MAPPING OVERLAPS IN BENCHMARKS THROUGH PERPLEXITY IN THE WILD

Anonymous authors

000

001

002 003 004

010 011

012

013

014

015

016

017

018

019

021

023

025

026

027

028

029

031

032

034

038

039

041

042

044

045 046

047

048

050

052

Paper under double-blind review

ABSTRACT

We construct benchmark signatures that capture the capacity required for strong performance to characterize large language model (LLM) benchmarks and their meaningful overlaps. Formally, we define them as sets of salient tokens drawn from *in-the-wild* corpora whose LLM token perplexity, reflecting training exposure, is highly predictive of benchmark performance. We extract benchmark signatures via stepwise forward selection with linear regression in a large-scale metaevaluation across 32 LLMs and 89 benchmarks spanning knowledge, coding, logic, instruction following, math, language, reasoning, missing-information detection, and cultural/world modeling. We then analyze how these signatures relate to both the semantic similarity of benchmark questions and the correlation structure of model performance. Performance-level overlaps remain universally high and semantic overlaps stay in a narrow mid-range, but signatures distinguish between benchmarks and illuminate nuanced differences in their capacity demands. For instance, signatures uniquely reveal substantial overlap among knowledge and reasoning benchmarks, whereas humanity- and culture-oriented benchmarks show relatively low similarity, lower even than typical cross-category overlap. Notably, performance-level results are strongly shaped by benchmark-orthogonal factors such as question format, whereas benchmark signatures remain robust to such confounds. We further reveal cross-functional overlaps among logic, math, language, instruction following, and cultural/world modeling, with coding emerging as the least overlapping domain, interacting only moderately with the ability of detecting missing information. Qualitative inspection of signatures shows that only the knowledge signature is aligned with actual knowledge, suggesting that LLMs may exhibit a distinctive semantic organization that differs from that of humans. Together, these findings offer insights into benchmark validity, LLM sensitivities, and the broad landscape of interconnected LLM capacities.

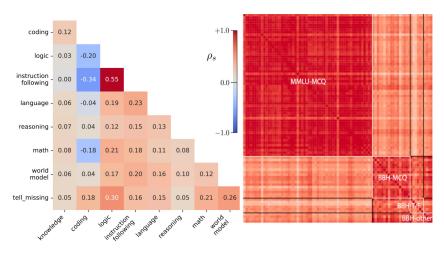


Figure 1: Left: Signature correlations across functions. Right: Performance alignments are biased towards confounding factors (red areas: benchmark families or question formats: Multi-Choices vs. True-False).

1 Introduction

055 056

057

058

059

060

061

062

063

064

065

066

067

068

069

070

071

072

073

074

075

076

077

079

080

081 082

083

084

085

086

087

880

089

090

091

092

093

094

095

096

097

098 099

100

101

102

103

104

105

106 107

Benchmarks have been central in the growth of large language models (LLMs): they catalyze progress, standardize evaluation, and enable systematic cross-model comparisons, thereby influencing the trajectory of AI research. The community has witnessed an accelerating proliferation of benchmarks across a wide range of LLM abilities, such as reasoning (Tafjord et al., 2020) and agentic capabilities (Zhu et al., 2025), as well as real-world scenarios such as finance (Zhang et al., 2023) and safety (Mou et al., 2024). The dedicated "Datasets and Benchmarks" track in leading venues such as NeurIPS and KDD highlights both the importance and steady growth of this area. Each year witnesses many new benchmark papers. From 252 submissions to the NeurIPS Datasets and Benchmarks Track in 2021 to 1,820 in 2024 1, the number of benchmark papers has increased more than seven fold. While these resources often claim to assess distinct capabilities, it is frequently unclear whether they truly do so, or whether they merely capture narrow proxies, prompt-specific heuristics, or even overlapping skills that have already been extensively tested elsewhere, making them less unique and useful than advertised. This raises critical questions: Do we really need such a vast and ever-expanding suite of benchmarks? How much overlap exists across them? Answering this question will also reveal the converse: What areas of capability are sparsely underrepresented by benchmarks and might benefit from more?

In this paper, we undertake a comprehensive meta-evaluation with a particular focus on identifying and analyzing benchmark overlap, which we define as the degree to which two benchmarks evaluate a shared set of model capabilities. To capture overlap in a principled way, we examine it from three complementary perspectives. At the **semantic** level, we assess whether the questions in two benchmarks substantially overlap in content or intent; if so, their redundancy is intrinsic. At the **performance** level, the mainstream level in benchmark agreement studies (Perlitz et al., 2024), we test whether models show highly correlated performance across two benchmarks, indicating that they measure related underlying abilities even if under surface semantic differences. Finally, at the **benchmark signature** level - introduced by us in Section 3 - we move beyond tasks and outcomes to characterize the distributional fingerprint of benchmarks, defined by token-level perplexity patterns on large-scale in-the-wild corpora.

Why do in-the-wild corpora effectively encode benchmark characteristics? The abilities measured by benchmarks - commonsense, factual memory, scientific reasoning, programming skills, and more - do not emerge out of thin air. They stem from the diverse real-world text patterns encountered by the model. In-the-wild corpora, consisting of large-scale, naturally authored, multi-domain text and code (news, forums, encyclopedias, textbooks and notes, papers, documentation, blogs, and repositories), are produced for human communication rather than adapted for benchmark design. They are rich in task-bearing structure (question-answer, problem-solution, claim-evidence, instruction-execution), redundancy (the same function expressed in many ways), and breadth. This breadth of distribution - likely unique to in-the-wild data - forms the "soil" from which such capabilities grow, and also the source from which benchmark questions are drawn. Even if a benchmark item never appears verbatim, its "function" recurs pervasively: unit-aware arithmetic in recipes ("double 1½ cups"), commonsense causality in narratives ("the glass shattered after being dropped"), claim \rightarrow measurement \rightarrow inference chains in scientific abstracts, code repair patterns in GitHub issues ("off-by-one in loop; fix bounds"), and even schema-query mappings ("customers with orders in last 30 days"). Focusing only on synthetic or benchmark-adjacent data risks capturing artifacts of test design. In-the-wild data, by contrast, mirrors the true distribution that gives rise to these abilities, making the overlap between capacity exposure and benchmark competence not accidental but expected.

Perplexity provides a useful lens for quantifying relationships between skill exposure and benchmark performance. Low perplexity on a passage suggests that the model has seen similar linguistic and conceptual patterns during pretraining and is familiar with the content. High perplexity, by contrast, indicates unfamiliarity and underrepresentation. Thus, the distribution of perplexity values across large corpora serves as a fingerprint of the model's pretraining exposure and more or less acquired capacity. Importantly, because different benchmarks stress different capabilities, they map onto different perplexity distributions when probing across the same corpus. In other words, corpora encode benchmark signatures because benchmarks are not foreign entities imposed on the model

https://papercopilot.com/

after pretraining, but rather structured samplings of capabilities that themselves emerge from the distribution of in-the-wild data. Perplexity serves as the bridge between exposure and benchmark performance, making it possible to identify and characterize these signatures without requiring direct evaluation on the benchmark itself ². We therefore leverage perplexity as the basis and covariate for salient token selection and signature formation ³. The following three levels in this work provide a holistic framework: semantics address task design, performance captures model behavior, and signatures reveal a fingerprint of model capacity. The overlap between benchmarks across each of these levels highlights the interconnected capacity space - an oft-discussed yet difficult-to-formalize concept and so represents a promising tool for evaluating benchmark validity. This rationale is illustrated in Figure 2.

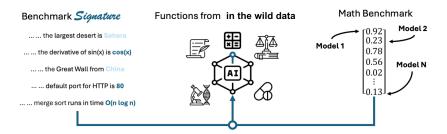


Figure 2: Overview of the rationale of how in-the-wild corpora implicitly encode the benchmark signature, knowledge exposure (capacities), as well as benchmark performance.

Definition: Benchmark Signature

A benchmark signature is defined as a set of salient tokens T, extracted from large-scale in-the-wild corpora, such that the perplexity of a collection of language models M on T is highly predictive of their performance on the benchmark.

To achieve the overall process, we make the following three contributions:

- We introduce a systematic framework for measuring benchmark relations and especially their overlap across three levels: semantic, performance, and signature derived from model perplexity.
- We develop a forward selection and regression-based pipeline to extract these signatures by mining and filtering token-level perplexity statistics from *in-the-wild* corpora.
- We uncover unexpected overlaps between widely used benchmarks. While these benchmarks are
 intended to test a specific ability such as logic and their problem sets do align with human intuitions about logic, in practice they often measure instruction-following ability in language models
 instead. This reveals the potential issue of benchmark design and actual execution, as well as the
 interconnected space of LLM capabilities.

2 SEMANTIC OVERLAPS AND PERFORMANCE OVERLAPS

General Notation. We denote the collection of m LLMs by M_1, \ldots, M_m and the set of n benchmarks by B_1, \ldots, B_n . For any quantity defined jointly over a model-benchmark pair—such as a performance metric y - we write $y_{i,j}$ to indicate the metric value corresponding to model M_i evaluated on benchmark B_j . Unless otherwise specified, all vectors are column vectors and are set in bold lowercase, e.g. $\mathbf{x} \in \mathbb{R}^d$. Matrices are represented with capital letters in bold, e.g. $\mathbf{X} \in \mathbb{R}^{n \times m}$.

Semantic-Level Overlap. For benchmarks B_a, B_b with question text sets Q_a, Q_b , let $n_{\min} = \min\{|Q_a|, |Q_b|\}$. Let k be the embedding dimension, $f : \text{text} \to \mathbb{R}^k$ be a sentence transformer (e.g. MPNet encoder; Song et al. (2020)), and let s(x, y) be the cosine similarity between $x, y \in \mathbb{R}^k$.

²More discussions about prior works see A.1.

³More details see Section 3 and Appendix A.2.

Because benchmarks vary in size (i.e., number of questions), which could bias results, we estimate overlap via size-matched bootstrapping similarity: for T=1000 times, we draw $\{q\}_t^{(a)}\subset Q_a$ and $\{q\}_t^{(b)}\subset Q_b$ independently with $|\{q\}_t^{(a)}|=|\{q\}_t^{(b)}|=n_{\min}$, encode each item with f. Also, Concate() means concatenating a list of texts into a single string within each set, and computing cosine similarity:

$$\widehat{A}_{sem}(B_a, B_b) = \frac{1}{T} \sum_{t=1}^{T} s(f(concat(\{q\}_t^{(a)}), f(concat(\{q\}_t^{(b)})))$$

Overall, this mitigates sample-size bias and yields a more robust similarity estimate. Full procedural details appear in Appendix A.4.1. The overlap between B_a and B_b is defined by the $\widehat{A}_{sem}(B_a, B_b)$.

Performance-Level Overlap. For each benchmark B_a , let $\mathbf{y}_{:,a} \in \mathbb{R}^m$ be the vector of model performances on B_a (one entry per model). The performance-level overlap between two benchmarks B_a and B_b is the Spearman rank correlation between their model-marginalized performance vectors:

$$\rho(B_a, B_b) = \operatorname{corr}(\operatorname{rank}(\mathbf{y}_{:,a}), \operatorname{rank}(\mathbf{y}_{:,b}))$$

Thus, the overlap between B_a and B_b under performance-level is defined by the spearman correlation which is $\rho(B_a, B_b)$.

3 MINING BENCHMARK SIGNATURES FROM IN-THE-WILD DATA

Algorithm 1 Obtaining signature for benchmark B_i

Input: Data "in the wild" \mathcal{D} , Benchmark B_j , a list of LLMs $M_1, ..., M_m$ **Output:** Signature S_j

- 1: $y_{:,j} \leftarrow B_j$ with $M_1, ..., M_m \triangleright$ Generate performance column vector on benchmark j.
- 2: T ← D > Processing in-the-wild data into tokens with preceding context, specifically, the prefix consisting of the 30 preceding segments, where each segment corresponds to a segment defined by space.
- 3: $\mathbf{P} \leftarrow \mathcal{T}$ With $M_1, ..., M_m \triangleright$ Generate the token-level perplexity covariate matrix.
- 4: T'_j ← AIC(THRUSHPREFILTER(P ~ y_{:,j})) > Perform Thrush pre-filtering first; then stepwise AIC feature selection on the covariate matrix P against the performance vector y_{:,j} of benchmark B_j to obtain salient tokens.
- 5: Retrieve S_j from mapping \mathcal{T}'_j in **P**
- 6: return S_j

The overall process of mining signatures can be found in Algorithm 1 and its details can be found in Appendix 4. Let d denote the number of "in-the-wild" tokens (in our case, tokens drawn from large-scale pretraining corpora⁴), denoted as $\mathcal{T} = \{t_1, \ldots, t_d\}$, where d typically scales to billions. For any benchmark B_j , our objective in extracting its benchmark signature is to isolate a subset of salient tokens $\mathcal{T}'_j = \{t'_1, \ldots, t'_{d'}\} \subset \mathcal{T}$ that are maximally informative in explaining variations in LLM performance. We formalize this as a regression problem: let $\hat{\mathbf{y}}_j := (y_{1,j}, \ldots, y_{m,j})^{\top} \in \mathbb{R}^m$ denote the performance of m language models on benchmark B_j . The covariate matrix $\mathbf{P} \in \mathbb{R}^{m \times d}$ contains token-level perplexities, where entry $\mathbf{P}_{ij} \equiv p_{ij}$ corresponds to the perplexity of token t_j under LLM M_i . The challenge lies in the high-dimensional regime ($d \gg m$, where $d \approx 8.45 \times 10^9$ and m = 32), where classical regression approaches are ill-posed. To make progress, we must uncover and exploit latent structural properties of the problem. In particular, we put forward a key assumption and a follow-up question:

- 1. **Sparsity:** Most token-level perplexities are uninformative for predicting benchmark performance, with only a small fraction carrying predictive signals. [Assumption 1]
- 2. **Extraction:** Assuming sparsity holds, what methods can effectively identify and extract these predictive signals from the overwhelming background of noise? [Question 1]

⁴Progressing from fine to coarse granularity, we have token-, chunk-, and document-level perplexities. We provide more experimental results of why the token-level operation is the best. Details are shown in Appendix A.2.

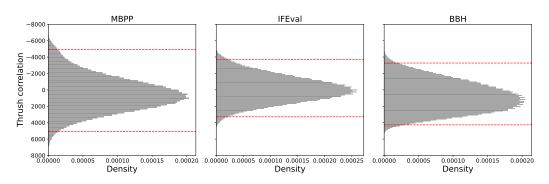


Figure 3: Distribution of Thrush correlations in pre-selection phases; red vertical lines mark the 1st and 99th percentiles, highlighting that few features are highly correlated with performance.

Together, they motivate our below regression-based framework for mining benchmark signatures, which leverages high-dimensional inference techniques to disentangle signal from noise and recover benchmark-specific fingerprints of token-level perplexity.

3.1 TOKEN-LEVEL FILTERING WITH PERPLEXITY CORRELATIONS

Answering [Q1] by fitting a full multivariate regression model is computationally intractable given that the number of tokens (d) is orders of magnitude larger than the number of models (m). We therefore adopt a pragmatic and efficient two-stage approach, beginning with a screening step to drastically reduce the feature space. Specifically, for each benchmark, we perform a token-by-token correlation screening. We compute a robust correlation coefficient between each token's perplexity vector and the benchmark performance vector. This screening is highly efficient, requiring linear time in the number of features, O(md), and allows us to observe the empirical distribution of these coefficients. In a sparse regime, we expect this distribution to be sharply peaked at zero, with small tails representing potentially informative tokens.

A known limitation of this screening approach is its reliance on *marginal, univariate* correlations. It evaluates each token in isolation, potentially overlooking features that are predictive only in a multivariate context (e.g., suppressor tokens that explain residual variance). However, we argue this approach is theoretically and empirically well-justified in our specific problem setting for the following reasons:

- 1. Justification from the Ultra-High Dimensional Regime: Our problem, with $d\gg m$, resides in the ultra-high dimensional setting. Theoretical frameworks developed for this regime, such as Sure Independence Screening (SIS; Fan & Lv (2008)), provide formal guarantees for marginal screening. The "sure screening property" ensures that, under sparsity and certain regularity conditions, correlation-based filtering can discard the vast majority of irrelevant features while retaining the true predictive signals with very high probability. We further explain how several key conditions of SIS are plausible in our context in Appendix A.3.
- 2. Empirical Precedent in Data Selection: This screening methodology has demonstrated strong empirical success in the related domain of data selection for pretraining. Prior work has successfully used document-level perplexity correlations to filter large corpora, improving downstream model performance(Thrush et al., 2025; Shum et al., 2025). Their success provides compelling evidence for the practical utility of correlation screening as a robust heuristic for identifying informative signals in LLM-related data.

While there exist various methods for robust correlation calculation, there is no single "silver bullet"; the choice is often guided by the specific properties of the data. In particular, we highlight the two robust correlation coefficients introduced in the aforementioned data selection literatures.

Definition 3.1 (Thrush Correlation (Thrush et al., 2025)). Fixing the j-th token $t_j \in \mathcal{T}$. Let $\operatorname{rank}_j(p)$ denotes the rank of p among $\{p_{1,j}, \cdots, p_{m,j}\}$ and $\operatorname{sign}(\cdot)$ be the sign function, we denote

$$\gamma_j = \sum_{1 \le k < l \le m} \operatorname{sign}(y_{k,j} - y_{l,j})(\operatorname{rank}_j(p_{k,j}) - \operatorname{rank}_j(p_{l,j})) \tag{1}$$

as the Thrush correlation coefficient. This coefficient is a variant of Kendall's τ (Kendall, 1938), measuring the concordance between model performance and perplexity ranks. It counts the number of model pairs where the model with better performance also has a lower perplexity rank (a concordant pair), and subtracts the number of pairs where this is not the case (a discordant pair), making it robust to the absolute magnitude of perplexity values.

Definition 3.2 (Pre-select Correlation (Shum et al., 2025)). Letting $Z = \frac{m(m-1)}{2}$ to be a normalizing factor, and (1), ..., (m) be the sorted indices by LLM performances (i.e. $y_{(1),j} \leq y_{(2),j} \leq \cdots \leq y_{(m),j}$), the Pre-select correlation coefficient is defined as:

$$\eta_j = \sum_{1 \le k < l \le m} \mathbf{1} \{ p_{k,j} > p_{l,j} \} / Z \tag{2}$$

The Pre-select coefficient computes the fraction of model pairs that are "misordered" by their token perplexities relative to their benchmark performance. In an ideal scenario where lower perplexity perfectly predicts higher performance, this sum would be zero; a value of 0.5 would indicate a random, uninformative relationship.

Once these robust correlation coefficients are calculated for all d tokens, we employ a simple quantile-based threshold to screen the feature space, retaining approximately the top 1% of tokens with the strongest signal. Figure 3 presents the empirical distributions of the Thrush coefficients for three representative benchmarks. In all cases, the distributions are sharply peaked around a central value (indicating a random relationship), with thin tails representing tokens that are highly correlated with performance. This characteristic shape provides compelling empirical support for our sparsity hypothesis ([Q1]): the vast majority of token perplexities are uninformative, while a small, identifiable subset carries a significant predictive signal.

3.2 REFINING SIGNATURES WITH FORWARD SELECTION REGRESSION

The correlation screening successfully isolates a candidate set of potentially informative tokens, satisfying our goal of drastically reducing the search space. However, this filtering alone is insufficient to define a robust benchmark signature for two primary reasons. First, the filtered set is likely to contain redundant features; for instance, several top-ranked tokens might represent the same underlying linguistic phenomenon and thus offer overlapping predictive information. Second, a true signature should not only identify important tokens but also capture their *conditional* importance – their predictive power given the other tokens already in the model.

To address these challenges and distill a final, parsimonious signature, we employ a second-stage multivariate variable selection procedure. Our general framework can accommodate various high-dimensional regression techniques suited for the d' > m regime (where d' is the number of filtered tokens, $d' \approx 1.69 \times 10^7$), including penalized methods like Lasso (Tibshirani, 1996), Ridge (Hoerl & Kennard, 1970), or Elastic Net (Zou & Hastie, 2005). In practice, we opt for a greedy forward selection approach, which we find builds interpretable and effective models. This method iteratively constructs the signature by adding the single token from the candidate pool that yields the greatest improvement to the model's fit, penalized by its added complexity. f

To guide this selection process, we use the Akaike Information Criterion (AIC; Bozdogan (1987)), which provides a principled trade-off between explanatory power and model size, mitigating the risk of overfitting. The process terminates when no additional token can improve the model's AIC score by a meaningful amount. The complete two-stage process – combining the initial correlation screening to create a candidate set with the subsequent forward selection to derive the final signature – is formalized in Algorithm 4.

3.3 SIGNATURE-LEVEL OVERLAP

Consider two benchmark signature vectors, S_1 and S_2 , each including several pieces of context (30 pieces separated by space) + the salient token. We use 32 models to process these signatures, reading

their respective pre-contexts, producing the last token-level perplexities and calculating overlaps. If the models are confused to a similar degree by both signatures, that is a strong indicator that the two benchmarks align. Since some "weak" models consistently produce high perplexity, we normalize each model's perplexity into its z-score within the model. We then compute the mean of z-scored perplexities of the two benchmark signatures within each model and the Spearman correlation between these two mean lists to represent the signature-level overlap, aligning with performance level results and indicating models' relative relation of perplexity and skill familiarity on the signature. Refer to Appendix A.5.1 for a formalized walk-through.

We further examine the robustness of our framework in four dimensions. First, **the robustness of design**: we examine the generalizability of the framework, specifically, whether the regression merely overfits the observed data rather than generalizing to unseen models, and the extent to which base abilities tested across benchmarks influence the results. Second, **the robustness of methods**: we assess the robustness of the regularization and screening methods used in the paper and compare them to their alternatives. Third, **the robustness of parameters**: we study the robustness of parameter choices such as the 1% pre-filtering threshold. Fourth, **the robustness of data**: how to approximate the "in-the-wild" corpora and whether it impacts the major conclusion. We found that our framework is robust across all dimensions, and notably, it is easily replicable on a smaller scale with limited computational resources. These details can be found in A.7 (robustness) and A.8 (computational cost).

4 RESULTS

Our experiments are conducted on 32 models and 88 benchmarks, including many of the most widely used ones. We extract benchmark signatures from the open dataset *RedPajama* (Weber et al., 2024). Note that major conclusions are robust under different choices of "in-the-wild" corpora, as shown in Appendix A.7. See Appendix A.5 for the full details of the experimental setup.

4.1 SIGNATURES CAN BETTER DISTINGUISH BENCHMARKS THAN SEMANTICS AND MODEL PERFORMANCE

We first examine how the overlap distribution looks across three levels, as illustrated in Figure 4. To minimize inductive bias, we assign broader categories to these benchmarks using the official labels from MMLU (Hendrycks et al., 2021), Big-Bench Hard (Suzgun et al., 2022), ifeval benchmark (Zhou et al., 2023), and MBPP (Austin et al., 2021). In signature overlap (panel a), on the left, we compare within-category overlap against the average cross-category overlap. To reduce the impact of benchmark category size, we ensure each category pair is weighted equally. We then use the mean of cross-category overlaps to represent the overall cross-category overlap and apply this consistently throughout the paper. We revised this due to the new analysis on statistical significance (Appendix A.6): We observe that overlap is higher within certain categories such as reasoning, science, and social science knowledge, which is expected: benchmarks designed around the same high-level intent tend to align, whereas pairs such as chemistry vs. history benchmarks overlap far less. Within the humanities and world models, overlaps are generally lower than those in cross-category comparisons. A closer look at these benchmarks suggests that the lower similarities stem from their emphasis on diverse cultural contexts - for example, world-model evaluations that assess understanding of culture-specific phenomena like movies and sports - and their reliance on processing humanities-based material such as history from a wide range of countries and regions. Furthermore, within a category, certain benchmarks align more strongly than others. This forms a dense "red clique," identified by extracting the maximum clique from the overlap graph. We highlight these highly aligned benchmarks on the right side. For panel (b) semantic overlap and panel (c) performance overlap, in contrast, these analyses show much weaker discriminative ability. Semantic overlap scores remain in a narrow range (typically 0.1–0.4) regardless of whether benchmarks come from the same or different categories. Conversely, performance-level overlap is almost universally high, suggesting that model performance and the semantic meaning of questions are less sensitive to category boundaries and obscure finer-grained, underlying associations between benchmarks.

At the semantic level, text embedding models such as MPNet capture surface-level similarity in how humans perceive benchmark questions (Morris et al., 2023). These representations are highly dependent on the specific descriptive intention behind a question, however, meaning the overlap

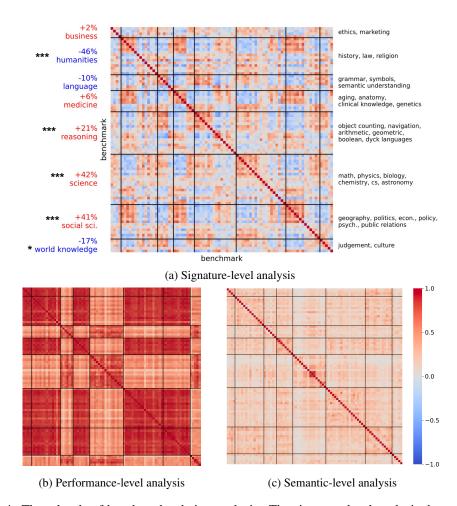


Figure 4: Three levels of benchmark relation analysis. The signature-level analysis demonstrates substantially stronger discriminative ability compared to both semantic- and performance-level analyses. All heatmaps are presented using a consistent color range from -1 to 1, and panels b and c share the same row and column indices articulated in panel a. Statistical details can be found in Appendix A.6. * p < 0.05; *** p < 0.01; **** p < 0.001.

remains superficial and does not reflect the underlying abilities being evaluated. In other words, identical questions do indicate overlapping benchmarks, but different questions do not necessarily indicate non-overlapping ones in terms of underlying ability. At the performance level, while some overlap was initially observed, it quickly became clear that this too fails to meaningfully separate categories. In fact, performance-level results show strong segregation: model behaviors on certain cross-category benchmarks are as closely aligned as they are within categories (evident in several segregated red areas not on the diagonal). When we examine these unexpectedly high alignments, we find that they occur within the same broad benchmark families (e.g., MMLU or BigBench-Hard) or under the same question format (e.g., True/False versus multiple-choice questions). This benchmark-orthogonal effect is even stronger than within-category overlaps - that is, MMLU history aligns more closely with MMLU chemistry than with another history benchmark. This underscores the limitations of relying on performance alone and highlights deep issues in current benchmark agreement tests. Several factors could explain this pattern: the bias may stem from post-training fine-tuning, and it could also reflect contamination of the training data, where exposure to one evaluation within a benchmark family increases the likelihood of exposure to others, thereby inflating performance correlations. Another explanation lies in model capabilities: when a model is tested for a single ability, the evaluation inevitably involves a combination of multiple common skills - at a minimum reading, instruction following, and comprehension, among others. This overlap makes behavioral alignment a less distinguishable measure.

4.2 THE EVALUATION BIAS FROM MODEL FAMILY AND QUESTION TYPES IS RESOLVED BY THE SIGNATURE

Grouping the result in Figure 4 panel b, we observe that the red areas are concentrated within the same benchmark family and question format as shown in Figure 1 right panel, where two red areas are exactly two benchmark families or question formats. We calculated pairwise correlations between benchmarks both within and across families and question formats. Since each family or format contains a highly diverse set of benchmarks - essentially covering everything - we would expect within-family/format overlaps to be quite low, showing little difference from cross-family/format overlaps. Consistent with this expectation, the signature-level analysis reveals statistically insignificant tiny differences based on the Mann–Whitney U test, yielding results around 0. This aligns with intuition, as the signature provides a good approximation of the true overlap and variation. In contrast, the performance-level analysis shows a large value of overlap (around 0.8) and a statistically significant increase in within-family/format overlap. Our results show deep issues in current benchmark agreement tests that LLM performance may be more related to surface-level aspects of benchmarks, such as question format, suggesting both that generalization and knowledge-propagation in LLMs are limited and that current evaluation may be underestimating peak performance because of conflation of performance and competence.

4.3 SIGNATURES INFORM BENCHMARK DESIGN AND LLM CAPACITY SPACE

As shown in Figure 1, we compare overlaps across design functions. Several patterns emerge. First, we observe significant overlaps that align with in-For example, tuition. math and logic correlate at 0.21, which is close to the average within-function overlap of 0.285 and far above the average crossfunction overlap of 0.087. This makes sense: solving a math problem often requires logical reasoning, and vice versa. More broadly, logic, instruction following, language, math, and world modeling (largely cultural benchmarks) form a cluster of interconnected abilities. Coding appears far less entangled with other

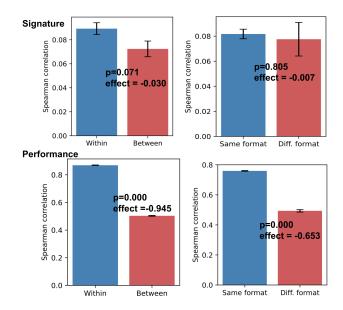


Figure 5: Biases (within/between families; same/diff. formats) are well addressed by the signature.

functions. Its low cross-function overlap suggests that coding benchmarks are comparatively "clean," in the sense that success relies more specifically on coding competence and less on auxiliary abilities. This distinctiveness might arise because coding requires highly specialized pretraining corpora such as GitHub.

There are two broad perspectives for interpreting these results. If we *optimistically* assume that benchmarks faithfully measure what they claim, then the observed overlaps reveal a genuine interdependence of cognitive abilities. In this view, benchmarks are not "leaky," but rather reflect the multifaceted nature of capacity like math and logic. From this perspective, overlap is not noise, but evidence of underlying LLM and human capacity entanglement - the interconnected capacity space - an often-discussed but previously difficult-to-formalize concept. Alternatively, the overlaps may expose a misalignment between what benchmarks intend to measure and what they actually capture. This interpretation suggests that benchmarks are "leaky" in undesirable ways, inadvertently testing

skills outside their stated domain. For example, even if math and logic are highly related, their overlap should theoretically remain lower than within-math or within-logic overlap. Yet, Figure 1 shows cases where cross-function overlap exceeds within-function overlap - for instance, between instruction following and logic. This could imply that either within-function overlap is underestimated (due to poorly aligned benchmark design and execution (Liao et al., 2021)) or that cross-function contamination is stronger than anticipated, undermining the clarity of what each benchmark is supposed to isolate.

5 QUALITATIVE INTERPRETATION OF BENCHMARK SIGNATURES

We will complete this section to include the results in our rebuttal in the camera-ready version of the paper.

6 FINAL REMARKS

LLM benchmark saturation has been widely discussed (Phan et al., 2025). Rather than following the conventional approach of introducing ever more difficult benchmarks, our study proposes benchmark signatures, a principled method for quantifying overlap among LLM benchmarks. We ground benchmark relationships in perplexity patterns from in-the-wild corpora and compare them to surface semantics and correlated performance. This allows signatures to remain robust to benchmark-orthogonal factors, such as question format, while revealing both expected and unexpected cross-domain entanglements. Signatures are defined by the **predictive power** of tokens: those whose cross-model perplexity patterns strongly predict benchmark outcomes, regardless of whether their raw perplexity is high or low. Such tokens indicate how the structural characteristics of model training align with the capability demands of a benchmark, rather than merely reflecting whether a model has "seen" the content that is demanded by the benchmark.

Our findings point toward a richer understanding of the LLM capacity space, benchmark validity, and LLM sensitivities. Looking ahead, our framework opens several promising avenues for future work. Signature-based analyses could be extended to more fine-grained probes, such as inspecting layer-level activations of LLMs as they process benchmarks. The framework could also clarify whether - and under what conditions - the structure or format of benchmark questions meaningfully affects model behavior. While our approach is not conceptually limited to QA or true-false tasks, extending it to a broader range of benchmarks, such as open-ended generation tasks (e.g., summarization, long-form reasoning, dialogue), requires additional design choices for defining stable, reproducible scoring functions, which represents an important direction for future work. In addition, our approach points toward the possibility of a "benchmark algebra": a systematic method for decomposing, recombining, and comparing benchmarks to reveal gaps or redundancies in the current evaluation landscape. Such tools could support the creation of **entirely new** benchmarks that are not merely incremental variations of existing ones, but instead target capabilities or failure modes surfaced through principled analysis. Taken together, these extensions would evolve our framework into a broader diagnostic and reusable toolkit for evaluating, interpreting, and ultimately improving benchmark ecosystems.

THE USE OF LARGE LANGUAGE MODELS (LLMS)

We employed LLMs to assist with polishing the writing. All content generated or modified by LLMs was rigorously reviewed and approved by the authors.

ETHICS STATEMENT

This work does not involve human subjects, sensitive data, or any other issues outlined in the ICLR Code of Ethics.

REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our experiments, we provide detailed descriptions of all methodologies in Sections 2 and 3. In addition, Appendix A.5 contains a walkthrough of each key checkpoint and experimental setup, including (but not limited to) important numerical values, evaluation metrics, and the software packages used for implementation. We also submitted code samples for reproducibility.

REFERENCES

Marah Abdin, Jyoti Aneja, Hany Awadalla, Ahmed Awadallah, Ammar Ahmad Awan, Nguyen Bach, Amit Bahree, Arash Bakhtiari, Jianmin Bao, Harkirat Behl, Alon Benhaim, Misha Bilenko, Johan Bjorck, Sébastien Bubeck, Martin Cai, Qin Cai, Vishrav Chaudhary, Dong Chen, Dongdong Chen, Weizhu Chen, Yen-Chun Chen, Yi-Ling Chen, Hao Cheng, Parul Chopra, Xiyang Dai, Matthew Dixon, Ronen Eldan, Victor Fragoso, Jianfeng Gao, Mei Gao, Min Gao, Amit Garg, Allie Del Giorno, Abhishek Goswami, Suriya Gunasekar, Emman Haider, Junheng Hao, Russell J. Hewett, Wenxiang Hu, Jamie Huynh, Dan Iter, Sam Ade Jacobs, Mojan Javaheripi, Xin Jin, Nikos Karampatziakis, Piero Kauffmann, Mahoud Khademi, Dongwoo Kim, Young Jin Kim, Lev Kurilenko, James R. Lee, Yin Tat Lee, Yuanzhi Li, Yunsheng Li, Chen Liang, Lars Liden, Xihui Lin, Zeqi Lin, Ce Liu, Liyuan Liu, Mengchen Liu, Weishung Liu, Xiaodong Liu, Chong Luo, Piyush Madan, Ali Mahmoudzadeh, David Majercak, Matt Mazzola, Caio César Teodoro Mendes, Arindam Mitra, Hardik Modi, Anh Nguyen, Brandon Norick, Barun Patra, Daniel Perez-Becker, Thomas Portet, Reid Pryzant, Heyang Qin, Marko Radmilac, Liliang Ren, Gustavo de Rosa, Corby Rosset, Sambudha Roy, Olatunji Ruwase, Olli Saarikivi, Amin Saied, Adil Salim, Michael Santacroce, Shital Shah, Ning Shang, Hiteshi Sharma, Yelong Shen, Swadheen Shukla, Xia Song, Masahiro Tanaka, Andrea Tupini, Praneetha Vaddamanu, Chunyu Wang, Guanhua Wang, Lijuan Wang, Shuohang Wang, Xin Wang, Yu Wang, Rachel Ward, Wen Wen, Philipp Witte, Haiping Wu, Xiaoxia Wu, Michael Wyatt, Bin Xiao, Can Xu, Jiahang Xu, Weijian Xu, Jilong Xue, Sonali Yadav, Fan Yang, Jianwei Yang, Yifan Yang, Ziyi Yang, Donghan Yu, Lu Yuan, Chenruidong Zhang, Cyril Zhang, Jianwen Zhang, Li Lyna Zhang, Yi Zhang, Yue Zhang, Yunan Zhang, and Xiren Zhou. Phi-3 technical report: A highly capable language model locally on your phone, 2024a. URL https://arxiv.org/abs/2404.14219.

Marah Abdin, Jyoti Aneja, Harkirat Behl, Sébastien Bubeck, Ronen Eldan, Suriya Gunasekar, Michael Harrison, Russell J. Hewett, Mojan Javaheripi, Piero Kauffmann, James R. Lee, Yin Tat Lee, Yuanzhi Li, Weishung Liu, Caio C. T. Mendes, Anh Nguyen, Eric Price, Gustavo de Rosa, Olli Saarikivi, Adil Salim, Shital Shah, Xin Wang, Rachel Ward, Yue Wu, Dingli Yu, Cyril Zhang, and Yi Zhang. Phi-4 technical report, 2024b. URL https://arxiv.org/abs/2412.08905.

01. AI, Alex Young, Bei Chen, Chao Li, Chengen Huang, Ge Zhang, Guanwei Zhang, Guoyin Wang, Heng Li, Jiangcheng Zhu, Jianqun Chen, Jing Chang, Kaidong Yu, Peng Liu, Qiang Liu, Shawn Yue, Senbin Yang, Shiming Yang, Wen Xie, Wenhao Huang, Xiaohui Hu, Xiaoyi Ren, Xinyao Niu, Pengcheng Nie, Yanpeng Li, Yuchi Xu, Yudong Liu, Yue Wang, Yuxuan Cai, Zhenyu Gu, Zhiyuan Liu, and Zonghong Dai. Yi: Open foundation models by 01.ai, 2025. URL https://arxiv.org/abs/2403.04652.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan, Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large language models. *arXiv preprint arXiv:2108.07732*, 2021.

Stella Biderman, Hailey Schoelkopf, Quentin Anthony, Herbie Bradley, Kyle O'Brien, Eric Hallahan, Mohammad Aflah Khan, Shivanshu Purohit, USVSN Sai Prashanth, Edward Raff, Aviya Skowron, Lintang Sutawika, and Oskar van der Wal. Pythia: A suite for analyzing large language models across training and scaling, 2023. URL https://arxiv.org/abs/2304.01373.

Hamparsum Bozdogan. Model selection and akaike's information criterion (aic): The general theory and its analytical extensions. *Psychometrika*, 52(3):345–370, 1987.

DeepSeek-AI, Xiao Bi, Deli Chen, Guanting Chen, Shanhuang Chen, Damai Dai, Chengqi Deng, Honghui Ding, Kai Dong, Qiushi Du, Zhe Fu, Huazuo Gao, Kaige Gao, Wenjun Gao, Ruiqi Ge, Kang Guan, Daya Guo, Jianzhong Guo, Guangbo Hao, Zhewen Hao, Ying He, Wenjie Hu, Panpan Huang, Erhang Li, Guowei Li, Jiashi Li, Yao Li, Y. K. Li, Wenfeng Liang, Fangyun Lin, A. X. Liu, Bo Liu, Wen Liu, Xiaodong Liu, Xin Liu, Yiyuan Liu, Haoyu Lu, Shanghao Lu, Fuli Luo, Shirong Ma, Xiaotao Nie, Tian Pei, Yishi Piao, Junjie Qiu, Hui Qu, Tongzheng Ren, Zehui Ren, Chong Ruan, Zhangli Sha, Zhihong Shao, Junxiao Song, Xuecheng Su, Jingxiang Sun, Yaofeng Sun, Minghui Tang, Bingxuan Wang, Peiyi Wang, Shiyu Wang, Yaohui Wang, Yongji Wang, Tong Wu, Y. Wu, Xin Xie, Zhenda Xie, Ziwei Xie, Yiliang Xiong, Hanwei Xu, R. X. Xu, Yanhong Xu, Dejian Yang, Yuxiang You, Shuiping Yu, Xingkai Yu, B. Zhang, Haowei Zhang, Lecong Zhang, Liyue Zhang, Mingchuan Zhang, Minghua Zhang, Wentao Zhang, Yichao Zhang, Chenggang Zhao, Yao Zhao, Shangyan Zhou, Shunfeng Zhou, Qihao Zhu, and Yuheng Zou. Deepseek llm: Scaling open-source language models with longtermism, 2024. URL https://arxiv.org/abs/2401.02954.

Dante Everaert and Christopher Potts. Gio: Gradient information optimization for training dataset selection. *arXiv preprint arXiv:2306.11670*, 2023.

Jianqing Fan and Jinchi Lv. Sure independence screening for ultrahigh dimensional feature space. *Journal of the Royal Statistical Society Series B: Statistical Methodology*, 70(5):849–911, 2008.

Harvey Yiyun Fu, Aryan Shrivastava, Jared Moore, Peter West, Chenhao Tan, and Ari Holtzman. Absencebench: Language models can't tell what's missing. *NeurIPS*, 2025.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Foster, Laurence Golding, Jeffrey Hsu, Alain Le Noac'h, Haonan Li, Kyle McDonell, Niklas Muennighoff, Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lintang Sutawika, Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. The language model evaluation harness, 07 2024. URL https://zenodo.org/records/12608602.

Team GLM, Aohan Zeng, Bin Xu, Bowen Wang, Chenhui Zhang, Da Yin, Diego Rojas, Guanyu Feng, Hanlin Zhao, Hanyu Lai, Hao Yu, Hongning Wang, Jiadai Sun, Jiajie Zhang, Jiale Cheng, Jiayi Gui, Jie Tang, Jing Zhang, Juanzi Li, Lei Zhao, Lindong Wu, Lucen Zhong, Mingdao Liu, Minlie Huang, Peng Zhang, Qinkai Zheng, Rui Lu, Shuaiqi Duan, Shudan Zhang, Shulin Cao, Shuxun Yang, Weng Lam Tam, Wenyi Zhao, Xiao Liu, Xiao Xia, Xiaohan Zhang, Xiaotao Gu, Xin Lv, Xinghan Liu, Xinyi Liu, Xinyue Yang, Xixuan Song, Xunkai Zhang, Yifan An, Yifan Xu, Yilin Niu, Yuantao Yang, Yueyan Li, Yushi Bai, Yuxiao Dong, Zehan Qi, Zhaoyu Wang, Zhen Yang, Zhengxiao Du, Zhenyu Hou, and Zihan Wang. Chatglm: A family of large language models from glm-130b to glm-4 all tools, 2024.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, Amy Yang, Angela Fan, Anirudh Goyal, Anthony Hartshorn, Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Korenev, Arthur Hinsvark, Arun Rao, Aston Zhang, Aurelien Rodriguez, Austen Gregerson, Ava Spataru, Baptiste Roziere, Bethany Biron, Binh Tang, Bobbie Chern, Charlotte Caucheteux, Chaya Nayak, Chloe Bi, Chris Marra, Chris McConnell, Christian Keller, Christophe Touret, Chunyang Wu, Corinne Wong, Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Allonsius, Daniel Song, Danielle Pintz, Danny Livshits, Danny Wyatt, David Esiobu, Dhruv Choudhary, Dhruv Mahajan, Diego Garcia-Olano, Diego Perino, Dieuwke Hupkes, Egor Lakomkin, Ehab AlBadawy, Elina Lobanova, Emily Dinan, Eric Michael Smith, Filip Radenovic, Francisco

650

651

652

653

654

655

656

657

658

659

660

661

662

666

667

668

669

670

671

672

673

674

675

676

677

679

680

683

684

685

687

688

689

690

691

692

693

696

699

700

Guzmán, Frank Zhang, Gabriel Synnaeve, Gabrielle Lee, Georgia Lewis Anderson, Govind Thattai, Graeme Nail, Gregoire Mialon, Guan Pang, Guillem Cucurell, Hailey Nguyen, Hannah Korevaar, Hu Xu, Hugo Touvron, Iliyan Zarov, Imanol Arrieta Ibarra, Isabel Kloumann, Ishan Misra, Ivan Evtimov, Jack Zhang, Jade Copet, Jaewon Lee, Jan Geffert, Jana Vranes, Jason Park, Jay Mahadeokar, Jeet Shah, Jelmer van der Linde, Jennifer Billock, Jenny Hong, Jenya Lee, Jeremy Fu, Jianfeng Chi, Jianyu Huang, Jiawen Liu, Jie Wang, Jiecao Yu, Joanna Bitton, Joe Spisak, Jongsoo Park, Joseph Rocca, Joshua Johnstun, Joshua Saxe, Junteng Jia, Kalyan Vasuden Alwala, Karthik Prasad, Kartikeya Upasani, Kate Plawiak, Ke Li, Kenneth Heafield, Kevin Stone, Khalid El-Arini, Krithika Iyer, Kshitiz Malik, Kuenley Chiu, Kunal Bhalla, Kushal Lakhotia, Lauren Rantala-Yeary, Laurens van der Maaten, Lawrence Chen, Liang Tan, Liz Jenkins, Louis Martin, Lovish Madaan, Lubo Malo, Lukas Blecher, Lukas Landzaat, Luke de Oliveira, Madeline Muzzi, Mahesh Pasupuleti, Mannat Singh, Manohar Paluri, Marcin Kardas, Maria Tsimpoukelli, Mathew Oldham, Mathieu Rita, Maya Pavlova, Melanie Kambadur, Mike Lewis, Min Si, Mitesh Kumar Singh, Mona Hassan, Naman Goyal, Narjes Torabi, Nikolay Bashlykov, Nikolay Bogoychev, Niladri Chatterji, Ning Zhang, Olivier Duchenne, Onur Çelebi, Patrick Alrassy, Pengchuan Zhang, Pengwei Li, Petar Vasic, Peter Weng, Prajjwal Bhargava, Pratik Dubal, Praveen Krishnan, Punit Singh Koura, Puxin Xu, Qing He, Qingxiao Dong, Ragavan Srinivasan, Raj Ganapathy, Ramon Calderer, Ricardo Silveira Cabral, Robert Stojnic, Roberta Raileanu, Rohan Maheswari, Rohit Girdhar, Rohit Patel, Romain Sauvestre, Ronnie Polidoro, Roshan Sumbaly, Ross Taylor, Ruan Silva, Rui Hou, Rui Wang, Saghar Hosseini, Sahana Chennabasappa, Sanjay Singh, Sean Bell, Seohyun Sonia Kim, Sergey Edunov, Shaoliang Nie, Sharan Narang, Sharath Raparthy, Sheng Shen, Shengye Wan, Shruti Bhosale, Shun Zhang, Simon Vandenhende, Soumya Batra, Spencer Whitman, Sten Sootla, Stephane Collot, Suchin Gururangan, Sydney Borodinsky, Tamar Herman, Tara Fowler, Tarek Sheasha, Thomas Georgiou, Thomas Scialom, Tobias Speckbacher, Todor Mihaylov, Tong Xiao, Ujjwal Karn, Vedanuj Goswami, Vibhor Gupta, Vignesh Ramanathan, Viktor Kerkez, Vincent Gonguet, Virginie Do, Vish Vogeti, Vítor Albiero, Vladan Petrovic, Weiwei Chu, Wenhan Xiong, Wenyin Fu, Whitney Meers, Xavier Martinet, Xiaodong Wang, Xiaofang Wang, Xiaoqing Ellen Tan, Xide Xia, Xinfeng Xie, Xuchao Jia, Xuewei Wang, Yaelle Goldschlag, Yashesh Gaur, Yasmine Babaei, Yi Wen, Yiwen Song, Yuchen Zhang, Yue Li, Yuning Mao, Zacharie Delpierre Coudert, Zheng Yan, Zhengxing Chen, Zoe Papakipos, Aaditya Singh, Aayushi Srivastava, Abha Jain, Adam Kelsey, Adam Shajnfeld, Adithya Gangidi, Adolfo Victoria, Ahuva Goldstand, Ajay Menon, Ajay Sharma, Alex Boesenberg, Alexei Baevski, Allie Feinstein, Amanda Kallet, Amit Sangani, Amos Teo, Anam Yunus, Andrei Lupu, Andres Alvarado, Andrew Caples, Andrew Gu, Andrew Ho, Andrew Poulton, Andrew Ryan, Ankit Ramchandani, Annie Dong, Annie Franco, Anuj Goyal, Aparajita Saraf, Arkabandhu Chowdhury, Ashley Gabriel, Ashwin Bharambe, Assaf Eisenman, Azadeh Yazdan, Beau James, Ben Maurer, Benjamin Leonhardi, Bernie Huang, Beth Loyd, Beto De Paola, Bhargavi Paranjape, Bing Liu, Bo Wu, Boyu Ni, Braden Hancock, Bram Wasti, Brandon Spence, Brani Stojkovic, Brian Gamido, Britt Montalvo, Carl Parker, Carly Burton, Catalina Mejia, Ce Liu, Changhan Wang, Changkyu Kim, Chao Zhou, Chester Hu, Ching-Hsiang Chu, Chris Cai, Chris Tindal, Christoph Feichtenhofer, Cynthia Gao, Damon Civin, Dana Beaty, Daniel Kreymer, Daniel Li, David Adkins, David Xu, Davide Testuggine, Delia David, Devi Parikh, Diana Liskovich, Didem Foss, Dingkang Wang, Duc Le, Dustin Holland, Edward Dowling, Eissa Jamil, Elaine Montgomery, Eleonora Presani, Emily Hahn, Emily Wood, Eric-Tuan Le, Erik Brinkman, Esteban Arcaute, Evan Dunbar, Evan Smothers, Fei Sun, Felix Kreuk, Feng Tian, Filippos Kokkinos, Firat Ozgenel, Francesco Caggioni, Frank Kanayet, Frank Seide, Gabriela Medina Florez, Gabriella Schwarz, Gada Badeer, Georgia Swee, Gil Halpern, Grant Herman, Grigory Sizov, Guangyi, Zhang, Guna Lakshminarayanan, Hakan Inan, Hamid Shojanazeri, Han Zou, Hannah Wang, Hanwen Zha, Haroun Habeeb, Harrison Rudolph, Helen Suk, Henry Aspegren, Hunter Goldman, Hongyuan Zhan, Ibrahim Damlaj, Igor Molybog, Igor Tufanov, Ilias Leontiadis, Irina-Elena Veliche, Itai Gat, Jake Weissman, James Geboski, James Kohli, Janice Lam, Japhet Asher, Jean-Baptiste Gaya, Jeff Marcus, Jeff Tang, Jennifer Chan, Jenny Zhen, Jeremy Reizenstein, Jeremy Teboul, Jessica Zhong, Jian Jin, Jingyi Yang, Joe Cummings, Jon Carvill, Jon Shepard, Jonathan McPhie, Jonathan Torres, Josh Ginsburg, Junjie Wang, Kai Wu, Kam Hou U, Karan Saxena, Kartikay Khandelwal, Katayoun Zand, Kathy Matosich, Kaushik Veeraraghavan, Kelly Michelena, Keqian Li, Kiran Jagadeesh, Kun Huang, Kunal Chawla, Kyle Huang, Lailin Chen, Lakshya Garg, Lavender A, Leandro Silva, Lee Bell, Lei Zhang, Liangpeng Guo, Licheng Yu, Liron Moshkovich, Luca Wehrstedt, Madian Khabsa, Manav Avalani, Manish Bhatt, Martynas Mankus, Matan Hasson, Matthew Lennie, Matthias Reso, Maxim Groshev, Maxim Naumov, Maya Lathi, Meghan Keneally, Miao Liu, Michael L.

704

705

706

708

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725 726

727

728 729

730

731

732 733

734

735

736

737 738

739

740

741

742 743

744

745

746

747

748

749

750

751

752 753

754

755

Seltzer, Michal Valko, Michelle Restrepo, Mihir Patel, Mik Vyatskov, Mikayel Samvelyan, Mike Clark, Mike Macey, Mike Wang, Miquel Jubert Hermoso, Mo Metanat, Mohammad Rastegari, Munish Bansal, Nandhini Santhanam, Natascha Parks, Natasha White, Navyata Bawa, Nayan Singhal, Nick Egebo, Nicolas Usunier, Nikhil Mehta, Nikolay Pavlovich Laptev, Ning Dong, Norman Cheng, Oleg Chernoguz, Olivia Hart, Omkar Salpekar, Ozlem Kalinli, Parkin Kent, Parth Parekh, Paul Saab, Pavan Balaji, Pedro Rittner, Philip Bontrager, Pierre Roux, Piotr Dollar, Polina Zvyagina, Prashant Ratanchandani, Pritish Yuvraj, Qian Liang, Rachad Alao, Rachel Rodriguez, Rafi Ayub, Raghotham Murthy, Raghu Nayani, Rahul Mitra, Rangaprabhu Parthasarathy, Raymond Li, Rebekkah Hogan, Robin Battey, Rocky Wang, Russ Howes, Ruty Rinott, Sachin Mehta, Sachin Siby, Sai Jayesh Bondu, Samyak Datta, Sara Chugh, Sara Hunt, Sargun Dhillon, Sasha Sidorov, Satadru Pan, Saurabh Mahajan, Saurabh Verma, Seiji Yamamoto, Sharadh Ramaswamy, Shaun Lindsay, Shaun Lindsay, Sheng Feng, Shenghao Lin, Shengxin Cindy Zha, Shishir Patil, Shiva Shankar, Shuqiang Zhang, Shuqiang Zhang, Sinong Wang, Sneha Agarwal, Soji Sajuyigbe, Soumith Chintala, Stephanie Max, Stephen Chen, Steve Kehoe, Steve Satterfield, Sudarshan Govindaprasad, Sumit Gupta, Summer Deng, Sungmin Cho, Sunny Virk, Suraj Subramanian, Sy Choudhury, Sydney Goldman, Tal Remez, Tamar Glaser, Tamara Best, Thilo Koehler, Thomas Robinson, Tianhe Li, Tianjun Zhang, Tim Matthews, Timothy Chou, Tzook Shaked, Varun Vontimitta, Victoria Ajayi, Victoria Montanez, Vijai Mohan, Vinay Satish Kumar, Vishal Mangla, Vlad Ionescu, Vlad Poenaru, Vlad Tiberiu Mihailescu, Vladimir Ivanov, Wei Li, Wenchen Wang, Wenwen Jiang, Wes Bouaziz, Will Constable, Xiaocheng Tang, Xiaojian Wu, Xiaolan Wang, Xilun Wu, Xinbo Gao, Yaniv Kleinman, Yanjun Chen, Ye Hu, Ye Jia, Ye Qi, Yenda Li, Yilin Zhang, Ying Zhang, Yossi Adi, Youngjin Nam, Yu, Wang, Yu Zhao, Yuchen Hao, Yundi Qian, Yunlu Li, Yuzi He, Zach Rait, Zachary DeVito, Zef Rosnbrick, Zhaoduo Wen, Zhenyu Yang, Zhiwei Zhao, and Zhiyu Ma. The llama 3 herd of models, 2024. URL https://arxiv.org/abs/2407.21783.

David Heineman, Valentin Hofmann, Ian Magnusson, Yuling Gu, Noah A Smith, Hannaneh Hajishirzi, Kyle Lo, and Jesse Dodge. Signal and noise: A framework for reducing uncertainty in language model evaluation. *arXiv preprint arXiv:2508.13144*, 2025.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob Steinhardt. Measuring massive multitask language understanding. *ICLR*, 2021.

Arthur E Hoerl and Robert W Kennard. Ridge regression: Biased estimation for nonorthogonal problems. *Technometrics*, 12(1):55–67, 1970.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al. Training compute-optimal large language models. *arXiv preprint arXiv:2203.15556*, 2022.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas Wang, Timothée Lacroix, and William El Sayed. Mistral 7b, 2023. URL https://arxiv.org/abs/2310.06825.

Albert Q. Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary, Chris Bamford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand, Gianna Lengyel, Guillaume Bour, Guillaume Lample, Lélio Renard Lavaud, Lucile Saulnier, Marie-Anne Lachaux, Pierre Stock, Sandeep Subramanian, Sophia Yang, Szymon Antoniak, Teven Le Scao, Théophile Gervet, Thibaut Lavril, Thomas Wang, Timothée Lacroix, and William El Sayed. Mixtral of experts, 2024. URL https://arxiv.org/abs/2401.04088.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child, Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language models. arXiv preprint arXiv:2001.08361, 2020.

Maurice G Kendall. A new measure of rank correlation. *Biometrika*, 30(1-2):81–93, 1938.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E. Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model

- serving with pagedattention. In *Proceedings of the ACM SIGOPS 29th Symposium on Operating Systems Principles*, 2023.
 - Thomas Liao, Rohan Taori, Inioluwa Deborah Raji, and Ludwig Schmidt. Are we learning yet? a meta review of evaluation failures across machine learning. In *Advances in Neural Information Processing Systems*, 2021.
 - Nelson F Liu, Tony Lee, Robin Jia, and Percy Liang. Do question answering modeling improvements hold across benchmarks? *arXiv preprint arXiv:2102.01065*, 2021.
 - Microsoft, Abdelrahman Abouelenin, Atabak Ashfaq, Adam Atkinson, Hany Awadalla, Nguyen Bach, Jianmin Bao, Alon Benhaim, Martin Cai, Vishrav Chaudhary, Congcong Chen, Dong Chen, Dongdong Chen, Junkun Chen, Weizhu Chen, Yen-Chun Chen, Yi ling Chen, Qi Dai, Xiyang Dai, Ruchao Fan, Mei Gao, Min Gao, Amit Garg, Abhishek Goswami, Junheng Hao, Amr Hendy, Yuxuan Hu, Xin Jin, Mahmoud Khademi, Dongwoo Kim, Young Jin Kim, Gina Lee, Jinyu Li, Yunsheng Li, Chen Liang, Xihui Lin, Zeqi Lin, Mengchen Liu, Yang Liu, Gilsinia Lopez, Chong Luo, Piyush Madan, Vadim Mazalov, Arindam Mitra, Ali Mousavi, Anh Nguyen, Jing Pan, Daniel Perez-Becker, Jacob Platin, Thomas Portet, Kai Qiu, Bo Ren, Liliang Ren, Sambuddha Roy, Ning Shang, Yelong Shen, Saksham Singhal, Subhojit Som, Xia Song, Tetyana Sych, Praneetha Vaddamanu, Shuohang Wang, Yiming Wang, Zhenghao Wang, Haibin Wu, Haoran Xu, Weijian Xu, Yifan Yang, Ziyi Yang, Donghan Yu, Ishmam Zabir, Jianwen Zhang, Li Lyna Zhang, Yunan Zhang, and Xiren Zhou. Phi-4-mini technical report: Compact yet powerful multimodal language models via mixture-of-loras, 2025. URL https://arxiv.org/abs/2503.01743.
 - Justin K Miller and Wenjia Tang. Evaluating llm metrics through real-world capabilities. *arXiv* preprint arXiv:2505.08253, 2025.
 - John X Morris, Volodymyr Kuleshov, Vitaly Shmatikov, and Alexander M Rush. Text embeddings reveal (almost) as much as text. *arXiv preprint arXiv:2310.06816*, 2023.
 - Yutao Mou, Shikun Zhang, and Wei Ye. Sg-bench: Evaluating Ilm safety generalization across diverse tasks and prompt types. *Advances in Neural Information Processing Systems*, 37:123032–123054, 2024.
 - Shiwen Ni, Guhong Chen, Shuaimin Li, Xuanang Chen, Siyi Li, Bingli Wang, Qiyao Wang, Xingjian Wang, Yifan Zhang, Liyang Fan, et al. A survey on large language model benchmarks. *arXiv preprint arXiv:2508.15361*, 2025.
 - Team OLMo, Pete Walsh, Luca Soldaini, Dirk Groeneveld, Kyle Lo, Shane Arora, Akshita Bhagia, Yuling Gu, Shengyi Huang, Matt Jordan, Nathan Lambert, Dustin Schwenk, Oyvind Tafjord, Taira Anderson, David Atkinson, Faeze Brahman, Christopher Clark, Pradeep Dasigi, Nouha Dziri, Michal Guerquin, Hamish Ivison, Pang Wei Koh, Jiacheng Liu, Saumya Malik, William Merrill, Lester James V. Miranda, Jacob Morrison, Tyler Murray, Crystal Nam, Valentina Pyatkin, Aman Rangapur, Michael Schmitz, Sam Skjonsberg, David Wadden, Christopher Wilhelm, Michael Wilson, Luke Zettlemoyer, Ali Farhadi, Noah A. Smith, and Hannaneh Hajishirzi. 2 olmo 2 furious. 2024. URL https://arxiv.org/abs/2501.00656.
 - Guilherme Penedo, Quentin Malartic, Daniel Hesslow, Ruxandra Cojocaru, Alessandro Cappelli, Hamza Alobeidli, Baptiste Pannier, Ebtesam Almazrouei, and Julien Launay. The RefinedWeb dataset for Falcon LLM: Outperforming curated corpora with web data, and web data only. *arXiv* preprint arXiv:2306.01116, 2023. URL https://arxiv.org/abs/2306.01116.
 - Yotam Perlitz, Ariel Gera, Ofir Arviv, Asaf Yehudai, Elron Bandel, Eyal Shnarch, Michal Shmueli-Scheuer, and Leshem Choshen. Do these llm benchmarks agree? fixing benchmark evaluation with benchbench. *arXiv preprint arXiv:2407.13696*, 2024.
 - Long Phan, Alice Gatti, Ziwen Han, Nathaniel Li, Josephina Hu, Hugh Zhang, Chen Bo Calvin Zhang, Mohamed Shaaban, John Ling, Sean Shi, et al. Humanity's last exam. *arXiv preprint arXiv:2501.14249*, 2025.
 - Michael Poli, Stefano Massaroli, Eric Nguyen, Daniel Y Fu, Tri Dao, Stephen Baccus, Yoshua Bengio, Stefano Ermon, and Christopher Ré. Hyena hierarchy: Towards larger convolutional language models. In *International Conference on Machine Learning*, pp. 28043–28078. PMLR, 2023.

- Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language models are unsupervised multitask learners. 2019.
 - Kashun Shum, Yuzhen Huang, Hongjian Zou, Qi Ding, Yixuan Liao, Xiaoxin Chen, Qian Liu, and Junxian He. Predictive data selection: The data that predicts is the data that teaches. *arXiv* preprint arXiv:2503.00808, 2025.
 - Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, and Tie-Yan Liu. Mpnet: Masked and permuted pretraining for language understanding. *Advances in Neural Information Processing Systems*, 33: 16857–16867, 2020.
 - Mirac Suzgun, Nathan Scales, Nathanael Schärli, Sebastian Gehrmann, Yi Tay, Hyung Won Chung, Aakanksha Chowdhery, Quoc V Le, Ed H Chi, Denny Zhou, et al. Challenging big-bench tasks and whether chain-of-thought can solve them. *arXiv preprint arXiv:2210.09261*, 2022.
 - Oyvind Tafjord, Bhavana Dalvi Mishra, and Peter Clark. Proofwriter: Generating implications, proofs, and abductive statements over natural language. *arXiv* preprint arXiv:2012.13048, 2020.
 - Gemma Team. Gemma 3. 2025a. URL https://goo.gle/Gemma3Report.
 - MosaicML NLP Team. Introducing mpt-7b: A new standard for open-source, commercially usable llms, 2023. URL www.mosaicml.com/blog/mpt-7b.
 - Qwen Team. Qwen3 technical report, 2025b. URL https://arxiv.org/abs/2505.09388.
 - Tristan Thrush, Christopher Potts, and Tatsunori Hashimoto. Improving pretraining data using perplexity correlations. *ICLR*, 2025.
 - Robert Tibshirani. Regression shrinkage and selection via the lasso. *Journal of the Royal Statistical Society Series B: Statistical Methodology*, 58(1):267–288, 1996.
 - Maurice Weber, Dan Fu, Quentin Anthony, Yonatan Oren, Shane Adams, Anton Alexandrov, Xiaozhong Lyu, Huu Nguyen, Xiaozhe Yao, Virginia Adams, et al. Redpajama: an open dataset for training large language models. *Advances in Neural Information Processing Systems*, 37: 116462–116492, 2024.
 - Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, Dani Yogatama, Maarten Bosma, Denny Zhou, Donald Metzler, et al. Emergent abilities of large language models. *arXiv preprint arXiv:2206.07682*, 2022.
 - Sang Michael Xie, Shibani Santurkar, Tengyu Ma, and Percy S Liang. Data selection for language models via importance resampling. *Advances in Neural Information Processing Systems*, 36: 34201–34227, 2023.
 - Liwen Zhang, Weige Cai, Zhaowei Liu, Zhi Yang, Wei Dai, Yujie Liao, Qianru Qin, Yifei Li, Xingyu Liu, Zhiqiang Liu, et al. Fineval: A chinese financial domain knowledge evaluation benchmark for large language models. *arXiv preprint arXiv:2308.09975*, 2023.
 - Qinkai Zheng, Xiao Xia, Xu Zou, Yuxiao Dong, Shan Wang, Yufei Xue, Zihan Wang, Lei Shen, Andi Wang, Yang Li, Teng Su, Zhilin Yang, and Jie Tang. Codegeex: A pre-trained model for code generation with multilingual benchmarking on humaneval-x. In *Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining*, pp. 5673–5684, 2023.
 - Jeffrey Zhou, Tianjian Lu, Swaroop Mishra, Siddhartha Brahma, Sujoy Basu, Yi Luan, Denny Zhou, and Le Hou. Instruction-following evaluation for large language models. *arXiv preprint* arXiv:2311.07911, 2023.
 - Yuxuan Zhu, Tengjun Jin, Yada Pruksachatkun, Andy Zhang, Shu Liu, Sasha Cui, Sayash Kapoor, Shayne Longpre, Kevin Meng, Rebecca Weiss, et al. Establishing best practices for building rigorous agentic benchmarks. *arXiv preprint arXiv:2507.02825*, 2025.
 - Hui Zou and Trevor Hastie. Regularization and variable selection via the elastic net. *Journal of the Royal Statistical Society Series B: Statistical Methodology*, 67(2):301–320, 2005.

A APPENDIX

864

865 866

867

868

870 871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

889 890

891

892

893

894

895

896

897

898

899

900

901

902

903

904 905

906 907

908

909

910

911

912

913

914

915

916

917

We will complete the appendix to include the results in our rebuttal in the camera-ready version of the paper.

A.1 RELATED LITERATURE

Benchmark Categorization and Overlap: Benchmarks are central to model evaluation. Two simple metrics capture their utility: signal, a benchmark's ability to reliably distinguish better models from worse ones, and noise, a benchmark's sensitivity to randomness (Heineman et al., 2025). Recently, researchers have begun to ask how comparable benchmarks with similar intent actually are. This is commonly studied through Benchmark Agreement Testing (BAT), where new benchmarks are validated against established ones using agreement metrics (e.g., rank correlation) (Perlitz et al., 2024). Such analyses have led to concerns that the community may be producing too many benchmarks. For example, Liu et al. (Liu et al., 2021) examined agreement across multiple QA benchmarks and concluded that because agreement was high, additional QA benchmarks were unnecessary. Beyond statistical agreement, some recent works have attempted to qualitatively interpret and categorize benchmarks - for example, as testing logical reasoning or commonsense reasoning - though often without running agreement tests either within or across these categories (Ni et al., 2025). Recent human-curated benchmarks, such as "humanity's last exam", explicitly aim to mitigate saturation (Phan et al., 2025), while our work provides a mechanistic explanatory account of why existing benchmarks saturate and overlap in the first place. Another emerging line of inquiry asks what capabilities are still missing from current benchmark suites. Miller and Tang (Miller & Tang, 2025), for instance, examine how people commonly use LLMs for summarization, technical assistance, reviewing work, data structuring, generation, and information retrieval, and assess the extent to which existing benchmarks cover these capabilities. Their findings reveal significant gaps in coverage of benchmarks across categories.

Signal Extraction from In-the-wild Data: A growing body of work investigates how information extracted from in-the-wild corpora can inform data selection and model evaluation, even building benchmarks automatically. A central insight is that LLM losses on in-the-wild texts are often correlated with downstream benchmark performance, suggesting that simple loss-performance correlation coefficients can be effective signals for identifying high-quality pretraining data from in-thewild corpus (Thrush et al., 2025; Hoffmann et al., 2022). Validation loss is thus frequently used as a proxy for model generalization (Kaplan et al., 2020; Hoffmann et al., 2022; Wei et al., 2022), and with more recent evidence showing that such correlations persist across architectures and training settings (Poli et al., 2023). One line of research focuses on efficient, low-cost methods for understanding and filtering signals, for instance lightweight approaches using surface-level heuristics (n-gram overlap (Xie et al., 2023) or semantic-level similarities (Everaert & Potts, 2023)), enabling scalable filtering of massive corpora. Thrush et al., (Thrush et al., 2025) proposed an orthogonal approach for data selection centered around estimates of perplexity-benchmark correlations. We build on these ideas to construct benchmark signatures by mining predictive tokens of LLM performance from large-scale in-the-wild corpora, in order to address challenges in meta-evaluation - the evaluation of LLM evaluations, e.g., how overlapping they are.

A.2 COMPARISONS BETWEEN TOKEN-, CHUNK-, AND DOCUMENT-LEVEL PERPLEXITY

From fine to coarse granularity, we consider token-, chunk-, and document-level perplexities. At the **document level**, we evaluate the model on an entire document and take the mean across all text chunks that fit within the model's context window (part of the document). At the **chunk level**, we split documents into fixed-length windows (30 pieces, using spaces as separators) and compute perplexity as the average over all tokens within each window. At the **token level**—the finest granularity with the least inductive bias—we use token-wise perplexities from documents to capture the model's intrinsic uncertainty. Concretely, we form a window by taking the target token with its up-to-30 preceding pieces (using spaces as separators) as context, then record only the last token's perplexity as the feature. This ensures the token is conditioned on its preceding context rather than treated in isolation. As shown in Table 1, the *token* level exhibits the greatest standard deviation and interquartile range, as well as more pronounced extreme gaps in majority cases compared to the *chunk* and *doc* levels. This wider dispersion indicates that extreme values are more visible and significant at

the token level, making it a natural choice for feature selection. Token-level signatures balance the strongest predictive power (both positive and negative relations) of highly informative tokens, and they exhibit high variance of predictive power, as captured by the deviations. By focusing on the token level, we are able to highlight more prominent signals, whereas aggregation at the chunk or document level tends to smooth out these extremes.

Benchmark	Level	Std	IQR	Max-Q99	Q01-Min	R_{adj}^2
Gsm8k	Chunk	30.30	44.63	43.37	36.63	0.903
Gsm8k	Doc	19.39	26.50	23.25	18.75	0.826
Gsm8k	Token	36.53	54.11	40.63	27.37	0.927
Mbpp	Chunk	29.83	43.05	87.62	27.05	0.849
Mbpp	Doc	14.49	18.78	32.44	8.67	0.667
Mbpp	Token	36.76	50.60	39.60	39.20	0.885
Mmlu	Chunk	29.31	41.18	64.00	30.36	0.551
Mmlu	Doc	18.11	27.68	35.16	9.68	0.185
Mmlu	Token	38.05	51.90	52.00	42.29	0.454
Truthfulqa	Chunk	30.58	41.80	48.00	29.20	0.414
Truthfulqa	Doc	17.67	22.75	25.00	13.00	0.208
Truthfulqa	Token	36.57	53.00	49.20	35.40	0.505

Table 1: Summary of Thrush coefficient distributions across four benchmarks. The columns report standard deviation (Std), interquartile range (IQR), and tail gaps of Max-Q99 and Q01-Min, which are defined as the distance from the maximum to the 99th percentile (Max-99th) and from the 1st percentile to the minimum (1st-Min). Adjusted Coefficient of Determination ($\mathbf{R_{adj}^2}$) is extracted from the actual fit of the linear model across different granularities. Across 20 targets (5 measures \times 4 benchmarks), token-level values achieved 15 wins. For the five losses, chunk-level statistics perform slightly better. This is because chunk-level distributions contain more outliers, meaning that the 1st and 99th percentile values can be extremely low or high (where they win), while the standard deviation is not as pronounced as that in the token-level case. We thus mainly rely on Std and IQR for the final selection. Note that our framework is conceptually extendable to chunk-level and document-level measures. Token-level measures also introduce the least inductive bias (minimal structural assumptions and segmentation artifacts) while offering the highest granularity and more faithful representation of model uncertainty.

A.3 CONDITIONS FOR SURE INDEPENDENCE SCREENING (SIS)

Sure Independence Screening (SIS) is a powerful statistical tool for feature selection in ultra-high dimensional settings, offering a "sure screening property" that guarantees the retention of truly informative features with high probability under specific conditions (Fan & Lv, 2008). In this section, we elaborate on how the key theoretical assumptions underlying SIS are plausibly met within our problem context of mining benchmark signatures from token-level perplexities.

- 1. **Ultra-High Dimensionality:** Our problem inherently operates in an ultra-high dimensional regime, where the number of "in-the-wild" tokens (d, scaling to billions) vastly exceeds the number of language models (m, typically in the tens). Specifically, we have $\log(d) > m$, which far exceeds the standard d > m high-dimensional definition. This extreme disparity makes full multivariate regression computationally intractable, underscoring the necessity of an efficient screening step like the one we employ.
- 2. **Sparsity:** The "Sparsity" assumption (our [A1]) posits that only a small fraction of the *d* tokens are truly informative for predicting LLM benchmark performance. Our empirical observations of the correlation coefficient distributions (e.g., Figure 3) directly support this. The distributions show a strong concentration around zero, indicating that most tokens have little to no marginal predictive power. The presence of thin but distinct tails also suggests that a small subset of tokens exhibits strong correlations, aligning with the idea that specific linguistic phenomena (represented by these tokens) drive performance on a given benchmark.
- 3. **Minimum Signal Strength:** SIS requires that the true predictive signals (i.e., the tokens with non-zero effects on benchmark performance) are not arbitrarily weak. In our context, this translates to these important tokens having sufficiently strong marginal correlations to stand

- out from the noise. Our use of token-level perplexities, which directly reflect an LLM's familarity of specific linguistic patterns, suggests that truly important tokens would indeed manifest as strong signals. The robust, rank-based correlation coefficients we employ (Thrush and Pre-select) are also well-suited to detect such signals, as they are less sensitive to outliers and distributional peculiarities that might obscure signals when using less robust measures.
- 4. Limited Pathological Multicollinearity: A critical condition for basic SIS is that the multicollinearity between important features and unimportant ones should not be so severe that it masks the marginal signal of truly predictive tokens (e.g., the suppressor variable scenario). While token perplexities can exhibit correlations (e.g., highly similar tokens or tokens from common linguistic constructs), it is less probable that a truly causal token's signal would be perfectly canceled out by others at a marginal level. Benchmarks typically probe specific abilities, which are likely associated with a distinct, though perhaps overlapping, set of "signature" tokens. The vast and diverse nature of "in-the-wild" tokens also means that while many tokens might be highly correlated, there are many more effectively independent ones. More importantly, the core objective of our work is to identify benchmark signatures as a specific and parsimonious set of tokens. If a token's marginal signal is entirely masked, it might suggest its contribution is highly redundant with other tokens that do have a strong marginal signal, or that its unique contribution is extremely weak in which case, its exclusion from the initial screening might not significantly harm the final signature's predictive power.

A.4 TECHNICAL DETAILS

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

989

990 991

992 993

994 995

996

997

998

999

1000

1001

1002

1003

1005

1007

1008

1010

1020

1023 1024 1025

A.4.1 SEMANTIC-LEVEL BOOTSTRAPPED SIMILARITY CALCULATION

Algorithm 2 Get Pairwise Similarity Matrix

```
Input: A list of benchmarks \mathcal{B} = \{B_1, \dots, B_n\}; Embedding model E (e.g. a sentence trans-
     former); Number of bootstrap replicates k.
Output: An n \times n similarity matrix S.
 1: n \leftarrow |\mathcal{B}|
 2: S \leftarrow an n \times n matrix initialized to zeros
 3: for i = 1 to n do
 4:
        for i = i to n do
           if i = j then
 5:
               S_{i,j} \leftarrow 1.0
 6:
 7:
            else
 8:
              s \leftarrow \text{getSimScore}(B_i, B_i, E, k) \triangleright \text{Call Algorithm 3}
 9:
               S_{i,j} \leftarrow s
               S_{j,i} \leftarrow s \triangleright \text{Matrix is symmetric}
10:
11:
           end if
12:
        end for
13: end for
14: return S
```

```
1026
           Algorithm 3 Bootstrapped Similarity Score Calculation (getSimScore)
1027
           Input: Benchmarks A and B; Embedding model E; Bootstrap replicates k.
1028
           Output: A single similarity score sim_{A,B}.
1029
             1: ▶ Determine which benchmark has a smaller size
1030
             2: if |A| < |B| then
1031
                    S \leftarrow A; L \leftarrow B \triangleright S is the smaller, L is the larger
1032
             4: else
1033
                    S \leftarrow B; L \leftarrow A
             5:
1034
             6: end if
             7: n_s \leftarrow |S| \triangleright \text{Get the size of the smaller benchmark}
1035
             8: \ell \leftarrow \operatorname{getMaxLength}(E) \triangleright \operatorname{Obtain} the maximum processing length
1036
             9: ▶ Process the smaller benchmark to get its single embedding
1037
           10: text_S \leftarrow concatenate all questions in S
1038
           11: \text{text}_S' \leftarrow \text{truncate}(\text{text}_S, \ell)
1039
           12: \operatorname{emb}_S \leftarrow \operatorname{encode}(E, \operatorname{text}_S^{\operatorname{trunc}})
1040
           13: ▶ Generate bootstrap samples from the larger benchmark
1041
           14: \mathcal{T}_L \leftarrow an empty list
           15: for b = 1 to k do
                    L' \leftarrow \text{sample}(L, n_s, \text{replace} = \text{False})
           17:
                    text_L \leftarrow concatenate all questions in L'
1045
           18:
                    \mathsf{text}_L' \leftarrow \mathsf{truncate}(\mathsf{text}_L, \ell)
           19:
                    Append text'_L to \mathcal{T}_L
1046
           20: end for
1047
           21: ▶ Batch-encode all samples and compute average similarity
1048
           22: \operatorname{embs}_L \leftarrow \operatorname{batchEncode}(E, \mathcal{T}_L)
1049
           23: similarities \leftarrow cosineSimilarity(emb<sub>S</sub>, embs<sub>L</sub>) \triangleright One-vs-many comparison
1050
           24: sim_{A,B} \leftarrow average(similarities)
1051
           25: return sim_{A,B}
1052
```

A.4.2 AIC STEPWISE FORWARD SELECTION ALGORITHM

Algorithm 4 Selecting Salient Tokens for Benchmark j

1053 1054

1055 1056

```
1057
              Input: Perplexity feature matrix P; performance vector \mathbf{y}_{:,i}; tail fraction \alpha = 0.01; tolerance \delta \geq 0
1058
              Output: Salient Token set \mathcal{T}'
1059
               1: Preselection via Thrush Correlation
               2: for \ell = 1 to d do
1061
                        \rho_{\ell} \leftarrow \text{ThrushCorr}(\mathbf{P}_{:,\ell}, \mathbf{y}_{:,j})
               3:
               4: end for
1062
               5: T^+ \leftarrow indices of the top \alpha d values of \rho_{\ell} \triangleright most positively correlated
               6: T^- \leftarrow indices of the bottom \alpha d values of \rho_{\ell} \triangleright most negatively correlated
1064
               7: T \leftarrow \text{Shuffle}(T^+ \cup T^-) \triangleright \text{candidate feature set}
               8: Forward Selection with AIC (on T)
               9: S \leftarrow \emptyset; A^* \leftarrow +\infty
              10: while T \setminus S \neq \emptyset do
1067
                        for each \ell \in (T \setminus S) do
              11:
1068
                             A(\ell) \leftarrow \mathrm{AIC}\big(\mathrm{Fit}(\mathbf{y}_{:,j} \sim \mathbf{P}_{:,\ S \cup \{\ell\}})\big)
              12:
1069
              13:
1070
              14:
                         \ell^* \leftarrow \arg\min_{\ell \in (T \setminus S)} A(\ell); \quad A_{\text{new}} \leftarrow A(\ell^*)
1071
              15:
                        if A_{\text{new}} < A^{\star} - \delta then
              16:
                            S \leftarrow S \cup \{\ell^*\}; \quad A^* \leftarrow A_{\text{new}}
              17:
                        else
              18:
                            break ▷ no further AIC improvement
1074
              19:
                        end if
1075
              20: end while
              21: \mathcal{T}'_i \leftarrow S
             22: return \mathcal{T}'_{i}
1077
```

A.5 EXPERIMENT SETUP

Overview: Our chosen benchmarks span diverse domains such as knowledge (business, humanities, social sciences, science and engineering, medicine), mathematics, coding, reasoning, language, culture and world knowledge, logic, and instruction following. We choose 32 widely-used language models (see the list below). We extract benchmark signatures from the open dataset *RedPajama* (Weber et al., 2024), which contains large-scale textual data across multiple domains, including CommonCrawl, C4, GitHub, arXiv, Books, Wikipedia, and StackExchange, used for pretraining LLMs, making it a strong source of in-the-wild data for mining benchmark signatures. We take the standard approach, using vLLM (Kwon et al., 2023) for facilitating perplexity extraction and llm-evalution-harness (Gao et al., 2024) for evaluation across benchmarks and models such that all evaluations are under the same condition.

A.5.1 EXPERIMENT WALKTHROUGH

As discussed, we measure perplexity at three granularities - token, chunk, and document levels (from fine to coarse). The segmentation procedure for each is detailed in §A.2. We ultimately focus on the *token level* because it provides the clearest view of prominent signals for the pre-filtering stage.

Preprocessing RedPajama We use the 1B-token RedPajama variant to balance scale and computational cost. For token-level segmentation, we split the corpus on whitespace into pieces. For each piece, we prefix up to the preceding 30 pieces as left context and record the *last token's* perplexity conditioned on that context. This yields an initial pool on the scale of billions of token-level contexts ($d \approx 8.45 \times 10^9$). To reduce noise or in-the-wild text, we uniformly downsample by a factor of 1/50, yielding approximately 1.69×10^7 instances.

Feature Matrix Construction Using the vLLM setup described in §A.5.4, we evaluate 32 models on the token contexts and extract token-level perplexities, forming the covariate (feature) matrix

$$\mathbf{P} \in \mathbb{R}^{32 \times 1.69 \times 10^7},$$

with rows indexed by models and columns by token instances.

Performance Matrix Construction In parallel, we compute model performance on a series of benchmarks and subfields using the lm-evaluation-harness (details in §A.5.5). Let

$$\mathbf{Y} \in \mathbb{R}^{32 \times 88}$$

denote the performance matrix (models \times benchmarks/subfields). For each benchmark B_j , the vector $\mathbf{y}_{:,j}$ is the *performance vector* for B_j across all 32 models.

Filtering with Thrush For each benchmark B_j , we compute the Thrush rank correlation between the entire feature matrix \mathbf{P} and the performance vector $\mathbf{y}_{:,j}$. This produces a distribution of Thrush scores over token features. We retain the top 1% and bottom 1% features (by score) and concatenate these extremes into a benchmark-specific subset of columns from \mathbf{P} for downstream modeling.

AIC Step-Forward Feature Selection Finally, for each benchmark B_j , we fit a multivariate linear model on the preselected features using step-forward selection with the Akaike Information Criterion (AIC) as the objective. Starting from an empty model, we iteratively add the feature that most improves AIC and stop when no further improvement is possible (tolerance = 0). The resulting selected set constitutes the most predictive in-the-wild token features for B_j . Across benchmarks, the selected set size varies but typically has ~ 30 features.

Signature and Comparison Consider two benchmark signature vectors, S_1 and S_2 , each consisting of several context pieces (30 pieces separated by spaces) plus the salient token. For each benchmark we acquire around 30 such non-overlapping salient tokens. We evaluate these signatures with 32 models, which read their respective pre-contexts and compute last-token perplexities. If the models exhibit similar levels of perplexity for both signatures, this strongly suggests that the two benchmarks align. We normalize each model's perplexity values into their z-score within the model. For each model, we then compute the mean of the z-scored perplexities for the two benchmark signatures. Finally, we calculate the Spearman correlation (ρ_s) between these two mean vectors to represent signature-level overlap.

A.5.2 DATASETS

Benchmark family	Benchmarks
mmlu	business_ethics; marketing; management; professional_accounting; high_school_european_history; jurisprudence; humanities; prehistory; professional_law; world_religions; high_school_us_history; formal_logic; high_school_world_history; international_law; logical_fallacies; moral_disputes; moral_scenarios; philosophy; anatomy; clinical_knowledge; college_medicine; human_aging; medical_genetics; nutrition; professional_medicine; virology; miscellaneous; other; abstract_algebra; astronomy; college_biology; college_chemistry; college_physics; conceptual_physics; elementary_mathematics; high_school_biology; high_school_computer_science; college_computer_science; college_mathematics; computer_security; electrical_engineering; high_school_chemistry; high_school_mathematics; high_school_physics; high_school_government_and_politics; high_school_macroeconomics; high_school_microeconomics; high_school_microeconomics; high_school_psychology; public_relations; us_foreign_policy; econometrics; human_sexuality; professional_psychology; security_studies; social_sciences; sociology
bbh	global_facts; hyperbaton; snarks; web_of_lies; word_sorting; disambiguation_qa; salient_translation_error_detection; boolean_expressions; dyck_languages; geometric_shapes; multistep_arithmetic_two; navigate; object_counting; reasoning_about_colored_objects; formal_fallacies; logical_deduction_five_objects; logical_deduction_seven_objects; logical_deduction_three_objects; penguins_in_a_table; temporal_sequences; tracking_shuffled_objects_five_objects; tracking_shuffled_objects_seven_objects; tracking_shuffled_objects_three_objects; causal_judgement; movie_recommendation; ruin_names; date_understanding; sports_understanding

Table 2: Benchmarks in MMLU and BBH.

1165	Format	Benchmarks
1166	multi-choice questions	business_ethics; marketing; management; professional_accounting;
1167		high_school_european_history; jurisprudence; humanities; prehis-
1168		tory; professional_law; world_religions; high_school_us_history; for-
1169		mal_logic; high_school_world_history; international_law; logical_fallacies;
1170		moral_disputes; moral_scenarios; philosophy; anatomy; clinical_knowledge;
1171		college_medicine; human_aging; medical_genetics; nutrition; profes-
1172		sional_medicine; virology; miscellaneous; other; abstract_algebra;
1173		astronomy; college_biology; college_chemistry; college_physics;
1174		conceptual_physics; elementary_mathematics; high_school_biology;
1175		high_school_computer_science; college_computer_science; col-
1176		lege_mathematics; computer_security; electrical_engineering;
1177		high_school_chemistry; high_school_mathematics; high_school_physics;
		high_school_statistics; machine_learning; stem; high_school_geography;
1178		high_school_government_and_politics; high_school_macroeconomics;
1179		high_school_microeconomics; high_school_psychology; public_relations;
1180		us_foreign_policy; econometrics; human_sexuality; professional_psychology;
1181		security_studies; social_sciences; sociology
1182	true or false	boolean_expressions; causal_judgement; formal_fallacies; navigate;
1183		sports_understanding; web_of_lies

Table 3: Classification of benchmarks by question format.

A.5.3 Models Used

The models we used in this study are summarized in Table 4. Each entry cites the official paper if available, otherwise the model card.

Model (HF Repository)	Citation	
meta-llama/Llama-3.1-8B-Instruct	Grattafiori et al. (2024)	
meta-llama/Llama-3.2-1B-Instruct	Grattafiori et al. (2024)	
meta-llama/Llama-3.2-3B-Instruct	Grattafiori et al. (2024)	
	, , ,	
google/gemma-3-4b-it	Team (2025a)	
google/gemma-3-12b-it	Team (2025a) Team (2025a)	
google/gemma-3-27b-it mistralai/Mistral-7B-Instruct-v0.3		
	Jiang et al. (2023)	
deepseek-ai/deepseek-llm-7b-chat	DeepSeek-AI et al. (2024)	
Qwen/Qwen3-0.6B	Team (2025b)	
Qwen/Qwen3-1.7B	Team (2025b)	
Qwen/Qwen3-4B	Team (2025b)	
Qwen/Qwen3-8B	Team (2025b)	
tiiuae/falcon-rw-1b	Penedo et al. (2023)	
Eleuther Al/pythia-1b	Biderman et al. (2023)	
EleutherAI/pythia-6.9b-v0	Biderman et al. (2023)	
Eleuther AI/pythia-12b-deduped	Biderman et al. (2023)	
mosaicml/mpt-7b-instruct	Team (2023)	
microsoft/Phi-3-mini-4k-instruct	Abdin et al. (2024a)	
microsoft/Phi-4-mini-instruct	Microsoft et al. (2025)	
microsoft/Phi-4	Abdin et al. (2024b)	
01-ai/Yi-1.5-9B-Chat	AI et al. (2025)	
01-ai/Yi-1.5-6B-Chat	AI et al. (2025)	
mistralai/Ministral-8B-Instruct-2410	Jiang et al. (2024)	
openai-community/gpt2-medium	Radford et al. (2019)	
openai-community/gpt2-large	Radford et al. (2019)	
openai-community/gpt2-xl	Radford et al. (2019)	
zai-org/chatglm3-6b	GLM et al. (2024)	
zai-org/glm-4-9b-chat-hf	GLM et al. (2024)	
zai-org/codegeex4-all-9b	Zheng et al. (2023)	
allenai/OLMo-2-1124-13B-Instruct	OLMo et al. (2024)	
allenai/OLMo-2-1124-7B-Instruct	OLMo et al. (2024)	
allenai/OLMo-2-0425-1B-Instruct	OLMo et al. (2024)	

Table 4: Models used in this study. Multiple variants may share the same citation.

A.5.4 INFERENCE WITH VLLM

We use vLLM (Kwon et al., 2023) for facilitating perplexity extraction. Specifically, we run all inference in offline mode with tensor parallelism across 2 GPUs to maximize throughput and data parallelism across 1 GPU. The model weights are cached locally to reduce repeated I/O overhead, and inference is performed in batches of prompts to further amortize the computation cost. For each sequence, we extract per-token log probabilities, from which we compute negative log-likelihood and perplexity metrics. All outputs are aggregated into parquet for downstream analysis. The GPUs we used in this computation are $2 \times \text{Nvidia A}100 \ (80\text{GB})$.

A.5.5 BENCHMARK EVALUATION AND LABELING

For benchmark evaluation we use llm-evalution-harness (Gao et al., 2024). Each benchmark involves different task formats, and we adopt the standard metrics defined in the harness to ensure comparability. For MMLU, which consists of multi-choice questions across 57 academic subjects, we report *accuracy*, i.e., the proportion of questions with correctly selected options. For MBPP, a code generation benchmark, we evaluate using pass@1, the fraction of problems solved

correctly on the first attempt, based on unit test execution. For BBH, which is a collection of heterogeneous tasks (multiple-choice, binary classification, and completion), we follow the harness in applying the canonical metric for each benchmark. We use accuracy for multiple-choice and true/false items, and exact match for sentence completions. For IFEval, which tests instruction-following, we adopt the harness's compliance accuracy, quantifying the percentage of model responses that satisfy the explicit constraints in the prompt. These heterogeneous metrics reflect the intended difficulty and modality of each benchmark, and together provide a broad view of model capability. For AbsenceBench (Fu et al., 2025), we use the average scores across three dimensions: numerical, poetry, and GitHub.

We will also add more details for benchmark categorization rules.

A.6 STATISTICAL ANALYSIS OF BENCHMARK RELATIONS

As shown in Table 5, we used a bootstrapping approach to evaluate whether the signature correlations within a benchmark category differ statistically from those across categories. For each pair of benchmarks, we computed the overlap between their signatures, which reflects how similarly the chosen set of representative LLMs are "confused" by the two benchmarks (details see Section 3.3 in the main text). Because the numbers of within-category and cross-category pairs differ, we performed 10,000 bootstrap samples to estimate the distributions and corresponding p-values. The resulting difference, expressed as a positive or negative percentile value, indicates how much larger or smaller the within-category mean correlations are compared to the mean cross-category correlation, and whether this deviation is statistically significant. Results are discussed in the main text Section 4-1.

Benchmark Category	Difference	P-value
Humanities	-46%	0.00
Reasoning	+21%	0.00
Language	-10%	0.15
Medicine	+6%	0.54
Science and Engineering	+42%	0.00
Social Science	+41%	0.00
World Knowledge	-17%	0.01
Business	+2%	0.70

Table 5: Within- and cross-category benchmark differences.

A.7 ROBUSTNESS ANALYSIS OF DESIGN, METHODS, PARAMETERS, AND CORPORA

- Design: Leave-One-Out Cross-Validation (the general response); confounds of the base ability (Response to Reviewer tBme (Part 2/2)).
- Methods: Ablation Study of Regularization Methods (the general response); Spearman correlation or mutual information for screening (Response to Reviewer MMq7 (Part 2/2)).
- Data (corpora): another in-the-wild dataset "Dolma" (Response to Reviewer tBme (Part 1/2)).
- Parameter choices: why 1% thrush filtering, etc (Response to Reviewer nELw (Part 2/3)).

A.8 SCALABILITY AND COMPUTATIONAL COST ANALYSIS

Response to Reviewer MMq7 (Part 1/2)