
Published at NeurIPS Safe Generative AI Workshop 2024

ENSEMW2S: CAN AN ENSEMBLE OF LLMS BE
LEVERAGED TO OBTAIN A STRONGER LLM?

Aakriti Agrawal† Mucong Ding† Zora Che† Chenghao Deng†

Anirudh Satheesh† John Langford∗ Furong Huang†

ABSTRACT

How can we harness the collective capabilities of multiple Large Language Models
(LLMs) to create an even more powerful model? This question forms the foundation
of our research, where we propose an innovative approach to weak-to-strong (w2s)
generalization—a critical problem in AI alignment. Our work introduces an easy-
to-hard (e2h) framework for studying the feasibility of w2s generalization, where
weak models trained on simpler tasks collaboratively supervise stronger models
on more complex tasks. This setup mirrors real-world challenges, where direct
human supervision is limited. To achieve this, we develop a novel AdaBoost-
inspired ensemble method, demonstrating that an ensemble of weak supervisors
can enhance the performance of stronger LLMs across classification and generative
tasks on difficult QA datasets. In several cases, our ensemble approach matches the
performance of models trained on ground-truth data, establishing a new benchmark
for w2s generalization. We observe an improvement of up to 14% over existing
baselines and average improvements of 5% and 4% for binary classification and
generative tasks, respectively. This research points to a promising direction for
enhancing AI through collective supervision, especially in scenarios where labeled
data is sparse or insufficient.

1 INTRODUCTION

As AI models, particularly Large Language Models (LLMs), continue to surpass human performance
in various domains, a pressing challenge arises: how do we effectively supervise models that exceed
our capabilities? This problem, known as super-alignment, is exacerbated by the scarcity of high-
quality labeled data, which limits direct human oversight. The key question driving our work is
whether weak models, trained on simpler tasks, can be leveraged to instruct and improve stronger
models in complex settings—a problem known as weak-to-strong (w2s) generalization.

The concept of w2s generalization was introduced by Burns et al. (2023), where weak models are
used to align stronger models in the absence of sufficient ground-truth supervision. However, while
this work laid the groundwork, it left several critical challenges unresolved. (C1) Single Weak
Supervisor Limitation. Prior studies (Burns et al., 2023; Ji et al., 2024; Charikar et al., 2024; Lang
et al., 2024) tend to rely on a single weak supervisor, limiting the diversity and robustness of the
supervision. A single model’s perspective often falls short when attempting to instruct stronger
models in more complex tasks, highlighting the need for a more diversified supervisory approach.
(C2) Lack of Focus on Weak Model Enhancement. Another limitation is that previous research
(Burns et al., 2023; Ji et al., 2024; Charikar et al., 2024; Lang et al., 2024) has focused predominantly
on improving knowledge transfer from weak to strong models without addressing how to enhance the
weak models themselves. This oversight leaves weak models under-optimized, thereby restricting
their utility in complex problem settings. (C3) Overlooking Task Complexity. Furthermore, while
task complexity plays a crucial role in determining how well weak models can supervise stronger
ones, most prior work (Sun et al., 2024) has not adequately addressed this issue. For instance, Burns
et al. (2023) briefly explored the impact of task complexity using chess data, but a more structured
and systematic approach is needed to differentiate between easy and hard tasks and study their effects
on supervision.

∗Microsoft
†University of Maryland; e-mail: {agrawal5, furongh}@umd.edu

1

Published at NeurIPS Safe Generative AI Workshop 2024

To address these challenges, we propose a novel ensemble-based method designed to improve w2s
generalization. Central to our approach is an easy-to-hard (e2h) framework, which extends w2s
generalization by focusing on the progression from simpler tasks (easy) to more complex tasks (hard).
This mirrors practical scenarios, where human oversight is more feasible for simpler tasks, and weak
models must step in to guide stronger models in tackling harder tasks. In this setting, weak models
trained on easy data supervise stronger models working on more difficult problems, creating a more
pragmatic approach to w2s generalization.

To further enhance the capabilities of weak models, we develop a novel AdaBoost-inspired ensemble
method for generation tasks, in addition to classification tasks. By combining the supervision of
multiple weak models, we create a more robust and effective supervisory system for stronger LLMs.
This ensemble approach overcomes the limitations of single-supervisor systems and introduces a
mechanism to refine the weak models themselves, ensuring they can provide meaningful guidance
even in complex tasks. Our experiments demonstrate that this ensemble method not only improves
the weak models’ generalization capabilities but also enables stronger models to achieve performance
on par with oracle models trained on high-quality data.

The main contributions of this paper are the following:
(1) We introduce an ensemble method inspired by AdaBoost, combining weak LLMs to provide
stronger supervision for training stronger models. Our approach is validated through experiments
on binary classification tasks, where we observe improvements of up to 14% over baselines and an
average improvement of 7% across all model pairs, showcasing the feasibility of w2s generalization.
(2) We extend this framework to supervised fine-tuning tasks for autoregressive LLMs, where
our novel algorithm combines weak LLMs via a voting mechanism that adjusts token probabilities.
In several cases, we observe our strong model trained using weak labels to outperform the strong
model trained on ground truth, thus enabling effective supervision, even on complex tasks.
(3) We propose a practical easy-to-hard (e2h) framework for w2s generalization, where models
trained on easy data provide supervision for harder tasks. This setup emphasizes the importance
of task complexity and demonstrates significant improvements when weak models guide strong
LLMs. For our EnsemW2S-AdaBoost method, along with observing w2s-trained student models
outperforming the strong student oracle in several e2h generalization scenarios, we also observe
accuracy improvements of up to 10% over baselines and an average improvement of 3.34% and 4.4%
for Quartz and ARC data respectively.

2 WEAK-TO-STRONG GENERALIZATION VIA EASY-TO-HARD FRAMEWORK

the size of her appetite

Pseudo Label on Hard Data

PGR =

EASY DATA

the power of its appetite

the size of its nose

Prompt: Which of the following is a trait that a dog does NOT
inherit from its parents?

HARD DATA

Weak-to-Strong - Weak
Strong Ceiling - Weak

=

HARD DATA with Pseudo Labels

LOWER
BOUND

UPPER
BOUND

EASY DATA
Prompt: The gravitational force exerted by an object depends on its Answer: mass.

HARD DATA
Prompt: A ball is thrown downward onto a concrete floor and bounces upward. What
supplies the upward force that makes the ball bounce? Answer: the floor

QUARTZ DATA EXAMPLE FOR EASY vs HARD

TRAINING PHASE:

TESTING PHASE: HARD DATA

the size of its appetite

Figure 1: This figure illustrates the complete pipeline of our EnsemW2S method for easy-to-hard
generalization using w2s generalization. In a realistic scenario, weak experts are adept at answering
easy questions but must supervise strong models to tackle hard problems. In the leftmost portion,
we show that we train weak models on easy data, strong models on hard data, and transfer models
on pseudo labels generated by the weak model on hard data. Ultimately, we aim to increase
the Performance Gap Recovered (PGR). On the right, we depict how our EnsemW2S-AdaBoost
algorithm chooses the correct answer at the token level. At the bottom, we provide an example
of easy and hard data for the Quartz dataset for e2h generalization, highlighting the importance of
distinguishing between easy and hard data for realistic w2s generation.

2

Published at NeurIPS Safe Generative AI Workshop 2024

The Overall Idea. We investigate the easy-to-hard framework as a more pragmatic setting to study
the (im)possibility of w2s generalization. In this framework, weak models train on simpler tasks and
subsequently instruct strong models to tackle more complex challenges, closely mirroring real-world
conditions with limited human oversight. Figure 1 explains our idea and pipeline for easy-to-hard
generalization using w2s generalization. (Figure 6 in the Appendix provides the detailed algorithmic
and data flow). In a realistic scenario, weak experts are proficient in answering easy questions but
must supervise strong models to tackle hard problems. We train weak models on easy data and strong
models on hard data. A transfer model is trained using pseudo labels generated by the weak model
on the hard data. Ultimately, we aim to improve the Performance Gap Recovered (PGR).

2.1 THE EASY-TO-HARD FRAMEWORK

Weak Model hθ as the Teacher. A state-of-the-art LLM hθ is trained on a set of ‘easy data’ that we
currently have access to labels, i.e., (xe,ye). For example, this could be Go games, math problems,
or common sense reasoning questions that we have solutions for. This ‘weak teacher’ is trained on the
labeled easy data (xe,ye). Although we refer to this model as a “weak teacher”, it is only relatively
weak compared to the strong model we aim to obtain. Moreover, the “easy data” is only relatively
easy compared to the hard data for which we currently lack solutions. Thus, the easy data may not be
simple but slightly easier than the hard data, which are currently unsolvable using existing models.

Strong Model uϕ as the Upper Bound. As an important part of our thought experiment, we establish
an upper bound, which is not attainable in practice. Specifically, we assume access to the ground-truth
labels of the hard data (xh,yh), which is impractical but establishes an upper bound for this thought
experiment. A model uϕ, larger than the weak teacher hθ, is trained on the labeled hard data (xh,yh).
The reason why uϕ is larger than hθ is that we believe a model strong enough to solve hard questions
that no existing models can solve will require high capacity.

Weak-to-Strong Model fϕ Obtained in Practice. To test the weak-to-strong generalization, we
will train a weak-to-strong transfer model fϕ that has the same capacity as the strong model, i.e.,
the same model size as uϕ, but is not trained under the unrealistic assumption of oracle access to
hard labels. Rather, it is trained using weak teacher’s feedback. Specifically, we consider using the
pseudo-labeled (xh, hθ(x

h) as training data for training the weak-to-strong transfer model fϕ.

2.2 EASY AND HARD DATA

Dataset and Setup. We use the SciQ dataset (Welbl et al., 2017) for the binary classification task. It
is a multiple-choice science question-answer dataset and is also used as one of the NLP classification
datasets by Burns et al. (2023). We convert it into binary labels following (Burns et al., 2023). For
the supervised fine-tuning (SFT) task on the Q/A dataset, we use ARC (Clark et al., 2018) and Quartz
(Tafjord et al., 2019) datasets, which are also multiple-choice question-answer datasets, allowing
us to generate multiple-choice pseudo labels. Ding et al. (2024) provide difficulty levels for some
common mathematics and programming problems, chess puzzles, and reasoning question datasets,
which can be further utilized to expand this work. For details on how we conduct easy (xe,ye) and
hard (xh,yh) data split, refer Appendix Section E.
2.3 AN ENSEMBLE OF TEACHERS
In a practical situation, we may face a dearth of strong supervisors but have an abundance of weak
supervisors. Previous works (Burns et al., 2023; Ji et al., 2024) have used only one weak supervisor.
Our work aims to combine the power of multiple weak supervisors to provide stronger supervision
for better weak-to-strong (w2s) generalization. However, combining multiple weak supervisors to
improve w2s generalization is challenging. In the following section, we detail how to combine a
collection of weak teachers with diverse skill sets to obtain a competitive w2s model that is better
than the weak model and ideally reaches or even surpasses the strong model, i.e., the upper bound of
performance.

3 W2S GENERALIZATION VIA ADABOOST OF DIVERSE TEACHER LLMS
In this section, we introduce our method to boost experts for two tasks: a binary classification task
for an NLP dataset and a supervised fine-tuning task for multiple-choice Q/A datasets. A list of
important notions is mentioned in Appendix D for reference.

3.1 ADABOOST OF WEAK LLM TEACHERS FOR CLASSIFICATION TASKS

This simple thought experiment tests w2s generalization and is the first task tested by Burns et al.
(2023). We utilize the vanilla AdaBoost algorithm (Algorithm 2 detailed in the Appendix) to
generate answers to a hard question xh from each weak LLM teacher, i.e., generate ht

θ(x
h) for

3

Published at NeurIPS Safe Generative AI Workshop 2024

t ∈ {1, . . . , T}. A weighted “majority vote/aggregation” is implemented to generate a consensus as
the answer 1(

∑T
t=1 αth

t
θ(x

h) > 0) ∈ {0, 1}, also known as the pseudo-label, to the hard question
xh. Here, the coefficients {αt | t ∈ {1, . . . , T}} are hyperparameters learned during the AdaBoost
training. (More details in Appendix Sec F.)

3.2 IMPROVING ADABOOST FOR COMPLEX GENERATION TASKS

Challenges of Applying AdaBoost. The canonical AdaBoost algorithm assumes a sophisticated
ensemble of feedback in the form of scores. However, LLMs are generative AI models known
for their remarkable ability to generate coherent, free-form text. Applying the vanilla AdaBoost
algorithm directly to generation tasks is challenging because (1) the output is not just a single class
label but a sequence of text with no fixed length, and (2) different teachers may generate answers in
various formats, making it non-trivial to combine their responses.

EnsemW2S-AdaBoost: Our modified AdaBoost Algorithm for Multiple-Choice Q/A Task. To
address these challenges, we propose a modified multi-class AdaBoost algorithm where the number
of classes corresponds to the vocabulary size. We treat each token as an independent sample, as
shown in Algorithm 1, and apply multi-class AdaBoost (Hastie et al., 2009) with modifications,
calling our algorithm EnsemW2S-AdaBoost.

Token-Level Weighting. The first modification involves generating weights for each token within a
sentence sample. We define the initial token-sample weights vector D1(i, j)← 1

n for all i ∈ [m], j ∈
[ki], where n =

∑m
i=1 ki, ki is the number of tokens in the answer part of each sample i, m is the

total number of training data samples and j is the jth token in a particular chosen ith sample. We
update these weights, Dt(i, j), for each iteration t of EnsemW2S-AdaBoost.

Token-Level Data Sampling. We sample S′ = {(x′e
i ,y

′e
i)}mi=1 from S using token-sample weights

Dt(i, j). By sampling with respect to probability masses Dt(i, j) with repetition, we obtain a set of
n =

∑m
i=1 ki tokens to train on. However, treating these n sampled tokens as independent training

samples is very inefficient. Instead, we “assemble” the sampled tokens back into the sentences they
belong to and implement label masks to only train on the sampled tokens in each sentence. Following
this method, we can train on sampled tokens with minimal overheads.

Training and Generating New Weak Teachers. For each iteration, t, of EnsemW2S-AdaBoost we
train a new weak teacher model ht

θ on the sampled data, S′.

Incorporating Prior Term. Following Hastie et al. (2009), multi-class boosting uses an additional
log(c− 1) term, where c is the number of classes, in the calculation of the AdaBoost parameter α.
This term serves two purposes: (1) It enables the generation of weak models with accuracy between
50% and random 1

c %, which is crucial for smaller models and challenging tasks that cannot achieve
50% accuracy. (2) It ensures that α remains positive. Bayesian inference is used to provide proof of
the benefits of this prior term. Given the large vocabulary size in our case, we introduce a prior term
log(1

1−ϵpre
− 1), where ϵpre is the pre-trained model error of the chosen LLM. This term is sensible

because it represents the error before fine-tuning the LLM, effectively replacing the random error
baseline. Thus, the final α equation is: αt ← log(1−ϵt

ϵt
) + log(1

1−ϵpre
− 1).

Weighted Error Calculation. Our weighted error equation ϵt also undergoes minor changes. The
strict condition for each round of AdaBoost training is that the weighted model error (calculated by
comparing each token of each sample) must be less than the pre-training error, i.e., ϵt < ϵpre. The
weighted model error ϵt is defined as, ϵt =

∑m
i=1

∑ki

j=1 1{ht
θ(x

e
i ,y

e,j−1
i) ̸= ye,j

i }Dt(i, j) < ϵpre.

Here, ye,j−1
i is the (j−1)th ground-truth token in the answer part. The model ht

θ(x
e
i ,y

e,j−1
i) predicts

the next token and compares it with the ground-truth token yj
i .

Weight Update Equation. Our weight update equation for each token is Dt+1(i, j) ←
1
Zt
Dt(i, j)e

αt1{ht
θ(x

e
i ,y

e,j−1
i)̸=ye,j

i } where Zt is a normalization factor calculated by taking the norm

of the updated weight vector to ensure
∑m

i=1

∑ki

j=1 Dt+1(i, j) = 1.

Combining Experts to Generate Pseudo Answers for Hard Questions: To combine the outputs of
different experts trained during the various EnsemW2S-AdaBoost rounds, we scale the probability
distribution for each token generated by the model ht

θ in round t by its corresponding weight αt.
Specifically, we multiply αt by the probability distribution vector of each token. We then aggregate

4

Published at NeurIPS Safe Generative AI Workshop 2024

these weighted distributions across all rounds, normalizing the resulting vector to form a new
probability distribution for each token.

Algorithm 1 Main Algorithm: EnsemW2S-AdaBoost
Input: An “easy” Q/A training dataset with m examples: Se = {(xe

i ,y
e
i)}mi=1; a pre-trained weak

teacher model h0
θ parameterized by θ; total number of EnsemW2S-AdaBoost iterations T ; a

“hard” unlabeled (questions only) dataset with O examples: Sh = {xh
o}Oo=1

Output: Weak-to-Strong Student Model fϕ(·)
1: Initialize Token-Sample Weights: D1(i, j)← 1

n for all i ∈ [m], j ∈ [ki], where ki is the token
length in the ith easy example (i.e., ye

i = (ye,1
i ,ye,2

i ...ye,ki

i)) and n =
∑m

i=1 ki
2: Calculate pre-training error of h0

θ: ϵpre ←
∑m

i=1

∑ki

j=1 1{h0
θ(x

e
i ,y

e,j−1
i) ̸= ye,j

i }D1(i, j)
3: for t← 1 to T do
4: Sample S′ = {(x′e

i ,y
′e
i)}mi=1 from S using token-sample weights Dt(i, j)

5: Train a new weak teacher ht
θ on S′

6: Calculate ϵt =
∑m

i=1

∑ki

j=1 1{ht
θ(x

e
i ,y

e,j−1
i) ̸= ye,j

i }Dt(i, j)
7: if ϵt ≥ ϵpre then
8: break
9: Calculate αt ← log 1−ϵt

ϵt
+ log(1

1−ϵpre
− 1)

10: Update Dt+1(i, j) ← 1
Zt
Dt(i, j)e

αt1{ht
θ(x

e
i ,y

e,j−1
i) ̸=ye,j

i } for all i ∈ [m], j ∈ [ki] , where

Zt is a normalization factor such that
∑m

i=1

∑ki

j=1 Dt+1(i, j) = 1

11: for o← 1 to O do
12: for j ← 1 to ko do
13: Autoregressively generate the jth token of the “pseudo-answer” ŷh,j

o ∼ ∆vocab(
∑T

t=1 αt ·
softmax(ht

θ([x
h
o , ŷ

h,1:j−1
o]))), where ∆vocab denotes the simplex on the vocabulary

14: Train weak-to-strong student model fϕ(·) on {(xh
o , ŷ

h
o)}Oo=1

Using this aggregated distribution, we sample the final predicted token. The process is autoregressive,
where the jth token of the "pseudo-answer" is generated as

ŷh,j
o ∼ ∆vocab

(
T∑

t=1

αt · softmax
(
ht
θ

(
[xh

o , ŷ
h,1:j−1
o]

)))
(1)

where ∆vocab represents the simplex over the vocabulary.

By combining the outputs of multiple experts, each trained in different EnsemW2S-AdaBoost rounds,
the ensemble approach leverages diverse perspectives from the weak models. Each expert contributes
its learned strengths, and through weighted aggregation, we diminish the influence of models that
are less confident or less effective on certain tokens. This helps reduce variance in the generation
process, ensuring that errors from individual weak models are mitigated. The result is a more robust
pseudo-labeling system that is better aligned with the true distribution of the hard data, often yielding
a performance improvement over any single weak model.

Unlike classification, where scores are combined over a fixed set of classes, generation tasks involve
predicting sequences of tokens, where each prediction affects future ones. This makes combining
generation probabilities more complex, as errors in early token predictions can propagate throughout
the sequence. Additionally, we are aggregating probability distributions over large vocabularies,
which introduces computational overhead and potential numerical instability.

Our method addresses these challenges by using a weighted combination of expert models’ token
probabilities, ensuring that weaker predictions from individual rounds are minimized. By normalizing
the aggregated distribution for each token, we maintain valid probability distributions across the
vocabulary, effectively reducing the risk of cascading errors during autoregressive generation. This
ensemble approach results in a more stable and accurate generation process, mitigating the issues
inherent in sequence modeling.

Pseudo answer generation on multiple-choice datasets: On multiple-choice datasets, instead of
using generated tokens ŷh as pseudo answers, we can select one of the choices in the MCQ dataset

5

Published at NeurIPS Safe Generative AI Workshop 2024

GPT-2 to
GPT-2 Med

GPT-2 to
GPT-2 Large

GPT-2 to
GPT-2 XL

GPT-2 to
Qwen1.8B

GPT-2 Med to
GPT-2 Large

GPT-2 Med to
GPT-2 XL

GPT-2 Med to
Qwen1.8B

GPT-2 Large to
GPT-2 XL

GPT-2 Large to
Qwen1.8B

GPT-2 XL to
Qwen1.8B

50

60

70

80

Ac
cu

ra
cy

 (%
)

Data Separation: Random

GPT-2 to
GPT-2 Med

GPT-2 to
GPT-2 Large

GPT-2 to
GPT-2 XL

GPT-2 to
Qwen1.8B

GPT-2 Med to
GPT-2 Large

GPT-2 Med to
GPT-2 XL

GPT-2 Med to
Qwen1.8B

GPT-2 Large to
GPT-2 XL

GPT-2 Large to
Qwen1.8B

GPT-2 XL to
Qwen1.8B

30

40

50

60

70

Ac
cu

ra
cy

 (%
)

Data Separation: Easy Hard

Weak Model Performance Weak to Strong Performance (baseline) Weak to Strong Performance (ours) Strong Model Performance

Figure 2: Binary Classification Task: Top figure shows a bar plot comparing w2s generalization
of our method (grey) with a baseline (blue) from Burns et al. (2023) using accuracy values(%) for
different combinations of weak and strong model pairs for random data split (top bar-plot) and
easy-hard split(bottom bar-plot). Bottom figure shows a line plot comparing the accuracy and
performance gap recovered values (PGR). The left two figures are for random data split, while the
right two figures are for the easy-hard split to show e2h generalization.

using negative log-likelihood (NLL). Specifically, we calculate the NLL between the choices and ŷh

and select the choice with the lowest NLL. For datasets without multiple choices, we can directly use
ŷh. For ablation studies on our method refer Appendix section G.2
Train W2S Model: The strong student model, fϕ(·), is trained using pseudo answers generated for
the hard data {(xh

o , ŷ
h
o)}Oo=1. While it might be beneficial to include the labeled easy data in the

training process, we adhere to the pipeline established by Burns et al. (2023) by focusing exclusively
on the hard examples to maintain consistency.
Evaluation Metric. We used two metrics to evaluate this Q/A dataset. One is (1) Token-wise
comparison, where we compare each predicted token and average the total error, and (2) Option-
wise comparison, where we compare the negative log-likelihood (NLL) of the correct answer
completion with the NLLs of the incorrect answer completions. Accuracy represents the number of
entries where the correct answer completion has the lowest NLL among all choices.

4 EXPERIMENTAL SETUP
We test two strategies for each task. The first, following Burns et al. (2023), randomly splits the
training data into train-weak and train-strong. Train-weak is used to train the weak model. Train-
strong is used to train the strong and transfer models using pseudo labels generated using the weak
model. The second strategy splits the data into easy (train-weak) and hard (train-strong) subsets, with
the same training pipeline, offering a more realistic w2s generalization setup, as discussed in Section
1. Both strategies aim to recover the performance gap (PGR) and maximize the strong model’s
capability using an ensemble of weak models. The baseline in all experiments uses a single model for
w2s generalization, following the principle of Burns et al. (2023). More details in appendix sec G.3.

4.1 BINARY CLASSIFICATION TASK

W2S Results with Random Training Data Splits. The baseline of this method is a replication of
Burns et al. (2023). From Figure 2, by applying AdaBoost, we observe a significant improvement in
the weak model accuracy, significantly improving the PGR values. In the case of the GPT-2-medium
to GPT-2-large pair, we even see the PGR exceeding 100%, meaning that the transfer model has

6

Published at NeurIPS Safe Generative AI Workshop 2024

outperformed the strong model’s performance. This is the ambitious aim of the w2s generalization
problem, and our results show that w2s generalization is achievable.

W2S Results with Easy and Hard Training Data Splits. From Figure 2, we see that applying
AdaBoost significantly improves weak model accuracy, thereby enhancing the PGR values. However,
for this holistic e2h generalization problem, we are far from reaching the full capability of a strong
model. For very small (GPT-2) and large model pairs (GPT-2-xl and above), we do not see improve-
ment in w2s generalization despite the weak models’ accuracy improvements. Overall, we observe
an improvement of up to 14% in accuracy compared to the baseline and an average improvement of
6.52% and 3% for random and easy-hard splits, respectively.

Scaling Law: In Figure 2 (line plot), we see less PGR recovery for the Qwen-1.8B model even
though it is similar in size to GPT-2-xl. Similarly, in the bar plot, we see a drastic difference between
the oracle performance of GPT2xl and Qwen-1.8B. This is because the Qwen models series are more
capable even after being the same size. Thus, model size is not a good metric, but model capability is
a better metric for differentiating between weak and strong models.

Better metric: Figure 2 shows the accuracy and PGR plots for both random and easy-hard split. We
observe that PGR is not very informative, as it can produce extremely large or even negative values.
In the w2s experiments, large values occur because the ensemble of weak models becomes strong
enough to match or exceed a strong model, improving w2s generalization. Negative values, seen in
baseline experiments, indicate the transfer model performed worse than the weak model, often when
the strong model fails to learn and its inductive bias becomes random with pseudo-label training.
Similar patterns are seen in Figure 15 and 4. (Refer to Appendix Table 1 and 2 for more details.)

4.2 GENERATION TASK FOR MULTIPLE CHOICE DATASET

4.2.1 COMPARING WEAK MODEL’S PERFORMANCE

10

15

20

25

20

30

40

30

40

50

30

40

50

60

30

40

50

60

ARC: Easy-Hard ARC: Random

Quartz: Easy-Hard Quartz: Random

Pythia70m Pythia160m Pythia410m Pythia1b Pythia1.4b

Figure 3: Performance comparison of a single
weak model (dark color) with the combined weak
models (Lighter hue shows improvement).

In Figure 3, we compare the performance of a single
weak model (dark color) with combined weak mod-
els after 5 rounds of EnsemW2S-AdaBoost. Smaller
models show greater improvement, which is expected
since boosting works best when weak models are di-
verse. Using EnsemW2S-AdaBoost, smaller models
can diversify through the data sampling step; how-
ever, larger models tend to learn all possible informa-
tion and cannot learn something different with each
round. We use token-error here since it’s a more pre-
cise metric to measure improvement in weak models.

4.2.2 COMPARING STRONG MODEL’S
PERFORMANCE

Here, we use the multiple-choice classification accuracies to calculate the accuracy of all our plots.
We show the accuracy values of token-wise metrics in the Appendix tables.

W2S Results with Random Training Data Splits. From Figure 4 and 15, we see that w2s training
using an ensemble of experts almost consistently outperforms the baseline (single expert). Thus,
ensemble learning is beneficial. We can see the trend of accuracy and performance gap recovered for
the different model pairs in Figure 4 and 15 for Quartz and ARC datasets, respectively. For Quartz
data, we see that our PGR percentage (Figure 4) improves as the model scales up except when the
weak model is the smallest sized model (pythia-70m). This could be because the increasing capability
difference between the small and large models makes it difficult for the strong model to learn anything
from the weak. This trend is the same in the baseline as well as our EnsemW2S. But an important
thing to note is that for some cases for both ARC and Quartz data, our method generates a large PGR
percentage of >=100%, showing the ability of our w2s method to recover the performance gap.

W2S Results with Easy-Hard Training Data Splits. From Figure 4 and 15, we see that w2s training
using an ensemble of experts almost consistently outperforms the baseline (single expert). Thus
showing that ensemble learning is beneficial. Our method shows more improvement over baseline for
easy-hard data split as compared to random split. This is because of two reasons. Firstly, the power
of combining weak models using our modified AdaBoost is more useful when all of them are weak

7

Published at NeurIPS Safe Generative AI Workshop 2024

but slightly different from each other. Secondly, by easy and hard splitting, the margin between weak
and strong increases more, giving more room for improvement.

We also observe that PGR for e2h generalization is significantly lower, highlighting the complexity
of the e2h generalization problem. We hope this work could motivate researchers to build more
sophisticated methods for this more complex e2h generalization problem. Another simple observation
is as the models become more capable, both the performances (baseline and ours) increase.

Pythia
 70M to 160M

Pythia
 70M to 410M

Pythia
 70M to 1B

Pythia
 70M to 1.4B

Pythia
 70M to 2.8B

Pythia
 160M to 410M

Pythia
 160M to 1B

Pythia
 160M to 1.4B

Pythia
 160M to 2.8B

Pythia
 410M to 1B

Pythia
 410M to 1.4B

Pythia
 410M to 2.8B

Pythia
 1B to 1.4B

Pythia
 1B to 2.8B

Pythia
 1.4B to 2.8B

50

55

60

65

70

Ac
cu

ra
cy

 (%
)

Data Separation: Random

Pythia
 70M to 160M

Pythia
 70M to 410M

Pythia
 70M to 1B

Pythia
 70M to 1.4B

Pythia
 70M to 2.8B

Pythia
 160M to 410M

Pythia
 160M to 1B

Pythia
 160M to 1.4B

Pythia
 160M to 2.8B

Pythia
 410M to 1B

Pythia
 410M to 1.4B

Pythia
 410M to 2.8B

Pythia
 1B to 1.4B

Pythia
 1B to 2.8B

Pythia
 1.4B to 2.8B

45

50

55

60

65

Ac
cu

ra
cy

 (%
)

Data Separation: Easy Hard

Weak to Strong Performance (baseline) Weak to Strong Performance (ours)

Figure 4: Generation Task (Quartz Data): Top figure shows a bar plot comparing the w2s
generalization of our method (grey) with a baseline (blue) for various combinations of weak and
strong model pairs for the SFT task on Q/A data for random data split (top bar-plot) and easy-hard
split (bottom bar-plot). Bottom figure shows a line plot comparing accuracy and PGR. The left
two figures are for random data split, while the right two are for the easy-hard split to show e2h
generalization.

Note: Refer to Appendix Table 3 and 6 for detailed values of our experiments on the Quartz and
ARC datasets with random data splits. Bar plots of weak and strong (oracle) model performance for
these splits are shown in Appendix Figure 13 and 16. For easy-hard data split, the same details can
be found in Appendix Tables 4, 7 and Figure 14 and 17.

4.2.3 PERFORMANCE ON HARD DATA AFTER TRAINING ON WEAK VS STRONG DATA

Quartz ARC
Model Size Easy Split Hard Split Easy Split Hard Split
pythia-70m 49.11 50.13 21.42 25.26
pythia-160m 48.47 46.43 21.85 22.10
pythia-410m 51.50 51.50 18.01 18.95
pythia-1b 53.32 56.77 19.80 22.10
pythia-1.4b 60.34 63.78 21.42 21.42
pythia-2.8b 66.84 70.41 25.09 26.71

Figure 5: Accuracy (%) values for LLMs trained on
easy vs hard data and evaluated on hard data.

This experiment highlights the importance of
e2h with w2s generalization. In Table 5, the
Quartz dataset shows significant improvement
for larger models when trained on hard data,
indicating their better ability to understand com-
plex data. For ARC, all models improve but
with a smaller margin, suggesting less dispar-
ity between easy and hard samples in the ARC
dataset.

5 CONCLUSION

This paper aims to stimulate discussion on the more holistic problem of w2s generalization by
emphasizing e2h generalization. We develop a new AdaBoost-inspired algorithm and conduct a
thought experiment on how to combine the "wisdom of the crowd" to improve w2s generalization.
We are first to focus on the idea of making the weaks less weak using an ensemble, and test our
method for complex SFT tasks. Our method in some cases recovers full strong model capability.

8

Published at NeurIPS Safe Generative AI Workshop 2024

ACKNOWLEDGEMENTS

Agrawal, Ding, Che, Deng, Satheesh, Langford and Huang are supported by DARPA Transfer from
Imprecise and Abstract Models to Autonomous Technologies (TIAMAT) 80321, National Science
Foundation NSF-IIS-2147276 FAI, DOD-ONR-Office of Naval Research under award number
N00014-22-1-2335, DOD-AFOSR-Air Force Office of Scientific Research under award number
FA9550-23-1-0048, DOD-DARPA-Defense Advanced Research Projects Agency Guaranteeing AI
Robustness against Deception (GARD) HR00112020007, Adobe, Capital One and JP Morgan faculty
fellowships.

REFERENCES

Hritik Bansal, Arian Hosseini, Rishabh Agarwal, Vinh Q Tran, and Mehran Kazemi. Smaller, weaker,
yet better: Training llm reasoners via compute-optimal sampling. arXiv preprint arXiv:2408.16737,
2024. 11

Collin Burns, Pavel Izmailov, Jan Hendrik Kirchner, Bowen Baker, Leo Gao, Leopold Aschenbrenner,
Yining Chen, Adrien Ecoffet, Manas Joglekar, Jan Leike, et al. Weak-to-strong generalization:
Eliciting strong capabilities with weak supervision. arXiv preprint arXiv:2312.09390, 2023. 1, 3,
6, 11

Tianle Cai, Yuhong Li, Zhengyang Geng, Hongwu Peng, Jason D Lee, Deming Chen, and Tri Dao.
Medusa: Simple llm inference acceleration framework with multiple decoding heads. arXiv
preprint arXiv:2401.10774, 2024. 11

Jonathan D Chang, Kiante Brantley, Rajkumar Ramamurthy, Dipendra Misra, and Wen Sun. Learning
to generate better than your llm. arXiv preprint arXiv:2306.11816, 2023. 11

Moses Charikar, Chirag Pabbaraju, and Kirankumar Shiragur. Quantifying the gain in weak-to-strong
generalization. arXiv preprint arXiv:2405.15116, 2024. 1, 11

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv preprint arXiv:1803.05457, 2018. 3

Mucong Ding, Chenghao Deng, Jocelyn Choo, Zichu Wu, Aakriti Agrawal, Avi Schwarzschild,
Tianyi Zhou, Tom Goldstein, John Langford, Anima Anandkumar, and Furong Huang. Easy2hard-
bench: Standardized difficulty labels for profiling llm performance and generalization, 2024. URL
https://arxiv.org/abs/2409.18433. 3

Yoav Freund and Robert E Schapire. A decision-theoretic generalization of on-line learning and an
application to boosting. Journal of computer and system sciences, 55(1):119–139, 1997. 11, 13

Jianyuan Guo, Hanting Chen, Chengcheng Wang, Kai Han, Chang Xu, and Yunhe Wang. Vision
superalignment: Weak-to-strong generalization for vision foundation models. arXiv preprint
arXiv:2402.03749, 2024. 11

Peter Hase, Mohit Bansal, Peter Clark, and Sarah Wiegreffe. The unreasonable effectiveness of easy
training data for hard tasks. arXiv preprint arXiv:2401.06751, 2024. 11

Trevor Hastie, Saharon Rosset, Ji Zhu, and Hui Zou. Multi-class adaboost. Statistics and its Interface,
2(3):349–360, 2009. 4, 11

Jiaming Ji, Boyuan Chen, Hantao Lou, Donghai Hong, Borong Zhang, Xuehai Pan, Juntao Dai, and
Yaodong Yang. Aligner: Achieving efficient alignment through weak-to-strong correction. arXiv
preprint arXiv:2402.02416, 2024. 1, 3, 11

Lifeng Jin, Baolin Peng, Linfeng Song, Haitao Mi, Ye Tian, and Dong Yu. Collaborative decoding of
critical tokens for boosting factuality of large language models. arXiv preprint arXiv:2402.17982,
2024. 11

Hunter Lang, David Sontag, and Aravindan Vijayaraghavan. Theoretical analysis of weak-to-strong
generalization. arXiv preprint arXiv:2405.16043, 2024. 1, 11

9

https://arxiv.org/abs/2409.18433

Published at NeurIPS Safe Generative AI Workshop 2024

Yuejiang Liu and Alexandre Alahi. Co-supervised learning: Improving weak-to-strong generalization
with hierarchical mixture of experts. arXiv preprint arXiv:2402.15505, 2024. 11

Sidharth Mudgal, Jong Lee, Harish Ganapathy, YaGuang Li, Tao Wang, Yanping Huang, Zhifeng
Chen, Heng-Tze Cheng, Michael Collins, Trevor Strohman, et al. Controlled decoding from
language models. arXiv preprint arXiv:2310.17022, 2023. 11

Corby Rosset, Ching-An Cheng, Arindam Mitra, Michael Santacroce, Ahmed Awadallah, and
Tengyang Xie. Direct nash optimization: Teaching language models to self-improve with general
preferences. arXiv preprint arXiv:2404.03715, 2024. 11

Jitao Sang, Yuhang Wang, Jing Zhang, Yanxu Zhu, Chao Kong, Junhong Ye, Shuyu Wei, and Jinlin
Xiao. Improving weak-to-strong generalization with scalable oversight and ensemble learning.
arXiv preprint arXiv:2402.00667, 2024. 11

Shannon Zejiang Shen, Hunter Lang, Bailin Wang, Yoon Kim, and David Sontag. Learning to decode
collaboratively with multiple language models. arXiv preprint arXiv:2403.03870, 2024. 11

Zhiqing Sun, Longhui Yu, Yikang Shen, Weiyang Liu, Yiming Yang, Sean Welleck, and Chuang
Gan. Easy-to-hard generalization: Scalable alignment beyond human supervision. arXiv preprint
arXiv:2403.09472, 2024. 1, 11

Oyvind Tafjord, Matt Gardner, Kevin Lin, and Peter Clark. Quartz: An open-domain dataset of
qualitative relationship questions. arXiv preprint arXiv:1909.03553, 2019. 3

Pat Verga, Sebastian Hofstatter, Sophia Althammer, Yixuan Su, Aleksandra Piktus, Arkady Arkhang-
orodsky, Minjie Xu, Naomi White, and Patrick Lewis. Replacing judges with juries: Evaluating
llm generations with a panel of diverse models. arXiv preprint arXiv:2404.18796, 2024. 11

Johannes Welbl, Nelson F. Liu, and Matt Gardner. Crowdsourcing multiple choice science questions.
arXiv preprint arXiv:1707.06209, 2017. 3

Edwin Zhang, Vincent Zhu, Naomi Saphra, Anat Kleiman, Benjamin L Edelman, Milind Tambe,
Sham M Kakade, and Eran Malach. Transcendence: Generative models can outperform the experts
that train them. arXiv preprint arXiv:2406.11741, 2024. 11

10

Published at NeurIPS Safe Generative AI Workshop 2024

A RELATED WORKS

Weak-to-Strong (Burns et al., 2023) was the first to introduce the problem of weak-to-strong
generalization for the super-alignment problem, where the ultimate aim is to elicit the full capabilities
of the strong model using supervision only from weak models. (Charikar et al., 2024) provides a
theoretical framework for the same with insights on how much w2s improvement can occur, though
their work is limited to a few layer neural networks. Similarly, (Lang et al., 2024) provides bounds
on expansion properties using finite data distributions for when w2s generalization will happen, but
only for simple binary classification tasks. (Zhang et al., 2024) proves that transcendence (exceeding
the capability of the model that generates the training data) is possible for low-temperature sampling.
Although this setting is not exactly w2s, it sheds light on this direction.

Several works have attempted to solve w2s generalization in LLMs. (Sang et al., 2024) tries to
improve this supervision using ensemble learning and scalable oversight for binary classification NLP
tasks but cannot observe significant improvement. (Ji et al., 2024) introduces a model that enhances
the alignment of LLMs with human intentions by correcting the residual differences between aligned
and unaligned answers by training on a query-answer correction dataset. This method boosts w2s
generalization using supervisory signal from smaller models to improve the performance of complex
systems. In (Sun et al., 2024), the authors propose a scalable approach for e2h generalization which
involves training reward models on easier tasks and using them to evaluate performance on harder
tasks. (Liu & Alahi, 2024) introduces a method similar to the classical hierarchical mixture of experts,
where multiple specialized weak supervisors are used for weak-to-strong generalization instead of a
single generalist model. (Bansal et al., 2024) compares large LLM training from data generated using
weak (cheap) vs strong (expensive) model in a compute matching way and finds larger data from
weaker model to provide better w2s.

Guo et al. (2024) introduces an dynamic adjustable loss function for weak-to-strong supervision.
Hase et al. (2024) demonstrates that current language models can achieve high performance on
difficult tasks by training on simpler, cleanly labeled data, thus avoiding the high costs and noise
associated with hard data labeling. None of these works focused on making the weak teachers, less
weak but only focus on improving transfer learning and correction of weak labels. Thus, our method
can be combined with all ideas focused on improving transfer learning.

Ensemble Learning Binary Classification Boosting (Freund & Schapire, 1997) and multi-
classfication boosting (Hastie et al., 2009) are common ensemble learning algorithms. In (Verga et al.,
2024), they use a voting mechanism to combine multiple small LLMs instead of a single large LLM
to evaluate another LLM and show it performs better than large LLMs. An extended related work
section is present in Appendix A.

Multi-LLM learning: There are numerous works involving the collaboration of multiple LLMs.
Chang et al. (2023) proposes Reinforcement Learning with Guided Feedback (RLGF), where a
dynamic black-box guide like GPT-3 is used to fine-tune large language models. Rosset et al. (2024)
introduces Direct Nash Optimization (DNO), a scalable algorithm that combines contrastive learning
with general preference optimization. Cai et al. (2024) presents MEDUSA, an innovative framework
designed to accelerate inference in large language models by introducing multiple decoding heads,
enabling simultaneous prediction of several tokens, and enhancing efficiency through reduced decod-
ing steps and parallel processing capabilities. Shen et al. (2024) proposes Co-LLM, a collaborative
decoding framework that interleaves token-level generations from multiple models. This method
optimizes the latent variable model for marginal likelihood, allowing a base model to decide when to
generate tokens itself or utilize an assistant model, thereby improving performance across various
specialized tasks without direct supervision. Jin et al. (2024) introduces a novel collaborative decod-
ing framework aimed at improving the factuality of large language models by employing a critical
token classifier. This approach strategically uses both pre-trained and aligned models to selectively
generate critical tokens, significantly enhancing the model’s ability to maintain factual accuracy
without compromising the diversity of the generated content.

Additionally, Mudgal et al. (2023) introduces Controlled Decoding (CD), a method for aligning
language model outputs with desired outcomes using a separate prefix scorer module. This approach
allows multi-objective RL without additional training and performs well on benchmarks, bridging the
gap between token-level control and sequence-level best-of sampling strategies.

11

Published at NeurIPS Safe Generative AI Workshop 2024

B LIMITATION AND FUTURE WORK

(Continue from main manuscript)

Limitation and Future Work: This work only explores the supervised fine-tuning phase. While SFT
is an important part of the LLM learning pipeline, our future work will focus on developing weak
supervision in the reward modeling phase. Another interesting future direction would be to improve
the combination of tokens in the decoding phase by replacing the classical AdaBoost algorithm
with more adaptive ensemble learning methods. We hope this work sparks discussion on combining
multiple LLMs to improve weak-to-strong generalization.

Computational Overhead: For fully generative tasks, multiple forward passes are required in an
autoregressive manner. At each step, the final voted token is input to all LLMs to predict the next
token. This increases generation time, which can be mitigated using efficient decoding algorithms like
speculative decoding. Addressing this also forms part of our future work. Smaller Models: Another
limitation is of all w2s work is they attempt to mimic the weak and strong setting as an analogy to the
realistic problem and cannot test on a real human with super-human model.

C DETAILED FLOWCHART

Figure 6: This figure explains our pipeline for easy-to-hard generalization using w2s generalization
in complete detail including the algorithm and data flow. We train weak models on easy data and
strong models on hard data. A transfer model is trained using pseudo labels generated by the weak
model on the hard data. Ultimately, we aim to improve the Performance Gap Recovered (PGR).

D IMPORTANT NOTATIONS

Easy Data: {(xe
i ,y

e
i)}mi=1

Hard Data: {(xh
o ,y

h
o)}Oo=1

Total number of Easy Data points: m

Total number of Hard Data points: O

Total EnsemW2S-AdaBoost Rounds: T Weak Teachers: {ht
θ}Tt=1

12

Published at NeurIPS Safe Generative AI Workshop 2024

Strong Student (Oracle): uϕ

Weak-to-Strong model: fϕ

Total number of tokens in the answer part of each sample i: ki

AdaBoost voting parameter: {αt}Tt=1

EnsemW2S-AdaBoost token-sample weights for ith sample and jth token: {Dt(i, j)}Tt=1

Pre-trained Model error: ϵpre

EnsemW2S-AdaBoost’s weighted model error for round t: ϵt

E EASY AND HARD DATA SPLIT.

Easy (xe,ye) and Hard (xh,yh) Data Split: To generate difficulty ratings for our datasets, we
employ the n-fold cross-validation method. We train the model on the (n− 1) out of n splits of the
data and test on the remaining split. We repeat the process n times with different splits for testing
each time and aggregate the errors. We use this error value for each sample as its difficulty rating.
We split the low difficulty-rated data for weak model training and use the high difficulty-rated data to
generate strong model training data and testing data randomly. We follow the same cross-validation
method, with different training protocols, for generating difficulty for both binary classification and
generation tasks. More details and our difficulty rating plots can be seen in Figures 7, 8, and 9 in the
Appendix.

F BINARY CLASSIFICATION TASK

AdaBoost utilizes the wisdom of the crowd to obtain a stronger learner. Inspired by its philosophy, we
use an ensemble of weak LLM teachers as the “weak learners” to obtain a “stronger learner”, i.e., a
strong model that improves binary classification tasks, thus achieving weak-to-strong generalization.

Results and Observations. As shown in the weak-model performance columns in Table 1 and 2 in
the Appendix, the combined weak experts (T = 2, 3, 4, 5) demonstrate higher performance than a
single weak expert (baseline).

Training Methodology. In our method, the weak experts are trained to minimize the error on the
reweighted training examples, as detailed in Line 5 of Algorithm 2. The only requirement is that they
perform better than random, thus satisfying the well-known weak learning condition. These weak
experts represent a practical scenario where, although individually weak, they possess complementary
knowledge. Thus, when combined, they have the potential to form a stronger expert.

Algorithm 2 AdaBoost Freund & Schapire (1997)
Input: Training Dataset S = {(xi, yi)}mi=1 ∼ Dm

T = AdaBoost iterations
D⃗1(i)← 1

m∀i ∈ [m]
for t← 1 to T do

ht such that ϵt =
∑m

i=0 1{ht(xi) ̸= yi}D⃗t(i) <
1
2

αt ← 1
2 log

1−ϵt
ϵt

Zt ← 2
√
ϵt(1− ϵt)

D⃗t+1 ← 1
Zt
D⃗te

−αtyiht(xi)

g ←
∑T

t=1 αtht

Return h(x) = sign(g)

F.1 DETAILED RESULTS FOR BINARY CLASSIFICATION TASK WITH α AND ErrTrain
t IN

TABLE 1 AND TABLE 2

13

Published at NeurIPS Safe Generative AI Workshop 2024

Table 1: This table shows weak to strong generalization using random data-splits for sciq dataset.
We also study the impact of using ensemble learning methods like AdaBoost, which combines weak
learners, for weak to strong training. Each model is trained for 3 epochs and uses an optimized
learning rate.

AdaBoost Weak Model Strong Model Weak-to-Strong Model α ErrTrain
t

Model Name GPT-2 GPT-2 Medium
Baseline 0.610 0.665 0.590 0.455 0.287
With AdaBoost (T:02) 0.613 0.665 0.619 0.488 0.274
With AdaBoost (T:03) 0.614 0.665 0.609 0.463 0.284
With AdaBoost (T:04) 0.611 0.665 0.622 0.467 0.282
With AdaBoost (T:05) 0.623 0.665 0.640 0.448 0.290
With AdaBoost (T:06) 0.621 0.665 0.641 0.333 0.340
With AdaBoost (T:07) 0.646 0.665 0.638 0.433 0.300
With AdaBoost (T:08) 0.610 0.665 0.626 0.471 0.281
With AdaBoost (T:09) 0.634 0.665 0.619 0.463 0.284
With AdaBoost (T:10) 0.618 0.665 0.622 0.503 0.268
Model Name GPT-2 GPT-2 Large
Baseline 0.610 0.681 0.591 0.455 0.287
With AdaBoost (T:02) 0.613 0.681 0.657 0.488 0.274
With AdaBoost (T:03) 0.614 0.681 0.620 0.463 0.284
With AdaBoost (T:04) 0.611 0.681 0.629 0.467 0.282
With AdaBoost (T:05) 0.623 0.681 0.656 0.448 0.290
With AdaBoost (T:06) 0.621 0.681 0.650 0.333 0.340
With AdaBoost (T:07) 0.646 0.681 0.654 0.433 0.300
With AdaBoost (T:08) 0.610 0.681 0.633 0.471 0.281
With AdaBoost (T:09) 0.634 0.681 0.648 0.463 0.284
With AdaBoost (T:10) 0.618 0.681 0.652 0.503 0.268
Model Name GPT-2 GPT-2 XL
Baseline 0.607 0.707 0.620 0.455 0.287
With AdaBoost (T:02) 0.613 0.707 0.654 0.488 0.274
With AdaBoost (T:03) 0.614 0.707 0.628 0.463 0.284
With AdaBoost (T:04) 0.611 0.707 0.663 0.467 0.282
With AdaBoost (T:05) 0.623 0.707 0.645 0.448 0.290
With AdaBoost (T:06) 0.621 0.707 0.648 0.333 0.340
With AdaBoost (T:07) 0.646 0.707 0.649 0.433 0.300
With AdaBoost (T:08) 0.610 0.707 0.653 0.471 0.281
With AdaBoost (T:09) 0.634 0.707 0.657 0.463 0.284
With AdaBoost (T:10) 0.618 0.707 0.654 0.503 0.268
Model Name GPT-2 Qwen1.5-1.8B
Baseline 0.602 0.842 0.646 0.445 0.291
With AdaBoost (T:02) 0.599 0.842 0.683 0.500 0.269
With AdaBoost (T:03) 0.626 0.842 0.702 0.444 0.292
With AdaBoost (T:04) 0.611 0.842 0.723 0.400 0.310
With AdaBoost (T:05) 0.613 0.842 0.704 0.461 0.285
With AdaBoost (T:06) 0.613 0.842 0.734 0.417 0.303
With AdaBoost (T:07) 0.603 0.842 0.712 0.422 0.301
With AdaBoost (T:08) 0.608 0.842 0.717 0.319 0.346
With AdaBoost (T:09) 0.614 0.842 0.712 0.405 0.308
With AdaBoost (T:10) 0.606 0.842 0.712 0.360 0.328
Model Name GPT-2 Medium GPT-2 Large
Baseline 0.653 0.681 0.626 0.705 0.196
With AdaBoost (T:02) 0.656 0.681 0.643 0.624 0.223
With AdaBoost (T:03) 0.646 0.681 0.639 0.674 0.206
With AdaBoost (T:04) 0.663 0.681 0.664 0.645 0.216
With AdaBoost (T:05) 0.645 0.681 0.654 0.690 0.201
With AdaBoost (T:06) 0.652 0.681 0.667 0.619 0.225
With AdaBoost (T:07) 0.650 0.681 0.665 0.722 0.191
With AdaBoost (T:08) 0.657 0.681 0.685 0.733 0.187
With AdaBoost (T:09) 0.651 0.681 0.684 0.601 0.231
With AdaBoost (T:10) 0.648 0.681 0.666 0.682 0.203
Model Name GPT-2 Medium GPT-2 XL
Baseline 0.653 0.707 0.655 0.705 0.196
With AdaBoost (T:02) 0.656 0.707 0.651 0.624 0.223
With AdaBoost (T:03) 0.646 0.707 0.648 0.674 0.206
With AdaBoost (T:04) 0.663 0.707 0.675 0.645 0.216
With AdaBoost (T:05) 0.645 0.707 0.663 0.690 0.201
With AdaBoost (T:06) 0.652 0.707 0.682 0.619 0.225
With AdaBoost (T:07) 0.650 0.707 0.657 0.722 0.191
With AdaBoost (T:08) 0.657 0.707 0.673 0.733 0.187
With AdaBoost (T:09) 0.651 0.707 0.665 0.601 0.231
With AdaBoost (T:10) 0.648 0.707 0.687 0.682 0.203
Model Name GPT-2 Medium Qwen1.5-1.8B
Baseline 0.649 0.842 0.722 0.658 0.211
With AdaBoost (T:02) 0.649 0.842 0.742 0.626 0.222
With AdaBoost (T:03) 0.669 0.842 0.732 0.673 0.206
With AdaBoost (T:04) 0.649 0.842 0.757 0.662 0.210
With AdaBoost (T:05) 0.661 0.842 0.745 0.688 0.202
With AdaBoost (T:06) 0.655 0.842 0.735 0.722 0.191
With AdaBoost (T:07) 0.664 0.842 0.732 0.717 0.192
With AdaBoost (T:08) 0.664 0.842 0.741 0.718 0.192
With AdaBoost (T:09) 0.657 0.842 0.748 0.791 0.171
With AdaBoost (T:10) 0.667 0.842 0.737 0.671 0.207
Model Name GPT-2 Large GPT-2 XL
Baseline 0.673 0.707 0.682 1.675 0.034
With AdaBoost (T:02) 0.658 0.707 0.675 0.974 0.125
With AdaBoost (T:03) 0.671 0.707 0.687 1.091 0.101
With AdaBoost (T:04) 0.671 0.707 0.684 1.080 0.103
With AdaBoost (T:05) 0.668 0.707 0.687 1.033 0.112
With AdaBoost (T:06) 0.675 0.707 0.683 1.133 0.094
With AdaBoost (T:07) 0.669 0.707 0.688 1.083 0.103
With AdaBoost (T:08) 0.676 0.707 0.683 1.047 0.110
With AdaBoost (T:09) 0.678 0.707 0.682 1.085 0.103
With AdaBoost (T:10) 0.669 0.707 0.681 1.132 0.094
Model Name GPT-2 Large Qwen1.5-1.8B
Baseline 0.664 0.842 0.749 1.454 0.052
With AdaBoost (T:02) 0.670 0.842 0.717 0.971 0.126
With AdaBoost (T:03) 0.670 0.842 0.728 0.037 0.481
With AdaBoost (T:04) 0.677 0.842 0.727 1.128 0.095
With AdaBoost (T:05) 0.675 0.842 0.740 1.107 0.098
With AdaBoost (T:06) 0.677 0.842 0.737 0.979 0.124
With AdaBoost (T:07) 0.676 0.842 0.766 1.136 0.093
With AdaBoost (T:08) 0.680 0.842 0.741 1.103 0.099
With AdaBoost (T:09) 0.691 0.842 0.762 1.075 0.104
With AdaBoost (T:10) 0.683 0.842 0.755 1.052 0.109
Model Name GPT-2 XL Qwen1.5-1.8B
Baseline 0.673 0.842 0.733 0.564 0.244
With AdaBoost (T:02) 0.701 0.842 0.740 0.428 0.298
With AdaBoost (T:03) 0.702 0.842 0.753 0.383 0.317
With AdaBoost (T:04) 0.694 0.842 0.756 0.316 0.347
With AdaBoost (T:05) 0.704 0.842 0.759 0.260 0.373
With AdaBoost (T:06) 0.693 0.842 0.757 0.288 0.360
With AdaBoost (T:07) 0.708 0.842 0.755 0.277 0.365
With AdaBoost (T:08) 0.706 0.842 0.761 0.223 0.391
With AdaBoost (T:09) 0.700 0.842 0.748 0.252 0.377
With AdaBoost (T:10) 0.703 0.842 0.747 0.258 0.374

14

Published at NeurIPS Safe Generative AI Workshop 2024

Table 2: This table shows weak to strong generalization using easy and hard data-splits for sciq dataset.
We also study the impact of using ensemble learning methods like AdaBoost, which combines weak
learners, for weak to strong training. Each model is trained for 3 epochs and uses an optimized
learning rate.

AdaBoost Weak Model Strong Model Weak-to-Strong α ErrTrain
t

Model Name GPT-2 GPT-2 Medium
Baseline 0.362 0.638 0.388 2.178 0.013
With AdaBoost (T:02) 0.356 0.638 0.382 1.790 0.027
With AdaBoost (T:03) 0.343 0.638 0.386 1.953 0.020
With AdaBoost (T:04) 0.361 0.638 0.385 2.014 0.018
With AdaBoost (T:05) 0.361 0.638 0.382 1.534 0.044
With AdaBoost (T:06) 0.365 0.638 0.393 1.588 0.040
With AdaBoost (T:07) 0.365 0.638 0.402 1.474 0.050
With AdaBoost (T:08) 0.369 0.638 0.404 1.478 0.049
With AdaBoost (T:09) 0.362 0.638 0.394 1.865 0.023
With AdaBoost (T:10) 0.364 0.638 0.394 1.267 0.074
Model Name GPT-2 GPT-2 Large
Baseline 0.362 0.597 0.385 2.178 0.013
With AdaBoost (T:02) 0.356 0.597 0.367 1.790 0.027
With AdaBoost (T:03) 0.343 0.597 0.383 1.953 0.020
With AdaBoost (T:04) 0.361 0.597 0.379 2.014 0.018
With AdaBoost (T:05) 0.361 0.597 0.387 1.534 0.044
With AdaBoost (T:06) 0.365 0.597 0.382 1.588 0.040
With AdaBoost (T:07) 0.365 0.597 0.388 1.474 0.050
With AdaBoost (T:08) 0.369 0.597 0.389 1.478 0.049
With AdaBoost (T:09) 0.362 0.597 0.393 1.865 0.023
With AdaBoost (T:10) 0.364 0.597 0.395 1.267 0.074
Model Name GPT-2 GPT-2 XL
Baseline 0.355 0.561 0.421 2.178 0.013
With AdaBoost (T:02) 0.356 0.561 0.409 1.791 0.027
With AdaBoost (T:03) 0.343 0.561 0.409 1.953 0.020
With AdaBoost (T:04) 0.361 0.561 0.407 2.014 0.018
With AdaBoost (T:05) 0.361 0.561 0.418 1.534 0.044
With AdaBoost (T:06) 0.365 0.561 0.409 1.588 0.040
With AdaBoost (T:07) 0.365 0.561 0.407 1.474 0.050
With AdaBoost (T:08) 0.369 0.561 0.413 1.478 0.049
With AdaBoost (T:09) 0.362 0.561 0.410 1.865 0.023
With AdaBoost (T:10) 0.364 0.561 0.409 1.267 0.074
Model Name GPT-2 Qwen1.5-1.8B
Baseline 0.364 0.760 0.407 2.178 0.013
With AdaBoost (T:02) 0.356 0.760 0.397 1.791 0.027
With AdaBoost (T:03) 0.343 0.760 0.393 1.953 0.020
With AdaBoost (T:04) 0.361 0.760 0.381 2.014 0.018
With AdaBoost (T:05) 0.361 0.760 0.390 1.534 0.044
With AdaBoost (T:06) 0.365 0.760 0.394 1.588 0.040
With AdaBoost (T:07) 0.365 0.760 0.390 1.474 0.050
With AdaBoost (T:08) 0.369 0.760 0.387 1.478 0.049
With AdaBoost (T:09) 0.362 0.760 0.402 1.865 0.023
With AdaBoost (T:10) 0.364 0.760 0.404 1.267 0.074
Model Name GPT-2 Medium GPT-2 Large
Baseline 0.391 0.597 0.420 1.511 0.046
With AdaBoost (T:02) 0.448 0.597 0.438 1.571 0.041
With AdaBoost (T:03) 0.426 0.597 0.405 1.483 0.049
With AdaBoost (T:04) 0.454 0.597 0.437 1.601 0.039
With AdaBoost (T:05) 0.448 0.597 0.428 1.334 0.065
With AdaBoost (T:06) 0.465 0.597 0.444 1.249 0.076
With AdaBoost (T:07) 0.449 0.597 0.453 1.460 0.051
With AdaBoost (T:08) 0.461 0.597 0.444 1.646 0.036
With AdaBoost (T:09) 0.449 0.597 0.433 1.453 0.052
With AdaBoost (T:10) 0.447 0.597 0.424 1.154 0.090
Model Name GPT-2 Medium GPT-2 XL
Baseline 0.392 0.561 0.440 1.510 0.047
With AdaBoost (T:02) 0.459 0.561 0.442 1.589 0.040
With AdaBoost (T:03) 0.420 0.561 0.435 1.669 0.034
With AdaBoost (T:04) 0.458 0.561 0.441 1.460 0.051
With AdaBoost (T:05) 0.424 0.561 0.431 1.393 0.058
With AdaBoost (T:06) 0.444 0.561 0.448 1.286 0.071
With AdaBoost (T:07) 0.419 0.561 0.436 1.429 0.054
With AdaBoost (T:08) 0.454 0.561 0.443 1.596 0.039
With AdaBoost (T:09) 0.437 0.561 0.439 1.577 0.041
With AdaBoost (T:10) 0.432 0.561 0.439 1.289 0.071
Model Name GPT-2 Medium Qwen1.5-1.8B
Baseline 0.388 0.760 0.435 1.511 0.046
With AdaBoost (T:02) 0.448 0.760 0.477 1.571 0.041
With AdaBoost (T:03) 0.426 0.760 0.462 1.483 0.049
With AdaBoost (T:04) 0.454 0.760 0.473 1.601 0.039
With AdaBoost (T:05) 0.448 0.760 0.471 1.334 0.065
With AdaBoost (T:06) 0.465 0.760 0.470 1.249 0.076
With AdaBoost (T:07) 0.449 0.760 0.469 1.460 0.051
With AdaBoost (T:08) 0.461 0.760 0.480 1.646 0.036
With AdaBoost (T:09) 0.449 0.760 0.476 1.453 0.052
With AdaBoost (T:10) 0.447 0.760 0.483 1.154 0.090
Model Name GPT-2 Large GPT-2 XL
Baseline 0.454 0.561 0.453 2.981 0.003
With AdaBoost (T:02) 0.451 0.561 0.455 1.791 0.027
With AdaBoost (T:03) 0.458 0.561 0.451 1.954 0.020
With AdaBoost (T:04) 0.463 0.561 0.447 2.220 0.012
With AdaBoost (T:05) 0.471 0.561 0.452 2.145 0.014
With AdaBoost (T:06) 0.465 0.561 0.458 1.745 0.030
With AdaBoost (T:07) 0.459 0.561 0.453 1.729 0.031
With AdaBoost (T:08) 0.469 0.561 0.455 1.726 0.031
With AdaBoost (T:09) 0.471 0.561 0.445 1.915 0.021
With AdaBoost (T:10) 0.466 0.561 0.447 2.179 0.013
Model Name GPT-2 Large Qwen1.5-1.8B
Baseline 0.439 0.760 0.476 2.745 0.004
With AdaBoost (T:02) 0.437 0.760 0.467 1.747 0.029
With AdaBoost (T:03) 0.443 0.760 0.469 1.874 0.023
With AdaBoost (T:04) 0.445 0.760 0.460 2.018 0.017
With AdaBoost (T:05) 0.448 0.760 0.468 2.063 0.016
With AdaBoost (T:06) 0.449 0.760 0.467 1.639 0.036
With AdaBoost (T:07) 0.444 0.760 0.457 1.673 0.034
With AdaBoost (T:08) 0.453 0.760 0.468 1.727 0.031
With AdaBoost (T:09) 0.443 0.760 0.475 2.049 0.016
With AdaBoost (T:10) 0.459 0.760 0.484 2.217 0.012
Model Name GPT-2 XL Qwen1.5-1.8B
Baseline 0.463 0.763 0.504 1.165 0.089
With AdaBoost (T:02) 0.475 0.763 0.508 1.156 0.090
With AdaBoost (T:03) 0.481 0.763 0.512 0.941 0.132
With AdaBoost (T:04) 0.488 0.763 0.500 0.841 0.157
With AdaBoost (T:05) 0.481 0.763 0.518 0.821 0.162
With AdaBoost (T:06) 0.494 0.763 0.514 0.776 0.175
With AdaBoost (T:07) 0.483 0.763 0.499 0.801 0.168
With AdaBoost (T:08) 0.489 0.763 0.513 0.687 0.202
With AdaBoost (T:09) 0.492 0.763 0.516 0.832 0.159
With AdaBoost (T:10) 0.481 0.763 0.519 0.636 0.219

15

Published at NeurIPS Safe Generative AI Workshop 2024

G GENERATIVE TASK DETAILS

G.1 DIFFERENT RATING FOR ALL THE DATASETS

We use GPT-2 for binary classification and pythia-160m for SFT task’s easy and hard splitting. We
use the same training parameters as used in the training of the actual w2s results.

Figure 7: This figure shows the difficulty rating distribution of sciq dataset.

Figure 8: This figure shows difficulty rating distribution of ARC dataset.

Figure 9: This figure shows difficulty rating distribution of quartz dataset.

16

Published at NeurIPS Safe Generative AI Workshop 2024

G.2 ABLATION STUDIES FOR GENERATION TASK

Ablation Studies. We experimented with combining the logits directly instead of probabilities but
did not observe any improvement (refer to Appendix Figure 10). We conducted ablation studies
where, instead of treating each token as independent, we used a sliding window of length L while
calculating weights and aggregating errors (see Appendix Figure 11 and 12). Different window
lengths did not cause significant changes in values, so we ultimately chose a window of L = 1.
We also explored treating each sample as independent instead of each token as independent in the
sample-answer part, finding better results with the latter. This is reasonable since the error calculated
using independent-sample weights is less accurate.

G.2.1 COMPARISON BETWEEN PROBABILITY BASED COMBINATION WITH LOGIT BASED
COMBINATION OF THE TOKENS, DURING GENERATION AND EVALUATION OF COMBINED
WEAK EXPERTS.

Figure 10: This figure shows a comparison between probability based combination with logit based
combination of the tokens.

G.2.2 COMPARISON BETWEEN DIFFERENT WINDOW LENGTHS FOR "SAMPLE AND TOKEN
WEIGHING".

Figure 11: This figure shows a comparison between different token windows for pythia 70m model.

Figure 12: This figure shows a comparison between different token windows for pythia 410m model.

G.3 EXPERIMENTAL DETAILS

We run AdaBoost/EnsemW2s-AdaBoost 10 times for the binary classification tasks and 5 times for
the generation tasks. We pick the best w2s performing round for our plots. However, we observe
that all rounds (n >= 2) are better than the baseline (n = 1). Additionally, we chose single model
performance (n = 1) for weak model performance.

17

Published at NeurIPS Safe Generative AI Workshop 2024

G.4 SUPERVISED-FINE TUNING TASK FOR QUARTZ QUESTION-ANSWER DATASET

Table 3: This table shows weak to strong generalization using random data-splits for quartz dataset.
We also study the impact of using ensemble learning methods, which combines weak learners, for
weak to strong training. Each model is trained for 5 epochs and uses a learning rate of 5x10−5. The
values in this table are generated by aggregating 3 experiments. We show here mean and Standard
Error of the Mean values.

Weak Model Strong Model
Token-Avg Acc Option Acc Option Acc(on w2s) α oracle Token-Avg Acc Option Acc
Pythia-70m Pythia-160m

Baseline 17.95 ± 0.44 50.21 ± 0.23 49.7 ± 0.28 10.81 ± 0.04 50.77 ± 0.26 34.3 ± 0.44 51.11 ± 0.23
With Adaboost (T:03) 25.94 ± 0.38 50.64 ± 0.39 49.43 ± 0.25 10.67 ± 0.05 50.77 ± 0.26 34.17 ± 0.36 51.66 ± 0.45

Pythia-70m Pythia-410m
Baseline 17.95 ± 0.44 50.21 ± 0.23 49.7 ± 0.28 10.81 ± 0.04 59.18 ± 0.78 50.28 ± 0.44 50.68 ± 0.3
With Adaboost (T:04) 25.22 ± 0.15 50.51 ± 0.53 49.8 ± 0.14 10.68 ± 0.05 59.18 ± 0.78 50.88 ± 0.18 52.42 ± 0.33

Pythia-70m Pythia-1b
Baseline 17.95 ± 0.44 50.21 ± 0.23 49.7 ± 0.28 10.81 ± 0.04 63.35 ± 0.3 51.87 ± 0.11 50.89 ± 0.16
With Adaboost (T:05) 26.2 ± 0.06 50.55 ± 0.28 49.65 ± 0.11 10.66 ± 0.04 63.35 ± 0.3 51.83 ± 0.38 51.83 ± 0.31

Pythia-70m Pythia-1.4b
Baseline 17.89 ± 0.46 49.87 ± 0.06 49.46 ± 0.35 10.82 ± 0.05 68.83 ± 1.28 51.82 ± 0.05 50.17 ± 0.24
With Adaboost (T:04) 25.32 ± 0.82 50.04 ± 0.37 49.23 ± 0.27 10.7 ± 0.06 68.83 ± 1.28 51.76 ± 0.17 51.45 ± 0.07

Pythia-70m Pythia-2.8b
Baseline 18.06 ± 0.39 49.4 ± 0.39 49.73 ± 0.33 10.86 ± 0.02 73.38 ± 1.02 52.28 ± 0.29 50.21 ± 0.23
With Adaboost (T:02) 24.37 ± 0.99 50.13 ± 0.4 49.48 ± 0.21 10.74 ± 0.04 73.38 ± 1.02 52.3 ± 0.14 51.02 ± 0.22

Pythia-160m Pythia-410m
Baseline 33.51 ± 0.19 50.81 ± 1.0 49.6 ± 0.27 10.03 ± 0.0 59.18 ± 0.78 50.39 ± 0.3 50.68 ± 0.5
With Adaboost (T:04) 40.85 ± 0.49 51.79 ± 0.48 49.08 ± 0.32 9.81 ± 0.05 59.18 ± 0.78 50.39 ± 0.18 52.13 ± 0.3

Pythia-160m Pythia-1b
Baseline 33.51 ± 0.19 50.81 ± 1.0 49.6 ± 0.27 10.03 ± 0.0 63.35 ± 0.3 52.36 ± 0.29 50.6 ± 0.33
With Adaboost (T:02) 40.61 ± 0.8 51.36 ± 0.25 49.93 ± 0.52 9.76 ± 0.05 63.35 ± 0.3 52.45 ± 0.42 51.92 ± 0.31

Pythia-160m Pythia-1.4b
Baseline 33.42 ± 0.23 51.4 ± 0.59 49.43 ± 0.41 10.03 ± 0.0 68.83 ± 1.28 52.02 ± 0.2 51.02 ± 0.55
With Adaboost (T:03) 40.87 ± 0.49 51.02 ± 0.18 49.28 ± 0.13 9.75 ± 0.02 68.83 ± 1.28 52.11 ± 0.39 53.02 ± 0.55

Pythia-160m Pythia-2.8b
Baseline 33.42 ± 0.23 51.4 ± 0.59 49.43 ± 0.41 10.03 ± 0.0 73.17 ± 0.88 52.82 ± 0.02 51.45 ± 0.5
With Adaboost (T:04) 41.13 ± 0.51 51.23 ± 0.4 49.65 ± 0.14 9.78 ± 0.06 73.17 ± 0.88 52.51 ± 0.3 51.74 ± 0.17

Pythia-410m Pythia-1b
Baseline 52.71 ± 0.24 59.27 ± 0.46 55.54 ± 0.49 10.0 ± 0.01 63.35 ± 0.3 53.39 ± 0.2 56.21 ± 0.76
With Adaboost (T:02) 53.39 ± 0.17 58.5 ± 0.33 55.91 ± 0.35 9.69 ± 0.08 63.35 ± 0.3 53.87 ± 0.46 56.42 ± 0.56

Pythia-410m Pythia-1.4b
Baseline 52.9 ± 0.09 59.65 ± 0.15 55.66 ± 0.51 9.98 ± 0.02 68.83 ± 1.28 53.33 ± 0.74 56.34 ± 0.9
With Adaboost (T:02) 53.26 ± 0.27 58.8 ± 0.42 56.11 ± 0.34 9.66 ± 0.08 68.83 ± 1.28 54.14 ± 0.63 57.7 ± 0.61

Pythia-410m Pythia-2.8b
Baseline 52.13 ± 0.64 58.29 ± 1.1 55.94 ± 0.3 9.89 ± 0.06 73.38 ± 1.02 54.38 ± 0.31 55.74 ± 0.73
With Adaboost (T:04) 53.39 ± 0.19 59.18 ± 0.42 55.32 ± 0.51 9.85 ± 0.05 73.38 ± 1.02 55.71 ± 0.53 59.01 ± 0.94

Pythia-1b Pythia-1.4b
Baseline 55.65 ± 0.52 61.99 ± 0.51 58.6 ± 1.13 9.85 ± 0.01 68.62 ± 0.12 55.33 ± 0.31 58.93 ± 0.68
With Adaboost (T:03) 56.81 ± 0.47 62.12 ± 0.43 58.14 ± 0.85 9.74 ± 0.11 68.62 ± 0.12 55.99 ± 0.16 61.69 ± 0.57

Pythia-1b Pythia-2.8b
Baseline 55.54 ± 0.6 62.12 ± 0.51 58.55 ± 1.14 9.84 ± 0.01 73.3 ± 0.3 57.26 ± 0.3 61.52 ± 1.38
With Adaboost (T:02) 57.09 ± 0.41 62.84 ± 0.12 59.0 ± 0.62 9.63 ± 0.02 73.3 ± 0.3 58.1 ± 0.08 63.99 ± 0.93

Pythia-1.4b Pythia-2.8b
Baseline 57.11 ± 0.45 69.64 ± 0.97 66.87 ± 1.1 9.87 ± 0.02 73.76 ± 0.67 59.34 ± 0.24 67.94 ± 0.78
With Adaboost (T:02) 59.17 ± 0.12 70.66 ± 0.06 67.29 ± 0.77 9.65 ± 0.03 73.76 ± 0.67 59.3 ± 0.34 68.92 ± 1.06

Pythia
 70M to 160M

Pythia
 70M to 410M

Pythia
 70M to 1B

Pythia
 70M to 1.4B

Pythia
 70M to 2.8B

Pythia
 160M to 410M

Pythia
 160M to 1B

Pythia
 160M to 1.4B

Pythia
 160M to 2.8B

Pythia
 410M to 1B

Pythia
 410M to 1.4B

Pythia
 410M to 2.8B

Pythia
 1B to 1.4B

Pythia
 1B to 2.8B

Pythia
 1.4B to 2.8B

50

55

60

65

70

75

Ac
cu

ra
cy

 (%
)

Weak Model Performance Weak to Strong Performance (baseline) Weak to Strong Performance (ours) Strong Model Performance

Figure 13: Quartz Dataset (Random): This figure shows bar plots comparing accuracy values of
weak model performance, w2s model performance (baseline and ours) and strong model performance
(oracle) for one specific run of experiments. Values are also mentioned in table 5.

18

Published at NeurIPS Safe Generative AI Workshop 2024

Table 4: This table shows weak to strong generalization using easy-hard data-splits for quartz dataset.
We also study the impact of using ensemble learning methods, which combines weak learners, for
weak to strong training. Each model is trained for 5 epochs and uses a learning rate of 5× 10−5. The
values in this table are generated by aggregating 3 experiments. We show here mean and Standard
Error of the Mean values.

Weak Model Strong Model
Token-Avg Acc Option Acc Option Acc(on w2s) α oracle Token-Avg Acc Option Acc
Pythia-70m Pythia-160m

Baseline 16.27 ± 0.14 48.0 ± 0.51 49.21 ± 0.05 10.53 ± 0.0 47.11 ± 0.28 29.24 ± 0.18 49.11 ± 0.39
With Adaboost (T:03) 23.31 ± 0.9 47.11 ± 0.31 49.23 ± 0.41 10.43 ± 0.03 47.11 ± 0.28 29.24 ± 0.25 49.32 ± 0.23

Pythia-70m Pythia-410m
Baseline 16.27 ± 0.14 48.0 ± 0.51 49.21 ± 0.05 10.53 ± 0.0 52.3 ± 0.39 43.63 ± 0.29 47.32 ± 0.36
With Adaboost (T:04) 23.81 ± 1.01 47.66 ± 0.5 49.06 ± 0.2 10.42 ± 0.02 52.3 ± 0.39 43.53 ± 0.44 48.13 ± 0.47

Pythia-70m Pythia-1b
Baseline 16.27 ± 0.14 48.0 ± 0.51 49.21 ± 0.05 10.53 ± 0.0 55.91 ± 0.37 47.48 ± 0.23 47.92 ± 0.23
With Adaboost (T:05) 24.64 ± 0.22 47.49 ± 0.49 49.41 ± 0.38 10.39 ± 0.0 55.91 ± 0.37 45.5 ± 0.74 49.74 ± 0.24

Pythia-70m Pythia-1.4b
Baseline 16.07 ± 0.22 48.17 ± 0.43 49.38 ± 0.14 10.58 ± 0.04 65.35 ± 0.66 46.25 ± 0.61 47.96 ± 0.34
With Adaboost (T:04) 23.79 ± 0.55 46.94 ± 0.18 49.58 ± 0.27 10.44 ± 0.04 65.35 ± 0.66 45.53 ± 0.2 50.68 ± 0.17

Pythia-70m Pythia-2.8b
Baseline 16.12 ± 0.21 48.85 ± 0.48 49.75 ± 0.32 10.63 ± 0.04 70.2 ± 0.17 48.08 ± 0.18 48.85 ± 0.31
With Adaboost (T:02) 22.96 ± 0.75 47.02 ± 0.12 49.36 ± 0.11 10.5 ± 0.05 70.2 ± 0.17 48.58 ± 0.16 49.87 ± 0.06

Pythia-160m Pythia-410m
Baseline 25.61 ± 0.33 47.75 ± 0.35 49.83 ± 0.29 9.96 ± 0.02 52.3 ± 0.39 42.75 ± 0.91 47.75 ± 0.61
With Adaboost (T:04) 29.63 ± 0.55 47.02 ± 0.09 48.47 ± 0.3 9.7 ± 0.09 52.3 ± 0.39 43.78 ± 0.14 48.42 ± 0.12

Pythia-160m Pythia-1b
Baseline 25.61 ± 0.33 47.75 ± 0.35 49.83 ± 0.29 9.96 ± 0.02 55.91 ± 0.37 46.08 ± 0.38 49.36 ± 0.53
With Adaboost (T:02) 28.96 ± 0.23 46.43 ± 0.18 48.49 ± 0.11 9.69 ± 0.09 55.91 ± 0.37 44.7 ± 0.58 49.15 ± 0.73

Pythia-160m Pythia-1.4b
Baseline 25.76 ± 0.43 47.15 ± 0.15 49.26 ± 0.2 9.96 ± 0.02 65.35 ± 0.66 45.83 ± 0.64 49.7 ± 0.85
With Adaboost (T:03) 28.83 ± 0.84 46.56 ± 0.27 48.17 ± 0.14 9.64 ± 0.06 65.35 ± 0.66 45.4 ± 0.44 50.0 ± 0.22

Pythia-160m Pythia-2.8b
Baseline 26.46 ± 0.25 47.49 ± 0.33 48.98 ± 0.14 10.02 ± 0.03 70.2 ± 0.17 48.03 ± 0.13 49.4 ± 0.3
With Adaboost (T:04) 29.61 ± 0.51 46.6 ± 0.25 48.69 ± 0.47 9.54 ± 0.03 70.2 ± 0.17 48.4 ± 0.29 50.3 ± 0.41

Pythia-410m Pythia-1b
Baseline 36.73 ± 0.39 51.06 ± 0.39 53.26 ± 0.38 10.07 ± 0.01 55.91 ± 0.37 46.6 ± 0.38 50.72 ± 0.68
With Adaboost (T:02) 38.11 ± 0.44 49.36 ± 0.21 51.66 ± 0.35 9.76 ± 0.14 55.91 ± 0.37 46.4 ± 0.35 52.09 ± 0.3

Pythia-410m Pythia-1.4b
Baseline 37.23 ± 0.27 51.11 ± 0.4 53.19 ± 0.42 10.04 ± 0.03 65.35 ± 0.66 47.73 ± 0.78 53.66 ± 0.56
With Adaboost (T:02) 38.31 ± 0.23 50.17 ± 0.44 51.56 ± 0.22 9.53 ± 0.09 65.35 ± 0.66 48.35 ± 0.18 53.36 ± 0.5

Pythia-410m Pythia-2.8b
Baseline 37.13 ± 0.23 51.02 ± 0.47 52.87 ± 0.21 10.03 ± 0.03 70.2 ± 0.17 48.48 ± 0.36 54.47 ± 0.16
With Adaboost (T:04) 38.13 ± 0.26 49.87 ± 0.68 51.49 ± 0.28 9.6 ± 0.04 70.2 ± 0.17 49.05 ± 0.14 55.36 ± 0.47

Pythia-1b Pythia-1.4b
Baseline 40.3 ± 0.46 54.51 ± 0.73 54.25 ± 0.26 10.33 ± 0.08 66.67 ± 0.72 47.0 ± 0.22 56.76 ± 0.58
With Adaboost (T:03) 40.75 ± 0.67 53.36 ± 0.92 53.61 ± 0.44 11.0 ± 0.72 66.67 ± 0.72 47.25 ± 0.32 57.23 ± 0.37

Pythia-1b Pythia-2.8b
Baseline 40.33 ± 0.44 54.08 ± 1.07 54.33 ± 0.19 10.33 ± 0.08 73.09 ± 0.42 49.2 ± 0.2 58.08 ± 0.38
With Adaboost (T:02) 40.53 ± 0.34 52.34 ± 0.09 53.39 ± 0.2 11.68 ± 0.75 73.09 ± 0.42 49.48 ± 0.3 59.35 ± 0.52

Pythia-1.4b Pythia-2.8b
Baseline 42.2 ± 1.12 59.69 ± 0.83 62.39 ± 1.06 10.3 ± 0.1 73.17 ± 0.38 51.22 ± 0.5 62.46 ± 0.91
With Adaboost (T:02) 42.98 ± 0.64 59.82 ± 0.51 61.38 ± 0.48 10.52 ± 0.35 73.17 ± 0.38 51.72 ± 0.37 63.01 ± 0.28

Pythia
 70M to 160M

Pythia
 70M to 410M

Pythia
 70M to 1B

Pythia
 70M to 1.4B

Pythia
 70M to 2.8B

Pythia
 160M to 410M

Pythia
 160M to 1B

Pythia
 160M to 1.4B

Pythia
 160M to 2.8B

Pythia
 410M to 1B

Pythia
 410M to 1.4B

Pythia
 410M to 2.8B

Pythia
 1B to 1.4B

Pythia
 1B to 2.8B

Pythia
 1.4B to 2.8B

45

50

55

60

65

70

75

Ac
cu

ra
cy

 (%
)

Weak Model Performance Weak to Strong Performance (baseline) Weak to Strong Performance (ours) Strong Model Performance

Figure 14: Quartz Dataset (Easy-Hard): This figure shows bar plots comparing accuracy values of
weak model performance, w2s model performance (baseline and ours) and strong model performance
(oracle) for one specific run of experiments. Values are also mentioned in table 5.

19

Published at NeurIPS Safe Generative AI Workshop 2024

Table 5: This table shows weak to strong generalization using random as well as easy-hard data-splits
for quartz dataset. As compared to previous tables 3 and 4, here we run experiment once and note the
improvement of our method with respect to the baseline.

Weak
Model
Size

Strong
Model
Size

Data Separation: Random
Improv(%)

Data Separation: Easy-Hard
Improv(%)Weak Model

Performance
Strong Model
Performance

W2S Performance Weak Model
Performance

Strong Model
Performance

W2S Performance
Baseline Ours Baseline Ours

70M 160M 0.4987 0.5115 0.5077 0.5255 3.5% 0.4668 0.4847 0.48 0.4898 2%
70M 410M 0.4987 0.602 0.5077 0.5255 3.5% 0.4885 0.4949 0.4643 0.4923 6%
70M 1B 0.4987 0.6276 0.5051 0.5255 4% 0.486 0.4758 0.4758 0.5026 5.6%
70M 1.4B 0.4987 0.6926 0.5026 0.5153 2.5% 0.486 0.4974 0.4719 0.5089 7.8%
70M 2.8B 0.4987 0.7551 0.5 0.5115 2.3% 0.4872 0.5 0.4923 0.4987 1.3%
160M 410M 0.5013 0.6008 0.5 0.5281 5.6% 0.4694 0.4923 0.4758 0.4834 1.6%
160M 1B 0.5013 0.6403 0.5026 0.523 4.1% 0.4872 0.5 0.4681 0.4898 4.6%
160M 1.4B 0.5013 0.713 0.5077 0.5217 2.8% 0.4668 0.5051 0.4936 0.5038 2.1%
160M 2.8B 0.5013 0.7117 0.5077 0.5153 1.5% 0.4847 0.4847 0.4949 0.5128 3.6%
410M 1B 0.5689 0.6403 0.551 0.551 0% 0.4936 0.4911 0.4921 0.5179 5.2%
410M 1.4B 0.5778 0.6926 0.5816 0.5918 1.8% 0.4936 0.4949 0.5268 0.537 1.9%
410M 2.8B 0.5561 0.7551 0.5599 0.611 9.1% 0.5013 0.5115 0.5434 0.5485 0.9%
1B 1.4B 0.6084 0.6888 0.5982 0.6288 5.1% 0.5472 0.4923 0.5536 0.574 3.7%
1B 2.8B 0.6197 0.7398 0.6288 0.6543 4.1% 0.5497 0.5026 0.5855 0.5957 1.7%
1.4B 2.8B 0.699 0.7538 0.6926 0.713 2.9% 0.588 0.477 0.6161 0.6288 2.1%

G.4.1 SUPERVISED-FINE TUNING TASK FOR ARC QUESTION-ANSWER DATASET

Pythia
 70M to 160M

Pythia
 70M to 410M

Pythia
 70M to 1B

Pythia
 70M to 1.4B

Pythia
 70M to 2.8B

Pythia
 160M to 410M

Pythia
 160M to 1B

Pythia
 160M to 1.4B

Pythia
 160M to 2.8B

Pythia
 410M to 1B

Pythia
 410M to 1.4B

Pythia
 410M to 2.8B

Pythia
 1B to 1.4B

Pythia
 1B to 2.8B

Pythia
 1.4B to 2.8B

20.0

22.5

25.0

27.5

30.0

32.5

35.0

Ac
cu

ra
cy

 (%
)

Data Separation: Random

Pythia
 70M to 160M

Pythia
 70M to 410M

Pythia
 70M to 1B

Pythia
 70M to 1.4B

Pythia
 70M to 2.8B

Pythia
 160M to 410M

Pythia
 160M to 1B

Pythia
 160M to 1.4B

Pythia
 160M to 2.8B

Pythia
 410M to 1B

Pythia
 410M to 1.4B

Pythia
 410M to 2.8B

Pythia
 1B to 1.4B

Pythia
 1B to 2.8B

Pythia
 1.4B to 2.8B

16

18

20

22

24

26

Ac
cu

ra
cy

 (%
)

Data Separation: Easy Hard

Weak to Strong Performance (baseline) Weak to Strong Performance (ours)

Figure 15: Generation Task (ARC Data): Top figure shows a bar plot comparing the w2s gener-
alization of our method (grey) with a baseline (blue) for various combinations of weak and strong
model pairs for the SFT task on Q/A data for random data split (top bar-plot) and easy-hard split
(bottom bar-plot). Bottom figure shows a line plot comparing accuracy and PGR. The left two figures
are for random data split, while the right two are for the easy-hard split to show e2h generalization.

20

Published at NeurIPS Safe Generative AI Workshop 2024

Table 6: This table shows weak to strong generalization using random data-splits for arc dataset. We
also study the impact of using ensemble learning methods, which combines weak learners, for weak
to strong training. Each model is trained for 5 epochs and uses a learning rate of 5x10−5. The values
in this table are generated by aggregating 3 experiments. We show here mean and Standard Error of
the Mean values.

Weak Model Strong Model
Token-Avg Acc Option Acc Option Acc(on w2s) α oracle Token-Avg Acc Option Acc
Pythia-70m Pythia-160m

Baseline 13.28 ± 0.05 25.31 ± 0.1 25.76 ± 0.94 10.73 ± 0.03 24.12 ± 0.48 26.91 ± 0.1 24.46 ± 0.06
With Adaboost (T:03) 17.93 ± 0.78 24.75 ± 0.76 25.82 ± 0.69 10.68 ± 0.02 24.12 ± 0.48 27.15 ± 0.36 24.23 ± 0.08

Pythia-70m Pythia-410m
Baseline 13.28 ± 0.05 25.31 ± 0.1 25.76 ± 0.94 10.73 ± 0.03 28.61 ± 0.08 41.29 ± 0.1 27.25 ± 0.24
With Adaboost (T:04) 17.94 ± 0.88 24.97 ± 0.69 25.82 ± 0.69 10.67 ± 0.04 28.61 ± 0.08 41.61 ± 0.02 27.27 ± 0.3

Pythia-70m Pythia-1b
Baseline 13.28 ± 0.05 25.31 ± 0.1 25.76 ± 0.94 10.73 ± 0.03 31.11 ± 0.02 45.13 ± 0.11 28.33 ± 0.18
With Adaboost (T:05) 19.7 ± 1.18 24.92 ± 0.28 26.23 ± 0.49 10.65 ± 0.04 31.11 ± 0.02 45.17 ± 0.11 28.52 ± 0.09

Pythia-70m Pythia-1.4b
Baseline 13.35 ± 0.06 25.06 ± 0.14 24.39 ± 0.42 10.77 ± 0.06 32.34 ± 0.3 45.21 ± 0.24 29.86 ± 0.28
With Adaboost (T:04) 19.75 ± 1.16 24.26 ± 0.56 25.7 ± 0.65 10.68 ± 0.05 32.34 ± 0.3 45.33 ± 0.14 30.35 ± 0.13

Pythia-70m Pythia-2.8b
Baseline 13.42 ± 0.11 24.63 ± 0.13 23.97 ± 0.55 10.77 ± 0.05 35.18 ± 0.02 48.07 ± 0.12 30.94 ± 0.13
With Adaboost (T:02) 19.88 ± 0.56 24.52 ± 0.49 24.87 ± 0.81 10.68 ± 0.04 35.18 ± 0.02 47.75 ± 0.08 31.43 ± 0.43

Pythia-160m Pythia-410m
Baseline 25.5 ± 0.66 24.12 ± 0.45 26.06 ± 0.68 9.89 ± 0.03 29.18 ± 0.04 41.39 ± 0.14 27.5 ± 0.27
With Adaboost (T:04) 31.95 ± 0.47 24.94 ± 0.29 25.88 ± 0.64 9.74 ± 0.03 29.18 ± 0.04 41.28 ± 0.03 27.7 ± 0.34

Pythia-160m Pythia-1b
Baseline 25.5 ± 0.66 24.12 ± 0.45 26.06 ± 0.68 9.89 ± 0.03 31.26 ± 0.44 45.12 ± 0.05 28.24 ± 0.18
With Adaboost (T:02) 32.25 ± 0.21 24.52 ± 0.34 26.06 ± 0.57 9.66 ± 0.01 31.26 ± 0.44 45.18 ± 0.14 28.47 ± 0.24

Pythia-160m Pythia-1.4b
Baseline 24.74 ± 0.14 23.97 ± 0.36 25.76 ± 0.51 9.86 ± 0.02 32.25 ± 0.35 45.01 ± 0.1 30.55 ± 0.07
With Adaboost (T:03) 32.55 ± 0.21 24.46 ± 0.22 26.12 ± 0.8 9.66 ± 0.01 32.25 ± 0.35 45.23 ± 0.05 30.86 ± 0.33

Pythia-160m Pythia-2.8b
Baseline 25.43 ± 0.66 24.34 ± 0.09 26.0 ± 0.32 9.86 ± 0.02 35.44 ± 0.06 47.88 ± 0.02 31.03 ± 0.15
With Adaboost (T:04) 32.6 ± 0.03 24.23 ± 0.18 26.47 ± 0.53 9.66 ± 0.02 35.44 ± 0.06 47.77 ± 0.08 31.68 ± 0.41

Pythia-410m Pythia-1b
Baseline 39.76 ± 0.3 27.85 ± 0.52 24.33 ± 0.97 9.39 ± 0.02 30.97 ± 0.08 44.94 ± 0.08 28.9 ± 0.12
With Adaboost (T:02) 40.69 ± 0.14 28.27 ± 0.11 24.33 ± 0.59 9.01 ± 0.04 30.97 ± 0.08 44.76 ± 0.14 29.41 ± 0.08

Pythia-410m Pythia-1.4b
Baseline 39.66 ± 0.22 27.82 ± 0.53 24.09 ± 0.8 9.39 ± 0.02 32.82 ± 0.27 45.54 ± 0.03 30.26 ± 0.56
With Adaboost (T:02) 40.82 ± 0.13 28.9 ± 0.21 24.51 ± 0.59 9.01 ± 0.04 32.82 ± 0.27 45.66 ± 0.09 30.94 ± 0.53

Pythia-410m Pythia-2.8b
Baseline 39.57 ± 0.24 28.01 ± 0.69 24.69 ± 0.44 9.39 ± 0.01 35.86 ± 0.26 48.06 ± 0.15 31.15 ± 0.3
With Adaboost (T:04) 40.56 ± 0.11 28.7 ± 0.34 25.34 ± 1.12 9.03 ± 0.07 35.86 ± 0.26 48.22 ± 0.12 31.88 ± 0.27

Pythia-1b Pythia-1.4b
Baseline 42.31 ± 0.2 30.35 ± 0.24 28.02 ± 0.76 9.53 ± 0.02 32.65 ± 0.43 45.41 ± 0.06 30.26 ± 0.22
With Adaboost (T:03) 43.22 ± 0.13 31.68 ± 0.55 27.79 ± 0.71 9.37 ± 0.01 32.65 ± 0.43 45.44 ± 0.06 31.28 ± 0.22

Pythia-1b Pythia-2.8b
Baseline 42.2 ± 0.29 30.46 ± 0.16 27.73 ± 0.89 9.53 ± 0.02 35.12 ± 0.26 48.12 ± 0.06 32.14 ± 0.02
With Adaboost (T:02) 43.61 ± 0.2 31.17 ± 0.93 27.79 ± 0.76 9.26 ± 0.02 35.12 ± 0.26 48.2 ± 0.08 32.54 ± 0.08

Pythia-1.4b Pythia-2.8b
Baseline 42.39 ± 0.37 33.42 ± 0.37 30.65 ± 1.82 9.48 ± 0.03 35.12 ± 0.26 48.35 ± 0.11 32.42 ± 0.44
With Adaboost (T:02) 43.58 ± 0.27 33.5 ± 0.22 30.71 ± 1.48 11.07 ± 0.84 35.12 ± 0.26 48.29 ± 0.13 33.19 ± 0.24

Pythia
 70M to 160M

Pythia
 70M to 410M

Pythia
 70M to 1B

Pythia
 70M to 1.4B

Pythia
 70M to 2.8B

Pythia
 160M to 410M

Pythia
 160M to 1B

Pythia
 160M to 1.4B

Pythia
 160M to 2.8B

Pythia
 410M to 1B

Pythia
 410M to 1.4B

Pythia
 410M to 2.8B

Pythia
 1B to 1.4B

Pythia
 1B to 2.8B

Pythia
 1.4B to 2.8B

20.0
22.5
25.0
27.5
30.0
32.5
35.0

Ac
cu

ra
cy

 (%
)

Weak Model Performance Weak to Strong Performance (baseline) Weak to Strong Performance (ours) Strong Model Performance

Figure 16: ARC Dataset (Random): This figure shows bar plots comparing accuracy values of
weak model performance, w2s model performance (baseline and ours) and strong model performance
(oracle) for one specific run of experiments. Values are also mentioned in table 8.

21

Published at NeurIPS Safe Generative AI Workshop 2024

Table 7: This table shows weak to strong generalization using easy-hard data-splits for ARC dataset.
We also study the impact of using ensemble learning methods, which combines weak learners, for
weak to strong training. Each model is trained for 5 epochs and uses a learning rate of 5× 10−5. The
values in this table are generated by aggregating 3 experiments. We show here mean and Standard
Error of the Mean values.

Weak Model Strong Model
Token-Avg Acc Option Acc Option Acc(on w2s) α oracle Token-Avg Acc Option Acc
Pythia-70m Pythia-160m

Baseline 8.17 ± 0.06 22.5 ± 0.33 27.85 ± 0.57 10.45 ± 0.0 22.3 ± 0.16 17.88 ± 0.11 22.27 ± 0.32
With Adaboost (T:03) 13.35 ± 0.54 22.81 ± 0.29 27.78 ± 0.46 10.35 ± 0.02 22.3 ± 0.16 17.87 ± 0.17 22.56 ± 0.06

Pythia-70m Pythia-410m
Baseline 8.17 ± 0.06 22.5 ± 0.33 27.85 ± 0.57 10.45 ± 0.0 19.28 ± 0.15 28.92 ± 0.14 17.06 ± 0.31
With Adaboost (T:04) 14.53 ± 0.72 22.93 ± 0.17 27.96 ± 0.46 10.32 ± 0.0 19.28 ± 0.15 28.84 ± 0.05 18.0 ± 0.07

Pythia-70m Pythia-1b
Baseline 8.17 ± 0.06 22.5 ± 0.33 27.85 ± 0.57 10.45 ± 0.0 21.5 ± 0.24 32.05 ± 0.13 19.96 ± 0.15
With Adaboost (T:05) 12.95 ± 0.88 22.58 ± 0.38 28.03 ± 0.21 10.35 ± 0.02 21.5 ± 0.24 31.84 ± 0.08 20.45 ± 0.06

Pythia-70m Pythia-1.4b
Baseline 8.23 ± 0.1 22.61 ± 0.42 27.37 ± 0.42 10.45 ± 0.0 21.76 ± 0.14 32.98 ± 0.04 20.45 ± 0.42
With Adaboost (T:04) 12.65 ± 0.05 23.24 ± 0.06 28.32 ± 0.76 10.33 ± 0.01 21.76 ± 0.14 32.95 ± 0.17 21.28 ± 0.02

Pythia-70m Pythia-2.8b
Baseline 8.33 ± 0.1 23.24 ± 0.23 27.19 ± 0.47 10.45 ± 0.0 26.59 ± 0.13 35.98 ± 0.09 22.78 ± 0.51
With Adaboost (T:02) 14.28 ± 0.15 23.26 ± 0.22 28.27 ± 0.14 10.37 ± 0.01 26.59 ± 0.13 35.86 ± 0.28 23.15 ± 0.2

Pythia-160m Pythia-410m
Baseline 17.46 ± 0.16 21.73 ± 0.35 26.95 ± 0.1 9.61 ± 0.0 19.11 ± 0.37 28.8 ± 0.23 18.15 ± 0.15
With Adaboost (T:04) 20.57 ± 0.1 22.16 ± 0.2 27.19 ± 0.5 9.22 ± 0.02 19.11 ± 0.37 28.9 ± 0.11 18.43 ± 0.04

Pythia-160m Pythia-1b
Baseline 17.46 ± 0.16 21.73 ± 0.35 26.95 ± 0.1 9.61 ± 0.0 21.59 ± 0.07 32.06 ± 0.06 19.65 ± 0.1
With Adaboost (T:02) 20.47 ± 0.09 22.27 ± 0.29 27.31 ± 0.51 9.24 ± 0.01 21.59 ± 0.07 32.07 ± 0.12 20.17 ± 0.14

Pythia-160m Pythia-1.4b
Baseline 17.61 ± 0.07 22.84 ± 0.58 27.79 ± 0.64 9.61 ± 0.0 22.33 ± 0.34 33.11 ± 0.1 21.19 ± 0.15
With Adaboost (T:03) 20.31 ± 0.24 22.5 ± 0.36 27.79 ± 0.42 9.27 ± 0.06 22.33 ± 0.34 33.01 ± 0.05 21.25 ± 0.28

Pythia-160m Pythia-2.8b
Baseline 17.64 ± 0.06 23.09 ± 0.54 27.91 ± 0.59 9.6 ± 0.01 26.82 ± 0.1 35.83 ± 0.36 22.44 ± 0.11
With Adaboost (T:04) 20.3 ± 0.19 23.01 ± 0.43 27.73 ± 0.25 9.26 ± 0.06 26.82 ± 0.1 36.06 ± 0.07 23.35 ± 0.1

Pythia-410m Pythia-1b
Baseline 27.3 ± 0.16 18.8 ± 0.21 31.01 ± 0.51 9.24 ± 0.0 21.33 ± 0.04 32.06 ± 0.07 20.05 ± 0.08
With Adaboost (T:02) 28.07 ± 0.12 18.35 ± 0.21 32.2 ± 0.31 8.68 ± 0.09 21.33 ± 0.04 32.36 ± 0.05 20.34 ± 0.06

Pythia-410m Pythia-1.4b
Baseline 27.5 ± 0.14 18.54 ± 0.32 31.6 ± 0.21 9.24 ± 0.0 22.36 ± 0.3 33.47 ± 0.07 21.13 ± 0.1
With Adaboost (T:02) 28.09 ± 0.08 18.17 ± 0.28 31.78 ± 0.4 8.67 ± 0.09 22.36 ± 0.3 33.18 ± 0.11 21.47 ± 0.12

Pythia-410m Pythia-2.8b
Baseline 27.48 ± 0.13 18.12 ± 0.13 31.66 ± 0.17 9.25 ± 0.01 26.03 ± 0.21 36.13 ± 0.09 23.07 ± 0.18
With Adaboost (T:04) 27.96 ± 0.11 18.09 ± 0.2 31.07 ± 0.27 8.69 ± 0.08 26.03 ± 0.21 35.93 ± 0.09 24.06 ± 0.15

Pythia-1b Pythia-1.4b
Baseline 30.64 ± 0.17 21.22 ± 0.72 32.5 ± 0.6 9.38 ± 0.01 22.01 ± 0.21 33.13 ± 0.11 21.5 ± 0.07
With Adaboost (T:03) 30.41 ± 0.42 21.11 ± 0.22 32.68 ± 0.56 10.98 ± 0.78 22.01 ± 0.21 33.31 ± 0.03 21.53 ± 0.08

Pythia-1b Pythia-2.8b
Baseline 30.64 ± 0.17 21.22 ± 0.72 32.5 ± 0.6 9.38 ± 0.01 25.51 ± 0.2 36.14 ± 0.11 23.75 ± 0.16
With Adaboost (T:02) 31.11 ± 0.12 21.67 ± 0.18 33.21 ± 0.56 9.4 ± 0.24 25.51 ± 0.2 36.13 ± 0.13 23.75 ± 0.06

Pythia-1.4b Pythia-2.8b
Baseline 31.09 ± 0.12 22.27 ± 0.55 34.05 ± 0.1 9.31 ± 0.01 25.26 ± 0.11 36.13 ± 0.05 23.49 ± 0.2
With Adaboost (T:02) 31.56 ± 0.1 21.79 ± 0.44 34.35 ± 0.59 10.89 ± 0.65 25.26 ± 0.11 36.36 ± 0.2 24.37 ± 0.16

Pythia
 70M to 160M

Pythia
 70M to 410M

Pythia
 70M to 1B

Pythia
 70M to 1.4B

Pythia
 70M to 2.8B

Pythia
 160M to 410M

Pythia
 160M to 1B

Pythia
 160M to 1.4B

Pythia
 160M to 2.8B

Pythia
 410M to 1B

Pythia
 410M to 1.4B

Pythia
 410M to 2.8B

Pythia
 1B to 1.4B

Pythia
 1B to 2.8B

Pythia
 1.4B to 2.8B

15.0

17.5

20.0

22.5

25.0

27.5

Ac
cu

ra
cy

 (%
)

Weak Model Performance Weak to Strong Performance (baseline) Weak to Strong Performance (ours) Strong Model Performance

Figure 17: ARC Dataset (Easy-Hard): This figure shows bar plots comparing accuracy values of
weak model performance, w2s model performance (baseline and ours) and strong model performance
(oracle) for one specific run of experiments. Values are also mentioned in table 8.

22

Published at NeurIPS Safe Generative AI Workshop 2024

Table 8: This table shows weak to strong generalization using random as well as easy-hard data-splits
for ARC dataset. As compared to previous tables 6 and 7, here we run experiment once and note the
improvement of our method with respect to the baseline.

Weak Model
Size (Pythia)

Strong Model
Size (Pythia)

Data Separation: Random
Improv (%)

Data Separation: Easy-Hard
Improv (%)Weak Model

Performance
Strong Model
Performance

W2S Performance Weak Model
Performance

Strong Model
Performance

W2S Performance
Baseline Ours Baseline Ours

70M 160M 0.2381 0.2526 0.2457 0.244 -0.7 0.16 0.221 0.2201 0.2244 2
70M 410M 0.2509 0.2867 0.2688 0.273 1.6 0.16 0.1894 0.1672 0.1783 6.6
70M 1B 0.2381 0.3114 0.2858 0.2875 0.6 0.16 0.1937 0.1962 0.2048 4.4
70M 1.4B 0.2381 0.3166 0.2927 0.3003 2.6 0.16 0.2124 0.1945 0.2133 9.7
70M 2.8B 0.2483 0.3524 0.3106 0.3208 3.3 0.16 0.2671 0.2159 0.2321 7.5
160M 410M 0.2423 0.291 0.2816 0.285 1.2 0.175 0.1826 0.1792 0.1834 2.3
160M 1B 0.2423 0.3157 0.2782 0.2858 2.7 0.175 0.215 0.1945 0.2048 5.3
160M 1.4B 0.2312 0.3234 0.3038 0.3166 4.2 0.175 0.2287 0.2082 0.2125 2.1
160M 2.8B 0.2423 0.3541 0.3089 0.3268 5.8 0.175 0.2679 0.2218 0.2338 5.4
410M 1B 0.2739 0.3114 0.2884 0.2935 1.8 0.1993 0.2133 0.2005 0.2031 1.3
410M 1.4B 0.2739 0.3328 0.3148 0.3225 2.4 0.1993 0.2227 0.209 0.2176 4.1
410M 2.8B 0.2739 0.3643 0.3183 0.3225 1.3 0.1993 0.2654 0.227 0.2415 6.4
1B 1.4B 0.3003 0.337 0.3029 0.3174 4.8 0.2108 0.2227 0.2142 0.2167 1.2
1B 2.8B 0.3012 0.3481 0.3217 0.3259 1.3 0.1954 0.2594 0.2355 0.2372 0.7
1.4B 2.8B 0.3119 0.3481 0.3148 0.3294 4.6 0.2125 0.2517 0.2304 0.2457 6.6

H BROADER IMPACT

The proposed framework for weak-to-strong (w2s) generalization using ensembles of weak language
models (LLMs) has significant implications across various domains. By demonstrating that multiple
weak supervisors can effectively train more powerful models, our research addresses the critical
challenge of superalignment, potentially transforming how advanced AI systems are developed and
supervised. This approach could democratize access to powerful AI technologies by reducing reliance
on scarce, high-quality labeled data and enabling more inclusive participation in AI development.
Furthermore, our method encourages the creation of robust AI systems capable of tackling complex
problems, which can drive advancements in fields such as healthcare, education, and scientific
research. However, careful consideration must be given to ethical implications, ensuring that the
deployment of these advanced models aligns with societal values and mitigates risks associated with
misuse or unintended consequences.

23

	Introduction
	Weak-to-Strong Generalization via Easy-to-Hard Framework
	The Easy-to-Hard Framework
	Easy and Hard Data
	An Ensemble of Teachers

	W2S Generalization via AdaBoost of Diverse Teacher LLMs
	AdaBoost of Weak LLM Teachers for Classification Tasks
	Improving AdaBoost for Complex Generation Tasks

	Experimental Setup
	Binary Classification Task
	Generation Task for Multiple Choice Dataset
	Comparing Weak model's performance
	Comparing Strong model's performance
	Performance on hard data after training on weak vs strong data

	Conclusion
	Related Works
	Limitation and Future Work
	Detailed Flowchart
	Important Notations
	Easy and Hard Data Split.
	Binary Classification Task
	Detailed Results for Binary Classification Task

	Generative Task Details
	Different rating for all the datasets
	Ablation Studies for Generation Task
	Comparison between probability based combination with logit based combination of the tokens, during generation and evaluation of combined weak experts.
	Comparison between different window lengths for "sample and token weighing".

	Experimental Details
	 Supervised-Fine Tuning task for Quartz Question-Answer Dataset
	 Supervised-Fine Tuning task for ARC Question-Answer Dataset

	Broader Impact

