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ABSTRACT

We develop signatures of capacity familiarity to characterize large language model
(LLM) benchmarks and their meaningful overlaps. Benchmark signatures probe
the capacity required for benchmark performance. We formally define them as a
set of salient tokens drawn from in-the-wild, naturally authored corpora, where
LLM token perplexity, reflecting more or less pre-training exposure, becomes
highly predictive of LLM benchmark performance. Through a large-scale meta-
evaluation, we extract benchmark signatures via stepwise forward selection with
linear regressions across 32 LLMs and 88 benchmarks spanning diverse knowl-
edge, coding, logic, instruction following, math, language, reasoning, and cul-
tural/world modeling. Our analysis situates signatures in relation to both the se-
mantic similarity of benchmark questions and the correlation of model perfor-
mance. While performance overlaps are universally high and semantic overlaps
remain confined to a narrow mid-range, benchmark signatures prove highly in-
formative in capturing variation, overlap, and divergence. We observe overlap
in knowledge and reasoning subtasks, whereas multilingual and cultural bench-
marks exhibit less similarity, even compared to cross-task overlap. Notably,
performance-level results are strongly influenced by benchmark-orthogonal fac-
tors such as question format, highlighting limitations in LLM generalization, the
conflation of performance with ability, and issues inherent in current mainstream
benchmark agreement studies. Benchmark signatures, however, remain robust to
such effects. Ultimately, we identify cross-functional overlaps across logic, math,
language, instruction following, and world modeling, with coding emerging as
the least overlapping domain. Together, these findings provide mechanistic in-
sights into benchmark validity and LLM sensitivities, and sketch the underlying
landscape of interconnected LLM capabilities.

Figure 1: Left: Signature-based correlations across benchmark functions. The Spearman correlation
is on average 0.285 for benchmarks within the same design function and 0.087 for cross-function
overlaps. Right: Performance-level correlations grouped by benchmark families (MMLU vs. BBH)
and question formats (Multi-Choice Questions vs. True-or-False). Mainstream performance-based
benchmark agreements are biased towards these benchmark-orthogonal factors (red areas) rather
than actual design functions. ρs represents the similarity range in the right panel.
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1 INTRODUCTION

Benchmarks have been central in the growth of large language models (LLMs): they catalyze
progress, standardize evaluation, and enable systematic cross-model comparisons, thereby influ-
encing the trajectory of AI research. The community has witnessed an accelerating proliferation
of benchmarks across a wide range of LLM abilities, such as reasoning (Tafjord et al., 2020) and
agentic capabilities (Zhu et al., 2025), as well as real-world scenarios such as finance (Zhang et al.,
2023) and safety (Mou et al., 2024). The dedicated “Datasets and Benchmarks” track in leading
venues such as NeurIPS and KDD highlights both the importance and steady growth of this area.
Each year witnesses many new benchmark papers. From 252 submissions to the NeurIPS Datasets
and Benchmarks Track in 2021 to 1,820 in 2024 1, the number of benchmark papers has increased
more than sevenfold. While these resources often claim to assess distinct capabilities, it is frequently
unclear whether they truly do so, or whether they merely capture narrow proxies, prompt-specific
heuristics, or even overlapping skills that have already been extensively tested elsewhere, making
them less unique and useful than advertised. This raises critical questions: Do we really need such
a vast and ever-expanding suite of benchmarks? How much overlap exists across them? Answering
this question will also reveal the converse: What areas of capability are sparsely underrepresented
by benchmarks and might benefit from more?

In this paper, we undertake a comprehensive meta-evaluation with a particular focus on identifying
and analyzing benchmark overlap, which we define as the degree to which two benchmarks evaluate
a shared set of model capabilities. To capture overlap in a principled way, we examine it from
three complementary perspectives. At the semantic level, we assess whether the questions in two
benchmarks substantially overlap in content or intent; if so, their redundancy is intrinsic. At the
performance level, the mainstream level in benchmark agreement studies (Perlitz et al., 2024), we
test whether models show highly correlated performance across two benchmarks, indicating that
they measure related underlying abilities even if under surface semantic differences. Finally, at the
benchmark signature level - introduced by us in Section 3 - we move beyond tasks and outcomes to
characterize the distributional fingerprint of benchmarks, defined by token-level perplexity patterns
on large-scale in-the-wild corpora.

Why do in-the-wild corpora effectively encode benchmark characteristics? The abilities measured
by benchmarks - commonsense, factual memory, scientific reasoning, programming skills, and more
- do not emerge out of thin air. They stem from the diverse real-world text patterns encountered by
the model during pretraining. In-the-wild corpora, consisting of large-scale, naturally authored,
multi-domain text and code (news, forums, encyclopedias, textbooks and notes, papers, documen-
tation, blogs, and repositories), are produced for human communication rather than adapted for
benchmark design. They are rich in task-bearing structure (question–answer, problem–solution,
claim–evidence, instruction–execution), redundancy (the same function expressed in many ways),
and breadth. This breadth of distribution - likely unique to in-the-wild data - forms the “soil” from
which such capabilities grow, and also the source from which benchmark questions are drawn. Even
if a benchmark item never appears verbatim, its “function” recurs pervasively: unit-aware arithmetic
in recipes (“double 1½ cups”), commonsense causality in narratives (“the glass shattered after being
dropped”), claim → measurement → inference chains in scientific abstracts, code repair patterns
in GitHub issues (“off-by-one in loop; fix bounds”), and even schema–query mappings (“customers
with orders in last 30 days”). Focusing only on synthetic or benchmark-adjacent data risks capturing
artifacts of test design. In-the-wild data, by contrast, mirrors the true distribution that gives rise to
these abilities, making the overlap between pretraining exposure and benchmark competence not
accidental but expected.

Perplexity provides a useful lens for quantifying relationships between pretraining, skills, and bench-
mark performance. Low perplexity on a passage suggests that the model has seen similar linguistic
and conceptual patterns during training and is familiar with the content. High perplexity, by contrast,
indicates unfamiliarity and underrepresentation in pretraining. Thus, the distribution of perplexity
values across large corpora serves as a fingerprint of the model’s training exposure and more or
less acquired capacity. Importantly, because different benchmarks stress different capabilities, they
map onto different perplexity distributions when probing across the same corpus. In other words,
corpora encode benchmark signatures because benchmarks are not foreign entities imposed on the

1https://papercopilot.com/
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model after training, but rather structured samplings of capabilities that themselves emerge from
the distribution of in-the-wild data. Perplexity serves as the bridge between corpus exposure and
benchmark performance, making it possible to identify and characterize these signatures without
requiring direct evaluation on the benchmark itself 2. We therefore leverage perplexity as the ba-
sis and covariate for salient token selection and signature formation 3. The following three levels
in this work provide a holistic framework: semantics address task design, performance captures
model behavior, and signatures reveal a fingerprint of model capacity. The overlap between bench-
marks across each of these levels highlights the interconnected capacity space - an oft-discussed yet
difficult-to-formalize concept and so represents a promising tool for evaluating benchmark validity.
This rationale is illustrated in Figure 2.

Benchmark Signature Functions from Pretraining Data Math Benchmark

… … the largest desert is Sahara

… … the derivative of sin(x) is cos(x)

… … the Great Wall from China

… … default port for HTTP is 80

… … merge sort runs in time O(n log n)

0.92
0.23
0.78
0.56
0.02
⋮

0.13

Model 1

Model 2

Model N

Figure 2: Overview of the rationale of how in-the-wild corpora implicitly encode the benchmark
signature, knowledge exposure during pretraining (capacities), as well as benchmark performance.

Definition: Benchmark Signature

A benchmark signature is defined as a set of salient tokens T , extracted from large-scale
in-the-wild corpora, such that the perplexity of a collection of language models M on T is
highly predictive of their performance on the benchmark.

To achieve the overall process, we make the following three contributions:

• We introduce a systematic framework for measuring benchmark relations and especially their over-
lap across three levels: semantic, performance, and signature derived from model perplexity.

• We develop a forward selection and regression-based pipeline to extract these signatures by mining
and filtering token-level perplexity statistics from in-the-wild pretraining corpora.

• We uncover unexpected overlaps between widely used benchmarks. While these benchmarks are
intended to test a specific ability - such as logic - and their problem sets do align with human intu-
itions about logic, in practice they often measure instruction-following ability in language models
instead. This reveals the potential issue of benchmark design and actual execution, as well as the
interconnected space of LLM capabilities.

2 SEMANTIC OVERLAPS AND PERFORMANCE OVERLAPS

General Notation. We denote the collection of m LLMs by M1, . . . ,Mm and the set of n bench-
marks by B1, . . . , Bn. For any quantity defined jointly over a model-benchmark pair—such as a
performance metric y - we write yi,j to indicate the metric value corresponding to model Mi eval-
uated on benchmark Bj . Unless otherwise specified, all vectors are column vectors and are set in
bold lowercase, e.g. x ∈ Rd. Matrices are represented with capital letters in bold, e.g. X ∈ Rn×m.

Semantic-Level Overlap. For benchmarks Ba, Bb with question text sets Qa, Qb, let nmin =
min{|Qa|, |Qb|}. Let k be the embedding dimension, f : text→ Rk be a sentence transformer (e.g.
MPNet encoder; Song et al. (2020)), and let s(x, y) be the cosine similarity between x, y ∈ Rk.

2More discussions about prior works see A.1.
3More details see Section 3 and Appendix A.2.
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Because benchmarks vary in size (i.e., number of questions), which could bias results, we estimate
overlap via size-matched bootstrapping similarity: for T = 1000 times, we draw {q}(a)t ⊂ Qa

and {q}(b)t ⊂ Qb independently with |{q}(a)t | = |{q}
(b)
t | = nmin, encode each item with f . Also,

Concate() means concatenating a list of texts into a single string within each set, and computing
cosine similarity:

Âsem(Ba, Bb) =
1

T

T∑
t=1

s
(
f(concat({q}(a)t ), f(concat({q}(b)t ))

Overall, this mitigates sample-size bias and yields a more robust similarity estimate. Full procedural
details appear in Appendix A.4.1. The overlap between Ba and Bb is defined by the Âsem(Ba, Bb).

Performance-Level Overlap. For each benchmark Ba, let y:,a ∈ Rm be the vector of model
performances on Ba (one entry per model). The performance-level overlap between two benchmarks
Ba and Bb is the Spearman rank correlation between their model-marginalized performance vectors:

ρ(Ba, Bb) = corr
(
rank(y:,a), rank(y:,b)

)
Thus, the overlap between Ba and Bb under performance-level is defined by the spearman correla-
tion which is ρ(Ba, Bb).

3 MINING BENCHMARK SIGNATURES FROM IN-THE-WILD DATA

Algorithm 1 Obtaining signature for benchmark Bj

Input: Data “in the wild” D, Benchmark Bj , a list of LLMs M1, ...,Mm

Output: Signature Sj

1: y:,j ← Bj with M1, ...,Mm ▷ Generate performance column vector on benchmark j.
2: T ← D ▷ Processing in-the-wild data to tokens with preceding context.
3: P← T With M1, ...,Mm ▷ Generate the token-level perplexity covariate matrix.
4: T ′

j ← AIC(THRUSHPREFILTER(P ∼ y:,j)) ▷ Perform Thrush pre-filtering first; then stepwise AIC fea-
ture selection on the covariate matrix P against the performance vector y:,j of benchmark Bj to obtain
salient tokens.

5: Retrieve Sj from mapping T ′
j in P

6: return Sj

The overall process of mining signatures can be found in Algorithm 1 and its details can be found
in Appendix 4. Let d denote the number of “in-the-wild” tokens (in our case, tokens drawn from
large-scale pretraining corpora4), denoted as T = {t1, . . . , td}, where d typically scales to billions.
For any benchmark Bj , our objective in extracting its benchmark signature is to isolate a subset of
salient tokens T ′

j = {t′1, . . . , t′d′} ⊂ T that are maximally informative in explaining variations in
LLM performance. We formalize this as a regression problem: let ŷj := (y1,j , . . . , ym,j)

⊤ ∈ Rm

denote the performance of m language models on benchmark Bj . The covariate matrix P ∈ Rm×d

contains token-level perplexities, where entry Pij ≡ pij corresponds to the perplexity of token
tj under LLM Mi. The challenge lies in the high-dimensional regime (d ≫ m), where classical
regression approaches are ill-posed. To make progress, we must uncover and exploit latent structural
properties of the problem. In particular, we put forward a key assumption and a follow-up question:

1. Sparsity: Most token-level perplexities are uninformative for predicting benchmark perfor-
mance, with only a small fraction carrying predictive signals. [Assumption 1]

2. Extraction: Assuming sparsity holds, what methods can effectively identify and extract these
predictive signals from the overwhelming background of noise? [Question 1]

Together, they motivate our below regression-based framework for mining benchmark signatures,
which leverages high-dimensional inference techniques to disentangle signal from noise and recover
benchmark-specific fingerprints of token-level perplexity.

4Progressing from fine to coarse granularity, we have token-, chunk-, and document-level perplexities. We
provide more experimental results of why the token-level operation is the best. Details are shown in Ap-
pendix A.2.
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Figure 3: Distribution of Thrush correlations in pre-selection phases; red vertical lines mark the 1st
and 99th percentiles, highlighting that few features are highly correlated with performance.

3.1 TOKEN-LEVEL FILTERING WITH PERPLEXITY CORRELATIONS

Answering [Q1] by fitting a full multivariate regression model is computationally intractable given
that the number of tokens (d) is orders of magnitude larger than the number of models (m). We
therefore adopt a pragmatic and efficient two-stage approach, beginning with a screening step to
drastically reduce the feature space. Specifically, for each benchmark, we perform a token-by-token
correlation screening. We compute a robust correlation coefficient between each token’s perplexity
vector and the benchmark performance vector. This screening is highly efficient, requiring linear
time in the number of features, O(md), and allows us to observe the empirical distribution of these
coefficients. In a sparse regime, we expect this distribution to be sharply peaked at zero, with small
tails representing potentially informative tokens.

A known limitation of this screening approach is its reliance on marginal, univariate correlations.
It evaluates each token in isolation, potentially overlooking features that are predictive only in a
multivariate context (e.g., suppressor tokens that explain residual variance). However, we argue
this approach is theoretically and empirically well-justified in our specific problem setting for the
following reasons:

1. Justification from the Ultra-High Dimensional Regime: Our problem, with d ≫ m, re-
sides in the ultra-high dimensional setting. Theoretical frameworks developed for this regime,
such as Sure Independence Screening (SIS; Fan & Lv (2008)), provide formal guarantees for
marginal screening. The “sure screening property” ensures that, under sparsity and certain reg-
ularity conditions, correlation-based filtering can discard the vast majority of irrelevant features
while retaining the true predictive signals with very high probability. We further explain how
several key conditions of SIS are plausible in our context in Appendix A.3.

2. Empirical Precedent in Data Selection: This screening methodology has demonstrated strong
empirical success in the related domain of data selection for pre-training. Prior work has suc-
cessfully used document-level perplexity correlations to filter large corpora, improving down-
stream model performance(Thrush et al., 2025; Shum et al., 2025). Their success provides
compelling evidence for the practical utility of correlation screening as a robust heuristic for
identifying informative signals in LLM-related data.

While there exist various methods for robust correlation calculation, there is no single “silver bullet”;
the choice is often guided by the specific properties of the data. In particular, we highlight the two
robust correlation coefficients introduced in the aforementioned data selection literatures.
Definition 3.1 (Thrush Correlation (Thrush et al., 2025)). Fixing the j-th token tj ∈ T . Let
rankj(p) denotes the rank of p among {p1,j , · · · , pm,j} and sign(·) be the sign function, we denote

γj =
∑

1≤k<l≤m

sign(yk,j − yl,j)(rankj(pk,j)− rankj(pl,j)) (1)

as the Thrush correlation coefficient. This coefficient is a variant of Kendall’s τ (Kendall, 1938),
measuring the concordance between model performance and perplexity ranks. It counts the number

5
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of model pairs where the model with better performance also has a lower perplexity rank (a concor-
dant pair), and subtracts the number of pairs where this is not the case (a discordant pair), making it
robust to the absolute magnitude of perplexity values.

Definition 3.2 (Pre-select Correlation (Shum et al., 2025)). Letting Z = m(m−1)
2 to be a nor-

malizing factor, and (1), ..., (m) be the sorted indices by LLM performances (i.e. y(1),j ≤ y(2),j ≤
· · · ≤ y(m),j), the Pre-select correlation coefficient is defined as:

ηj =
∑

1≤k<l≤m

1{pk,j > pl,j}/Z (2)

The Pre-select coefficient computes the fraction of model pairs that are “misordered” by their
token perplexities relative to their benchmark performance. In an ideal scenario where lower per-
plexity perfectly predicts higher performance, this sum would be zero; a value of 0.5 would indicate
a random, uninformative relationship.

Once these robust correlation coefficients are calculated for all d tokens, we employ a simple
quantile-based threshold to screen the feature space, retaining approximately the top 1% of tokens
with the strongest signal. Figure 3 presents the empirical distributions of the Thrush coefficients
for three representative benchmarks. In all cases, the distributions are sharply peaked around a
central value (indicating a random relationship), with thin tails representing tokens that are highly
correlated with performance. This characteristic shape provides compelling empirical support for
our sparsity hypothesis ([Q1]): the vast majority of token perplexities are uninformative, while a
small, identifiable subset carries a significant predictive signal.

3.2 REFINING SIGNATURES WITH FORWARD SELECTION REGRESSION

The correlation screening successfully isolates a candidate set of potentially informative tokens, sat-
isfying our goal of drastically reducing the search space. However, this filtering alone is insufficient
to define a robust benchmark signature for two primary reasons. First, the filtered set is likely to
contain redundant features; for instance, several top-ranked tokens might represent the same un-
derlying linguistic phenomenon and thus offer overlapping predictive information. Second, a true
signature should not only identify important tokens but also capture their conditional importance –
their predictive power given the other tokens already in the model.

To address these challenges and distill a final, parsimonious signature, we employ a second-stage
multivariate variable selection procedure. Our general framework can accommodate various high-
dimensional regression techniques suited for the d′ > m regime (where d′ is the number of filtered
tokens), including penalized methods like Lasso (Tibshirani, 1996), Ridge (Hoerl & Kennard, 1970),
or Elastic Net (Zou & Hastie, 2005). In practice, we opt for a greedy forward selection approach,
which we find builds interpretable and effective models. This method iteratively constructs the
signature by adding the single token from the candidate pool that yields the greatest improvement to
the model’s fit, penalized by its added complexity.

To guide this selection process, we use the Akaike Information Criterion (AIC; Bozdogan (1987)),
which provides a principled trade-off between explanatory power and model size, mitigating the
risk of overfitting. The process terminates when no additional token can improve the model’s AIC
score by a meaningful amount. The complete two-stage process – combining the initial correlation
screening to create a candidate set with the subsequent forward selection to derive the final signature
– is formalized in Algorithm 4.

3.3 SIGNATURE-LEVEL OVERLAP

Consider two benchmark signature vectors, S1 and S2, each including several pieces of context (30
pieces separated by space) + the salient token. We use 32 models to process these signatures, reading
their respective pre-contexts, producing the last token-level perplexities and calculating overlaps. If
the models are confused to a similar degree by both signatures, that is a strong indicator that the two
benchmarks align. Since some “weak” models consistently produce high perplexity, we normalize
each model’s perplexity into its z-score within the model. We then compute the mean of z-scored
perplexities of the two benchmark signatures within each model and the Spearman correlation be-
tween these two mean lists to represent the signature-level overlap, aligning with performance level

6
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results and indicating models’ relative relation of perplexity and skill familiarity on the signature.
Refer to Appendix A.5.1 for a formalized walk-through.

4 RESULTS

Our experiments are conducted on 32 models and 88 benchmarks, including many of the most
widely used ones. We extract benchmark signatures from the open dataset RedPajama (Weber et al.,
2024). See Appendix A.5 for the full details of the experimental setup.

4.1 SIGNATURES CAN BETTER DISTINGUISH BENCHMARKS THAN SEMANTICS AND MODEL
PERFORMANCE

We first examine how the overlap distribution looks across three levels, as illustrated in Figure 4. To
minimize inductive bias, we assign broader categories to these benchmarks using the official labels
from MMLU (Hendrycks et al., 2021), Big-Bench Hard (Suzgun et al., 2022), ifeval benchmark
(Zhou et al., 2023), and MBPP (Austin et al., 2021). In signature overlap (panel a), on the left, we
compare within-category overlap against the average cross-category overlap. To reduce the impact
of benchmark category size, we ensure each category pair is weighted equally. We then use the mean
of cross-category overlaps to represent the overall cross-category overlap and apply this consistently
throughout the paper. We observe that overlap is higher within certain categories such as reasoning,
science, and social science knowledge, which is expected: benchmarks designed around the same
high-level intent tend to align among subtasks, whereas pairs such as chemistry vs. history bench-
marks overlap far less. Within the humanities, language and world models, overlaps are generally
lower than in cross-category comparisons. A closer look at these benchmarks suggests that these
lower similarities arise because they focus on diverse cultural contexts (for example, world mod-
els that assess understanding of culture-specific phenomena) and rely on processing across multiple
linguistic dimensions. Furthermore, within a category, certain benchmarks under different subtasks
align more strongly than others. This forms a dense “red clique,” identified by extracting the max-
imum clique from the overlap graph. We highlight these highly aligned subtasks on the right side.
For panel (b) semantic overlap and panel (c) performance overlap, in contrast, these analyses show
much weaker discriminative ability. Semantic overlap scores remain in a narrow range (typically
0.1–0.4) regardless of whether benchmarks come from the same or different categories. Conversely,
performance-level overlap is almost universally high, suggesting that model performance and the
semantic meaning of questions are less sensitive to category boundaries and obscure finer-grained,
underlying associations between benchmarks.

At the semantic level, text embedding models such as MPNet capture surface-level similarity in
how humans perceive benchmark questions (Morris et al., 2023). These representations are highly
dependent on the specific descriptive intention behind a question, however, meaning the overlap
remains superficial and does not reflect the underlying abilities being evaluated. In other words,
identical questions do indicate overlapping benchmarks, but different questions do not necessarily
indicate non-overlapping ones in terms of underlying ability. At the performance level, while some
overlap was initially observed, it quickly became clear that this too fails to meaningfully separate
categories. In fact, performance-level results show strong segregation: model behaviors on certain
cross-category benchmarks are as closely aligned as they are within categories (evident in several
segregated red areas not on the diagonal). When we examine these unexpectedly high alignments,
we find that they occur within the same broad benchmark families (e.g., MMLU or BigBench-
Hard) or under the same question format (e.g., True/False versus multiple-choice questions). This
benchmark-orthogonal effect is even stronger than within-category overlaps - that is, MMLU history
aligns more closely with MMLU chemistry than with another history benchmark. This underscores
the limitations of relying on performance alone and highlights deep issues in current benchmark
agreement tests. Several factors could explain this pattern: the bias may stem from post-training
fine-tuning, and it could also reflect contamination of the training data, where exposure to one eval-
uation within a benchmark family increases the likelihood of exposure to others, thereby inflating
performance correlations. Another explanation lies in model capabilities: when a model is tested
for a single ability, the evaluation inevitably involves a combination of multiple common skills - at
a minimum reading, instruction following, and comprehension, among others. This overlap makes
behavioral alignment a less distinguishable measure.
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(a) Signature-level analysis

(b) Performance-level analysis (c) Semantic-level analysis

Figure 4: Three levels of benchmark relation analysis. The signature-level analysis demonstrates
substantially stronger discriminative ability compared to both semantic- and performance-level anal-
yses. All heatmaps are presented using a consistent color range from -1 to 1, and panels b and c share
the same row and column indices articulated in panel a.

4.2 THE EVALUATION BIAS FROM MODEL FAMILY AND QUESTION TYPES IS RESOLVED BY
THE SIGNATURE

Grouping the result in Figure 4 panel b, we observe that the red areas are concentrated within the
same benchmark family and question format as shown in Figure 1 right panel, where two red areas
are exactly two benchmark families or question formats. We calculated pairwise correlations be-
tween benchmarks both within and across families and question formats. Since each family or for-
mat contains a highly diverse set of benchmarks - essentially covering everything - we would expect
within-family/format overlaps to be quite low, showing little difference from cross-family/format
overlaps. Consistent with this expectation, the signature-level analysis reveals statistically insignifi-
cant tiny differences based on the Mann–Whitney U test, yielding results around 0. This aligns with
intuition, as the signature provides a good approximation of the true overlap and variation. In con-
trast, the performance-level analysis shows a large value of overlap (around 0.8) and a statistically
significant increase in within-family/format overlap. Our results show that LLM performance may
be more related to surface-level aspects of benchmarks such as question format, suggesting both that
generalization and knowledge-propagation in LLMs are limited and that current evaluation may be
underestimating peak performance because of conflation of performance and competence.

4.3 SIGNATURES INFORM BENCHMARK DESIGN AND LLM CAPACITY SPACE
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Figure 5: Biases (within/between families; same/diff. formats) are
well addressed by the signature.

As shown in Figure 1, we
compare overlaps across
design functions. Several
patterns emerge. First, we
observe significant over-
laps that align with in-
tuition. For example,
math and logic correlate
at 0.21, which is close to
the average within-function
overlap of 0.285 and far
above the average cross-
function overlap of 0.087.
This makes sense: solv-
ing a math problem of-
ten requires logical rea-
soning, and vice versa.
More broadly, logic, in-
struction following, lan-
guage, math, and world
modeling (largely cultural
benchmarks) form a cluster
of interconnected abilities.
Coding appears far less en-
tangled with other functions. Its low cross-function overlap suggests that coding benchmarks are
comparatively “clean,” in the sense that success relies more specifically on coding competence and
less on auxiliary abilities. This distinctiveness might arise because coding requires highly special-
ized pretraining corpora such as GitHub.

There are two broad perspectives for interpreting these results. If we optimistically assume that
benchmarks faithfully measure what they claim, then the observed overlaps reveal a genuine inter-
dependence of cognitive abilities. In this view, benchmarks are not “leaky,” but rather reflect the
multifaceted nature of capacity like math and logic. From this perspective, overlap is not noise, but
evidence of underlying LLM and human capacity entanglement - the interconnected capacity space
- an often-discussed but previously difficult-to-formalize concept. Alternatively, the overlaps may
expose a misalignment between what benchmarks intend to measure and what they actually capture.
This interpretation suggests that benchmarks are “leaky” in undesirable ways, inadvertently testing
skills outside their stated domain. For example, even if math and logic are highly related, their over-
lap should theoretically remain lower than within-math or within-logic overlap. Yet, Figure 1 shows
cases where cross-function overlap exceeds within-function overlap - for instance, between instruc-
tion following and logic. This could imply that either within-function overlap is underestimated (due
to poorly aligned benchmark design and execution (Liao et al., 2021)) or that cross-function con-
tamination is stronger than anticipated, undermining the clarity of what each benchmark is supposed
to isolate.

5 FINAL REMARKS

Our study introduces benchmark signatures as a principled way to quantify overlaps among LLM
benchmarks beyond surface semantics and correlated performance. By grounding benchmark over-
lap in perplexity patterns from in-the-wild corpora, signatures prove robust against benchmark-
orthogonal biases such as model family or question format, while revealing both expected and sur-
prising cross-domain entanglements. These findings point toward a richer and more mechanistic
understanding of the LLM capacity space, benchmark validity, and LLM sensitivities. Looking
forward, signature-based analyses could extend to finer-grained probes such as LLM layer-level ac-
tivations when processing benchmarks, or even a form of “benchmark algebra” to systematically
identify limitations in the current evaluation landscape.
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THE USE OF LARGE LANGUAGE MODELS (LLMS)

We employed LLMs to assist with polishing the writing. All content generated or modified by LLMs
was rigorously reviewed and approved by the authors.

ETHICS STATEMENT

This work does not involve human subjects, sensitive data, or any other issues outlined in the ICLR
Code of Ethics.

REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our experiments, we provide detailed descriptions of all method-
ologies in Sections 2 and 3. In addition, Appendix A.5 contains a walkthrough of each key check-
point and experimental setup, including (but not limited to) important numerical values, evaluation
metrics, and the software packages used for implementation. We also submitted code samples for
reproducibility.
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A APPENDIX

A.1 RELATED LITERATURE

Benchmark Categorization and Overlap: Benchmarks are central to model evaluation. Two sim-
ple metrics capture their utility: signal, a benchmark’s ability to reliably distinguish better mod-
els from worse ones, and noise, a benchmark’s sensitivity to randomness (Heineman et al., 2025).
Recently, researchers have begun to ask how comparable benchmarks with similar intent actually
are. This is commonly studied through Benchmark Agreement Testing (BAT), where new bench-
marks are validated against established ones using agreement metrics (e.g., rank correlation) (Perlitz
et al., 2024). Such analyses have led to concerns that the community may be producing too many
benchmarks. For example, Liu et al. (Liu et al., 2021) examined agreement across multiple QA
benchmarks and concluded that because agreement was high, additional QA benchmarks were un-
necessary. Beyond statistical agreement, some recent works have attempted to qualitatively interpret
and categorize benchmarks - for example, as testing logical reasoning or commonsense reasoning
- though often without running agreement tests either within or across these categories (Ni et al.,
2025). Another emerging line of inquiry asks what capabilities are still missing from current bench-
mark suites. Miller and Tang (Miller & Tang, 2025), for instance, examine how people commonly
use LLMs for summarization, technical assistance, reviewing work, data structuring, generation, and
information retrieval, and assess the extent to which existing benchmarks cover these capabilities.
Their findings reveal significant gaps in coverage of benchmarks across categories.

Signal Extraction from Pretraining Data: A growing body of work investigates how information
extracted from pretraining corpora can inform data selection and model evaluation, even building
benchmarks automatically. A central insight is that LLM losses on pretraining texts are often cor-
related with downstream benchmark performance, suggesting that simple loss-performance corre-
lation coefficients can be effective signals for identifying high-quality pretraining data from in-the-
wild corpus (Thrush et al., 2025; Hoffmann et al., 2022). Validation loss is thus frequently used as
a proxy for model generalization (Kaplan et al., 2020; Hoffmann et al., 2022; Wei et al., 2022), and
with more recent evidence showing that such correlations persist across architectures and training
settings (Poli et al., 2023). One line of research focuses on efficient, low-cost methods for un-
derstanding and filtering signals, for instance lightweight approaches using surface-level heuristics
(n-gram overlap (Xie et al., 2023) or semantic-level similarities (Everaert & Potts, 2023)), enabling
scalable filtering of massive corpora. Thrush et al., (Thrush et al., 2025) proposed an orthogonal
approach for data selection centered around estimates of perplexity-benchmark correlations. We
build on these ideas to construct benchmark signatures by mining predictive tokens of LLM perfor-
mance from large-scale pretraining corpora, in order to address challenges in meta-evaluation - the
evaluation of LLM evaluations, e.g., how overlapping they are.

A.2 COMPARISONS BETWEEN TOKEN-, CHUNK-, AND DOCUMENT-LEVEL PERPLEXITY

From fine to coarse granularity, we consider token-, chunk-, and document-level perplexities. At
the document level, we evaluate the model on an entire pretraining document and take the mean
across all text chunks that fit within the model’s context window (part of the document). At the
chunk level, we split documents into fixed-length windows (30 pieces, using spaces as separators)
and compute perplexity as the average over all tokens within each window. At the token level—
the finest granularity with the least inductive bias—we use token-wise perplexities from documents
to capture the model’s intrinsic uncertainty. Concretely, we form a window by taking the target
token with its up-to-30 preceding pieces (using spaces as separators) as context, then record only
the last token’s perplexity as the feature. This ensures the token is conditioned on its preceding
context rather than treated in isolation. As shown in Table 1, the token level exhibits the greatest
standard deviation and interquartile range, as well as more pronounced extreme gaps in majority
cases compared to the chunk and doc levels. This wider dispersion indicates that extreme values
are more visible and significant at the token level, making it a natural choice for feature selection.
Token-level signatures balance the strongest predictive power (both positive and negative relations)
of highly informative tokens, and they exhibit high variance of predictive power, as captured by the
deviations. By focusing on the token level, we are able to highlight more prominent signals, whereas
aggregation at the chunk or document level tends to smooth out these extremes.
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Benchmark Level Std IQR Max–Q99 Q01–Min
Gsm8k Chunk 30.30 44.63 43.37 36.63
Gsm8k Doc 19.39 26.50 23.25 18.75
Gsm8k Token 36.53 54.11 40.63 27.37
Mbpp Chunk 29.83 43.05 87.62 27.05
Mbpp Doc 14.49 18.78 32.44 8.67
Mbpp Token 36.76 50.60 39.60 39.20
Mmlu Chunk 29.31 41.18 64.00 30.36
Mmlu Doc 18.11 27.68 35.16 9.68
Mmlu Token 38.05 51.90 52.00 42.29
Truthfulqa Chunk 30.58 41.80 48.00 29.20
Truthfulqa Doc 17.67 22.75 25.00 13.00
Truthfulqa Token 36.57 53.00 49.20 35.40

Table 1: Summary of Thrush coefficient distributions across four benchmarks. Columns report
standard deviation (Std), interquartile range (IQR), and tail gaps of Max-Q99 and Q01-Min are
defined as the distance from the maximum to the 99th percentile (Max–99th) and from the 1st
percentile to the minimum (1st–Min). Across 16 targets (4 measures and 4 benchmarks) token-level
values achieved 12 wins.

A.3 CONDITIONS FOR SURE INDEPENDENCE SCREENING (SIS)

Sure Independence Screening (SIS) is a powerful statistical tool for feature selection in ultra-high
dimensional settings, offering a “sure screening property” that guarantees the retention of truly in-
formative features with high probability under specific conditions (Fan & Lv, 2008). In this section,
we elaborate on how the key theoretical assumptions underlying SIS are plausibly met within our
problem context of mining benchmark signatures from token-level perplexities.

1. Ultra-High Dimensionality: Our problem inherently operates in an ultra-high dimensional
regime, where the number of ”in-the-wild” tokens (d, scaling to billions) vastly exceeds the
number of language models (m, typically in the tens). Specifically, we have log(d) > m,
which far exceeds the standard d > m high-dimensional definition. This extreme disparity
makes full multivariate regression computationally intractable, underscoring the necessity of
an efficient screening step like the one we employ.

2. Sparsity: The “Sparsity” assumption (our [A1]) posits that only a small fraction of the d tokens
are truly informative for predicting LLM benchmark performance. Our empirical observations
of the correlation coefficient distributions (e.g., Figure 3) directly support this. The distributions
show a strong concentration around zero, indicating that most tokens have little to no marginal
predictive power. The presence of thin but distinct tails also suggests that a small subset of
tokens exhibits strong correlations, aligning with the idea that specific linguistic phenomena
(represented by these tokens) drive performance on a given benchmark.

3. Minimum Signal Strength: SIS requires that the true predictive signals (i.e., the tokens with
non-zero effects on benchmark performance) are not arbitrarily weak. In our context, this
translates to these important tokens having sufficiently strong marginal correlations to stand
out from the noise. Our use of token-level perplexities, which directly reflect an LLM’s fami-
larity of specific linguistic patterns, suggests that truly important tokens would indeed manifest
as strong signals. The robust, rank-based correlation coefficients we employ (Thrush and
Pre-select) are also well-suited to detect such signals, as they are less sensitive to outliers
and distributional peculiarities that might obscure signals when using less robust measures.

4. Limited Pathological Multicollinearity: A critical condition for basic SIS is that the multi-
collinearity between important features and unimportant ones should not be so severe that it
masks the marginal signal of truly predictive tokens (e.g., the suppressor variable scenario).
While token perplexities can exhibit correlations (e.g., highly similar tokens or tokens from
common linguistic constructs), it is less probable that a truly causal token’s signal would be
perfectly canceled out by others at a marginal level. Benchmarks typically probe specific abili-
ties, which are likely associated with a distinct, though perhaps overlapping, set of “signature”
tokens. The vast and diverse nature of “in-the-wild” tokens also means that while many tokens
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might be highly correlated, there are many more effectively independent ones. More impor-
tantly, the core objective of our work is to identify benchmark signatures as a specific and
parsimonious set of tokens. If a token’s marginal signal is entirely masked, it might suggest
its contribution is highly redundant with other tokens that do have a strong marginal signal, or
that its unique contribution is extremely weak – in which case, its exclusion from the initial
screening might not significantly harm the final signature’s predictive power.

A.4 TECHNICAL DETAILS

A.4.1 SEMANTIC-LEVEL BOOTSTRAPPED SIMILARITY CALCULATION

Algorithm 2 Get Pairwise Similarity Matrix

Input: A list of benchmarks B = {B1, . . . , Bn}; Embedding model E (e.g. a sentence trans-
former); Number of bootstrap replicates k.

Output: An n× n similarity matrix S.
1: n← |B|
2: S ← an n× n matrix initialized to zeros
3: for i = 1 to n do
4: for j = i to n do
5: if i = j then
6: Si,j ← 1.0
7: else
8: s← getSimScore(Bi, Bj , E, k) ▷ Call Algorithm 3
9: Si,j ← s

10: Sj,i ← s ▷ Matrix is symmetric
11: end if
12: end for
13: end for
14: return S
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Algorithm 3 Bootstrapped Similarity Score Calculation (getSimScore)

Input: Benchmarks A and B; Embedding model E; Bootstrap replicates k.
Output: A single similarity score simA,B .

1: ▷ Determine which benchmark has a smaller size
2: if |A| < |B| then
3: S ← A; L← B ▷ S is the smaller, L is the larger
4: else
5: S ← B; L← A
6: end if
7: ns ← |S| ▷ Get the size of the smaller benchmark
8: ℓ← getMaxLength(E) ▷ Obtain the maximum processing length
9: ▷ Process the smaller benchmark to get its single embedding

10: textS ← concatenate all questions in S
11: text′S ← truncate(textS , ℓ)
12: embS ← encode(E, texttrunc

S )
13: ▷ Generate bootstrap samples from the larger benchmark
14: TL ← an empty list
15: for b = 1 to k do
16: L′ ← sample(L, ns, replace = False)
17: textL ← concatenate all questions in L′

18: text′L ← truncate(textL, ℓ)
19: Append text′L to TL
20: end for
21: ▷ Batch-encode all samples and compute average similarity
22: embsL ← batchEncode(E, TL)
23: similarities← cosineSimilarity(embS , embsL) ▷ One-vs-many comparison
24: simA,B ← average(similarities)
25: return simA,B

A.4.2 AIC STEPWISE FORWARD SELECTION ALGORITHM

Algorithm 4 Selecting Salient Tokens for Benchmark j

Input: Perplexity feature matrix P; performance vector y:,j ; tail fraction α = 0.01; tolerance δ ≥ 0
Output: Salient Token set T ′

j

1: Preselection via Thrush Correlation
2: for ℓ = 1 to d do
3: ρℓ ← ThrushCorr(P:,ℓ,y:,j)
4: end for
5: T+ ← indices of the top αd values of ρℓ ▷ most positively correlated
6: T− ← indices of the bottom αd values of ρℓ ▷ most negatively correlated
7: T ← Shuffle(T+ ∪ T−) ▷ candidate feature set
8: Forward Selection with AIC (on T )
9: S ← ∅; A⋆ ← +∞

10: while T \ S ̸= ∅ do
11: for each ℓ ∈ (T \ S) do
12: A(ℓ)← AIC

(
Fit(y:,j ∼ P:, S∪{ℓ})

)
13: end for
14: ℓ⋆ ← argminℓ∈(T\S) A(ℓ); Anew ← A(ℓ⋆)
15: if Anew < A⋆ − δ then
16: S ← S ∪ {ℓ⋆}; A⋆ ← Anew
17: else
18: break ▷ no further AIC improvement
19: end if
20: end while
21: T ′

j ← S
22: return T ′

j
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A.5 EXPERIMENT SETUP

Overview: Our chosen benchmarks span diverse domains such as knowledge (business, humanities,
social sciences, science and engineering, medicine), mathematics, coding, reasoning, language, cul-
ture and world knowledge, logic, and instruction following. We choose 32 widely-used language
models (see the list below). We extract benchmark signatures from the open dataset RedPajama
(Weber et al., 2024), which contains large-scale textual data across multiple domains, including
CommonCrawl, C4, GitHub, arXiv, Books, Wikipedia, and StackExchange, used for pretraining
LLMs, making it a strong source of in-the-wild data for mining benchmark signatures. We take
the standard approach, using vLLM (Kwon et al., 2023) for facilitating perplexity extraction and
llm-evalution-harness (Gao et al., 2024) for evaluation across benchmarks and models
such that all evaluations are under the same condition.

A.5.1 EXPERIMENT WALKTHROUGH

As discussed, we measure perplexity at three granularities - token, chunk, and document levels (from
fine to coarse). The segmentation procedure for each is detailed in §A.2. We ultimately focus on the
token level because it provides the clearest view of prominent signals for the pre-filtering stage.

Preprocessing RedPajama We use the 1B-token RedPajama variant to balance scale and compu-
tational cost. For token-level segmentation, we split the corpus on whitespace into pieces. For each
piece, we prefix up to the preceding 30 pieces as left context and record the last token’s perplexity
conditioned on that context. This yields an initial pool on the scale of billions of token-level con-
texts (d ≈ 8.45 × 109). To reduce noise or in-the-wild text, we uniformly downsample by a factor
of 1/50, yielding approximately 1.69× 107 instances.

Feature Matrix Construction Using the vLLM setup described in §A.5.4, we evaluate 32 models
on the token contexts and extract token-level perplexities, forming the covariate (feature) matrix

P ∈ R32×1.69×107 ,

with rows indexed by models and columns by token instances.

Performance Matrix Construction In parallel, we compute model performance on a series of
benchmarks and subfields using the lm-evaluation-harness (details in §A.5.5). Let

Y ∈ R32×88

denote the performance matrix (models × benchmarks/subfields). For each benchmark Bj , the
vector y:,j is the performance vector for Bj across all 32 models.

Filtering with Thrush For each benchmark Bj , we compute the Thrush rank correlation between
the entire feature matrix P and the performance vector y:,j . This produces a distribution of Thrush
scores over token features. We retain the top 1% and bottom 1% features (by score) and concatenate
these extremes into a benchmark-specific subset of columns from P for downstream modeling.

AIC Step-Forward Feature Selection Finally, for each benchmark Bj , we fit a multivariate linear
model on the preselected features using step-forward selection with the Akaike Information Crite-
rion (AIC) as the objective. Starting from an empty model, we iteratively add the feature that most
improves AIC and stop when no further improvement is possible (tolerance = 0). The resulting
selected set constitutes the most predictive in-the-wild token features for Bj . Across benchmarks,
the selected set size varies but typically has ∼ 30 features.

Signature and Comparison Consider two benchmark signature vectors, S1 and S2, each con-
sisting of several context pieces (30 pieces separated by spaces) plus the salient token. For each
benchmark we acquire around 30 such salient tokens. We evaluate these signatures with 32 models,
which read their respective pre-contexts and compute last-token perplexities. If the models exhibit
similar levels of perplexity for both signatures, this strongly suggests that the two benchmarks align.
We normalize each model’s perplexity values into their z-score within the model. For each model,
we then compute the mean of the z-scored perplexities for the two benchmark signatures. Finally, we
calculate the Spearman correlation (ρs) between these two mean vectors to represent signature-level
overlap.
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A.5.2 DATASETS

Benchmark family Benchmarks
mmlu business ethics; marketing; management; professional accounting;

high school european history; jurisprudence; humanities; prehis-
tory; professional law; world religions; high school us history; for-
mal logic; high school world history; international law; logical fallacies;
moral disputes; moral scenarios; philosophy; anatomy; clinical knowledge;
college medicine; human aging; medical genetics; nutrition; profes-
sional medicine; virology; miscellaneous; other; abstract algebra;
astronomy; college biology; college chemistry; college physics;
conceptual physics; elementary mathematics; high school biology;
high school computer science; college computer science; col-
lege mathematics; computer security; electrical engineering;
high school chemistry; high school mathematics; high school physics;
high school statistics; machine learning; stem; high school geography;
high school government and politics; high school macroeconomics;
high school microeconomics; high school psychology; public relations;
us foreign policy; econometrics; human sexuality; professional psychology;
security studies; social sciences; sociology

bbh global facts; hyperbaton; snarks; web of lies; word sorting; disam-
biguation qa; salient translation error detection; boolean expressions;
dyck languages; geometric shapes; multistep arithmetic two; navi-
gate; object counting; reasoning about colored objects; formal fallacies;
logical deduction five objects; logical deduction seven objects;
logical deduction three objects; penguins in a table; tempo-
ral sequences; tracking shuffled objects five objects; track-
ing shuffled objects seven objects; tracking shuffled objects three objects;
causal judgement; movie recommendation; ruin names; date understanding;
sports understanding

Table 2: Benchmarks in MMLU and BBH.

Format Benchmarks
multi-choice questions business ethics; marketing; management; professional accounting;

high school european history; jurisprudence; humanities; prehis-
tory; professional law; world religions; high school us history; for-
mal logic; high school world history; international law; logical fallacies;
moral disputes; moral scenarios; philosophy; anatomy; clinical knowledge;
college medicine; human aging; medical genetics; nutrition; profes-
sional medicine; virology; miscellaneous; other; abstract algebra;
astronomy; college biology; college chemistry; college physics;
conceptual physics; elementary mathematics; high school biology;
high school computer science; college computer science; col-
lege mathematics; computer security; electrical engineering;
high school chemistry; high school mathematics; high school physics;
high school statistics; machine learning; stem; high school geography;
high school government and politics; high school macroeconomics;
high school microeconomics; high school psychology; public relations;
us foreign policy; econometrics; human sexuality; professional psychology;
security studies; social sciences; sociology

true or false boolean expressions; causal judgement; formal fallacies; navigate;
sports understanding; web of lies

Table 3: Classification of benchmarks by question format.
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A.5.3 MODELS USED

The models we used in this study are summarized in Table 4. Each entry cites the official paper if
available, otherwise the model card.

Model (HF Repository) Citation
meta-llama/Llama-3.1-8B-Instruct Grattafiori et al. (2024)
meta-llama/Llama-3.2-1B-Instruct Grattafiori et al. (2024)
meta-llama/Llama-3.2-3B-Instruct Grattafiori et al. (2024)
google/gemma-3-4b-it Team (2025a)
google/gemma-3-12b-it Team (2025a)
google/gemma-3-27b-it Team (2025a)
mistralai/Mistral-7B-Instruct-v0.3 Jiang et al. (2023)
deepseek-ai/deepseek-llm-7b-chat DeepSeek-AI et al. (2024)
Qwen/Qwen3-0.6B Team (2025b)
Qwen/Qwen3-1.7B Team (2025b)
Qwen/Qwen3-4B Team (2025b)
Qwen/Qwen3-8B Team (2025b)
tiiuae/falcon-rw-1b Penedo et al. (2023)
EleutherAI/pythia-1b Biderman et al. (2023)
EleutherAI/pythia-6.9b-v0 Biderman et al. (2023)
EleutherAI/pythia-12b-deduped Biderman et al. (2023)
mosaicml/mpt-7b-instruct Team (2023)
microsoft/Phi-3-mini-4k-instruct Abdin et al. (2024a)
microsoft/Phi-4-mini-instruct Microsoft et al. (2025)
microsoft/Phi-4 Abdin et al. (2024b)
01-ai/Yi-1.5-9B-Chat AI et al. (2025)
01-ai/Yi-1.5-6B-Chat AI et al. (2025)
mistralai/Ministral-8B-Instruct-2410 Jiang et al. (2024)
openai-community/gpt2-medium Radford et al. (2019)
openai-community/gpt2-large Radford et al. (2019)
openai-community/gpt2-xl Radford et al. (2019)
zai-org/chatglm3-6b GLM et al. (2024)
zai-org/glm-4-9b-chat-hf GLM et al. (2024)
zai-org/codegeex4-all-9b Zheng et al. (2023)
allenai/OLMo-2-1124-13B-Instruct OLMo et al. (2024)
allenai/OLMo-2-1124-7B-Instruct OLMo et al. (2024)
allenai/OLMo-2-0425-1B-Instruct OLMo et al. (2024)

Table 4: Models used in this study. Multiple variants may share the same citation.

A.5.4 INFERENCE WITH VLLM

We use vLLM (Kwon et al., 2023) for facilitating perplexity extraction. Specifically, we run all
inference in offline mode with tensor parallelism across 2 GPUs to maximize throughput and data
parallelism across 1 GPU. The model weights are cached locally to reduce repeated I/O overhead,
and inference is performed in batches of prompts to further amortize the computation cost. For each
sequence, we extract per-token log probabilities, from which we compute negative log-likelihood
and perplexity metrics. All outputs are aggregated into parquet for downstream analysis. The GPUs
we used in this computation are 2× Nvidia A100 (80GB).

A.5.5 BENCHMARK EVALUATION

For benchmark evaluation we use llm-evalution-harness (Gao et al., 2024). Each bench-
mark involves different task formats, and we adopt the standard metrics defined in the harness to
ensure comparability. For MMLU, which consists of multi-choice questions across 57 academic
subjects, we report accuracy, i.e., the proportion of questions with correctly selected options. For
MBPP, a code generation benchmark, we evaluate using pass@1, the fraction of problems solved
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correctly on the first attempt, based on unit test execution. For BBH, which is a collection of het-
erogeneous tasks (multiple-choice, binary classification, and completion), we follow the harness in
applying the canonical metric for each subtask. We use accuracy for multiple-choice and true/false
items, and exact match for sentence completions. For IFEval, which tests instruction-following, we
adopt the harness’s compliance accuracy, quantifying the percentage of model responses that satisfy
the explicit constraints in the prompt. These heterogeneous metrics reflect the intended difficulty
and modality of each benchmark, and together provide a broad view of model capability.

23


	Introduction
	Semantic Overlaps and Performance Overlaps
	Mining Benchmark Signatures from In-the-wild data
	Token-level Filtering with Perplexity Correlations
	Refining signatures with forward selection regression
	Signature-Level Overlap

	Results
	Signatures can better distinguish benchmarks than semantics and model performance
	The evaluation bias from model family and question types is resolved by the signature
	Signatures inform benchmark design and LLM capacity space

	Final Remarks
	Appendix
	Related Literature
	Comparisons between token-, chunk-, and document-level perplexity
	Conditions for Sure Independence Screening (SIS)
	Technical Details
	Semantic-level Bootstrapped Similarity Calculation
	AIC Stepwise Forward Selection Algorithm

	Experiment Setup
	Experiment Walkthrough
	Datasets
	Models Used
	Inference with Vllm
	Benchmark Evaluation



