

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 MEMORY-EFFICIENT FINE-TUNING VIA LOW-RANK ACTIVATION COMPRESSION

Anonymous authors

Paper under double-blind review

ABSTRACT

The parameter-efficient fine-tuning paradigm has garnered significant attention with the advancement of foundation models. Although numerous methods have been proposed to reduce the number of trainable parameters, their substantial memory overhead remains a critical bottleneck that hinders practical deployment. In this paper, we observe that model activations constitute a major source of memory consumption, especially under large batch sizes and long context lengths; however, the rank of the activations remains consistently low. Motivated by this insight, we propose a memory-efficient fine-tuning approach *Low-Rank Activation Compression* (LORACT). Unlike prior work, LORACT provides a more flexible and versatile compressing strategy that can be applied online during the forward pass without the need for any calibration data. Moreover, LORACT incorporates a novel sampling-based orthogonal decomposition algorithm specifically designed for low-rank matrices, offering improved computational efficiency and a tighter error bound compared to the widely used RSVD. Experiments on both vision and language tasks demonstrate the effectiveness of LORACT. Notably, LORACT further reduces activation memory by approximately 80% in comparison with the widely adopted LoRA method, while maintaining competitive performance. The source code is available in the supplementary material.

1 INTRODUCTION

With the rapid development of foundation models, the parameter-efficient fine-tuning (PEFT) has emerged as a prevailing paradigm for adapting the models to downstream tasks (Houlsby et al., 2019; Lester et al., 2021; Li & Liang, 2021; Hu et al., 2022; Yang et al., 2024). The primary motivation of PEFT is to fine-tune foundation models using only a small set of trainable parameters. By this means, it aims to leverage minimal additional memory overhead while enhancing the adaptability to specific downstream tasks. However, despite reducing the number of trainable parameters, PEFT still incurs non-negligible memory consumption during fine-tuning, which significantly constrains its flexibility in practical scenarios (Simoulin et al., 2025; Huang et al., 2025).

In this paper, we systematically investigate the underlying reasons of the substantial memory consumption of the PEFT method. As illustrated in Figure 1, the memory costs associated with gradients and optimizer states are significantly reduced, which is owing to the reduction in the number of trainable parameters. However, the model activation memory constitutes the dominant factor of the total memory overhead, which scales approximately linearly with both batch size and context length. The substantial memory consumption is inconsistent with the original motivation of PEFT, which inevitably limits the practical deployment. Therefore, it is crucial to develop methods to advance parameter-efficient fine-tuning towards a memory-efficient process.

Prevailing memory-efficient fine-tuning methods primarily focus on the compression of gradients and optimizer states, such as Galore (Zhao et al., 2024), FLora (Hao et al., 2024), and Apollo (Zhu et al., 2024). However, these approaches are ill-suited for the PEFT setting, since PEFT already drastically reduces the number of trainable parameters, and the memory overhead from gradients and optimizer states is mostly manageable. Moreover, these methods neglect the problem of substantial activation memory. Despite some prior work has explored activation compression, these methods still suffer from multiple limitations. For instance, LoRA-FA (Zhang et al., 2023) and CompAct (Shamshoum et al., 2025) provide compression by confining the scope to specific layers, which

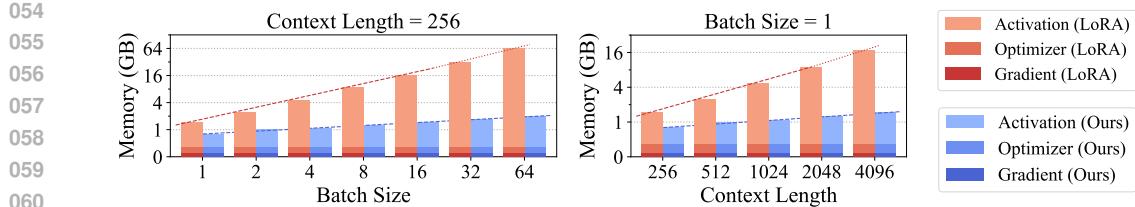


Figure 1: The additional memory cost for fine-tuning LLaMa2-7B with LoRA. The endpoints of the dashed line denote estimated results, as these configurations are infeasible on consumer-grade GPU.

may fail to address the full memory overhead. CoLA (Liu et al., 2025) and VeLoRA (Miles et al., 2024) employ sub-optimal compression algorithms that may significantly degrade performance. ESPACE (Sakr & Khailany, 2024) and SoLA (Huang et al., 2025) require additional calibration data for compression, which introduces extra storage overhead and diminishes their practical utility.

To address this critical bottleneck, we propose a novel memory-efficient fine-tuning approach named **Low-Rank Activation Compression (LORACT)**, which aims to reduce activation memory overhead while maintaining fine-tuning performance. By leveraging the inherent low-rank characteristic of model activation, LORACT employs an online compression mechanism during the forward pass to reduce the activation memory consumption, eliminating the requirement for any additional calibration data. To mitigate the computational overhead of the online compression, we introduce a novel sampling-based orthogonal decomposition algorithm that substantially enhances computational efficiency and decomposition quality. Furthermore, to facilitate the adaptability to the widely adopted Transformer-based foundation models, we design a tailored pre-norm activation compression strategy that ensures both compatibility and improved performance. To verify the effectiveness of LORACT, we conduct experiments on both language and vision tasks. The results show that LORACT consistently reduces activation memory while maintaining fine-tuning performance. Notably, by controlling the compression ratio, LORACT achieves competitive performance compared to LoRA while saving approximately 80% of the memory across all experiments.

The main contributions of this paper are summarized as follows:

- We empirically reveal the inherent low-rank nature of activations in the context of PEFT, thus validating the feasibility of activation compression.
- We propose LORACT, a flexible and versatile online activation compression strategy that can be applied to any differentiable functions and is free of any calibration data.
- To ensure computational efficiency, we introduce a novel sampling-based orthogonal decomposition algorithm that reduces computational overhead while maintaining theoretical guarantees.
- We design a tailored pre-norm compression mechanism that can be seamlessly integrated into Transformer-based models. The proposed method achieves approximately 80% of activation memory reduction compared to LoRA, while maintaining competitive performance.

2 BACKGROUND

2.1 IS PARAMETER-EFFICIENT EQUIVALENT TO MEMORY-EFFICIENT?

The parameter-efficient fine-tuning paradigm optimizes only a small subset of parameters while exhibiting remarkable performance, which has attracted considerable research interest (Houlsby et al., 2019; Hu et al., 2022; Ding et al., 2023; Han et al., 2024). The learning objective of parameter-efficient fine-tuning can be formulated as

$$L = \mathcal{L}(f(\mathbf{X}; \boldsymbol{\theta}, \boldsymbol{\theta}_0), \mathbf{Y}) \quad (1)$$

where $\boldsymbol{\theta}$ denotes the trainable parameters, $\boldsymbol{\theta}_0$ represents the fixed parameters, and $\|\boldsymbol{\theta}\|_0 \ll \|\boldsymbol{\theta}_0\|_0$. During the backward pass, the trainable parameters $\boldsymbol{\theta}$ are updated along the negative gradient direction, i.e., $\nabla_{\boldsymbol{\theta}} L$, using the backpropagation algorithm (Rumelhart et al., 1986). However, the overall memory requirement is not solely determined by the number of trainable parameters. Specifically, memory consumption during fine-tuning arises mainly from the following four components:

- *Model parameters*, which comprises both trainable parameters $\boldsymbol{\theta}$ and fixed parameters $\boldsymbol{\theta}_0$. The memory usage is related to the quantity of model parameters and storage format.

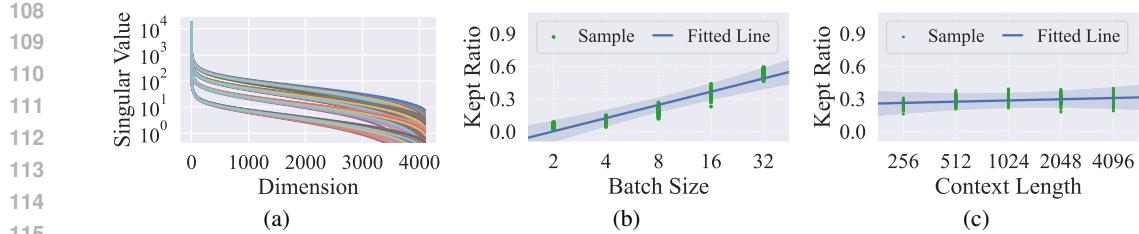


Figure 2: (a) The singular value distributions of model activations from different layers and batches. (b-c) The ratio of kept dimensions when 90% of energy is retained.

- *Gradients* of trainable parameters $\mathbf{g} = \nabla_{\theta} L$, which are stored for parameter optimization. The memory consumption of gradients is equal to that of trainable parameters.
- *Optimizer states* for improving optimization, such as SGD momentum (Sutskever et al., 2013) and Adam (Kingma & Ba, 2015). The memory usage is also related to the trainable parameters.
- *Activations* for gradient computation, which are computed during the forward pass and retained for use in the backward pass. For example, in attention mechanism (Bahdanau et al., 2015), the inputs \mathbf{Q} , \mathbf{K} , \mathbf{V} , and the attention score $\text{Softmax}(\mathbf{Q}\mathbf{K}^{\top}/\sqrt{d})$ are stored to facilitate backpropagation. Similarly, for nonlinear functions such as $\mathbf{a} = \text{Softmax}(\mathbf{x})$ and $\mathbf{a} = \text{Sigmoid}(\mathbf{x})$, the output \mathbf{a} is preserved for computing the partial derivative $\partial\mathbf{a}/\partial\mathbf{x}$. In practice, the memory of activations is dependent on the model architecture.

In parameter-efficient fine-tuning, the number of trainable parameters is significantly smaller than the total number of model parameters. As a result, the memory required to store gradients and optimizer states is substantially reduced. However, the consumption of activation memory remains non-negligible. Although freezing model weights eliminates the need to store activations for the corresponding linear layers, a considerable amount of activation memory is still required for nonlinear layers during backpropagation, such as the normalization layers, multi-head self-attention layers, and multi-layer perceptrons. Consequently, activation memory emerges as a dominant factor in overall memory consumption.

To evaluate the additional memory cost of fine-tuning, we perform a series of experiments on LLaMa2-7B (Touvron et al., 2023) using LoRA (Hu et al., 2022). The results are presented in Figure 1. Although the number of trainable parameters is substantially reduced, leading to a total memory cost of less than 1 GB for gradients and optimizer states, the activation memory remains considerably high. Moreover, the activation memory increases linearly with both batch size and context length. In some configurations, the memory demand can reach up to 64 GB, which even exceeds the total memory capacity of consumer-grade GPUs. Such considerable memory requirements make large batch sizes or context lengths infeasible in practical deployments.

2.2 IS ACTIVATION MEMORY COMPRESSIBLE?

The high activation memory overhead in parameter-efficient fine-tuning poses a significant challenge to its objective of achieving lightweight memory consumption. This naturally raises a question: *Can activation memory be effectively compressed?*

To explore this question, we first extract the activations from samples in the Alpaca dataset (Taori et al., 2023) using the LLaMa2-7B model (Touvron et al., 2023). We then analyze the singular values of these activation across different sample batches and model layers. The results illustrated in Figure 2a indicate that the singular values consistently exhibit a long-tailed distribution regardless of the source of activation. Notably, the largest singular value exceeds 10^4 , while most of the remaining values fall within the range of 10^0 to 10^2 . This suggests that the activation matrices are essentially low-rank, with only a few dimensions capturing the majority of the information, whereas the rest contribute only marginally.

To further investigate the potential of activation compression under large batch sizes or context lengths, we further analyze the characteristics of activation with increased sizes. To quantify the low-rank nature of activations, we compute the ratio of kept dimensions when 90% of energy (i.e., the sum of singular values) is retained. The results are reported in Figures 2b and 2c. For small

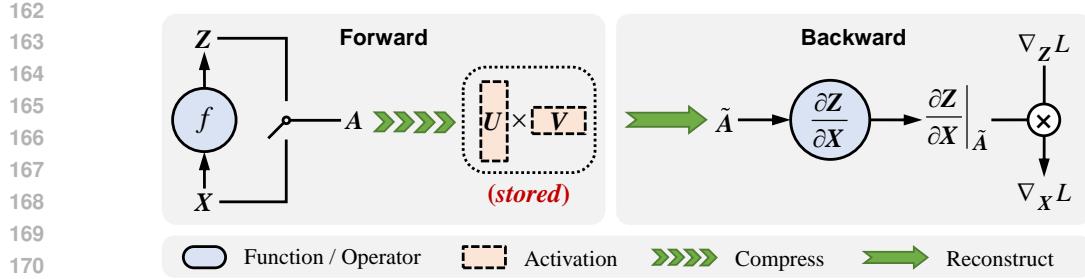


Figure 3: An illustration of LORACT.

batch sizes of 2 or 4, only about 10% of the dimensions need to be retained to preserve 90% of the total energy. Even at a large batch size of 32, the kept ratio remains around 50%, which indicates significant potential for memory reduction via activation compression. Besides, increasing the context length has only a minor effect on the rank of activations, with the kept ratio stabilizing at approximately 30%, which further supports the feasibility of compressing activation sizes.

Some prior research has also explored the potential of activation compression, which however, is either unpractical or less accurate. For example, LoRA-FA (Zhang et al., 2023) freezes the down projection and optimizes only the up projection in each LoRA layer; however, it can only reduce limited size of activations. CompAct (Shamshoum et al., 2025) projects the activation of each linear layer into a low-rank subspace, which is incompatible with the prevailing parameter-efficient fine-tuning, where the activations from linear layers are already eliminated. CoLA (Liu et al., 2025) decomposes the full-size weight matrix into low-rank matrices, which inevitably harms the original inference capability. ESPACE (Sakr & Khailany, 2024) projects the activation using a static matrix, which loses flexibility when facing diverse activations. SoLA (Huang et al., 2025) conducts low-rank decomposition approach based on an additional calibration dataset, which is unfeasible in most practical scenarios. To overcome the limitations of existing works, we propose LORACT, a flexible and versatile compressing method that facilitates memory-efficient fine-tuning.

3 PROPOSED METHOD

3.1 LORACT: LOW-RANK ACTIVATION COMPRESSION

We propose a memory-efficient fine-tuning method termed *Low-Rank Activation Compression* (LORACT). The overall framework is illustrated in Figure 3. Specifically, LORACT first calculates the function output during the forward pass, and then extracts and decomposes the activation into low-rank approximations:

$$Z = f(X) \quad (2)$$

$$U, V = \text{Decompose}(A, k) \quad (3)$$

where $A \in \mathbb{R}^{m \times n}$ is the activation for computing $\partial Z / \partial X$, which typically comes from X or Z . LORACT applies low-rank matrix decomposition on A to obtain $A \approx UV$, where $U \in \mathbb{R}^{m \times k}$ and $V \in \mathbb{R}^{k \times n}$ are two low-rank matrices. During the backward pass, LORACT first reconstructs the activation by $\tilde{A} = UV$, and then utilize \tilde{A} to calculate the partial derivative as well as the gradient:

$$\tilde{A} = \text{Reconstruct}(U, V) \quad (4)$$

$$\nabla_X L = \nabla_Z L \cdot \frac{\partial Z}{\partial X} \Big|_{\tilde{A}} \quad (5)$$

By compressing and storing only the low-rank matrices, LORACT reduces the activation memory from $\mathcal{O}(mn)$ to $\mathcal{O}((m + n)k)$, where $k \ll m, n$. Furthermore, by incorporating an online compression mechanism, LORACT adaptively compresses activations into their corresponding optimal components. This process is agnostic to the diverse properties of activations and eliminates the need for calibration data.

It is worth noting that LORACT can be applied to any differentiable functions and modules. In contrast, existing activation compression methods only consider a single type of function, such as

216 compressing linear functions (Shamshoum et al., 2025) or normalization layers (Hu et al., 2025),
 217 which substantially limits their generalizability. Moreover, prior methods (Yu & Wu, 2023; Sakr &
 218 Khailany, 2024; Liu et al., 2025) compress activations at the expense of simplifying base modules
 219 or intermediate variables, which inevitably constrains the inherent capability of the base model. In
 220 contrast, LORACT does not compress any modules during the forward process, thus ensuring the
 221 basic inference performance of the model.

222 We prove that compressing activations during the forward pass, which is a common practice in many
 223 existing approaches, will lead to an accumulation of error with respect to the learning objective.
 224

225 **Theorem 3.1.** *Suppose there are N compressed activation matrices with the i -th compression in-
 226 curring an error σ_i . Between consecutive activations there are fusion operators $\{f_i\}_{i=1}^{N-1}$, each
 227 being Lipschitz continuous with constant L_i . Let $L = \max_{i \in [N-1]} L_i$. For any input \mathbf{x} and label \mathbf{y} ,
 228 we have:*

$$229 \mathcal{L}(F(\mathbf{x}), \mathbf{y}) - \mathcal{L}(F_{\text{comp}}(\mathbf{x}), \mathbf{y}) \leq \sqrt{2} L \sum_{i=1}^N (L^{N-i} \sigma_i)$$

230 where F denotes the overall forward mapping of the model, L is the Lipschitz constant of the final
 231 linear layer, \mathcal{L} denotes the cross-entropy loss function.
 232

3.2 THE ENHANCED DECOMPOSITION ALGORITHM

234 LORACT employs an online matrix compression mechanism during the forward pass, and the ef-
 235 fectiveness and efficiency of the algorithm are largely determined by this mechanism. In general,
 236 a matrix decomposition method approximates a large matrix $\mathbf{A}_{m \times n}$ by the product of two rank- k
 237 matrices $\mathbf{U}_{m \times k}$ and $\mathbf{V}_{k \times n}$, thereby reducing the storage overhead.
 238

239 Some previous work (Hao et al., 2024) attempts to approximate \mathbf{A} by projecting its image into a
 240 lower-dimensional subspace via a random projection. Specifically, given a Gaussian matrix $\mathbf{G}_{l \times m}$,
 241 one defines $\mathbf{U} = \frac{1}{l} \mathbf{G}^\top$ and $\mathbf{V} = \mathbf{G} \mathbf{A}$, and approximates \mathbf{A} by $\frac{1}{l} \mathbf{G}^\top \mathbf{G} \mathbf{A}$. However, this approxi-
 242 mation can incur a large error and we provide a lower bound on its error.
 243

244 **Theorem 3.2.** *Let $\mathbf{G}_{l \times m}$ be a standard Gaussian matrix. The expected deviation admits the ap-
 245 proximate lower bound:*

$$246 \mathbb{E} \left\| \frac{1}{l} \mathbf{G}^\top \mathbf{G} \mathbf{A} - \mathbf{A} \right\| \geq \sqrt{\frac{m-l}{m+1}} \|\mathbf{A}\|$$

247 For better memory compression, it is typical to set $l \ll m$, in which case the lower bound is
 248 approximately $\|\mathbf{A}\|$. On the other hand, the error upper bound of Randomized SVD (RSVD) is
 249 $(1 + \sqrt{\frac{k}{l-k}}) \sigma_{k+1}(\mathbf{A}) + \frac{e\sqrt{l}}{l-k} \sqrt{\sum_{j>k} \sigma_j^2}$ (Halko et al., 2011). Consequently, we establishe that
 250 RSVD outperforms random projection by a substantial margin, suggesting that approximate SVD
 251 methods constitute a more advantageous strategy.
 252

253 *Remark 4.1.* The conclusion we obtain is highly intuitive. This is because the RSVD method employs
 254 a Gaussian matrix to randomly approximate the column space of \mathbf{A} , whereas random projection
 255 instead approximates the entire space \mathbb{R}^m . Clearly, approximating the column space of \mathbf{A} is an
 256 easier task, since \mathbf{A} may be rank-deficient or even low-rank.
 257

258 While Truncated SVD provides the optimal rank- k approximation (Eckart & Young, 1936), its com-
 259 putational cost is prohibitive at $\mathcal{O}(mn \min(m, n))$. RSVD reduce the complexity to $\mathcal{O}(mnk)$ and
 260 offer tight theoretical guarantees on approximation error, making them widely adopted in prac-
 261 tice (Halko et al., 2011). However, in large-scale models, applying RSVD to compress activations
 262 still incurs substantial computational overhead, making it difficult to meet the efficiency require-
 263 ments of LORACT. To overcome this limitation, we introduce a novel decomposition algorithm.
 264

265 The computational cost of RSVD mainly arises from three components: generating the standard
 266 Gaussian matrix, performing the QR decomposition, and executing the matrix multiplications. Not-
 267 ably, the Nyström method (Drineas & Mahoney, 2005) does not require generating a Gaussian
 268 matrix, which motivates us to propose a Sampling-Based Orthogonal Decomposition algorithm that
 269 replaces the Gaussian matrix with a uniformly sampled submatrix \mathbf{A}_k^\top , while keeping the rest of the
 270 algorithm identical to RSVD. This design eliminates the need to generate a Gaussian matrix, thereby
 271 further reducing the computational overhead and combining the strengths of Nyström and RSVD.
 272 The detailed procedure of the algorithm is shown in Algorithm 1.
 273

270 **Algorithm 1** SAMPLING-BASED ORTHOGONAL DECOMPOSITION

271 **Input:** Original matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$, expected rank k , number of iterations t .
 272 **Output:** Decomposed matrices $\mathbf{U} \in \mathbb{R}^{m \times k}$ and $\mathbf{V} \in \mathbb{R}^{k \times n}$.
 273 1: Randomly sample k rows of \mathbf{A} , denoted as $\mathbf{A}_k \in \mathbb{R}^{k \times n}$.
 274 2: Compute $\mathbf{Y} = \mathbf{A}\mathbf{A}_k^\top$.
 275 3: **for** $i = 1, \dots, t$ **do**
 276 4: Compute QR decomposition of $\mathbf{Y} = \mathbf{Q}\mathbf{R}$, where $\mathbf{Q} \in \mathbb{R}^{m \times k}$.
 277 5: Compute $\mathbf{Y} = \mathbf{A}(\mathbf{A}^\top \mathbf{Q})$.
 278 6: **end for**
 279 7: Compute QR decomposition of $\mathbf{Y} = \mathbf{Q}\mathbf{R}$, where $\mathbf{Q} \in \mathbb{R}^{m \times k}$.
 280 8: Form $\mathbf{U} = \mathbf{Q}$ and compute $\mathbf{V} = \mathbf{Q}^\top \mathbf{A}$.

283 To establish the effectiveness of our algorithm, we provide a theoretical upper bound on its approxi-
 284 mation error. Similar to RSVD, our method employs a test matrix to perform random sampling
 285 on the column space of \mathbf{A} , thereby approximately preserving it in a lower-dimensional subspace.
 286 Therefore, the classical result established by Halko et al. (2011) in Theorem 3.3 is highly relevant,
 287 for it underpins all fundamental results on SVD approximation error using test matrices.

288 **Theorem 3.3.** Suppose that $\mathbf{A} = \mathbf{U}\Sigma\mathbf{V}^\top = \mathbf{U} \begin{bmatrix} \Sigma_1 & \mathbf{0} \\ \mathbf{0} & \Sigma_2 \\ \mathbf{0} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{V}_1^\top \\ \mathbf{V}_2^\top \end{bmatrix}$ and Ω is an arbitrary test
 289 matrix, where \mathbf{V}_1 is the submatrix consisting of the first k columns of \mathbf{V} and \mathbf{V}_2 is the submatrix
 290 consisting of the remaining $n - k$ columns of \mathbf{V} . Σ_2 is the the diagonal matrix containing the last
 291 $n - k$ singular values of \mathbf{A} . We define that $\mathbf{Y} = \mathbf{A}\Omega$, $\Omega_1 = \mathbf{V}_1^\top \Omega$ and $\Omega_2 = \mathbf{V}_2^\top \Omega$.
 292

294 If Ω_1 has full row rank, we have: $\|\mathbf{A} - \mathbf{P}_Y \mathbf{A}\|^2 \leq \|\Sigma_2\|^2 + \|\Sigma_2 \Omega_2 \Omega_1^\dagger\|^2$, where Ω_1^\dagger denotes the
 295 Moore-Penrose pseudoinverse of Ω_1 , \mathbf{P}_Y denotes the orthogonal projector onto $\text{range}(\mathbf{Y})$.

296 Theorem 3.3 gives a deterministic bound for the SVD approximation error using test matrix. The
 297 proof of this theorem in Halko et al. (2011) contains certain inaccuracies; hence, we restate the
 298 theorem here and present a corrected proof in the appendix. Based on this, we further derive the
 299 theoretical upper bound of the approximation error for our proposed method.

300 **Theorem 3.4.** For a matrix $\mathbf{A}_{m \times n}$, suppose that we perform uniform random row sampling to
 301 obtain a submatrix $\mathbf{A}_l \in \mathbb{R}^{l \times n}$, and let the test matrix $\Omega := \mathbf{A}_l^\top$. Then we have the expectation
 302 bound

$$303 \mathbb{E}\|\mathbf{A} - \mathbf{Q}\mathbf{Q}^\top \mathbf{A}\| \leq (1 + C\sqrt{\frac{\mu_k k}{l}})\sigma_{k+1}(\mathbf{A}) + ke^{\frac{1}{c}}\|\mathbf{A}\|,$$

304 where C is constant and $\mu_k := \frac{m}{k} \max_{1 \leq i \leq m} \|(U_k)_{i,:}\|_2$. U_k denotes the first k columns of \mathbf{U} .

305 In summary, Theorem 3.4 shows that the error upper bound of our sampling-based method is rela-
 306 tively tight, explicitly depending on the k -coherence μ_k of \mathbf{A} through the subspace structure of U_k .
 307 This result indicates that our approach preserves the comparable theoretical approximation guaran-
 308 tees as RSVD. At the same time, by avoiding the generation of Gaussian test matrices, our method
 309 achieves reduced computational overhead without incurring additional approximation error, which
 310 meets our requirement. All the theorems are proved in detail in the Appendix.

314 3.3 ADAPTATION TO TRANSFORMER-BASED MODELS

315 Transformer-based models (Vaswani et al., 2017; Dosovitskiy et al., 2021) have been widely adopted
 316 in various scenarios, and serve as a fundamental architecture for many large-scale foundation mod-
 317 els (Touvron et al., 2023; Liu et al., 2024). Therefore, it is necessary to adapt LORACT to the
 318 prevailing Transformer-based models. One potential solution is to treat each Transformer layer as
 319 a black-box and directly compress the activation of input of each layer. However, such approach
 320 neglects the intrinsic architecture inside the layer, and may lead to redundant activation memory and
 321 unexpected estimation error.

322 To overcome this challenge, we introduce a *pre-norm activation compression* strategy, which is
 323 tailored for the fundamental pre-norm unit in each Transformer layer. Formally, a Transformer layer

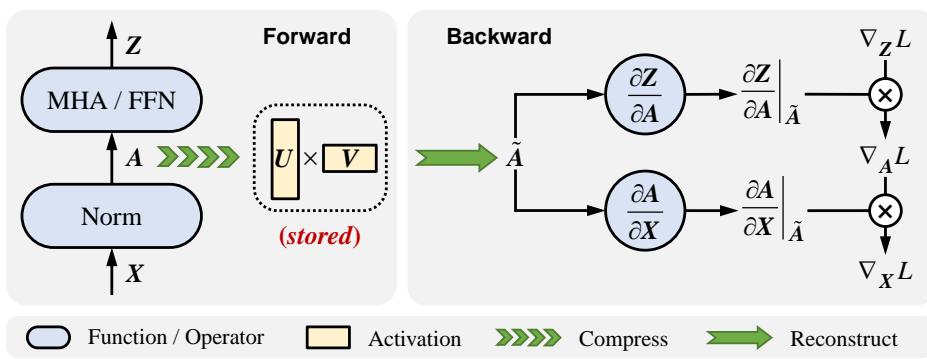


Figure 4: The adaptation of LORACT for Transformer-based models. LORACT leverages the convenience of the pre-norm structure to further save memory and computational costs.

can be expressed as

$$Z = \mathcal{F}(\text{Norm}(\mathbf{X})) + \mathbf{X} \quad (6)$$

$$\text{Norm}(\mathbf{X}) = \frac{\mathbf{X}}{\text{RMS}(\mathbf{X})} \cdot \gamma \quad (7)$$

where \mathcal{F} represents a sub-layer, which can be either a Multi-Head Attention (MHA) or a Feed-Forward Network (FFN). RMS denotes root mean square (Zhang & Sennrich, 2019), and γ is a scaling vector. This structure is referred to as a pre-norm unit (Wang et al., 2019). In conventional fine-tuning frameworks, both Norm and \mathcal{F} store their inputs as activations for gradient computation, which can lead to additional memory overhead. To mitigate this issue, we propose to store the output of normalization $\mathbf{A} = \text{Norm}(\mathbf{X})$ as the activation, and recover the partial derivatives as:

$$\bar{\mathbf{X}} = \mathbf{A}/\gamma \quad (8)$$

$$\nabla_{\bar{\mathbf{X}}} L = \nabla_{\mathbf{A}} L \cdot \gamma \quad (9)$$

$$\nabla_{\mathbf{X}} L = \frac{1}{\text{RMS}} \left(\nabla_{\bar{\mathbf{X}}} L - \bar{\mathbf{X}} \cdot \frac{1}{n} \sum_{j=1}^n [\nabla_{\bar{\mathbf{X}}} L \cdot \bar{\mathbf{X}}]_{\cdot, j} \right) \quad (10)$$

This strategy allows the Norm function and the sub-layer \mathcal{F} to share the same activation memory, since the output of Norm is exactly the input of \mathcal{F} . Note that the RMS value should also be stored for computing $\nabla_{\mathbf{X}} L$, but its size is relatively small (a one-dimensional vector) and the memory cost is negligible. Moreover, by applying a structure-agnostic mechanism for the sub-layer \mathcal{F} , we equip LORACT with the flexibility to adapt to complex sub-layers, which may undergo frequent updates with the evolution of latest foundation models.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTING

To assess the generalizability of LORACT, we evaluate its performance on both language and vision tasks. For language task, we consider instruction tuning and language modeling problems. For instruction tuning problem, we fine-tune models on the Alpaca (Taori et al., 2023) and FLAN-v2 (Longpre et al., 2023) instruction datasets. Following prior work (Dettmers et al., 2023), we subsample 50k training examples from FLAN-v2 to match the scale of Alpaca. The fine-tuned models are evaluated on the MMLU benchmark (Hendrycks et al., 2021) using the average 5-shot metric, following the settings of prior works (Dettmers et al., 2023). For language modeling problem, we fine-tune model on the WikiText-2 dataset (Merity et al., 2017) and evaluate the performance using the perplexity metric.

For vision task, we evaluate on image classification using two datasets, including CIFAR-100 (Krizhevsky et al., 2009) and Food-101 (Bossard et al., 2014), and calculate the top-1 accuracy on their corresponding test datasets.

Table 1: Evaluation scores and memory usage on Alpaca and FLAN-v2.

Methods	Alpaca			FLAN-v2		
	Score (↑)	Total Mem.	Act. Mem.	Score (↑)	Total Mem.	Act. Mem.
Base model	45.89	12.465G	-	45.89	12.465G	-
LoRA	46.18 (+0.29)	29.748G	16.847G	46.04 (+0.15)	29.748G	16.847G
LoRACT ($r = 1/2$)	46.29 (+0.40)	15.584G	2.712G	45.71 (-0.18)	15.584G	2.712G
LoRACT ($r = 1/4$)	46.41 (+0.52)	14.599G	1.728G	45.95 (+0.06)	14.599G	1.728G
LoRACT ($r = 1/8$)	46.44 (+0.55)	14.110G	1.238G	45.90 (+0.01)	14.110G	1.238G
LoRACT ($r = 1/16$)	46.60 (+0.71)	13.861G	0.989G	45.76 (-0.13)	13.861G	0.989G
LoRACT ($r = 1/32$)	46.31 (+0.42)	13.738G	0.866G	46.20 (+0.31)	13.738G	0.866G
LoRACT ($r = 1/64$)	46.29 (+0.40)	13.676G	0.805G	45.86 (-0.03)	13.676G	0.805G

Table 2: Perplexity and memory usage on WikiText-2.

Methods	Perplexity (↓)	Total Memory	Activation Memory
Base model	5.11	12.323G	-
LoRA	4.84 (-0.27)	19.967G	7.566G
LORACT ($r = 1/2$)	4.93 (-0.18)	13.441G	1.465G
LORACT ($r = 1/4$)	4.96 (-0.15)	13.172G	1.056G
LORACT ($r = 1/8$)	4.98 (-0.13)	13.047G	0.786G
LORACT ($r = 1/16$)	5.20 (+0.09)	12.984G	0.662G

Table 3: Comparison of layer-wise and pre-norm activation compression on Alpaca and FLAN-v2.

Datasets	Methods	$r = 1/2$	$r = 1/4$	$r = 1/8$	$r = 1/16$	$r = 1/32$	$r = 1/64$
Alpaca	layer-wise	46.24	46.27	46.30	46.33	46.25	46.16
	pre-norm	46.29	46.41	46.44	46.60	46.31	46.29
FLAN-v2	layer-wise	45.32	45.90	45.85	45.04	45.39	45.27
	pre-norm	45.71	45.95	45.90	45.76	46.20	45.86

Table 4: Comparison of layer-wise and pre-norm activation compression on WikiText-2.

Datasets	Methods	$r = 1/2$	$r = 1/4$	$r = 1/8$	$r = 1/16$
WikiText-2	layer-wise	4.97	4.98	5.01	5.97
	pre-norm	4.93	4.96	4.98	5.20

We fine-tune the LLaMa2-7B model (Touvron et al., 2023) for language tasks. The learning rate is set to 3×10^{-5} with a batch size of 128, and a micro batch size of 16. The context length is set to 256 for Alpaca and FLAN-v2, and 128 for WikiText-2. For vision tasks, we fine-tune the ViT-B/16 model (Dosovitskiy et al., 2021) with a learning rate of 0.1, a batch size of 2048 and a micro-batch size of 1024. For all experiments, we employ LoRA (Hu et al., 2022) modules with a bottleneck dimension of 64 and perform fine-tuning in BF16 precision. We apply gradient checkpointing to the sub-layers of each Transformer layer to automatically compute their gradients by storing only the inputs. All experiments are conducted using a single GPU with 32GB of memory.

4.2 INSTRUCTION TUNING AND LANGUAGE MODELING

We first evaluate the effectiveness of LORACT when adapted to language models. Specifically, we experiment on the instruction tuning task using Alpaca and FLAN-v2 datasets, and compare the base model, LoRA, and LORACT under varying compression ratios ($r = k/n$). Table 1 reports the evaluation metrics along with total and activation memory consumption. Across all settings, LORACT can substantially reduce the memory usage while preserving the fine-tuning performance. Particularly, the activation memory falls below 1G when setting r to less than 1/16. Notably, smaller compression ratio r can even yield better performance, such as $r = 1/16$ on Alpaca and $r = 1/32$ on FLAN-v2. This indicates that compressing activations by discarding small singular values may even facilitate the activation quality.

432
433
Table 5: Accuracy and memory usage on CIFAR-100 and Food-101.
434

435 Methods	Score (↑)	CIFAR-100		Food-101		
		Total Mem.	Act. Mem.	Score (↑)	Total Mem.	Act. Mem.
436 LoRA	88.94	28.275G	28.080G	82.54	28.275G	28.080G
437 LORACT ($r = 1/2$)	88.27 (-0.67)	5.104G	4.765G	81.68 (-0.86)	5.104G	4.765G
438 LORACT ($r = 1/4$)	87.10 (-1.84)	4.230G	3.891G	81.52 (-1.02)	4.230G	3.891G
439 LORACT ($r = 1/8$)	81.03 (-7.91)	3.793G	3.454G	78.80 (-3.74)	3.793G	3.454G
440 LORACT ($r = 1/16$)	75.97 (-12.97)	3.575G	3.236G	64.16 (-18.38)	3.575G	3.236G

441
442
Table 6: Comparison of layer-wise and pre-norm activation compression on two image datasets.
443

444 Methods	CIFAR-100				Food-101			
	1/2	1/4	1/8	1/16	1/2	1/4	1/8	1/16
446 layer-wise	88.01	84.12	61.19	7.79	81.05	80.55	75.42	4.13
447 pre-norm	88.27	87.10	81.03	75.97	81.68	81.52	78.80	64.16

450 Additionally, we conduct experiments on the language modeling task and report the results in Ta-
451 ble 2. Specially, we use the WikiText-2 dataset and compare the base model, LoRA and LORACT
452 under varying compression ratios ($r = k/n$). The results show that LORACT attains performance
453 comparable to LoRA fine-tuning while reducing the activation memory usage. It is worth noting that
454 as r increases, the corresponding perplexity generally decreases, which indicates that retaining more
455 activation information benefits language modeling performance.

456 Moreover, we compare the proposed pre-norm activation compression with the layer-wise compres-
457 sion scheme, and present the results in Tables 3 and 4. Across all settings, the pre-norm activation
458 compression strategy consistently achieves higher score. We attribute this to greater error accumu-
459 lation under layer-wise activation compression, whereas pre-norm activation compression mitigates
460 error propagation and yields more accurate gradients during the backward pass.

461 462 4.3 IMAGE CLASSIFICATION

464 To assess the generalizability of LORACT to vision tasks, we conduct experiments on image clas-
465 sification tasks including CIFAR-100 and Food-101, and report the results in Table 5. The results
466 show that LORACT substantially reduces memory usage across all settings. When setting $r = 1/2$
467 or $1/4$, LORACT can achieve performance comparable to LoRA on both the CIFAR-100 and Food-
468 101 datasets. Notably, when $r < 1/8$, accuracy tends to decline, suggesting that, for vision tasks,
469 LORACT benefits from relatively larger r to preserve sufficient information.

470 Moreover, we compare the performance of LORACT using pre-norm activation compression against
471 the layer-wise compression approach. The experimental results are reported in Table 6. Consistent
472 with the language task, the pre-norm activation compression strategy outperforms the layer-wise
473 compression strategy across all settings. These results further corroborate the effectiveness of the
474 proposed pre-norm activation compression compared with the layer-wise compression strategy.

475 476 5 CONCLUSION

478 In this paper, we propose a novel memory-efficient fine-tuning approach *Low-Rank Activation Com-
479 pression* (LORACT), which is motivated by the low-rank nature of activations. LORACT introduces
480 a flexible and versatile compression strategy that can be applied online during the forward pass, elim-
481 inating the need for calibration data. Furthermore, LORACT incorporates a novel sampling-based
482 orthogonal decomposition tailored to low-rank matrices, yielding greater computational efficiency
483 and tighter error bounds. Extensive experiments demonstrate that LORACT can achieve competitive
484 fine-tuning performance across both language and vision tasks while reducing the activation mem-
485 ory usage by approximately 80% compared to the broadly adopted LoRA method. We hope our
method can assist the community in exploring the potential of memory-efficient fine-tuning.

486 REFERENCES
487

488 Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly
489 learning to align and translate. In *The 3rd International Conference on Learning Representations*,
490 2015.

491 Lukas Bossard, Matthieu Guillaumin, and Luc Van Gool. Food-101 – mining discriminative com-
492 ponents with random forests. In *European Conference on Computer Vision*, 2014.

493

494 Edith Cohen, Rasmus Pagh, and David Woodruff. Wor and p 's: Sketches for ℓ_p -sampling without
495 replacement. In *Advances in Neural Information Processing Systems*, pp. 21092–21104, 2020.

496

497 Michael B. Cohen, Jelani Nelson, and David P. Woodruff. Optimal approximate matrix product in
498 terms of stable rank. In *43rd International Colloquium on Automata, Languages, and Program-
499 ming*, pp. 11:1–11:14, 2016.

500 Romain Cosson, Ali Jadbabaie, Anuran Makur, Amirhossein Reisizadeh, and Devavrat Shah. Low-
501 rank gradient descent. *IEEE Open Journal of Control Systems*, 2:380–395, 2023.

502

503 Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient finetuning
504 of quantized llms. *Advances in neural information processing systems*, 36:10088–10115, 2023.

505 Ning Ding, Yujia Qin, Guang Yang, Fuchao Wei, Zonghan Yang, Yusheng Su, Shengding Hu, Yulin
506 Chen, Chi-Min Chan, Weize Chen, et al. Parameter-efficient fine-tuning of large-scale pre-trained
507 language models. *Nature Machine Intelligence*, 5(3):220–235, 2023.

508

509 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
510 Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,
511 and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at
512 scale. In *The 9th International Conference on Learning Representations*, 2021.

513 Petros Drineas and Michael W. Mahoney. On the nystrom method for approximating a gram matrix
514 for improved kernel-based learning. *Journal of Machine Learning Research*, 6(72):2153–2175,
515 2005.

516

517 Carl Eckart and Gale Young. The approximation of one matrix by another of lower rank. *Psychome-
518 trika*, 1(3):211–218, 1936.

519

520 Han Guo, Philip Greengard, Eric P Xing, and Yoon Kim. Lq-lora: Low-rank plus quantized matrix
521 decomposition for efficient language model finetuning. *arXiv preprint arXiv:2311.12023*, 2023.

522

523 Nathan Halko, Per-Gunnar Martinsson, and Joel A. Tropp. Finding structure with randomness:
524 Probabilistic algorithms for constructing approximate matrix decompositions. *SIAM Review*, 53
(2):217–288, 2011.

525

526 Zeyu Han, Chao Gao, Jinyang Liu, Jeff Zhang, and Sai Qian Zhang. Parameter-efficient fine-tuning
527 for large models: A comprehensive survey. *Transactions on Machine Learning Research*, 2024.

528

529 Yongchang Hao, Yanshuai Cao, and Lili Mou. Flora: Low-rank adapters are secretly gradient
530 compressors. In *Proceedings of the 41st International Conference on Machine Learning*, pp.
17554–17571, 2024.

531

532 Haoze He, Juncheng B Li, Xuan Jiang, and Heather Miller. Smt: Fine-tuning large language models
533 with sparse matrices. In *The 13th International Conference on Learning Representations*, 2025.

534

535 Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Ja-
536 cob Steinhardt. Measuring massive multitask language understanding. In *The 9th International
537 Conference on Learning Representations*, 2021.

538

539 Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe, An-
drea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for nlp.
In *Proceedings of the 36th International Conference on Machine Learning*, pp. 2790–2799, 2019.

540 Yen-Chang Hsu, Ting Hua, Sungjen Chang, Qian Lou, Yilin Shen, and Hongxia Jin. Language
 541 model compression with weighted low-rank factorization. In *The 10th International Conference*
 542 *on Learning Representations*, 2022.

543 Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
 544 and Weizhu Chen. Lora: Low-rank adaptation of large language models. In *The 10th International*
 545 *Conference on Learning Representations*, 2022.

546 Yuxuan Hu, Xiaodong Chen, Cuiping Li, Hong Chen, and Jing Zhang. Quad: Quantiza-
 547 tion and parameter-efficient tuning of llm with activation decomposition. *arXiv preprint*
 548 *arXiv:2503.19353*, 2025.

549 Weihao Huang, Zhenyu Zhang, Yushun Zhang, Zhi-Quan Luo, Ruoyu Sun, and Zhangyang Wang.
 550 Galore-mini: Low rank gradient learning with fewer learning rates. In *NeurIPS 2024 Workshop*
 551 *on Fine-Tuning in Modern Machine Learning: Principles and Scalability*, 2024.

552 Xinhao Huang, You-Liang Huang, and Zeyi Wen. Sola: Leveraging soft activation sparsity and
 553 low-rank decomposition for large language model compression. In *Proceedings of the 39th AAAI*
 554 *Conference on Artificial Intelligence*, pp. 17494–17502, 2025.

555 Ajay Kumar Jaiswal, Yifan Wang, Lu Yin, Shiwei Liu, Runjin Chen, Jiawei Zhao, Ananth Grama,
 556 Yuandong Tian, and Zhangyang Wang. From low rank gradient subspace stabilization to low-
 557 rank weights: Observations, theories, and applications. In *Proceedings of the 42nd International*
 558 *Conference on Machine Learning*, 2025.

559 Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In *The 3rd*
 560 *International Conference on Learning Representations*, 2015.

561 Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
 562 *Master's thesis, University of Tront*, 2009.

563 Changhun Lee, Jungyu Jin, Taesu Kim, Hyungjun Kim, and Eunhyeok Park. Owq: Outlier-aware
 564 weight quantization for efficient fine-tuning and inference of large language models. In *Proceed-
 565 ings of the 38th AAAI Conference on Artificial Intelligence*, pp. 13355–13364, 2024.

566 Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient prompt
 567 tuning. *arXiv preprint arXiv:2104.08691*, 2021.

568 Muyang Li, Yujun Lin, Zhekai Zhang, Tianle Cai, Xiuyu Li, Junxian Guo, Enze Xie, Chenlin Meng,
 569 Jun-Yan Zhu, and Song Han. Svdquant: Absorbing outliers by low-rank components for 4-bit
 570 diffusion models. *arXiv preprint arXiv:2411.05007*, 2024.

571 Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation. *arXiv*
 572 *preprint arXiv:2101.00190*, 2021.

573 Yixiao Li, Yifan Yu, Qingru Zhang, Chen Liang, Pengcheng He, Weizhu Chen, and Tuo Zhao.
 574 Losparse: Structured compression of large language models based on low-rank and sparse ap-
 575 proximation. In *Proceedings of the 40th International Conference on Machine Learning*, pp.
 576 20336–20350, 2023.

577 Kaizhao Liang, Bo Liu, Lizhang Chen, and Qiang Liu. Memory-efficient llm training with online
 578 subspace descent. In *Advances in Neural Information Processing Systems*, volume 37, pp. 64412–
 579 64432, 2024.

580 Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Wei-Ming Chen, Wei-Chen Wang, Guangxuan
 581 Xiao, Xingyu Dang, Chuang Gan, and Song Han. Awq: Activation-aware weight quantization for
 582 on-device llm compression and acceleration. *Proceedings of machine learning and systems*, pp.
 583 87–100, 2024.

584 Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
 585 Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. *arXiv preprint*
 586 *arXiv:2412.19437*, 2024.

594 Ziyue Liu, Ruijie Zhang, Zhengyang Wang, Zi Yang, Paul Hovland, Bogdan Nicolae, Franck Cap-
 595 pello, and Zheng Zhang. Cola: Compute-efficient pre-training of llms via low-rank activation.
 596 *arXiv preprint arXiv:2502.10940*, 2025.

597

598 Shayne Longpre, Le Hou, Tu Vu, Albert Webson, Hyung Won Chung, Yi Tay, Denny Zhou, Quoc V
 599 Le, Barret Zoph, Jason Wei, and Adam Roberts. The flan collection: Designing data and methods
 600 for effective instruction tuning. In *Proceedings of the 40th International Conference on Machine
 601 Learning*, pp. 22631–22648, 2023.

602 Malik Magdon-Ismail. Row sampling for matrix algorithms via a non-commutative bernstein bound.
 603 *arXiv preprint arXiv:1008.0587*, 2010.

604

605 Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
 606 models. In *The 5th International Conference on Learning Representations*, 2017.

607

608 Roy Miles, Pradyumna Reddy, Ismail Elezi, and Jiankang Deng. Velora: Memory efficient training
 609 using rank-1 sub-token projections. *Advances in Neural Information Processing Systems*, 37:
 610 42292–42310, 2024.

611 Aashiq Muhamed, Oscar Li, David P. Woodruff, Mona T. Diab, and Virginia Smith. Grass: Com-
 612 pute efficient low-memory llm training with structured sparse gradients. In *Proceedings of the
 613 Conference on Empirical Methods in Natural Language Processing*, pp. 14978–15003, 2024.

614

615 David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learning representations by
 616 back-propagating errors. *Nature*, 323(6088):533–536, 1986.

617

618 Charbel Sakr and Brucek Khailany. Espace: Dimensionality reduction of activations for model
 619 compression. In *Advances in Neural Information Processing Systems*, volume 37, pp. 17489–
 620 17517, 2024.

621

622 Yara Shamshoum, Nitzan Hodos, Yuval Sieradzki, and Assaf Schuster. Compact: Compressed ac-
 623 tivations for memory-efficient llm training. In *Proceedings of Conference of the Nations of the
 624 Americas Chapter of the Association for Computational Linguistics: Human Language Technolo-
 gies*, pp. 1511–1524, 2025.

625

626 Wei Shen, Zhang Yaxiang, Minhui Huang, Mengfan Xu, Jiawei Zhang, and Cong Shen. Mlrc:
 627 Momentum low-rank compression for large language model adaptation. *arXiv preprint
 628 arXiv:2506.01897*, 2025.

629

630 Antoine Simoulin, Namyoung Park, Xiaoyi Liu, and Grey Yang. Memory-efficient fine-tuning of
 631 transformers via token selection. *arXiv preprint arXiv:2501.18824*, 2025.

632

633 Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton. On the importance of initial-
 634 ization and momentum in deep learning. In *Proceedings of the 30th International Conference on
 Machine Learning*, pp. 1139–1147, 2013.

635

636 Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy
 637 Liang, and Tatsunori B. Hashimoto. Stanford alpaca: An instruction-following llama model,
 2023.

638

639 Vithursan Thangarasa, Abhay Gupta, William Marshall, Tianda Li, Kevin Leong, Dennis DeCoste,
 640 Sean Lie, and Shreyas Saxena. Spdf: Sparse pre-training and dense fine-tuning for large language
 641 models. In *Proceedings of the 39th Conference on Uncertainty in Artificial Intelligence*, pp.
 642 2134–2146, 2023.

643

644 Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
 645 lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
 646 tion and fine-tuned chat models. *arXiv preprint arXiv:2307.09288*, 2023.

647

Joel A. Tropp et al. An introduction to matrix concentration inequalities. *Foundations and Trends
 in Machine Learning*, 8(1-2):1–230, 2015.

648 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
 649 Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In *Advances in Neural Infor-*
 650 *mation Processing Systems*, volume 30, pp. 5998–6008, 2017.

651

652 Qiang Wang, Bei Li, Tong Xiao, Jingbo Zhu, Changliang Li, Derek F Wong, and Lidia S Chao.
 653 Learning deep transformer models for machine translation. In *Proceedings of the 57th Annual*
 654 *Meeting of the Association for Computational Linguistics*, pp. 1810–1822, 2019.

655 Jinqi Xiao, Shen Sang, Tiancheng Zhi, Jing Liu, Qing Yan, Linjie Luo, and Bo Yuan. Coap:
 656 Memory-efficient training with correlation-aware gradient projection. In *Proceedings of the*
 657 *IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 30116–30126, 2025.

658

659 Xinyu Yang, Jixuan Leng, Geyang Guo, Jiawei Zhao, Ryumei Nakada, Linjun Zhang, Huaxiu Yao,
 660 and Beidi Chen. S²ft: Efficient, scalable and generalizable llm fine-tuning by structured sparsity.
 661 *Advances in Neural Information Processing Systems*, 37:59912–59947, 2024.

662

663 Hao Yu and Jianxin Wu. Compressing transformers: Features are low-rank, but weights are not! In
 664 *Proceedings of the 37th AAAI Conference on Artificial Intelligence*, pp. 11007–11015, 2023.

665

666 Zhihang Yuan, Yuzhang Shang, Yue Song, Qiang Wu, Yan Yan, and Guangyu Sun. Asvd:
 667 Activation-aware singular value decomposition for compressing large language models. *arXiv*
 668 *preprint arXiv:2312.05821*, 2023.

669

670 Biao Zhang and Rico Sennrich. Root mean square layer normalization. In *Advances in Neural*
 671 *Information Processing Systems*, volume 32, pp. 12381–12392, 2019.

672

673 Haochen Zhang, Junze Yin, Guanchu Wang, Zirui Liu, Tianyi Zhang, Anshumali Shrivastava, Lin
 674 Yang, and Vladimir Braverman. I3s: Importance sampling subspace selection for low-rank opti-
 675 mization in llm pretraining. *arXiv preprint arXiv:2502.05790*, 2025.

676

677 Longteng Zhang, Lin Zhang, Shaohuai Shi, Xiaowen Chu, and Bo Li. Lora-fa: Memory-efficient
 678 low-rank adaptation for large language models fine-tuning. *arXiv preprint arXiv:2308.03303*,
 679 2023.

680

681 Luoming Zhang, Zhenyu Lou, Yangwei Ying, Cheng Yang, and Hong Zhou. Efficient fine-tuning of
 682 large language models via a low-rank gradient estimator. *Applied Sciences*, 15:82, 2024.

683

684 Hanzhen Zhao, Xingyu Xie, Cong Fang, and Zhouchen Lin. Separate: A simple low-rank projection
 685 for gradient compression in modern large-scale model training process. In *The 13rd International*
 686 *Conference on Learning Representations*, 2025.

687

688 Jiawei Zhao, Zhenyu Zhang, Beidi Chen, Zhangyang Wang, Anima Anandkumar, and Yuandong
 689 Tian. Galore: Memory-efficient llm training by gradient low-rank projection. In *Proceedings of*
 690 *the 41st International Conference on Machine Learning*, pp. 61121–61143, 2024.

691

692 Hanqing Zhu, Zhenyu Zhang, Wenyan Cong, Xi Liu, Sem Park, Vikas Chandra, Bo Long, David Z
 693 Pan, Zhangyang Wang, and Jinwon Lee. Apollo: Sgd-like memory, adamw-level performance.
 694 *arXiv preprint arXiv:2412.05270*, 2024.

695

696

697

698

699

700

701

702 **A APPENDIX**

703 **A.1 PROOF OF THEOREM 3.1**

704 We assume that in the normal case the activation matrices are denoted by $\mathbf{A}_1, \mathbf{A}_2, \dots, \mathbf{A}_N$, while in
 705 the forward-compression case the corresponding activation matrices are denoted by $\mathbf{A}'_1, \mathbf{A}'_2, \dots, \mathbf{A}'_N$.
 706 By the given condition, we obtain $\|\mathbf{A}_1 - \mathbf{A}'_1\| \leq \sigma_1$.

707 Invoking the Lipschitz continuity of f_1 , it follows that

708
$$\|f_1(\mathbf{A}_1) - f_1(\mathbf{A}'_1)\| \leq L\|\mathbf{A}_1 - \mathbf{A}'_1\| \leq L\sigma_1$$

709 In the normal case, we have $\mathbf{A}_2 = f_1(\mathbf{A}_1)$. While in the forward-compression case, we further
 710 compress $f_1(\mathbf{A}'_1)$ to obtain \mathbf{A}'_2 . Similarly, $\|\mathbf{A}'_2 - f_1(\mathbf{A}'_1)\| \leq \sigma_2$.

711 By the triangle inequality of the norm, we obtain:

712
$$\|\mathbf{A}_2 - \mathbf{A}'_2\| \leq L\sigma_1 + \sigma_2$$

713 Proceeding in the same manner, we obtain:

714
$$\|\mathbf{A}_N - \mathbf{A}'_N\| \leq \sum_{i=1}^N (L^{N-i} \sigma_i)$$

715 Subsequently, the final activation is passed through the model's linear layer, which is necessarily a
 716 Lipschitz continuous function. We assume its Lipschitz constant is denoted by L_W .

717 Moreover, since the cross-entropy loss is globally Lipschitz continuous with respect to the logits,
 718 with Lipschitz constant $\sqrt{2}$.

719 Thus, we obtain the desired result:

720
$$\mathcal{L}(F(\mathbf{x}), \mathbf{y}) - \mathcal{L}(F_{comp}(\mathbf{x}), \mathbf{y}) \leq \sqrt{2}L_W \sum_{i=1}^N (L^{N-i} \sigma_i)$$

721 \square

722 **A.2 PROOF OF THEOREM 3.2**

723 Since \mathbf{G} is a standard Gaussian matrix, it is with high probability of full row rank. As our goal is to
 724 derive a lower bound for $\mathbb{E}\|\frac{1}{l}\mathbf{G}^T \mathbf{G} \mathbf{A} - \mathbf{A}\|$, we may assume that \mathbf{G} is indeed of full row rank. In
 725 this case, $\text{rank}(\mathbf{G}) = m - l = k$.

726 We denote by $N = \text{Null}(\mathbf{G})$ the null space of \mathbf{G} , with $\dim(N) = k$. Let \mathbf{P}_N denote the orthogonal
 727 projection onto N . Then $\forall \mathbf{x} \in \mathbb{R}^m$, we have:

728
$$\begin{aligned} \left\| \left(\frac{1}{l} \mathbf{G}^T \mathbf{G} \mathbf{A} - \mathbf{A} \right) \mathbf{x} \right\|^2 &= \left\| \left(\frac{1}{l} \mathbf{G}^T \mathbf{G} - \mathbf{I} \right) \mathbf{A} \mathbf{x} \right\|^2 \\ &= \left\| \left(\frac{1}{l} \mathbf{G}^T \mathbf{G} - \mathbf{I} \right) \mathbf{P}_N \mathbf{A} \mathbf{x} \right\|^2 + \left\| \left(\frac{1}{l} \mathbf{G}^T \mathbf{G} - \mathbf{I} \right) (\mathbf{I} - \mathbf{P}_N) \mathbf{A} \mathbf{x} \right\|^2 \\ &\geq \left\| \left(\frac{1}{l} \mathbf{G}^T \mathbf{G} - \mathbf{I} \right) \mathbf{P}_N \mathbf{A} \mathbf{x} \right\|^2 = \left\| \mathbf{P}_N \mathbf{A} \mathbf{x} \right\|^2 \end{aligned}$$

729 Since this inequality holds for all \mathbf{x} , we may take the supremum over both sides to obtain:

730
$$\left\| \left(\frac{1}{l} \mathbf{G}^T \mathbf{G} \mathbf{A} - \mathbf{A} \right) \right\| \geq \left\| \mathbf{P}_N \mathbf{A} \right\|$$

731 Let \mathbf{v}_1 , \mathbf{u}_1 , and σ_1 denote the first left singular vector, the first right singular vector, and the largest
 732 singular value of \mathbf{A} , respectively. we have:

733
$$\left\| \mathbf{P}_N \mathbf{A} \right\| = \max_{\|\mathbf{x}\|=1} \left\| \mathbf{P}_N \mathbf{A} \mathbf{x} \right\| \geq \left\| \mathbf{P}_N \mathbf{A} \mathbf{v}_1 \right\| = \left\| \mathbf{P}_N \sigma_1 \mathbf{u}_1 \right\| = \left\| \mathbf{A} \right\| \left\| \mathbf{P}_N \mathbf{u}_1 \right\|$$

734 Therefore, $\mathbb{E}\left\| \mathbf{P}_N \mathbf{A} \right\| \geq \mathbb{E}\left\| \mathbf{A} \right\| \left\| \mathbf{P}_N \mathbf{u}_1 \right\| = \left\| \mathbf{A} \right\| \mathbb{E}\left\| \mathbf{P}_N \mathbf{u}_1 \right\|$. It thus remains to analyze $\mathbb{E}\left\| \mathbf{P}_N \mathbf{u}_1 \right\|$.

735 Because \mathbf{G} is a standard Gaussian matrix independent of \mathbf{A} , N is a uniformly random k -dimensional
 736 subspace of \mathbb{R}^m on the Grassmann manifold. For any fixed unit vector \mathbf{u}_1 , the random variable

756 $\|\mathbf{P}_N \mathbf{u}_1\|^2$ has the same distribution as the squared length obtained by projecting a uniformly distributed vector on the unit sphere S^{m-1} onto a random k -dimensional subspace. A classical result
 757 states that:
 758

$$759 \quad \|\mathbf{P}_N \mathbf{u}_1\|^2 \sim \text{Beta}\left(\frac{k}{2}, \frac{m-k}{2}\right)$$

$$760$$

761 Therefore, $\mathbb{E}\|\mathbf{P}_N \mathbf{u}_1\| = \frac{\Gamma(\frac{k+1}{2})\Gamma(\frac{m}{2})}{\Gamma(\frac{k}{2})\Gamma(\frac{m+1}{2})} \geq \sqrt{\frac{m-l}{m+1}}$. So $\mathbb{E}\|\mathbf{P}_N \mathbf{A}\| \geq \sqrt{\frac{m-l}{m+1}}\mathbb{E}\|\mathbf{A}\|$. Hence, we have
 762 established the conclusion of Theorem 3.2. \square
 763

764 A.3 PROOF OF THEOREM 3.3
 765

766 For ease of exposition, we first introduce some notation:
 767

$$768 \quad \mathbf{A} = \mathbf{U}\Sigma\mathbf{V}^T = \mathbf{U} \begin{bmatrix} \Sigma_1 & \mathbf{0} \\ \mathbf{0} & \Sigma_2 \\ \mathbf{0} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{V}_1^T \\ \mathbf{V}_2^T \end{bmatrix}$$

$$769$$

$$770$$

$$771$$

$$772 \quad \mathbf{Y} = \mathbf{A}\Omega = \mathbf{Q}\mathbf{R}$$

$$773$$

774 We denote that $\Omega_1 = \mathbf{V}_1^T \Omega$, $\Omega_2 = \mathbf{V}_2^T \Omega$, then
 775

$$776 \quad \mathbf{Y} = \mathbf{U}\Sigma \begin{bmatrix} \Omega_1 \\ \Omega_2 \end{bmatrix} = \mathbf{U} \begin{bmatrix} \Sigma_1\Omega_1 \\ \Sigma_2\Omega_2 \\ \mathbf{0} \end{bmatrix}$$

$$777$$

$$778$$

779 *Proof.* We now begin the proof. We denote that $\mathbf{A}_r = \mathbf{U}^T \mathbf{A} = \begin{bmatrix} \Sigma_1 \mathbf{V}_1 \\ \Sigma_2 \mathbf{V}_2 \\ \mathbf{0} \end{bmatrix}$, $\mathbf{Y}_r = \mathbf{A}_r \Omega = \begin{bmatrix} \Sigma_1 \Omega_1 \\ \Sigma_2 \Omega_2 \\ \mathbf{0} \end{bmatrix}$.
 780
 781

782 Then it can be derived
 783

$$784 \quad \|\mathbf{A} - \mathbf{Q}\mathbf{Q}^T \mathbf{A}\| = \|(I - \mathbf{P}_Y)\mathbf{A}\| = \|\mathbf{U}^T(I - \mathbf{P}_Y)\mathbf{U}\mathbf{A}_r\| = \|(I - \mathbf{P}_{Y_r})\mathbf{A}_r\|$$

$$785$$

786 where \mathbf{P}_Y represents an orthogonal projection operator that satisfies $\text{Range}(\mathbf{P}_Y) = \text{Range}(\mathbf{Y})$.
 787

788 Firstly, we consider the simpler condition where $\text{rank}(\mathbf{A}) \leq k$. At this point, it is evident that
 789 $\Sigma_2 = \mathbf{0}$, thus we can observe:
 790

$$791 \quad \mathbf{A}_r = \begin{bmatrix} \Sigma_1 \mathbf{V}_1 \\ \mathbf{0} \\ \mathbf{0} \end{bmatrix} \quad \text{and} \quad \mathbf{Y}_r = \begin{bmatrix} \Sigma_1 \Omega_1 \\ \mathbf{0} \\ \mathbf{0} \end{bmatrix}$$

$$792$$

$$793$$

$$794$$

$$795$$

796 Since Ω_1 is of full row rank, it is evident that $\text{Range}(\Sigma_1 \mathbf{V}_1) = \text{Range}(\Sigma_1 \Omega_1)$. That is
 797 $\text{Range}(\mathbf{A}_r) = \text{Range}(\mathbf{Y}_r)$. Thus, $\text{Range}(\mathbf{A}_r) = \text{Range}(\mathbf{P}_{Y_r})$. As \mathbf{P}_{Y_r} is the orthogonal pro-
 798 jector onto $\text{Range}(\mathbf{A}_r)$, for any vector \mathbf{x} , $\mathbf{P}_{Y_r} \mathbf{A}_r \mathbf{x} = \mathbf{A}_r \mathbf{x}$. Thus, we conclude that $\mathbf{P}_{Y_r} \mathbf{A}_r = \mathbf{A}_r$ and thereby establish the conclusion of the theorem 3.3:
 799

$$800 \quad \|\mathbf{A} - \mathbf{Q}\mathbf{Q}^T \mathbf{A}\| = \|(I - \mathbf{P}_{Y_r})\mathbf{A}_r\| = 0$$

$$801$$

802 In the following, we address the more involved case where $\text{rank}(\mathbf{A}) > k$. The idea of the proof
 803 is to reformulate \mathbf{P}_{Y_r} as a matrix with a more tractable structure, thereby facilitating a bound on
 804 $\|\mathbf{A} - \mathbf{Q}\mathbf{Q}^T \mathbf{A}\|$. Since $\text{rank}(\mathbf{A}) > k$, the matrix Σ_1 is k -rank full, and as a result, $\Sigma_1 \Omega_1$ is of full
 805 row rank. Thus, we can reformulate \mathbf{P}_{Y_r} as a block matrix, with one block being the identity matrix
 806 \mathbf{I}_k , while the remaining part is considered as an interference term, which allows us to perform the
 807 scaling. Specifically: let
 808

$$809 \quad \mathbf{Z} = \mathbf{Y}_r \cdot \Omega_1^+ \Sigma_1^{-1} = \begin{bmatrix} \mathbf{I} \\ \mathbf{F} \\ \mathbf{0} \end{bmatrix}, \text{ where } \mathbf{F} = \Sigma_2 \Omega_2 \Omega_1^+ \Sigma_1^{-1}$$

$$810$$

$$811$$

$$812$$

813 It follows immediately that $\text{Range}(\mathbf{Z}) \subseteq \text{Range}(\mathbf{Y}_r)$, Consequently, $\text{Range}(\mathbf{P}_Z) \subseteq \text{Range}(\mathbf{P}_{Y_r})$.
 814 Hence, we derive the bound:
 815

$$816 \quad \|(I - \mathbf{P}_{Y_r})\mathbf{A}_r\| \leq \|(I - \mathbf{P}_Z)\mathbf{A}_r\|$$

$$817$$

$$818$$

We know that $\|\mathbf{A}\|$ equals the largest singular value of \mathbf{A} , also the square root of the largest eigenvalue of $\mathbf{A}^T \mathbf{A}$, we can further bound it as follows:

$$\|(\mathbf{I} - \mathbf{P}_Z)\mathbf{A}_r\|^2 = \lambda(\mathbf{A}_r^T(\mathbf{I} - \mathbf{P}_Z)^T(\mathbf{I} - \mathbf{P}_Z)\mathbf{A}_r) = \|\mathbf{A}_r^T(\mathbf{I} - \mathbf{P}_Z)\mathbf{A}_r\| = \|\Sigma^T(\mathbf{I} - \mathbf{P}_Z)\Sigma\|$$

The identities follow from the fact that an orthogonal projection operator is always idempotent, and the eigenvalues of a positive semi-definite matrix coincide with its singular values.

As Z has full column rank, it follows directly from the properties of orthogonal projection operators that:

$$\mathbf{P}_Z = Z(Z^T Z)^{-1} Z^T = \begin{bmatrix} (\mathbf{I} + \mathbf{F}^T \mathbf{F})^{-1} & (\mathbf{I} + \mathbf{F}^T \mathbf{F})^{-1} \mathbf{F}^T & \mathbf{0} \\ \mathbf{F}(\mathbf{I} + \mathbf{F}^T \mathbf{F})^{-1} & \mathbf{F}(\mathbf{I} + \mathbf{F}^T \mathbf{F})^{-1} \mathbf{F}^T & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} \end{bmatrix}$$

Therefore,

$$\mathbf{I} - \mathbf{P}_Z = \begin{bmatrix} \mathbf{I} - (\mathbf{I} + \mathbf{F}^T \mathbf{F})^{-1} & -(\mathbf{I} + \mathbf{F}^T \mathbf{F})^{-1} \mathbf{F}^T & \mathbf{0} \\ -\mathbf{F}(\mathbf{I} + \mathbf{F}^T \mathbf{F})^{-1} & \mathbf{I} - \mathbf{F}(\mathbf{I} + \mathbf{F}^T \mathbf{F})^{-1} \mathbf{F}^T & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{I} \end{bmatrix}$$

According to Halko et al. (2011), for any positive semidefinite matrix $M \succeq \mathbf{0}$, we have $\mathbf{I} - (M + M)^{-1} \preceq M$. Clearly $\mathbf{F}^T \mathbf{F} \succeq \mathbf{0}$, hence, $\mathbf{I} - (\mathbf{I} + \mathbf{F}^T \mathbf{F})^{-1} \preceq \mathbf{F}^T \mathbf{F}$. Moreover, since $\mathbf{I} - \mathbf{F}(\mathbf{I} + \mathbf{F}^T \mathbf{F})^{-1} \mathbf{F}^T \preceq \mathbf{I}$, we can obtain the following strong conclusion:

$$\mathbf{I} - \mathbf{P}_Z \preceq \begin{bmatrix} \mathbf{F}^T \mathbf{F} & -(\mathbf{I} + \mathbf{F}^T \mathbf{F})^{-1} \mathbf{F}^T & \mathbf{0} \\ -\mathbf{F}(\mathbf{I} + \mathbf{F}^T \mathbf{F})^{-1} & \mathbf{I} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{I} \end{bmatrix}$$

Thus,

$$\Sigma^T(\mathbf{I} - \mathbf{P}_Z)\Sigma \preceq \begin{bmatrix} \Sigma_1 \mathbf{F}^T \mathbf{F} \Sigma_1 & -\Sigma_1(\mathbf{I} + \mathbf{F}^T \mathbf{F})^{-1} \mathbf{F}^T \Sigma_2 \\ -\Sigma_2 \mathbf{F}(\mathbf{I} + \mathbf{F}^T \mathbf{F})^{-1} \Sigma_1 & \Sigma_2^2 \end{bmatrix}$$

Note that $(-\Sigma_1(\mathbf{I} + \mathbf{F}^T \mathbf{F})^{-1} \mathbf{F}^T \Sigma_2)^T = -\Sigma_2 \mathbf{F}(\mathbf{I} + \mathbf{F}^T \mathbf{F})^{-1} \Sigma_1$, therefore, according to Halko et al. (2011) we have

$$\|\Sigma^T(\mathbf{I} - \mathbf{P}_Z)\Sigma\| \leq \|\Sigma_1 \mathbf{F}^T \mathbf{F} \Sigma_1\| + \|\Sigma_2^2\| = \|\Sigma_2\|^2 + \|\mathbf{F} \Sigma_1\|^2 = \|\Sigma_2\|^2 + \|\Sigma_2 \Omega_2 \Omega_1^+\|^2$$

Combining the above arguments, we complete the proof. \square

A.4 PROOF OF THEOREM 3.4

Our method is similar to RSVD in that it employs a sampling matrix Ω to sample the row space of \mathbf{A} , approximately capturing the top- k left singular vectors of \mathbf{A} . Consequently, the result of Theorem 3.3 plays a crucial role, motivating our effort to revise and present a corrected proof of it.

Theorem 3.3 states that when Ω_1 has full column rank, the approximation error admits a deterministic upper bound:

$$\|\mathbf{A} - \mathbf{Q} \mathbf{Q}^T \mathbf{A}\|^2 \leq \|\Sigma_2\|^2 + \|\Sigma_2 \Omega_2 \Omega_1^+\|^2$$

By a simple relaxation we further obtain:

$$\|\mathbf{A} - \mathbf{Q} \mathbf{Q}^T \mathbf{A}\| \leq \|\Sigma_2\| + \|\Sigma_2 \Omega_2 \Omega_1^+\|$$

In the classical RSVD method, the sampling matrix Ω is taken to be a standard Gaussian matrix, so Ω_1 is almost surely of full row rank, the upper bound for RSVD can be directly derived by invoking the conclusion of Theorem 3.3 and applying suitable relaxations based on the properties of standard Gaussian matrices. However, in our method, Ω relies on uniform random sampling from \mathbf{A} , and thus Ω_1 is not guaranteed to be of full row rank under all realizations.

Our proof strategy is to first analyze the quantities $\|\Sigma_2 \Omega_2 \Omega_1^+\|$ and Ω_1 , and then define a favorable event accordingly. This favorable event occurs with high probability and simultaneously satisfies Theorem 3.3, while its complement occurs with low probability. We employ Theorem 3.3 to bound the expectation of $\|\mathbf{A} - \mathbf{Q} \mathbf{Q}^T \mathbf{A}\|$ when restricted to the favorable event, and use probability arguments to control the expectation restricted to the complement of the favorable event. In this way, we obtain an upper bound on $\mathbb{E}\|\mathbf{A} - \mathbf{Q} \mathbf{Q}^T \mathbf{A}\|$.

864 First, we analyze the quantities $\|\Sigma_2 \Omega_2 \Omega_1^+\|$ and Ω_1 . We define the sampling matrix as $\mathbf{R}_{l \times m}$, then

$$865 \quad \Omega = (\mathbf{R}\mathbf{A})^T = \mathbf{A}^T \mathbf{R}^T = (\mathbf{U}\Sigma\mathbf{V})^T \mathbf{R}^T = \mathbf{V}\Sigma^T \mathbf{U}^T \mathbf{S}^T$$

867 Therefore, according to the previous definitions, we have $\Omega_1 = [\Sigma_1, \mathbf{0}] \mathbf{U}^T \mathbf{R}^T$, $\Omega_2 = [\mathbf{0}, \Sigma_2, \mathbf{0}] \mathbf{U}^T \mathbf{R}^T$. Thus,

$$869 \quad \|\Sigma_2 \Omega_2 \Omega_1^+\| = \|\Sigma_2 [\mathbf{0}, \Sigma_2, \mathbf{0}] \mathbf{U}^T \mathbf{R}^T ([\Sigma_1, \mathbf{0}] \mathbf{U}^T \mathbf{R}^T)^+\|$$

870 In order to extract Σ_1^+ from $([\Sigma_1, \mathbf{0}] \mathbf{U}^T \mathbf{R}^T)^+$, we reformulate $\|\Sigma_2 \Omega_2 \Omega_1^+\|$ as follows:

$$872 \quad \|\Sigma_2 \Omega_2 \Omega_1^+\| = \|\Sigma_2 (\Sigma_2 \mathbf{U}_{n-k}^T \mathbf{R}^T) (\Sigma_1 \mathbf{U}_k^T \mathbf{R}^T)^+\| = \|\Sigma_2 (\Sigma_2 \mathbf{U}_{n-k}^T \mathbf{R}^T) (\mathbf{U}_k^T \mathbf{R}^T)^+ \Sigma_1^+\|$$

873 where \mathbf{U}_k denotes the first k rows of \mathbf{U} , and \mathbf{U}_{n-k} denotes the $(k+1)$ -th through n -th rows of \mathbf{U} .
874 By a simple rescaling, we obtain

$$875 \quad \begin{aligned} \|\Sigma_2 \Omega_2 \Omega_1^+\| &\leq \|\Sigma_2\| \|(\Sigma_2 \mathbf{U}_{n-k}^T \mathbf{R}^T) (\mathbf{U}_k^T \mathbf{R}^T)^+\| \|\Sigma_1^+\| \\ 876 &= \frac{\sigma_{k+1}(A)}{\sigma_k(A)} \|(\Sigma_2 \mathbf{U}_{n-k}^T \mathbf{R}^T) (\mathbf{U}_k^T \mathbf{R}^T)^+\| \\ 877 &\leq \|\Sigma_2 (\mathbf{U}_{n-k}^T \mathbf{R}^T) (\mathbf{U}_k^T \mathbf{R}^T)^+\| \end{aligned}$$

881 We now define the good event. For any $\epsilon \in (0, 1/2)$, we define

$$882 \quad \mathcal{G}(\epsilon) = \{\sigma_{\min}(\mathbf{U}_k^T) \geq \sqrt{1-\epsilon} \wedge \|\mathbf{U}_{n-k}^T \mathbf{R}^T\| \leq 1+\epsilon\}$$

884 Recall the notion of coherence: for an orthonormal matrix \mathbf{U} , its coherence is defined as $\mu_k :=$
885 $\frac{m}{k} \max_{1 \leq i \leq m} \|(\mathbf{U}_k)_{i,:}\|_2$.

886 According to the classical matrix Chernoff-type results (Tropp et al., 2015; Cohen et al., 2020), for
887 every $\delta \in (0, 1)$, if $l \geq C \frac{\mu_k k}{\epsilon^2} \log \frac{k}{\delta}$, then $\mathbb{P}(\mathcal{G}(\epsilon)) \geq 1 - \delta$.

888 Based on the subspace principal angle lemma and the conclusions of previous work (Magdon-Ismail,
889 2010; Cohen et al., 2016), we can further deduce that:

$$891 \quad \mathbb{E} \|(\mathbf{U}_{n-k}^T \mathbf{R}^T) (\mathbf{U}_k^T \mathbf{R}^T)^+\| \leq C \sqrt{\frac{\mu_k k}{l}}$$

894 Thus, $\mathbb{E} \|\Sigma_2 \Omega_2 \Omega_1^+\| \leq (C \sqrt{\frac{\mu_k k}{l}}) \sigma_{k+1}(A)$. $\mathbb{E} \|\mathbf{A} - \mathbf{Q}\mathbf{Q}^T \mathbf{A}\| \leq (1 + C \sqrt{\frac{\mu_k k}{l}}) \sigma_{k+1}(A)$, which is
895 the expectation of $\|\mathbf{A} - \mathbf{Q}\mathbf{Q}^T \mathbf{A}\|$ when restricted to the favorable event.

896 Finally, we derive the expectation restricted to the complement of the favorable event. It is evident:

$$898 \quad \mathbb{E} \|\mathbf{A} - \mathbf{Q}\mathbf{Q}^T \mathbf{A}\| = \mathbb{E} \|(\mathbf{I} - \mathbf{P}_Y) \mathbf{A}\| \leq \mathbb{E} \|\mathbf{A}\| = \|\mathbf{A}\| \mathbb{P}(\mathcal{G}^c) \leq \delta \|\mathbf{A}\| \leq k e^{\frac{-l\epsilon^2}{C\mu_k k}} \|\mathbf{A}\|.$$

900 Since ϵ is an arbitrary positive real number, we may set $\epsilon = \sqrt{\frac{\mu_k k}{l}}$. Substituting this choice yields:

$$902 \quad \delta \|\mathbf{A}\| \leq k e^{\frac{1}{C}} \|\mathbf{A}\|$$

903 By adding the expectation of $\|\mathbf{A} - \mathbf{Q}\mathbf{Q}^T \mathbf{A}\|$ restricted to the favorable event and the expectation
904 restricted to its complement, we obtain the desired conclusion. \square

905 A.5 RELATED WORK

908 **Parameter-Efficient Fine-Tuning** Parameter-efficient fine-tuning (PEFT) provides an effective
909 strategy for adapting pre-trained models to downstream tasks. By modifying only a small subset
910 of parameters, these methods achieve competitive performance compared with full fine-tuning. The
911 additive PEFT methods, like Adapter Tuning (Houlsby et al., 2019), Prompt Tuning (Lester et al.,
912 2021) and Prefix Tuning (Li & Liang, 2021), keep the original model weights frozen and introduce
913 new trainable components, but these approaches increase inference latency. Reparameterization-
914 based PEFT methods, such as Low-Rank Adaptation (LoRA) (Hu et al., 2022), operates by
915 constraining trainable parameters within a low-rank subspace for each weight matrix. Besides,
916 SPDF (Thangarasa et al., 2023), S²FT (Yang et al., 2024), and SMT (He et al., 2025) leverage
917 sparsity by selectively training only a subset of the model weights. However, a significant memory
918 bottleneck still remains for existing PEFT methods, as these methods do not reduce the memory re-
919 quired for storing activations, thereby limiting their practicability in resource-constrained scenarios.

918 **Parameter Quantization and Decomposition** The growing demand for computational efficiency
 919 highlights the deployment challenges posed by the large size of modern foundation models, partic-
 920 ularly on edge devices. Model quantization and decomposition serve as the principal strategies to
 921 mitigate this challenge. Existing quantization techniques generally fall into two categories: outlier-
 922 aware weight-only quantization (Lin et al., 2024; Lee et al., 2024) and joint activation-weight quan-
 923 tization (Li et al., 2024; Hu et al., 2025). Regarding model decomposition, a straightforward applica-
 924 tion of SVD often harms performance, since weight matrices tend to be high-rank (Yu & Wu, 2023).
 925 To overcome this, FWSVD (Hsu et al., 2022), ASVD (Yuan et al., 2023), and WeLore (Jaiswal
 926 et al., 2025) decompose weights into low-rank matrices by preserving output similarity based on
 927 activations. LoSparse (Li et al., 2023) aim to recover high-rank information by additionally aug-
 928 menting a low-rank component with a sparse matrix. The further approaches combine decomposi-
 929 tion with quantization, representing weights as the sum of a low-rank component and a quantized
 930 matrix (Guo et al., 2023). Besides these inference-time optimizations, QLoRA (Dettmers et al.,
 931 2023) and LQ-LoRA (Guo et al., 2023) reduce memory consumption for fine-tuning by first quan-
 932 tizing the pre-trained weights and then applying low-rank adaptation. However, the quantization and
 933 decomposition methods inevitably lead to a loss in model performance.

934 **Gradient and Optimizer State Compression** To reduce the memory consumption during train-
 935 ing processes, recent work focuses on compressing gradients and optimizer states, considering they
 936 are naturally low-rank during training, which has been studied in both theory and practice (Cos-
 937 son et al., 2023; Shen et al., 2025). Among existing approaches, GaLore (Zhao et al., 2024) and
 938 FLoRA (Hao et al., 2024) project gradients into a low-rank subspace for optimizer updates, thereby
 939 saving the memory cost. However, GaLore relies on SVD for constructing the projection matrix,
 940 which introduces non-negligible computational overhead. Moreover, the low-rank updating sub-
 941 space is discontinuous. Subsequent research aims to mitigate these issues by improving the projec-
 942 tion matrix (Muhamed et al., 2024; Zhang et al., 2025; Zhao et al., 2025; Xiao et al., 2025; Liang
 943 et al., 2024) or integrating GaLore with other optimizer-focused techniques (Huang et al., 2024;
 944 Zhu et al., 2024). Different from the projection-based approaches, LoGE (Zhang et al., 2024) uses
 945 a low-rank decomposition of weights specifically during the backward pass to compute activation
 946 gradients, thus accelerating the fine-tuning efficiency. Nevertheless, the memory consumed by acti-
 947 vations is often neglected. This is especially pronounced under the PEFT setting, where activations
 948 become the primary memory bottleneck. Therefore, existing strategies focusing solely on gradients
 949 and optimizer states are unsuitable for PEFT.

950 A.6 LIMITATIONS AND DISCUSSIONS

951 While LORACT demonstrates significant memory reduction and competitive performance across a
 952 wide range of tasks, its effectiveness is sensitive to the chosen compression ratio r . In particular, under
 953 aggressive compression settings (e.g., $r < 1/8$ for vision tasks), a noticeable decline in accuracy
 954 is observed. This suggests that the activation compression may discard some critical information
 955 under certain fine-tuning scenarios. This limitation may pose challenges for LORACT in some com-
 956 plex reasoning benchmarks, where the estimation errors may accumulate and then degrade model
 957 performance. Therefore, it is crucial to explore adaptive compression strategies with optimal r based
 958 on critical information, such as activation characteristics or task-specific requirements, and we leave
 959 this problem for future research.

960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971