiA, the diagonal values (i.e., acci,i) are taken from
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the specialist Figure 2a , which are higher than the values for the generalist. On the other hand, the
last row values are taken from the generalist accuracies in Figure 2b as it is the actual model to be
used in deployment.

Figure 3: Stability-Plasticity trade-off at
different values of λ

Figure 3 shows the trade-off between plasticity, measured
by APA, and stability, measured by AHA, at different
values of λ. The figure clearly shows the realization of
elasticity-plasticity dilemma in the multi-task approach.
It also shows why approaches like Huang et al. (2021)
and Tang et al. (2021) that try to formulate the problem as
single objective constrained optimization problems would
not fundamentally solve the plasticity-elasticity dilemma.
This is because the fundamental reason why the multi-
task approach does not work is that the two tasks are con-
flicting in nature, not because the replay loss is not ef-
fective enough to guarantee knowledge retention, as pro-
posed by Tang et al. (2021). Thus any attempt to pro-
mote knowledge retention must lead to a different degree
of plasticity drop. Muti-task techniques, as well as con-
strained single-task techniques, at their best hyperparam-
eter, can only help avoid unnecessary sacrifice in stability
when the gain in plasticity is insignificantly infinitesimal.
This also raises another issue of how to select the best λ
values. This issue is solved by F2L since there is no need for this λ hyperparameter.

The same results in Figure 3 are shown again in Table 1, along with the ADiA. Interestingly, Bobu
λ = 10 is showing a higher ADiA of -0.00613 compared to F2L with only -0.01211. This mis-
leadingly indicates that Bobu λ = 10 is doing a better job in retaining knowledge as it is showing
less drop in accuracy. However, as hinted while discussing Figure 2e earlier, this high stability is
achieved at the expense of extremely low plasticity; i.e., the model is not learning any new informa-
tion after the third adaptation step. This is why Bobu λ = 10 shows the lowest APA with 0.632429.
This also reveals the superiority of AHA as a stability metric relative to the ADiA. Two upper bounds
are also presented in Figure 3 and Table1. The supervised specialist is trained in the same manner
as the specialist in the F2L framework, but instead of minimizing Eq. 5, it is trained in a super-
vised manner with access to the current target domain labels. Similarly, the supervised generalist is
trained similarly to the generalist, but instead of distilling knowledge using Eq. 8, it is trained in a
supervised manner jointly on the current domain, and all historical domains, training labeled data.
From Figure3, it is evident that the F2L generalist is the closest to the supervised generalist. On the
other side, Bobu λ = 0.1 achieves the best trade-off for the Bobu et al. (2018) multi-task approach.
So far, the memory buffer size per domain was fixed at K=5000. In Appendix A.4, we show that the
F2L maintains its superiority at lower memory sizes. Also, it is worth mentioning that although F2L
requires training two encoders, the specialist and generalist, the overall training time is smaller, as
demonstrated in Appendix A.3.

Table 1: Evaluation metrics on the Rot-MNIST dataset

Method ADiA APA AHA ALA
Bobu λ=0.001 -0.53534 0.954654 0.408581 0.419317
Bobu λ=0.01 -0.37038 0.95082 0.609346 0.580437
Bobu λ=0.05 -0.13351 0.910406 0.800896 0.776891
Bobu λ=0.5 -0.01708 0.691146 0.82663 0.674066
Bobu λ=1 -0.02214 0.767134 0.87666 0.744997

Bobu λ=10 -0.00613 0.632429 0.793251 0.626303
Specialist (Wulfmeier et al. (2018)) -0.54485 0.955474 0.379436 0.410626

F2L (Generalist) -0.01211 0.948386 0.944057 0.93628
Supervised Specialist -0.556697 0.993126 0.381601 0.436429
Supervised Generalist -0.004754 0.992234 0.980084 0.98748
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4.2 5 DIGITS DATA SET

Table 2: Evaluation metrics on the 5-Digit
dataset

Method ADiA ALA
Bobu et al. (2018) -0.061 0.8212
Tang et al. (2021) -0.010 0.8534

Specialist -0.078 0.7746
Generalist (F2L) 0.029 0.8813

Supervised Specialist -0.294 0.6310
Supervised Generalist -0.003 0.9259

5 Digits dataset is another domain adaptation
dataset consisting of one source domain and
four target domains. We follow the same adap-
tation task solved in Tang et al. (2021), where
we start pretraining on the source domain of
SYN, then we adapt to MNIST, MNIST-M,
USPS, and SVHN sequentially. Similar to Tang
et al. (2021), 1024 samples per domain are
stored in the memory buffer. Unlike the RotM-
NIST dataset, this task consists of a shorter se-
quence and relatively more challenging classi-
fication task. Again, Table 2 shows the superi-
ority of F2L both in terms of ADiA and ALA.
Noticeably, the F2L was the only method to achieve positive ADiA. To further explain the meaning
behind the positive ADiA, Figure 4 compares the specialist peak accuracies (i.e., values on the di-
agonal of the performance heat map) and the generalist performance after the latest adaptation step
(i.e., last row of the performance heat map). The figure shows that the generalist (i.e. the student)
can outperform the specialist (i.e. the teacher). This is interesting because, the pseudo labels, used
in training the generalist, are the training data labeled using the specialist predictions.

(a) (b)

Figure 4: Performance compassion between the specialist and the generalist on the (a) testing, and
(b) training datasets.

This indicates that, instead of just copying the current specialist’s knowledge and not forgetting
the historical specialists’ knowledge, the generalist also scans historical knowledge and selects the
relevant ones for the current task. The generalist fuses such selected knowledge with the knowledge
distilled from the current specialist. Consequently, the generalist corrected the specialist’s miss-
labeled pseudo-labeled training data by applying such fused knowledge. This explains why the
generalist can outperform its teachers not only on testing but also on the training data on which it
was originally trained, as shown in Figure 4. Examples of these cases for D3 are shown in Figure
5. These are training data points that were given wrong pseudo labels by the specialist and then
used to train the generalist. However, after the generalist was trained on such pseudo labels, it was
able to classify these mislabeled pseudo labels correctly. Such data points are the reason for the
gap between the orange and blue lines in Figure 4. The full performance heat maps of the relevant
models are available in the Appendix in Figure 10. Beside testing our approach on Digits dataset we
also show the superiority of F2L on office-caltech dataset in Appendix A.6.
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Figure 5: Examples of specialist’s wrong predicted pseudo-labels in USPS training data that are
correctly classified by the generalist.

5 CONCLUSION

The present study investigated the stability–plasticity dilemma of CUDA. We have demonstrated
that the two current trends do not address such a dilemma adequately. In our approach, Forget to
Learn (F2L), instead of attempting to train a single model that can achieve an optimum trade-off
between stability and plasticity, we proposed training two models, the specialist and the generalist.
The specialist shows high plasticity and transfers their knowledge to the generalist via knowledge
distillation. We have tested our framework on different CUDA datasets, and the results indicate the
effectiveness of the proposed approach in simultaneously achieving better plasticity and stability.
The results on the rotated MNIST dataset indicate that no hyperparameter values can make the
multi-task approach superior to F2L. The F2L achieved ADiA of -0.01211 and APA of 0.948386,
while the best competing SOTA achieved ADiA -0.12548 and APA of 0.93606 at λ= 0.1. On Digit
5 Dataset, F2L approach continued to show superior performance compared to other SOTA CUDA
methods. F2L was the only method showing a positive ADiA of 0.029, whereas the second highest
SOTA showed a value of -0.010.
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A APPENDIX

A.1 THE IMPLEMENTATION DETAILS

The proposed approach in section 2 is general and can be implemented in different configurations.
Fundamentally different choices for the distance (d) in Eq. 8 can be used. As a matter of fact, any
traditional domain adaptation algorithm can be used for the evaluation and minimization of (d).
This includes the contrastive loss proposed in Tang et al. (2021). In the present study, and for all
experiments, ADDA from Tzeng et al. (2017) was utilized. It is GAN inspired adversarial domain
adaptation approach where a discriminator is trained to align the source and target distribution by
fooling the feature extractor.

For the RotMNIST dataset, LeNet-5 Lecun et al. (1998) was used as the backbone (i.e., generalist
and specialist encoder). A discriminator with three hidden layers, each with 120 neurons, was used
right after the feature extractor of LeNet-5, as shown in Figure 6a. A batch size of 512 and a constant
learning rate of 1−4 were used. A GRL reversal layer with a scaling factor of 1 was used for in the
two-player zero-sum game training of the discriminator and encoder Ganin & Lempitsky (2015)

In the case of the 5 Digit dataset, following Tang et al. (2021), LeNet-5 was also used as the back-
bone, with an additional projection linear layer of 256 neurons. The output of the linear layer was
projected to 10 output nodes for the classifier. Also, the output of the projection layers was used
as an input to the discriminator, as shown in Figure 6b. The discriminator is 2-layer FCNs, each
with 1024 neurons, batch normalization, and ReLU activation. A batch size of 512 with an initial
learning rate of 0.01 with a decay factor and gamma of 0.75 and 0.001, respectively, were used.

(a) (b)

Figure 6: The used architecture for (a) RotMNist and, (b) 5 Digit, datasets
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(a)

(b)

Figure 7: (a) The proposed F2L disjoint (adaptation-distillation) training, (b) the joint multi-task
training proposed by Bobu et al. (2018).

14



Under review as a conference paper at ICLR 2023

A.2 MORE RESULTS FROM ROTMNIST DATASET

(a) (b)

(c) (d)

Figure 8: continuation of Figure2 at different values of λ
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A.3 CONVERGENCE AND COMPUTATION REQUIREMENTS

Although F2L involves training two encoders of equal capacity, this section shows that this does
not increase computational requirement, even reduces it. F2L (1): converges in fewer total number
epochse3, and (2): the number of optimizer update steps (i.e., number of gradient calculations) per
epoch is less.

For the first point, training the F2L (i.e., both Generalist and Specialist) took 72% fewer epochs to
converge4 than Bobu. This faster convergence is due to the simpler, non-conflicting, single objective
function used for each stage of F2L.

For the second point, only the source and current target domain data are needed when training the
specialist, which accounts for 76% of the training time in the F2L approach. Accordingly, 76% of
the time, there is no need to feed forward/backward the samples from the memory buffer to calculate
the loss/gradient of Equation 5. Accordingly, for the same batch size, a single epoch will involve
fewer gradient calculations, and update steps. Note that for Bobu and other methods, all data in the
memory buffer, source, and current target data must be processed during every optimizer step, see
Equation 3.

3For Specialist, 1 Epoch= Processing all the source and current target data once. For Generalist, 1 Epoch=
Processing all the source, current target, and memory buffer data once For Bobu. 1 Epoch= Processing all the
source, current target, and memory buffer data once

4Convergence is assumed when the accuracy shows non-increasing values for ten consecutive epochs.
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A.4 MEMORY REQUIREMENTS

To further investigate the memory requirement of our method, in 9, we show the influence of limiting
the memory buffer size on both F2L and Bobu et al. (2018). Both approaches show less stability by
lowering the buffer size. However, overall, F2L still maintains its superiority. At 500 samples per
domain, F2L and Bobu show AHA of 0.835 and 0.764, respectively. It is worth mentioning that,
at a memory-free setup, both Bobu and F2L converge to the F2L specialist (i.e., Wulfmeier et al.
(2018)), which has an AHA of 0.379.

Figure 9: Effect of memory buffer size per domain on F2L and Bobu

Another critical aspect of memory requirement is the memory needed to store the model-trained para
maters. Inspired by Wulfmeier et al. (2018), in Algorithm 1 line 7, we use the specialist from the last
time step Et−1

T to initialize the new specialist. This necessitates storing the specialist in the memory
buffer, which might be memory-demanding, especially for large models. Another alternative is to
use the most recent generalist for specialist initialization purposes. In other words, line 7 in Algo-

rithm 1, becomes Initialize Et
T ← Êt−1

T . This is useful because Êt
T is already stored in the buffer

to be used during inference. Thus no extra memory is required for specialist initialization. Table 3
indicates that the alternative initialization shows an insignificant effect on the overall performance.

Table 3: Evaluation metrics on the Rot-MNIST dataset with alternative initialization Strategy

Method ADiA APA AHA ALA
Specialist -0.54485 0.955474 0.379436 0.410626
Generalist -0.01211 0.948386 0.944057 0.93628

Specialist (Alternative Initialization) -0.522097 0.951143 0.394990 0.429046
Generalist (Alternative Initialization) -0.018314 0.952186 0.935750 0.933871
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A.5 MORE RESULTS FROM 5 DIGIT DATASET

(a) (b)

(c) (d)

Figure 10: Performance hear map on Digit 5 Dataset of the (a) and (b) specialist and generalist of
F2L (c) supervised specialist and (d) supervised generalist, where SYN, MNIST, MNIST-M, USPS,
and SVHN are D0, D1, D2, D3 and D4 respectively.
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A.6 OFFICE-CALTECH DATASET

RotMnist and 5-Digit Dataset both share the same input dimensionality. This section shows the
same previous test procedures on the 224*224 Office-Catech Dataset. Similar to the 5-Digit dataset,
Office-Caltech consists of three discrete DA steps. We set the source domain to be DSLR, and
we adapt to Amazon, Webcam then Caltech targets sequentially. Table 4 shows the evaluation
metrics for the Office-Caltech dataset. F2L still shows the best performance. The performance of
the other approaches shows significantly lower performance. It is worth mentioning that, due to
the large similarity between the domains, a model trained on the source domain only in this task
can achieve up to 0.9125 average accuracy over all domains, which is significantly higher than the
values reported by Tang et al. (2021). Furthermore, it is noticeable that the Generalist in (F2L) is
showing a positive ADiA with a higher value for the F2L Generalist of 0.0087. For this dataset,
following Tang et al. (2021), ResNet-18 He et al. (2016) was used as a backbone structure. The
same projection head, discriminator, and training details described in section A.1 for the 5 Digit
dataset were utilized.

Table 4: Evaluation metrics on the Office-Caltech dataset

Method ADiA ALA
Bobu et al. (2018) -0.0465 0.8483
Tang et al. (2021) 0.0005 0.8723

Specialist -0.020 0.938
Generalist (F2L) 0.0087 0.952

19


	Introduction
	The Method
	Loss Functions
	Forget to Learn (F2L)

	Related Work
	Continuous Learning
	Knowledge Distillation

	Numerical Studies
	Rotating MNIST Data Set
	5 Digits Data Set

	Conclusion
	Appendix
	The Implementation Details
	More Results From RotMNIST Dataset
	Convergence and Computation Requirements
	Memory Requirements
	More Results From 5 Digit Dataset
	Office-Caltech Dataset


