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Abstract

Virtual screening has traditionally focused on molecular targets, often failing to1

anticipate the complex, system-level failures that arise during clinical trials. To ad-2

dress this, we propose (i) two new benchmarks for evaluating the clinical relevance3

of virtual screening methods, such as virtual cells, and (ii) a framework for virtual4

screening against entire cellular systems. Our framework uses contextualized5

modeling, a multi-task learning approach for inferring context-specific network6

models, to infer perturbation-specific coexpression networks from large-scale7

screening datasets, enabling accurate prediction of network restructuring under8

diverse cellular and therapeutic contexts. We demonstrate that context-adaptive9

models outperform even observed expression profiles for predicting disease and10

drug mechanisms, suggesting low-cost improvements to common virtual cell ob-11

jectives. At test-time, contextualized networks generate accurate models of gene12

network reorganization on-demand for completely unseen cell types and therapies.13

Across multiple independent runs, networks provide a standard, cohesive, and14

constrained latent space to compare therapeutic effects from different perturbation15

modalities (knockout, overexpression, small molecule). Comparing perturbations16

in terms of cell-level effects leads to a principled approach to drug repurposing,17

safety profiling, and interpreting mechanism of action. Rethinking virtual cell18

benchmarks to target clinical relevance and drug repurposing opens a path to19

hill-climbing on prelinical screening.20

Introduction21

Over 80% of drug candidates that reach clinical trials fail due to incorrect targets or unforeseen22

system-level effects [1]. Despite improvements in virtual screening for molecular interactions,23

recently achieving proteome-scale screens [2], such approaches remain blind to emergent failures at24

the level of cellular systems. Transcriptional response predictors ("virtual cells") [3, 4, 5] provide a25

snapshot view of transcriptional measurements, but do not directly reveal safety, efficacy, or off-target26

effects.27

To address this, we curate two benchmarks from the OpenTargets and LINCS databases to test virtual28

screening methods on representing disease indication and drug mechanism of action, and enable29

hill climbing on clinically-relevant applications. We focus on enabling therapeutic comparisons,30

matching new therapies to well-characterized ones based on similar predicted effects, which enables31

us to compare both molecular and cell-level virtual screening methods.32

We also turn to gene regulatory networks (GRNs) as a natural framework for modeling and comparing33

cellular circuitry. Condition-specific GRNs capture cellular responses to various interventions or34

intrinsic conditions, and display redundancies or fragilities for potential therapeutic development.35

However, existing GRN inference methods rely on partitioned cohorts [6, 7], which fail to capture the36

continuous and context-dependent rewiring observed in many diseases [8, 9], and plug-in estimators37

cannot generalize to new conditions.38
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To address this, we propose a virtual screening framework based on contextualized modeling, which39

infers perturbation-specific GRNs conditioned on multivariate cellular and therapeutic contexts, and40

generates network models on-demand for unseen conditions, enabling a novel virtual screening41

approach. Furthermore, networks provide a structured latent space for comparing therapeutic effects42

across different conditions and even different model runs. Finally, context-adaptive network inference43

provides a general method to integrate a growing amount of multimodal and multi-omic biomedical44

data and foundation models into cohesive models of disease pathology. By leveraging large-scale45

perturbation data, we aim to enable principled screening for efficacy, safety, and mechanistic similarity,46

while also supporting applications in drug repurposing, cohort refinement, and biomarker discovery,47

with implications in drug development for rare and heterogeneous diseases.48

Methods49

Data We curated a benchmark combining the OpenTargets and LINCS databases to test and50

compare perturbation representations. We select diseases with at least 2 targets, each with FDA-51

approved drugs, and merge this with LINCS small molecules, providing a dataset to test similar52

effects from different targets. The resulting dataset contains 50 approved drugs from 55 OpenTargets53

diseases with an average of 2.03 drugs per disease. The LINCS database contains 68 cell lines54

exposed to these drugs, with an average of 8.60 drugs per cell line.55

We also apply the LINCS L1000 dataset for benchmarking model accuracy on held-out perturbations56

and cell lines. This dataset includes quantile-normalized expression values as well as metadata for57

cell line, perturbation type, dose, and post-dose measurement time. The final dataset contains 7658

cell lines total, 71 with perturbations applied, and 12,053 total small-molecule perturbations. We59

produce 2 train-test splits: a context-held-out split, where certain contexts are entirely unseen during60

training, and a sample-held-out split where all contexts are seen during training and samples within61

each context randomly held out. Expression is PCA-compressed to 50 metagenes and all features are62

normalized.63

Contextualized Coexpression Networks Contextualization is based on two modular components:64

a context encoder which translates sample context into model parameters, and a sample-specific model65

which represents the latent context-specific mechanisms of data generation. This view conveniently66

unifies both varying-coefficient models [10], and subpopulation and partition-based approaches, such67

as cluster analysis and cohort analysis [11]. By learning how models change in response to context,68

contextualization enables powerful control over high-dimensional and continuously varying contexts,69

discovering dynamic latent structures underlying data generation in heterogeneous populations and70

permitting GRN model inference at even sample-specific resolution.71

We seek a context-specific density of network parameters P(θ | C) such that

P(X | C) =

∫
θ

dθPM (X | θ)P(θ | C)

is maximized, where P(X | θ) is the probability of gene expression X ∈ Rp under network model
class M with parameters θ ∈ Rp×p, and C is sample context which can contain both multivariate
and real features defining the cell line and therapeutic perturbation. To create a virtual screening
approach that infers gene networks under unseen therapies and for new cell lines, plug-in estimators
are insufficient. We instead apply a context encoder f(C), implemented as a deep neural network,
using a point-mass Dirac delta distribution, which gives the familiar contextualized model form [12]

P (X | θ = f(C))

In this study, we use a multivariate gaussian as model class M to parameterize PM (X | θ), and72

transform this into a differentiable and convex negative-log-likelihood function which allows us to73

infer contextualized correlation networks. Correlation networks are simple to estimate and often state-74

of-the-art for gene regulatory network inference [13]; contextualized correlation expands this utility75

to the granularity of sample-specific network inferences. To estimate sample-specific correlation76

networks, we assume the data was drawn from X ∼ N(0,Σ) and use the well-known univariable77

regression view of Pearson’s marginal correlation coefficient:78
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where the covariance matrix Σ has elements σij , and θ̂ij = argminθ(Xj − Xiθ)
2. This form79

converts correlation into two separable univariate least-squares regressions that maximize the marginal80

conditional probabilities P (Xi|Xj) and P (Xj |Xi), leading to the differentiable correlation loss81

objective from [14]. We learn this model by applying the Contextualized [11] package.82

Results83

Generating Coexpression Networks On-demand for Unseen Therapies Contextualized networks84

learn to map contexts to context-specific model parameters through a context encoder. Context repre-85

sentations which contain some signal about the similarity or difference in downstream distributions86

greatly improve accuracy and generalization, even in the presence of noise features and non-linear87

effects [14]. For cell line, we use control cell profile gene expression. We apply morgan fingerprints88

[15] to represent small molecule contexts. For all other perturbations, we represent the target gene89

using AIDO.Cell gene embeddings [16]. We evaluate models on their ability to generalize to unseen90

perturbations (Table 1). Group-specific modeling and one-hot contexts fail in this regime, as unseen91

contexts cannot be mapped onto the original groups or feature set. Population modeling still applies92

as a context-ignorant method. To generalize effectively, the context encoder must learn a model of93

how small molecules affect cellular systems.94

Model Variant Small Molecule shRNA Over Expression Ligand

Population 0.9914 0.9776 0.7944 0.9178
Cell-type-specific — — — —

One-hot — — — —
Fingerprint 0.5943 0.6804 0.7504 0.6861

Table 1: MSE of inferred networks on a context-held-out split for perturbed expression measurements
from 71 cell lines perturbed with one of 12,053 small molecules. Small molecule contexts are encoded
as morgan fingerprints [15].

Model Variant MSE ↓
Population 0.978
Cell-type-specific 1.84e5
Contextualized 0.631

+ dose, time 0.685
+ dose, time, cell line embedding 0.549
+ dose, time, cell line expression 0.541

Table 2: MSE of inferred networks on a sample-held-out split for perturbed expression measurements.
Perturbation contexts are one-hot encoded, while different encoding schemes are used for cell line
contexts.

Rich Context Representations Improve Performance To evaluate the impact of richer context,95

we incrementally augment input features for the context encoder, moving toward continuous contexts96

that put an implicit prior on the similarity between condition-specific modeling tasks (Table 2).97

In this experiment, we begin to evaluate prediction of post-perturbation networks, using one-hot98

encoded small molecule perturbations along with various representations of the cell type context. Post-99

perturbation prediction is more challenging than the control-only setup in Table 5. Contextualized100

networks again avoid over and underfitting, producing much-improved test performance even with101

one-hot contexts. Substituting the one-hot encoding of cell type for an embedding of the unperturbed102

transcriptomic profile from AIDO.Cell foundation model [16] improves generalization considerably103

for predicting post-perturbation networks. Providing the entire control expression profile as context104

improves further.105
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Networks Similarity Links Drugs with Disparate Targets to Shared Therapeutic Mechanisms106

A core requirement for cell-level virtual screening is that the representation space induces reliable107

similarity among perturbations with similar cell-level effects. To evaluate this, we gather a dataset of108

small molecule drugs from the OpenTargets platform that have different molecular targets, but are109

approved for a common disease. This dataset establishes a ground truth for drugs that have similar110

therapeutic effects, but which are considered unrelated by target-centric virtual screening approaches.111

We compare therapeutic similarity in two spaces: (i) observed gene expression (an "oracle" virtual112

cell) and (ii) predicted cellular network representation. We label drugs by their disease indications113

and evaluate the representations in terms of silhouette score and pairwise AUROC to determine114

cohesion among indications, as well as a k-nearest neighbors model at k ∈ [1, 5, 10, 50] to determine115

the representation’s ability to predict new indications. We find that contextualized networks are116

consistently more representative of cell-level therapeutic effects than observed expression (Table 3).117

Metric Contextualized networks Gene expression PCA metagenes

micro macro micro macro micro macro

Silhouette ↑ -0.1135 -0.1100 -0.0605 -0.0592 -0.0784 -0.0731
Pairwise AUROC ↑ 0.5547 0.5334 0.5182
kNN@1 ↑ 0.4553 0.4697 0.4399 0.4209 0.4439 0.4201
kNN@5 ↑ 0.4495 0.4480 0.3907 0.3310 0.3915 0.3294
kNN@10 ↑ 0.4340 0.4044 0.3457 0.2759 0.3448 0.2712
kNN@50 ↑ 0.3485 0.2592 0.2277 0.1603 0.2285 0.1604

Table 3: Systems-level similarity: disease-structure metrics in the context-inferred network represen-
tation vs. raw gene expression vs. PCA metagenes. “micro” weights classes by frequency; “macro”
averages per-class scores.

Network Similarity Enables Drug Repurposing Across Modalities via Cell-level Effects Con-118

textualized networks provide a constrained latent space across model runs, enabling lookup across119

modalities. Lookup between small molecules, knockdowns and knockouts, and over expressions120

provides a way to understand molecular mechanisms based on similar cell-level effects. We validate121

this cross-modal repurposing approach based on known gene targets for some well-characterized122

small molecules as well as genetic perturbations such as knock downs and hairpin RNAs (Table 4).123

Contextualized networks Gene expression PCA metagenes

KNN @ 1 ↑ 0.4322 0.4218 0.4162
KNN @ 5 ↑ 0.4139 0.3835 0.3837
KNN @ 10 ↑ 0.3856 0.3568 0.3533
KNN @ 50 ↑ 0.2944 0.2862 0.2842

Table 4: Mapping small molecule drugs to genetic perturbations with identical targets using various
representations of cell-level effects.

Discussion124

Contextualized gene networks are a useful latent representation of cellular systems, allowing us125

to compare therapeutic, cell line, and pathological conditions under a cohesive and interpretable126

representation. Previous work has applied the similarity of these networks to identify prognostic127

disease types and relate disjoint biomarkers and patient cohorts through shared mechanisms [14].128

Future work will focus on using network similarity to identify therapeutics which lead to similar129

disease states. By relating drugs to one another through predicted systems-level responses, we130

aim to enable a virtual drug discovery and repurposing platform which lends itself to predicting131

phenotypic response, while simultaneously predicting targets and mechanisms via relationships to132

well-characterized genetic and chemical perturbations.133
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A Contextualized Modeling194

Context Encoding Addresses Over and Under Fitting195

We first assess failure modes by comparing a contextualized network estimator to population and196

group-specific networks in a minimal regime. Contexts are one-hot encoded, containing no prior197

knowledge of cell line similarity, intending to disadvantage contextualized networks which leverage198

the similarity of contexts to share information and extrapolate between modeling tasks. In this199

experiment, perturbations are ignored and we only test across control measurements for each cell200

line. Notably, contextualized networks achieve the best performance on the full dataset by mitigating201

failure models of the population and condition-specific baselines (Table 5). Population models202

come with high bias, underfitting due to their inability to model cell line-specific effects, while cell203

line-specific models dramatically overfit on conditions with few samples (nc ≤ 3). Contextualized204

networks automatically switch between a population default when there are insufficient samples and205

group-specific modeling when there are sufficient samples, achieving stable performance across data206

regimes.207

Additionally, continuous features, such as dose and time, are difficult to use with discrete group-based208

models, but contextualization naturally integrates these and further improves generalization.209

Full Data nc > 3 nc ≤ 3

Zeros 0.998 0.998 0.694
Population 0.978 0.980 0.681

Cell line-specific 51.576 0.662 1.38e6
Contextualized 0.669 0.665 0.730

+ dose, time 0.6433 0.638 0.767

Table 5: Mean-squared error (MSE) of inferred transcriptional networks on a sample-held-out split
for control measurements from all cell lines. Contextualized and cell line-specific models use one-hot
encoded celltype contexts. nc > 3 subsets the conditions with more than 3 observations, while
nc ≤ 3 subsets the conditions with less than 3 observations. Full data is the union of both.

B Hierarchical clustermap of Gene Expression & PCA Metagenes210
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Figure 1: Hierarchical clustering of context-specific coexpression networks, annotated by cell line,
disease, and small molecule drug.
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Figure 2: Hierarchical clustering of gene expression, annotated by cell line, disease, and small
molecule drug.
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Figure 3: Hierarchical clustering of PCA metagenes, annotated by cell line, disease, and small
molecule drug.
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