
Published in Transactions on Machine Learning Research (11/2023)

Error bounds and dynamics of bootstrapping in actor-critic
reinforcement learning

Ahmed J. Zerouali ahmed.zerouali@mail.utoronto.ca
Department of Physiology
University of Toronto

Douglas B. Tweed tweed.douglas@utoronto.ca
Department of Physiology
University of Toronto

Reviewed on OpenReview: https: // openreview. net/ forum? id= QCjMJfSnYk

Abstract

Actor-critic algorithms such as DDPG, TD3, and SAC, which are built on Silver’s de-
terministic policy gradient theorem, are among the most successful reinforcement-learning
methods, but their mathematical basis is not entirely clear. In particular, the critic net-
works in these algorithms learn to estimate action-value functions by a “bootstrapping”
technique based on Bellman error, and it is unclear why this approach works so well in
practice, given that Bellman error is only very loosely related to value error, i.e. to the
inaccuracy of the action-value estimate. Here we show that policy training in this class of
actor-critic methods depends not on the accuracy of the critic’s action-value estimate but
on how well the critic estimates the gradient of the action-value, which is better assessed
using what we call difference error. We show that this difference error is closely related
to the Bellman error — a finding which helps to explain why Bellman-based bootstrapping
leads to good policies. Further, we show that value error and difference error show different
dynamics along on-policy trajectories through state-action space: value error is a low-pass
anticausal (i.e., backward-in-time) filter of Bellman error, and therefore accumulates along
trajectories, whereas difference error is a high-pass filter of Bellman error. It follows that
techniques which reduce the high-frequency Fourier components of the Bellman error may
improve policy training even if they increase the actual size of the Bellman errors. These
findings help to explain certain aspects of actor-critic methods that are otherwise theo-
retically puzzling, such as the use of policy (as distinct from exploratory) noise, and they
suggest other measures that may improve these methods.

1 Introduction

Actor-critic methods (Witten, 1977), (Barto et al., 1983) are a class of reinforcement-learning algorithms that
work well in many applications, especially in continuous control tasks, where a simulated animal or robot
learns a motor behavior, such as hopping, walking, or running, based on information from sensors in its
body. Recent examples of these methods are DDPG (Lillicrap et al., 2015) and several algorithms that were
developed from it, including TD3 (Fujimoto et al., 2018) and SAC (Haarnoja et al., 2018). These latter two
methods in particular have been very successful, matching or outperforming all rivals on several benchmark
tasks in OpenAI Gym and DeepMind Control Suite. But despite their success, these algorithms are not
yet fully understood mathematically. In particular, there are open questions regarding the “bootstrapping”
technique that is central to their operation, and which consists of using Bellman error to train a function
approximator – the critic – to estimate the action-value function.

The central problem we will address is a paradox concerning this use of the Bellman error. As argued
by Fujimoto et al. (2022) among others (Lillicrap et al., 2015), (Fujimoto et al., 2018), Bellman error is

1

https://openreview.net/forum?id=QCjMJfSnYk

Published in Transactions on Machine Learning Research (11/2023)

not closely related to the accuracy of the critic – it can be small even when the critic gives a very poor
approximation to the true action-value. Nonetheless, critics trained to minimize the squared Bellman error
do turn out well, in the sense that they can be used to train good policies. The purpose of this paper is
to present mathematical results that partially resolve this paradox, and also help explain other aspects of
actor-critic methods that are otherwise puzzling from a theoretical viewpoint.

The remainder of this paper is organized as follows. In section 2, we briefly review actor-critic methods,
specify which algorithms we will focus on, and formulate the precise questions that we address in this paper.
In section 3, we present our main contributions:

(a) We argue that the pointwise accuracy or value error of the critic, which has been the focus of
previous analyses, is not a particularly good index of its ability to train policies. We introduce a
more relevant measure called the difference error, which evaluates the directional derivative of the
critic’s estimates along trajectories, and we relate this new measure to both the Bellman and value
errors.

(b) We show that the difference error and the value error are complementary filters of the Bellman error.

(c) We establish a bound on the discrete Fourier coefficients of the Bellman error, which explains how
the dynamics of bootstrapping are governed by the regularity of the state dynamics, the policy, the
rewards and the critic.

And in section 4, we summarize our results and comment on how they could be built upon in future work.

2 Background

2.1 Reinforcement learning

The mathematical setting is reinforcement-learning problems where time advances in discrete steps. Let
S ⊆ Rd and A ⊆ Rp denote the state space and the action space respectively. At each time t, the agent
receives information about the current state st ∈ S of its environment (and we will focus on the case where
that information is complete and accurate, or in other words where the state is fully observable). The agent
then applies a function µ : S → A, called the actor or the policy, to choose an action, at = µ(st) ∈ A.
Having made this choice, the agent gets a scalar reward rt = r(st, at) ∈ R typically depending on both the
state and action; we assume that the function r : S ×A → R is bounded, as in most real-world applications.
Time ticks forward to t + 1, and the environment passes to its next state, st+1 = f(st, at), where f is the
state transition or state dynamics function. The reward and dynamics functions are deterministic, and the
policy is also deterministic apart from “exploratory” and “policy” noise terms, described below, that are
added to its outputs during training but not during testing. In recent applications, the policy is most often a
deep neural network, and the aim of the reinforcement-learning algorithm is to adjust the weights and biases
of that network to yield an optimal policy, or in other words one that maximizes the discounted cumulative
reward or value,

V µ(st) ,
∞∑
τ=t

γτ−tr (sτ , µ(sτ)) , (2.1)

averaged across all possible starting points st of trajectories in state space. In this formula, γ is a “discount
factor” in the range (0, 1) which expresses the idea that rewards in the distant future matter less to the agent
than more imminent rewards do. More generally, the final time point in the summation need not be ∞, but
we will assume that it is, to simplify the math. So in short, the aim is to adjust µ to maximize V µ.

Actor-critic methods approach this problem by creating a critic, which is a function approximator that is
distinct from the policy network, and is trained to learn the action-value function Qµ : S × A → R, which
takes as input a state-action pair (s, a) and yields as output the quality of its outcome – the total discounted
cumulative reward that will result from taking action a in state s and then choosing all subsequent actions

2

Published in Transactions on Machine Learning Research (11/2023)

in accordance with policy µ:

Qµ(st, at) , r(st, at) +
∞∑

τ=t+1
γτ−tr (sτ , µ(sτ)) . (2.2)

Clearly Qµ is closely related to V µ, as Qµ(s, µ(s)) = V µ(s), again assuming (as we do throughout the paper)
that the dynamics, reward, and policy are deterministic.

From (2.2) it follows that the action-value function obeys the Bellman equation (Bellman, 1957; Sutton &
Barto, 2018),

Qµ(st, at) = r(st, at) + γQµ (st+1, µ(st+1)) , (2.3)

which we can write more simply as
Qµt = rt + γQµt+1, (2.4)

where we use the shorthand notation Qµt = Qµ(st, at), rt = r(st, at), and Qµt+1 = Qµ (st+1, µ(st+1)). Note
that the action at at time t is arbitrary while the action at time t+ 1 must be on policy: at+1 = µ(st+1).

Usually, the critic Q : S × A → R is trained by adjusting its parameters to shrink the Bellman error
eB : S ×A → R, given at (st, at) by

eB(st, at) , Q(st, at)− r(st, at)− γQ (st+1, µ(st+1)) , (2.5)

or more briefly by
eBt , Qt − rt − γQt+1, (2.6)

with the same shorthand notation as in the previous paragraph.

What is noteworthy here is that Q is adjusted based on its own values at two time points, Qt and Qt+1 –
a process called bootstrapping – rather than on any direct feedback about Qµ, the function it is trying to
approximate. In effect, Q is adjusted to obey more and more closely the Bellman equation (2.4), in the hope
that, if both Q and Qµ obey that equation, then Q may resemble Qµ in other ways as well. But in which
respects, exactly, do we need to make Q resemble Qµ, and what is the mathematical justification for hoping
that this resemblance can be achieved by minimizing the Bellman error?

In addressing these questions, we will restrict our discussion to the large subclass of actor-critic methods
that are off policy, that work with continuous state and action spaces, and that rely on the Silver et al.
(2014) deterministic policy gradient (DPG) theorem – a result that mathematically justifies the procedure
of improving the policy network by adjusting its parameters θµ up the gradient calculated by the chain rule:

∂Qµ(s, a)
∂θµ

∣∣∣
(s,a)=(s,µ(s))

=
(
∂Qµ(s, a)

∂a

∣∣∣
(s,a)=(s,µ(s))

)
· ∂µ(s)
∂θµ

. (2.7)

(More precisely, the DPG theorem shows that, in our continuous-control setting, ∂Q/∂θµ approximates the
gradient of a reasonable objective function for the policy – see (Degris et al., 2012), (Silver et al., 2014),
(Imani et al., 2018)).

This subclass of algorithms includes many important actor-critic algorithms such as DDPG (Lillicrap et al.,
2015), TD3 (Fujimoto et al., 2018), and SAC (Haarnoja et al., 2018), but excludes other highly successful
actor-critic methods such as PPO (Schulman et al., 2017).

The justification for bootstrapping is less of a problem for PPO than for off-policy DPG-based algorithms,
which is why we focus on the latter class here. To clarify this point, we note that PPO estimates Qµ directly
by summing discounted rewards along its most recent trajectory, and the critic network supplies a “baseline”
or “control variate” to reduce the variance of the direct estimate. In this setup, it is well understood that
even a very poor estimate of Qµ can serve as a useful control variate, provided that it correlates with the
true Qµ. In DPG-type algorithms however, the critic network Q is the policy’s sole source of information
about Qµ, and so inaccurate critics are a more severe problem, and the need to justify bootstrapping is more
pressing.

3

Published in Transactions on Machine Learning Research (11/2023)

Focusing our discussion on off-policy DPG-based continuous-control algorithms also motivates our restriction
to deterministic dynamics. In practice, the performance of these algorithms is commonly evaluated on
deterministic tasks and environments such as HalfCheetah, Walker2d, Ant, Humanoid and so on in Mujoco
and the OpenAI Gym/Gymnasium package and the DeepMind Control Suite. On a more conceptual level,
it is better to analyse the simpler, deterministic case first, and extend the results to stochastic systems in a
separate paper, as the mathematical treatment would be more involved and potentially less instructive.

2.2 Question

Why do DPG-based actor-critic methods perform so well in practice, given that they rely on an estimator of
Qµ that is trained using an error signal, eB , which is computed by bootstrapping, with no reference to Qµ?

The usual justification is a theorem of (Bertsekas & Tsitsiklis, 1996) which guarantees that if eB = 0 for all
state-action pairs (s, a), then the estimator Q will be perfectly accurate, meaning that what we will call the
value error is zero,

eQ(s, a) , Q(s, a)−Qµ(s, a) = 0, (2.8)

for all (s, a) ∈ S ×A.

Yet this standard rationale is not entirely reassuring, because it applies only in cases where eB is exactly
zero throughout state-action space, whereas in practice eB is never zeroed, and the best we can hope for
is that it will be small enough. Worryingly in this context, it has been shown by (Fujimoto et al., 2022)
that if eB is not zeroed but merely bounded, then eQ may be very large even when eB is small. Here we
analyze further the relation between eB and action-value estimators in the setting of DPG-based actor-critic
methods.

In the proofs that follow, we analyse the information about ∂Qµ/∂a provided by a single sample or minibatch
of Bellman errors. We make no assumptions about how the critic or policy have been trained before that
batch was drawn, or whether they have been trained at all. Our results hold even if the critic and policy are
freshly initialized, with random parameters. Similarly, we will analyse the evolution of various error measures
along infinite-duration trajectories, but we do not assume that the agent has traversed those trajectories,
or any trajectories at all. The point is that, even if the agent has never had any encounter of any kind
with its environment, still its critic and policy and the state dynamics and reward function together imply a
continuum of infinite-duration trajectories filling the on-policy submanifold of state-action space, and they
also imply the errors that the agent would encounter if it did traverse any portion of any of those paths, or
if it computed Bellman and other errors based on tuples drawn from a replay buffer.

3 Main results

3.1 Critics compute partial derivatives

As mentioned in the previous section, DPG-based actor-critic algorithms rely on the gradient ∂Q/∂θµ =
∂Q/∂a · ∂µ/∂θµ to adjust the policy parameters θµ of µ : S → A. Therefore, the critic learns Qµ only in
order to compute an estimate of the partial derivative ∂Qµ/∂a. This is a key fact, because it means that
during learning, the accuracy of the approximator Q itself matters less than that of the gradient estimate
∂Q/∂a. And therefore the value error eQ is a less relevant measure of the critic’s quality than what we will
call the difference error,

e∆Q
t , (Qt+1 −Qt)− (Qµt+1 −Q

µ
t) = eQt+1 − e

Q
t = ∆eQt . (3.1)

Simply put, e∆Q
t is a better gauge than eQt of the critic’s gradient estimate because the gradient depends on

how Q and Qµ change from point to point across state-action space, not on their values at any one point.
To express the same idea mathematically, we define the state-action step ∆xt = (st+1 − st, µ(st+1)− at),
and consider the first-order Taylor expansion

Qt = Qt+1 −∆xᵀt · ∇Q (st+1, µ(st+1)) + O
(
||∆xt||2

)
4

Published in Transactions on Machine Learning Research (11/2023)

for the approximator Q, as well as a similar expression for the true action-value function Qµ. Assuming that
||∆xt||2 is small enough, we can write that

e∆Q
t ≈ ∆xᵀt · (∇Q (st+1, µ(st+1))−∇Qµ (st+1, µ(st+1)))

, ∆xᵀt · e
∇Q
t+1, (3.2)

where e∇Qt+1 is the critic’s gradient error. This equation shows that e∆Q
t contains information about the

gradient error which eQt does not. Namely, e∆Q
t is approximately the inner product of e∇Qt with the vector

∆xt, or in other words it approximates the error in the directional derivative of the critic’s estimates.

To summarize, (Fujimoto et al., 2022) and others have raised doubts about Bellman-based learning, on the
grounds that eBt is a poor proxy for eQt . Our plan is to defend Bellman methods by showing that eBt is a
very good proxy for the more relevant error measure e∆Q

t . One could of course study the relation between
eBt and the gradient error e∇Qt itself, or even the action-gradient error given by

e∂aQ(s, a) , ∂Q

∂a
(s, a)− ∂Qµ

∂a
(s, a),

but those relations are complicated, in part because they depend on the detailed contents of the replay buffer
(see Appendix A). We have found it more informative to establish the relatively simple relation between
the Bellman and difference errors and then, in Appendix A, build on equation (3.2) to describe the relation
between e∆Q

t and the gradient errors. There we will further highlight the suitability of e∆Q
t as an index of

gradient error by showing that it is approximately linearly related to the best estimate of e∂aQ
t+1 that can be

obtained based on the information in the replay buffer.
Proposition 1. The difference error is related to the Bellman error (2.6) and the value error (2.8) by the
equation

e∆Q
t = −e

B
t

γ
+ (1− γ)

γ
eQt . (3.3)

Proof. We subtract the right-hand side of (3.3) from the left, multiply by γ, expand based on the definitions
of e∆Q

t , eBt , and e
Q
t , and then simplify, to get

γe∆Q
t + eBt − (1− γ)eQt = γ(Qt+1 −Qt −Qµt+1 +Qµt) + (Qt − rt − γQt+1)− (1− γ)(Qt −Qµt)

= Qµt − rt − γQ
µ
t+1 = 0,

where the final equality follows from Bellman’s equation.

With (3.3) in hand, we can compare how eQt and e∆Q
t are bounded in relation to eBt .

Regarding eQt , Fujimoto et al. (2022) have shown that if the Bellman error is bounded so that |eBt | ≤ C for
some constant C > 0, then

|eQt | ≤
C

(1− γ) . (3.4)

That is, |eQt | may be as large as C/(1 − γ), for example 100 times larger than C if γ = 0.99, which is a
common value used in many applications (Lillicrap et al., 2015; Fujimoto et al., 2018; Haarnoja et al., 2018).

But the corresponding bound for e∆Q
t is much better:

Proposition 2. If |eBt | ≤ C, then
|e∆Q
t | ≤

2C
γ
. (3.5)

Proof. From equations (3.3) and (3.4),

|e∆Q
t | ≤

| − eBt |
γ

+ (1− γ)
γ
|eQt | ≤

C

γ
+ (1− γ)

γ

C

(1− γ) = 2C
γ
.

5

Published in Transactions on Machine Learning Research (11/2023)

This bound is of particular importance. Again, for the concrete value γ = 0.99 often used in practice, we
see that |e∆Q| is at worst just over twice as large as the upper-bound on |eB |, whereas |eQ| can be as much
as two orders of magnitude larger than |eB |. In short, while eB is a poor proxy for eQ, it is a good proxy for
e∆Q. And e∆Q is the more relevant measure: in light of the discussion at the beginning of this subsection,
e∆Q better reflects the accuracy of the critic’s gradient estimate ∂Q/∂a, which is what matters for policy
training. Therefore the bound (3.5) helps explain why DPG-based actor-critic learning works well in practice,
as training Q to shrink eB indirectly improves the approximation of ∂Qµ/∂a that is used for policy updates.

Of course, this finding does not resolve all the mathematical questions regarding actor-critic methods, and
e∆Q is not a perfect substitute for e∂aQ or e∇Q, as we explain in Appendix A. However, more can be said
once we clarify the underlying reason why eQ and e∆Q have such different bounds, which we do in the next
subsection.

3.2 eQt and e∆Q
t are complementary filters

Here we show that eQt and e∆Q
t are inversely related, in the sense that eQt is a low-pass filter of eBt , whereas

e∆Q
t is a high-pass filter of eBt . Therefore it is not just the size of eBt that influences eQt and e∆Q

t . Rather,
a crucial factor is the temporal frequency of eBt along the trajectories of the system, by which we mean the
frequency of variation of eBt with respect to t. It follows that techniques that reduce this temporal frequency
may improve the performance of actor-critic methods even if they increase eBt itself.

In our discrete-time setting, a first-order linear time-invariant low-pass filter, or more simply a low-pass filter
from now on, can be described by the equation

yt+1 = αxt+1 + (1− β)yt. (3.6)

where xt is the filter’s input, yt is its output, and α and β are positive constants (Oppenheim et al., 1998,
Sec.3.9-11). The gain of this filter is α/β, which means that, given a constant input xt = x, the filter’s
output yt will eventually converge to a steady, equilibrium value of (α/β)x. (In some papers, low-pass filters
are defined to have α = β, and therefore a gain of 1, in which case any non-unity scaling is applied afterwards
by multiplying the filter output by the desired gain factor, but for us it will be convenient to treat the gain
as an intrinsic property of the filter.)

Returning now to the Bellman equation (2.4), we can write it this way:

Qµt = rt + [1− (1− γ)]Qµt+1, (3.7)

which has the same form as (3.6), except that the time indices t and t + 1 have been swapped. In other
words, the Bellman equation defines a filter running backwards in time, or more briefly, an anticausal filter.
Therefore we have:
Proposition 3. The function Qµt is an anticausal low-pass filter of rt, with a gain of 1/(1− γ).

Similarly, (2.6) can be written
Qt = eBt + rt + [1− (1− γ)]Qt+1. (3.8)

Subtracting (3.7) from (3.8) gives us:
Proposition 4. The value error eQt is an anticausal low-pass filter of the Bellman error eBt with constants
α = 1 and β = (1− γ):

eQt = eBt + [1− (1− γ)] eQt+1, (3.9)

and so we have

eQt =
∞∑
τ=t

γ(τ−t)eBτ . (3.10)

Proof. We establish equation (3.10). From equation (3.9) we have

eBτ = eQτ − γe
Q
τ+1, for all τ ≥ t,

6

Published in Transactions on Machine Learning Research (11/2023)

so by multiplying both sides of this equality by γ(τ−t) and then summing over τ = t + k with k = 0, 1, · · · ,
we get

∞∑
τ=t

γ(τ−t)eBτ =
∞∑
τ=t

γ(τ−t)eQτ −
∞∑
τ=t

γ(τ+1−t)eQτ+1

=
∞∑
τ=t

γ(τ−t)eQτ −
∞∑

τ=t+1
γ(τ−t)eQτ

= eQt .

The gain of this filter is 1/(1− γ) which in practice is usually large. For instance, if γ = 0.99 then the gain
is 100. This high-gain, low-pass filter behavior is the reason eQt can grow so much larger than eBt .

In this same discrete-time setting, a high-pass filter (Oppenheim et al., 1998, Sec.3.10) is described by the
equation

yt+1 = α(xt+1 − xt) + (1− β)yt. (3.11)

From this fact, together with the definition of e∆Q
t in (3.1), and equation (3.10), it follows that:

Proposition 5. The difference error e∆Q
t is an anticausal high-pass filter of the Bellman error eBt with

α = 1 and β = 1− γ:
e∆Q
t =

(
eBt+1 − eBt

)
+ [1− (1− γ)] e∆Q

t+1, (3.12)

and so

e∆Q
t =

∞∑
τ=t

γ(τ−t) (eBτ+1 − eBτ
)
. (3.13)

Proof. We have

e∆Q
t =

(
Qt+1 −Qµt+1

)
− (Qt −Qµt) =

(
Qt+1 − rt+1 − γQµt+2

)
−
(
Qt − rt − γQµt+1

)
= (Qt+1 − rt+1 − γQt+2)− (Qt − rt − γQt+1) + γ

(
Qt+2 −Qt+1 −Qµt+2 +Qµt+1

)
=
(
eBt+1 − eBt

)
+ γe∆Q

t+1

to establish (3.12). Equation (3.13) then follows by the same reasoning as that of (3.10).

From this result, we know that e∆Q
t shows the characteristic behavior of high-pass filters (Oppenheim et al.,

1998): it ignores low-frequency events, and it responds to high-frequency events but then “forgets”, its value
fading to zero with the (backwards) passage of time.

So the main point of this section is that, owing to their different filtering properties, eQt accumulates along
trajectories whereas e∆Q

t does not, and this is the underlying reason that the bounds on eQt discovered by
Fujimoto et al. (2022) are large whereas the bounds on e∆Q

t are small. Pushing this analysis further, we
have:
Corollary 6. Let eB : S × A → R be upper-bounded by C > 0, and suppose that there exists a point
(s0, a0) ∈ S ×A at which

eQ(s0, a0) = C

1− γ .

Then along the trajectory starting at (s0, a0) and following the policy µ, we have that e∆Q
t = 0 for all t ∈ N.

Proof. As |eB | ≤ C and the anticausal low-pass filter eQt has a gain of 1/(1−γ), the time series eQt can attain
a value of C/(1− γ) if and only if it receives a strictly constant input eBt = C for all t ∈ N. The vanishing
of e∆Q

t along the trajectory {(s0, a0), (st, µ(st))}∞t=1 then follows from equation (3.13).

7

Published in Transactions on Machine Learning Research (11/2023)

In words, if the Fujimoto et al. bound (3.4) is tight at any point in state-action space, then the difference
error vanishes everywhere along the trajectory through that point. In that sense, there is a partial trade-off
between eQt and e∆Q

t : for any given bound on eBt , the absolute value |eQt | reaches its maximum only when
|e∆Q
t | is minimal (i.e. 0). Another practical consequence, more clearly expressed by equation (3.13), is that

for any given magnitude of the Bellman error, the lower we can make the temporal frequency of variation of
eBt , the smaller |e∆Q

t | will be. We elaborate on this point in the next subsection.

3.3 Controlling temporal frequency

What factors influence the temporal frequency of eBt ? The standard way of analyzing frequency components
of time series is to use the discrete Fourier transform, or DFT: given any finite-length real time series
{xn}N−1

n=0 = {x0, x1, · · · , xN−1}, where N is a positive integer, the DFT of {xn}N−1
n=0 is the N -element

sequence {x̂k}N−1
k=0 given by (Stankovic, 2015)

x̂k =
N−1∑
n=0

xnexp(−i2πkn/N), k = 0 · · · , (N − 1).

Here, the modulus |x̂k| corresponds to N times the amplitude of the component of {xn}N−1
n=0 of frequency

2πk/N . Please see Appendix B for more explanations of the DFT and a proof of the following bound on the
frequency components of the Bellman error:
Proposition 7. Along any finite-length segment {(s0, a0), (sn, µ(sn))}N−1

n=1 of a trajectory, the DFT terms
{êBk }

N−1
k=1 of the Bellman error satisfy the inequality

∣∣êBk ∣∣ ≤ (N − 2)
sin
(
πk
N

) {||f∆
µ ||max

√
1 + Lip(µ)2 [(1 + γ)Lip(Q) + Lip(r)]

}
+ [(1 + γ)|Q1 −Q0|+ |r1 − r0|] + γ (|Q0|+ |QN |) ,

where Lip(r), Lip(Q), and Lip(µ) are the Lipschitz constants of r : S × A → R, Q : S × A → R, and
µ : S → A respectively, f∆

µ (s) , f (s, µ(s))− s, and where ||f∆
µ ||max = maxS ||f∆

µ ||.

In simple terms, the bounds on |êBk | depend on the frequency 2πk/N through the factor (N −2)/ sin(πk/N),
as well as on the “smoothness” of the functions r and Q across state-action space, and on the system’s motion
through that space, which is determined by the policy µ and the state dynamics f . To put this result in
context, we argued in section 3.1 that minimizing the difference error e∆Q

t is more important than minimizing
the Q-function error eQt , and in section 3.2, we showed that e∆Q

t is a high-pass filter of eBt , meaning that the
scale of |e∆Q

t | is governed by the absolute values |êBk | for k near N/2 (the high-frequency components). The
proposition above now explains how the choices of Q, r, and µ will impact the upper-bounds on the |êBk |, in
the sense that the less abruptly these functions vary at a local scale, the smaller |e∆Q

t | must be.

At this point, it may be helpful to visualize how some of these factors – the regularity of µ, r and Q over S
and A – are interrelated and how they influence the temporal frequency of Q along an on-policy trajectory
{(st, µ(st))}t≥0. We focus on t 7→ Q (st, µ(st)), because it is one of the main variables that determines the
temporal behavior of eBt . (We could of course have shown eB itself rather than Q, but plots of eB : S×A → R
and t 7→ eB (st, µ(st)) are less easy to interpret.)

We will consider a very simple control system, a one-kilogram mass sliding on a horizontal frictionless rail
in zero gravity. The state space S ⊂ R2 of this system consists of the position and velocity s = (q, v) of the
mass, while the action is a driving force applied to it, so that A = R. The dynamics function is obtained by
discretizing Newton’s second law by Euler’s method, with time step 1 ms. Figure 3.1 showcases the following:

• Panel (A) represents a reference case. Here, for simplicity, the policy µ is linear and the reward
function is quadratic. Specifically, the policy’s action is an applied force, expressed in newtons
and given by µ(s) = − 1

2 (v + 5(q − 0.3)), where q is in metres and v in m/s. The reward is
r(s, a) = −(3 × 10−4)(q2 + 10v2), which is bounded over the trajectories we consider in the figure.

8

Published in Transactions on Machine Learning Research (11/2023)

Figure 3.1: Spatial factors affecting temporal frequency along state-space trajectories. Left of each panel:
on top is state space S (the blue plane) with one on-policy trajectory; below is the graph of the approximator
Q (the grey surface) with the projection of the same trajectory (black curve). Right of each panel: a plot
of t 7→ Q (st, µ(st)). (A) Low Lip(µ) and Lip(r) with fine approximator Q (reference case); (B) Low Lip(µ)
and Lip(r) with coarse approximator Q; (C) Low Lip(µ) and high Lip(r) with fine approximator Q; (D)
Low Lip(r) and high Lip(µ) with fine approximator Q.

Lip(µ) and Lip(r) are both low. The critic Q, consisting of 500 Gaussian filters trained by the
recursive least squares method (RLS), is an almost perfect fit to the true Qµ(which we approximated
very closely by summing discounted rewards along trajectories). The near-perfect fit and the low
Lip(r) induce a low Lip(Q), resulting in a t 7→ Q (st, µ(st)) with few fluctuations.

• Panel (B) depicts the situation where µ and r are the same as in (A), but the approximator Q has
only 50 filters. Its coarser approximation has a higher Lip(Q) than the reference case, and leads to
more fluctuations in the right-hand-side plot.

• Panel (C) is a case where µ and Q are as in (A), but r(s, a) = −0.035 tanh(10q2) instead of the
reference quadratic. In this example, the larger Lip(r) induces a larger Lip(Qµ) and therefore a larger
Lip(Q), which can be seen from the steep bumps in the graph of Q, again resulting in fluctuations
in the right-hand plot.

• Finally, Panel (D) shows a case where r and Q are as in (A), but the linear policy is replaced by a
coarse approximation µ. In this case, not only does the trajectory fluctuate more in S because of
the higher Lip(µ), but we also obtain a higher Lip(Q) because the rougher policy affects Qµ.

To summarize, Fig. 3.1 illustrates how the smoothness of µ, r and Q over their domain spaces influences the
temporal frequency of t 7→ Q (st, µ(st)), whose behavior carries over to the Bellman error, which is computed
using Q and r.

The main lesson of Proposition 7 and Figure 3.1 is that we can shrink the high-frequency components of eBt
by reducing ||f∆

µ ||max, or by choosing a simple, low-Lipschitz reward function r, or by smoothing out µ or Q,
for instance with weight decay. As regards ||f∆

µ ||max, it is usually not possible to alter the function f∆, which
is determined by the state dynamics. But in some tasks it may be possible to train an agent initially in a

9

Published in Transactions on Machine Learning Research (11/2023)

simplified, lower-speed version of the environment it will ultimately operate in. This is a sensorimotor form
of curriculum learning (Bengio et al., 2009; Wang et al., 2021), and reflects the commonplace observation
that humans do often begin learning a skill in a simplified or lower-speed setting, as for instance with training
wheels or on a kiddie slope.

3.4 Relation to policy noise

Our focus has been on the mathematical justification for Bellman-based learning, but our temporal filtering
results also shed light on another aspect of off-policy DPG-type actor-critic methods, namely the use of
“policy noise”.

In many algorithms of this type, the agent stores a large number of its past interactions with the environment
in a “replay buffer”, where the kth entry in the buffer is a tuplet (sk, ak, rk, s′k), where sk was the state at the
beginning of an interaction, ak was the action taken, rk was the resulting reward, and s′k was the subsequent
state. The critic trains itself by drawing batches of these tuples from the buffer and for each one computing
not its associated Bellman error eB but a perturbed version of that error:

ẽBk = Q(sk, ak)− rk − γQtgt (s′k, µ(s′k) + ν) , (3.14)

where ν is a zero-mean policy noise term (distinct from the “exploratory noise” that the agent adds to its
actions when it interacts with the environment), and where Qtgt designates a target network, which is close
to but not identical with Q.

While the motivation behind exploratory noise is obvious, and the use of a target net has been shown to
bring certain benefits (e.g. in (Fan et al., 2020)), the use of the policy noise term ν in (3.14) is less clear
conceptually, as its addition violates the rationale behind the learning rule. Indeed, the rationale for learning
from eB is the Bellman equation (2.3), but that equation holds only when the action at the subsequent state
is on policy (i.e. at+1 = µ(st+1) or, in the buffer, µ(s′k)); it fails if noise is added to µ(s′j) as in (3.14).
And yet adding ν does improve learning. Fujimoto et al. (2018), who introduced the idea of policy noise,
proposed that it might help performance by smoothing the learned Q estimate. In light of our results we
can add that the spatial averaging induced by ν of the target value around Qtgt(s′, µ(s′)) may also be useful
because it blurs out high-frequency components of Q. In other words, our findings here clarify the sense in
which using equation (3.14) regularizes the critic’s learning, and perhaps provide a fuller explanation as to
why policy noise improves actor-critic performance.

4 Summary and future work

In this paper we have addressed the question, why do DPG-based actor-critic methods, which train a value-
estimator Q based on the Bellman error eBt , perform well even though eBt is not closely related to the value
error eQt , and e

Q
t can be very large even when eBt is small? The answer, we have shown, is that the accuracy

of the policy’s teaching signal ∂Q/∂a depends less on the value error eQt than on the difference error e∆Q
t , and

e∆Q
t is closely related to eBt . We have also shown that this difference error is a high-pass-filtered version of
eBt , suggesting that actor-critic performance may be improvable by taking steps to limit the high-frequency
spatial components of the functions r : S × A → R and Q : S × A → R, for instance by choosing tempered
reward functions, and using policy noise and weight decay to temper the critic network Q. This being said,
it would be interesting to build on this work to address other questions.

In the previous section, we established theoretical results to explain how current techniques and practices
improve the performance of certain actor-critic methods. An obvious question to address in future work is
how such findings could be used for practical algorithm design. One line of thinking might be to develop
algorithms that explicitly learn the gradient ∂Qµ/∂a, instead of relying on critics to estimate Qµ only.
Another relevant direction would be the design of methods that specifically temper the critic Q during
training. For the sake of illustration, we include a brief example in Appendix C that relates the use of twin
critics to the smoothing of the estimator Q.

On the theoretical side, the scope of the present article has been quite confined, for both mathematical
convenience and readability purposes. On the one hand, we have focused on one aspect of the learning

10

Published in Transactions on Machine Learning Research (11/2023)

process, namely the information about gradient error that is contained in the errors eB and e∆Q computed
along the paths of the current policy. A natural, though challenging, follow-up question is how much more
information about ∂Qµ/∂a can be recovered as the policy evolves and eB and e∆Q are computed along an
ever-changing set of trajectories.

We have also restricted our attention to deterministic dynamics in this paper because of our own research
interests and because of their relevance to the usual benchmarks for DPG-type algorithms. Extending the
discussion to stochastic systems would obviously be relevant for applications related to stochastic optimal
control, but would require heavier mathematical machinery.

Of course, many other open questions remain regarding the mathematical basis of actor-critic methods,
including convergence conditions (Williams & Baird, 1990), and the effects of sparse training data (Fujimoto
et al., 2022).

Acknowledgments

This work was supported by Mitacs through the Mitacs Accelerate Program.

References
Andrew G Barto, Richard S Sutton, and Charles W Anderson. Neuronlike adaptive elements that can solve
difficult learning control problems. IEEE transactions on systems, man, and cybernetics, (5):834–846,
1983.

Richard E Bellman. Dynamic Programming. Princeton University Press, 1957.

Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. Curriculum learning. In Proceedings
of the 26th annual international conference on machine learning, pp. 41–48, 2009.

Dimitri Bertsekas and John N Tsitsiklis. Neuro-dynamic programming. Athena Scientific, 1996.

Thomas Degris, Martha White, and Richard S Sutton. Off-policy actor-critic. arXiv preprint
arXiv:1205.4839, 2012.

Jianqing Fan, Zhaoran Wang, Yuchen Xie, and Zhuoran Yang. A theoretical analysis of deep q-learning. In
Learning for Dynamics and Control, pp. 486–489. PMLR, 2020.

Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation error in actor-critic
methods. In International conference on machine learning, pp. 1587–1596. PMLR, 2018.

Scott Fujimoto, David Meger, Doina Precup, Ofir Nachum, and Shixiang Shane Gu. Why should i trust you,
bellman? the bellman error is a poor replacement for value error. arXiv preprint arXiv:2201.12417, 2022.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy maximum
entropy deep reinforcement learning with a stochastic actor. In International conference on machine
learning, pp. 1861–1870. PMLR, 2018.

Ehsan Imani, Eric Graves, and Martha White. An off-policy policy gradient theorem using em-
phatic weightings. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi,
and R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 31. Curran
Associates, Inc., 2018. URL https://proceedings.neurips.cc/paper_files/paper/2018/file/
3ef815416f775098fe977004015c6193-Paper.pdf.

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa, David Sil-
ver, and Daan Wierstra. Continuous control with deep reinforcement learning. preprint arXiv:1509.02971,
2015.

Alan V. Oppenheim, Alan S. Willsky, and S. Hamid Nawab. Signals and Systems 2e. Prentice-Hall, Inc.,
1998.

11

https://proceedings.neurips.cc/paper_files/paper/2018/file/3ef815416f775098fe977004015c6193-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/3ef815416f775098fe977004015c6193-Paper.pdf

Published in Transactions on Machine Learning Research (11/2023)

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy optimiza-
tion algorithms. arXiv preprint arXiv:1707.06347, 2017.

David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, and Martin Riedmiller. Deter-
ministic policy gradient algorithms. In International conference on machine learning, pp. 387–395. Pmlr,
2014.

Ljubisa Stankovic. Digital signal processing: with selected topics: Adaptive systems, time-frequency analysis,
sparse signal processing. CreateSpace, 2015.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Che Wang, Yanqiu Wu, Quan Vuong, and Keith Ross. Striving for simplicity and performance in off-policy
drl: Output normalization and non-uniform sampling. In International Conference on Machine Learning,
pp. 10070–10080. PMLR, 2020.

Xin Wang, Yudong Chen, and Wenwu Zhu. A survey on curriculum learning. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 44(9):4555–4576, 2021.

Ronald J Williams and LC Baird. A mathematical analysis of actor-critic architectures for learning opti-
mal controls through incremental dynamic programming. In Proceedings of the Sixth Yale Workshop on
Adaptive and Learning Systems, pp. 96–101, 1990.

Ian H Witten. An adaptive optimal controller for discrete-time Markov environments. Information and
control, 34(4):286–295, 1977.

A The gradient error and the difference error

Continuing the discussion of section 3.1, the purpose of this appendix is to clarify the link between the
difference error

e∆Q
t , (Qt+1 −Qt)− (Qµt+1 −Q

µ
t) = ∆eQt

that we study in this paper, and the gradient errors:

e∂aQ
t ,

∂Q

∂a
(st, at)−

∂Qµ

∂a
(st, at)

and
e∇Qt , ∇Q (st+1, µ(st+1))−∇Qµ (st+1, µ(st+1)) ,

where as usual, the point (st, at) ∈ S × A has an arbitrary action, and (st+1, µ(st+1)) ∈ S × A is the next
point along on-policy trajectory following µ, with st+1 = f(st). For simplicity, we assume here that the state
space and the action space are both Euclidean, specifically that S = Rd and A = Rq.

Defining ∆xt = (st+1 − st, µ(st+1)− at), we have the first-order Taylor expansion

Qt = Qt+1 −∆xᵀt · ∇Q (st+1, µ(st+1)) + O
(
||∆xt||2

)
for the approximator Q, as well as a similar expression for the state-action value function Qµ. Assuming
that ||∆xt||2 is small enough, we can write that

e∆Q
t ≈ ∆xᵀt · (∇Q (st+1, µ(st+1))−∇Qµ (st+1, µ(st+1)))

= ∆xᵀt · e
∇Q
t+1 = ∆xᵀt ·

(
e∂aQ
t+1 , e

∂sQ
t+1

)
, (A.1)

where e∂sQ
t+1 is the state-gradient error. This equation shows that e∆Q

t is approximately linearly related to the
component of e∇Q in the direction ∆xt at the point (st+1, µ(st+1)) ∈ S × A. On its own, therefore, e∆Q

t

reflects only the component of e∇Q along that single vector ∆xt.

12

Published in Transactions on Machine Learning Research (11/2023)

We can however say more if we consider the additional information provided by a replay buffer. To make our
analysis tractable and derive a general result, we will assume that we have an idealized replay buffer, in the
sense that it is large enough that all the objects defined below make sense and all the sets are non-empty.

Suppose we have a replay buffer B = {(sk, ak, rk, s′k)}NB
k=1 where (as is usual in practice) the transitions

(sk, ak, rk, s′k) are not necessarily obtained by following the policy µ only. Fixing a state s ∈ S, consider the
subset of transition tuples:

B(s) =
{

(ski
, aki

, rki
, s′ki

) | s′ki
= s, i = 1, · · · , ns

}
⊂ B

whose next state is s. Let us introduce:

∆xi ,
(
s′ki
− ski

, µ(s′ki
)− aki

)
,

e∆Q
i (s) , eQ

(
s′ki
, µ(s′ki

)
)
− eQ(ski

, aki
),

with i = 1, · · · , ns. Next, let e∆Q
B,µ(s) be the (row) vector whose entries are the e∆Q

i (s), let MB,µ(s) be the
matrix whose rows are the vectors ∆xᵀi , and let WB,µ(s) = SpanR{∆xi}ns

i=1 be the linear subspace of S ×A
spanned by the “samples” ∆xi. By equation (A.1), we have that:

e∆Q
B,µ(s) ≈MB,µ(s) · e∇Q (s, µ(s)) , (A.2)

which shows that e∆Q
B,µ(s) is approximately linearly related to the projection of e∇Q (s, µ(s)) onto the subspace

WB,µ(s) ⊆ S × A. Letting MB,µ(s)+ denote the Moore-Penrose pseudo-inverse of MB,µ(s), equation (A.2)
tells us that if the ||∆xi|| are small enough, thenMB,µ(s)+·e∆Q

B,µ(s) is a least-squares estimator for e∇Q (s, µ(s)).

Given these facts, how much information about e∇Q (s, µ(s)) or e∂aQ (s, µ(s)) can be recovered from
e∆Q (s, µ(s))? The answer lies within the subspace WB,µ(s) spanned by the ∆xi, and therefore in the
samples available in the subset B(s).

If the examples ∆xi are varied enough to span the entirety of S ×A, then for a given point s ∈ S, the values
e∆Q
i will determine all the components of e∇Q (s, µ(s)), meaning we can completely recover this vector using
the difference errors. Similarly, if the ∆xi are such that A ⊆ WB,µ(s), then the difference errors will allow
us to recover the gradient error in the action direction, namely e∂aQ (s, µ(s)). But these ideal cases are
unrealistic in practice, and more generally, it can be shown (though the proofs are beyond the scope of
this paper) that even when the space WB,µ(s) is maximal, in the sense that it contains all possible ∆xi
compatible with the state dynamics and the policy µ, the action space A will not necessarily be included in
WB,µ(s), and in that case e∆Q will not measure how well the critic estimates the projection of ∂Qµ/∂a onto
the orthogonal complement WB,µ(s)⊥ ⊂ S ×A.

In summary, the difference error e∆Q is not a perfect index of the error in ∂Qµ/∂a. In most cases it will
contain only incomplete information about e∂aQ, mixed with inessential information about the state-gradient
error e∂sQ, as shown in A.1. But it is linearly related to the best estimate of e∂aQ that can be obtained
given the information in the buffer, it is fairly simply related to the Bellman error eB , and it is in any case
more informative than the value error eQ that has been the focus of previous investigations. Our aim in this
paper has been to counter the claim that Bellman-based learning is suspect because eB is a bad surrogate
for eQ. To do that, we have shown that e∆Q is a more relevant error measure than eQ in this context, and
that eB is a good surrogate for e∆Q.

B Proof of DFT bound

B.1 Discrete Fourier Transform

We start with a brief review of the Discrete Fourier Transform (DFT), and establish a lemma that simplifies
the proof of Proposition 7.

13

Published in Transactions on Machine Learning Research (11/2023)

Recall that given any finite-length real time series {xn}N−1
n=0 = {x0, x1, · · · , xN−1}, where N is a positive

integer, the DFT of {xn}N−1
n=0 is the N -element sequence {x̂k}N−1

k=0 whose terms are

x̂k ,
N−1∑
n=0

xnexp(−iωkn), ∀k = 0, · · · , (N − 1), (B.1)

where i is a square root of −1, and the frequency variable ωk , 2πk/N for all k = 0, · · · , (N − 1).

Given the DFT terms {x̂k}N−1
k=0 , the original time series {xn}N−1

n=0 is recovered using the identity (Stankovic,
2015, Sec.3.1)

xn = 1
N

N−1∑
k=0

x̂kexp(iωkn), ∀n = 0, · · · , (N − 1),

meaning that the quantity |x̂k|/N represents the amplitude of the component exp(iωkn) with frequency ωk.
Moreover, it is a straightforward matter to compute that exp(+iωk) = exp(−iωN−k) for k = 1, · · · , (N − 1),
which means that ωk and ωN−k represent the same frequency of cycling but in opposite directions — clockwise
vs counterclockwise. Therefore the DFT terms x̂k corresponding to high frequencies are those with k close
to N/2, while the terms corresponding to low frequencies are those with k close to 0 or (N − 1).

Now we show the following general facts:
Lemma 8. Let {xn}N−1

n=0 be a finite-length discrete time-series.

1. The terms of its DFT {x̂k}N−1
k=0 are given by x̂0 =

∑N−1
n=0 xn and

x̂k = −
N−1∑
n=1

(
1− exp(−inωk)
1− exp(−iωk)

)
(xn − xn−1) (B.2)

for k = 1, · · · , (N − 1).

2. For all k = 1, · · · , (N − 1), we have that

|x̂k| ≤
(N − 1)
sin
(
ωk

2
)∆xmax, (B.3)

where ∆xmax , maxn=1,··· ,(N−1)
∣∣xn − xn−1

∣∣.
Proof. To prove (B.2), we write the terms of the sequence {xn}N−1

n=1 as a telescoping sum xn = x0 +∑n
m=1(xm − xm−1), and using the geometric sums

m−1∑
n=0

exp(−inωk) =
(

1− exp(−imωk)
1− exp(−iωk)

)
,

N−1∑
n=0

exp(−inωk) = 0,

we have from (B.1) that for all k = 1, · · · , (N − 1),

x̂k =
N−1∑
n=1

[
n∑

m=1
(xm − xm−1)

]
exp(−inωk) =

N−1∑
m=1

[
N−1∑
n=m

exp(−inωk)
]

(xm − xm−1)

= −
N−1∑
m=1

[
m−1∑
n=0

exp(−inωk)
]

(xm − xm−1) = −
N−1∑
m=1

(
1− exp(−imωk)
1− exp(−iωk)

)
(xm − xm−1).

And the case of k = 0 is trivial.

14

Published in Transactions on Machine Learning Research (11/2023)

Next, from the identity sin(θ) = [exp(iθ)− exp(−iθ)] /2i, it follows that for all m = 0, · · · , N − 1,∣∣∣∣∣1− exp(−imωk)
1− exp(−iωk)

∣∣∣∣∣ =

∣∣∣∣∣2i exp (−imωk/2)
2i exp (−iωk/2)

sin(mωk/2)
sin(ωk/2)

∣∣∣∣∣ =
∣∣ sin(mωk/2)

∣∣
sin(ωk/2) ≤ 1

sin(ωk/2) .

The right-hand side of equation (B.2) can now be bounded as follows:

|x̂k| ≤
1

sin(ωk/2)

(
N−1∑
n=1
|xn − xn−1|

)
≤ (N − 1)

sin(ωk/2) max
n=1,··· ,(N−1)

∣∣xn − xn−1
∣∣ = sin

(
ωk

2
)−1

N∆xmax,

proving equation (B.3).

B.2 Proof of Proposition 7

We now turn to the Bellman error eBt and the difference error e∆Q
t . We have seen that e∆Q

t is the result of
anticausal high-pass filtering of all the eBτ from τ = t to ∞. But if eB is upper-bounded by C > 0, then for
any finite T , we have from equation (3.13) that

e∆Q
t =

T∑
τ=t

γτ−t
(
eBτ+1 − eBτ

)
+ γT+1−te∆Q

T+1,

≤
T∑
τ=t

γτ−t
(
eBτ+1 − eBτ

)
+ 2γT+1−tC,

The term 2γT+1−tC goes to 0 as T increases, which means that values of eBτ in the distant future have
vanishing influence on e∆Q

t . So with arbitrarily small error, we can consider long but finite time series of
Bellman errors, and analyze their frequency components using the DFT terms {êBk }

N−1
k=0 . In this context, we

derive a refinement of inequality (B.3).

Lemma 9. Suppose that {φn}N−1
n=0 is the discrete time series obtained by evaluating a Lipschitz function

φ : S × A → R along a finite-length segment {(s0, a0), (sn, µ(sn))}N−1
n=1 of a trajectory. The DFT terms

{φ̂k}N−1
k=1 then satisfy the inequality:

∣∣φ̂k∣∣ ≤ |φ1 − φ0|+
(N − 2)

sin(ωk/2)Lip(φ)
√

1 + Lip(µ)2
∣∣∣∣f∆
µ

∣∣∣∣
max, (B.4)

where Lip(φ) and Lip(µ) are the Lipschitz constants of φ and µ respectively, where f∆
µ (s) , f (s, µ(s))− s,

and where
∣∣∣∣f∆
µ

∣∣∣∣
max = maxs∈S

∣∣∣∣f∆
µ (s)

∣∣∣∣.
Proof. Applying equation (B.2) to the DFT terms {φ̂k}N−1

k=1 yields:

φ̂k = −(φ1 − φ0)−
N−1∑
n=2

(
1− exp(−inωk)
1− exp(−iωk)

)
(φn − φn−1),

then modifying the proof of (B.3) gives the inequality:

∣∣φ̂k∣∣ ≤ |φ1 − φ0|+
(N − 2)

sin(ωk/2) max
1<n≤N−1

∣∣∣φn − φn−1

∣∣∣.
15

Published in Transactions on Machine Learning Research (11/2023)

Since sn = f (sn−1, µ(sn−1)) for n = 2, · · · , N − 1, we have∣∣∣φn − φn−1

∣∣∣ =
∣∣φ (f (sn−1, µ(sn−1)) , µ (f (sn−1, µ(sn−1))))− φ (sn−1, µ(sn−1))

∣∣
≤ Lip(φ) ·

∣∣∣∣∣∣ (f (sn−1, µ(sn−1)) , µ (f (sn−1, µ(sn−1))))− (sn−1, µ(sn−1))
∣∣∣∣∣∣

≤ Lip(φ) ·
√∣∣∣∣f (sn−1, µ(sn−1))− sn−1

∣∣∣∣2 + Lip(µ)2
∣∣∣∣f (sn−1, µ(sn−1))− sn−1

∣∣∣∣2
≤ Lip(φ)

√
1 + Lip(µ)2 · max

1<n≤N−1

∣∣∣∣∣∣f (sn−1, µ(sn−1))− sn−1

∣∣∣∣∣∣
≤ Lip(φ)

√
1 + Lip(µ)2

∣∣∣∣f∆
µ

∣∣∣∣
max.

which completes the proof of the Lemma.

Continuing with the notation of this last Lemma, we can now establish:

Proposition 7. Along any finite-length segment {(s0, a0), (sn, µ(sn))}N−1
n=1 of a trajectory, the DFT terms

{êBk }
N−1
k=1 of the Bellman error satisfy the inequality

∣∣êBk ∣∣ ≤ (N − 2)
sin
(
ωk

2
) {||f∆

µ ||max
√

1 + Lip(µ)2 [(1 + γ)Lip(Q) + Lip(r)]
}

+ [(1 + γ) |Q1 −Q0|+ |r1 − r0|] + γ (|Q0|+ |QN |) .

Proof. From the definitions eBn = Qn − r − γQn+1 and (B.1), the DFT terms êBk of the Bellman error are
given by

êBk = Q̂k − r̂k − γ
N−1∑
n=0

exp(−inωk)Qn+1, k = 1, · · · , (N − 1),

where Q̂k and r̂k are the DFT terms of Q and r respectively. For the sum on the RHS, a direct computation
yields

N−1∑
n=0

exp(−inωk)Qn+1 = exp(iωk)
(
Q̂k −Q0 +QN

)
,

where QN = (QN−1 − rN−1 − eBN−1)/γ, so that

êBk = (1− γexp(iωk)) Q̂k − r̂k + γexp(iωk)(Q0 −QN), (B.5)

and therefore

|êBk | ≤ (1 + γ)
∣∣Q̂k∣∣+ |r̂k|+ γ(|Q0|+ |QN |).

The inequality in the statement then follows by applying Lemma 9 to the terms
∣∣Q̂k∣∣ and |r̂k|.

In summary, the inequality of Proposition 7 relates the modulus of the DFT terms of the Bellman error
to the state dynamics and the regularity of the critic Q, the reward function r, and the policy µ on the
state-action space S ×A. We also make the following remarks:

(a) Since |Q1 − Q0| =
∣∣Q (s1, µ(s1)) − Q(s0, a0)

∣∣ and |r1 − r0| =
∣∣r (s1, µ(s1)) − r(s0, a0)

∣∣, the term
(1 + γ)|Q1 − Q0| + |r1 − r0| in the inequality quantifies a gap incurred by transitioning from an
arbitrary initial state-action (s0, a0) to the on-policy part of the trajectory {(sn, µ(sn))}N−1

n=1 . In the
case where a0 = µ(s0), the inequality reduces to:

∣∣êBk ∣∣ ≤ (N − 1)
sin
(
ωk

2
) {||f∆

µ ||max
√

1 + Lip(µ)2 [(1 + γ)Lip(Q) + Lip(r)]
}

+ γ (|Q0|+ |QN |) .

16

Published in Transactions on Machine Learning Research (11/2023)

(b) The scale of the term ||f∆
µ ||max = maxs∈S ||f (s, µ(s))−s|| depends on the smoothness of the trajectory

obtained by following the policy µ : S → A.

(c) To clarify what the term ||f∆
µ ||max represents, it might be useful to look at an alternative definition

of the state dynamics. Had we adopted the continuous-time dynamical systems notation, our state
dynamics would be given by st+1 = st + F (st, at) for a certain function F : S × A → S. The
constant ||f∆

µ ||max would then be replaced by sups∈S ||F (s, µ(s)) ||.

(d) The bounds on
∣∣êBk ∣∣ are much larger for the low frequencies 2πk/N than for the high frequencies,

because sin(ωk/2)−1 ' N/πk for k close to 0 or (N − 1) (low frequency), while sin(ωk/2)−1 ' 1 for
k close to N/2 (high frequency).

C On variants of TD3

In this appendix, we briefly describe a possible implication of our results, which may be worth exploring
further. Many actor-critic algorithms, starting with TD3 (Fujimoto et al., 2018), use two critics (Haarnoja
et al., 2018; Wang et al., 2020). Each of the two critics, Qi for i = 1, 2, has its own target, but is trained
based on both targets:

ei = Qi(s, a)− r(s, a)− γ min
i=1,2

Qtgt
i (s′, µ(s′) + ν) (C.1)

Fujimoto and colleagues advocated taking the minimum of the two target values, as shown in (C.1), on the
grounds that critic outputs tend to rise in the course of learning, and so taking the minimum would help
prevent Q drifting up and away from the true Qµ. But our results suggest that there may be value in using
the twin targets to temper the Q-function, so as to reduce its high-frequency components, rather than or in
addition to lowering it.

Figure C.1 illustrates this idea. The blue lines in the plots are learning curves for TD3 on two benchmark
continuous-control tasks from OpenAI Gym: Ant-v4 and HalfCheetah-v4. The orange lines are learning
curves for a very slightly different algorithm, just like TD3 and with the same initializations but training the
Qi based not on the lower of the two targets but on the one closer to zero, i.e. on the one whose absolute
value is smaller. And the green lines are learning curves for a third version of TD3, where the Qi are trained
based on the mean of the two targets. These latter two methods will tend to squeeze the Q function, not just
from above as TD3 does, but also from below. The plots indicate that these small-target and mean-target
methods may outperform standard TD3 on some tasks. So there may be value in investigating new ways of
handling twin targets that temper Q rather than just lower it.

For each of the two tasks, we ran five trials of each of the three algorithms, all with the same five random
seeds, and using the hyperparameters from the TD3 implementation at https://github.com/sfujim/TD3).
Of course these results are by no means a thorough test of any algorithm. They are merely a brief illustration
of how concepts from this paper might be applied to algorithm design in the future.

17

Published in Transactions on Machine Learning Research (11/2023)

Figure C.1: Learning curves for the standard TD3 algorithm (blue) and two variants of it: a small-target
version (orange) that trains its critics based on the smaller of two target-network outputs, and a mean-target
version (green) that trains based on the mean of the outputs of the target networks. The shaded regions
represent the standard errors of the mean.

18

