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Abstract

Structured pruning is a popular technique for compressing deep neural networks (DNNs) into ef-
ficient sub-networks. However, existing methods often require multi-stage process, engineering
efforts, and human expertise. The Only-Train-Once series (OTOv1-v3) has been proposed to re-
solve some pain points by streamlining the workflow. However, the built-in sparse optimizers in
the OTO series need hyperparameter tuning and implicit control over sparsity, necessitating human
intervention. To address these limitations, we propose the Hybrid Efficient Structured Sparse Op-
timizer (HESSO), which automatically and efficiently train a DNN within a single run to produce
a high-performing sub-network. HESSO is almost tuning-free and enjoys user-friendly integration
for generic training applications. In addition, to tackle the common issue of irreversible pruning
performance collapse in certain DNNs, we further propose the Corrective Redundant Identification
Cycle (CRIC), which integrates seamlessly with HESSO. The extensive numerical results showcase
that HESSO can achieve competitive performance on various state-of-the-art benchmarks and sup-
port most DNN architectures. Moreover, CRIC can effectively prevent the irreversible performance
collapse and further enhance the performance of HESSO on certain applications.

1 Introduction

Large deep neural networks (DNNs) have successfully powered a variety of applications (Ji & Chen, 2019; Zhou et al.,
2024; Zhu et al., 2023). However, their typical significant time and space complexities make inference expensive and
restrict deployment in resource-constrained environments. Consequently, how to compress the full DNN to the greatest
extent while preserving the performance becomes essential in many industrial and academic AI deployment pipelines.
There are various model compression techniques including but not limited to pruning (Chen et al., 2021b; 2023c;
Fang et al., 2023), knowledge distillation Ko et al. (2024) and quantization Han et al. (2015), which have been well
developed in the past decades.

Structured pruning typically serves as the foremost technique to produce an optimal sub-network from a pre-defined
full DNN by identifying and removing redundant structures (Gale et al., 2019; Han et al., 2015; Chen et al., 2021b;
2023c; Fang et al., 2023; Wang et al., 2024; Wu et al., 2024). Classical pruning methods focus on conducting a
multi-stage procedure, requiring significant engineering efforts and expertise to manually build pruning search space,
identify redundant structures, construct sub-network, and fine-tune to recover lost knowledge. To alleviate the human
engineering burden, recent works (Chen et al., 2023c;b; Fang et al., 2023) have proposed pruning dependency graph to
automate the pruning search space and sub-network construction. OTOv1-v2 (Chen et al., 2021b; 2023c) further unify
these multi-stage components together, requiring only a single training run to directly get a compact sub-network with-
out the need of further fine-tuning. Specifically, they rely on (Dual) Half-Space Stochastic Gradient Descent (D)HSPG
methods to train and prune simultaneously and have introduced a rigorous theoretical version AdaHSPG+ Dai et al.
(2023).

Although OTOv1 and OTOv2 have significantly advanced the ease of use in DNN joint training and structured pruning,
they still face challenges due to the complexity of the built-in (D)HSPG methods (Chen et al., 2021b; 2023c; 2020c;a).
Specifically, these methods often require substantial hyper-parameter tuning for different downstream applications
and DNN architectures (Dai et al., 2023; Wu et al., 2024). Furthermore, the sparsity explorations are implicit, which
requires optimization expertise, thereby diminishes the practical convenience and usability.
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# Select optimizer.
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Automatic Any DNN Joint Training and Structured-Pruning

Figure 1: Automatic any DNN joint training and structured pruning experience achieved by the pruning mode of OTO
along with the proposed HESSO and its enhanced HESSO-CRIC optimizer. The procedure could be applied onto
varying DNN and applications, and seamlessly integrated into any training pipeline to directly produce a compact
pruned sub-network without further fine-tuning.

(D)HSPG HESSO HESSO-CRIC
Efficiency ★★ ★★★ ★★✩

Tuning-Free ★ ★★★ ★★★

User-Friendliness ★ ★★★ ★★★

Performance ★★★† ★★✩ ★★★

† Under sufficient hyper-parameter tuning efforts.

Moreover, many modern pruning and neural architecture
search methods rely on saliency scores (e.g., Taylor based) to
identify redundant structures. However, they often suffer per-
formance degradation due to mistakenly identifying indispens-
able structures as redundant. This degradation can sometimes
be irreversible due to architectural design constraints, trans-
parency of training datasets, and high training resource cost, posing practical challenges for their use.

To address these issues, we propose HESSO: Hybrid Efficient Structured Sparse Optimizer for automatic one-shot
any DNN training and structured pruning. Compared to the HSPG family, HESSO offers several advantages. First, it
significantly simplifies the hyper-parameter setup, providing considerable practical convenience. Second, it employs
a progressive pruning strategy to explicitly control the sparsity exploration, making it user-friendly. Third, HESSO
optionally incorporates a novel Corrective Redundancy Identification Cycle (CRIC) mechanism, which more accu-
rately identifies redundant groups, thereby minimizing the risk of irreversible performance collapse caused by pruning
indispensable structures. We now summarize our main contributions as follows.

• Efficient Hybrid Training and Pruning Optimizer. We propose an efficient and easy-to-use optimizer, HESSO,
to enable automatic joint structured pruning and training for various model architectures and applications. HESSO
progressively identifies redundant groups through flexible saliency score estimations and utilizes a hybrid training
schema to effectively transfer knowledge from redundant groups to important ones, thereby maintaining the perfor-
mance of the pruned model. Compared to the D(HSPG) in OTO, HESSO explicitly controls sparsity exploration and
knowledge transfer, minimizes the need for hyper-parameter tuning. As a result, HESSO becomes the first optimizer
to realize convenient joint DNN training and pruning to the best of our knowledge.

• Corrective Redundancy Identification Cycle. We propose a novel Corrective Redundancy Identification Cycle
(CRIC) to improve the accuracy of redundancy identification. CRIC addresses the approximation errors often as-
sociated with popular Taylor-based saliency scores, thereby reducing the risk of mistakenly pruning indispensable
groups. CRIC employs a voting mechanism and measures the saliency scores of each group candidate using a multi-
sampling approach towards the origin. CRIC can be integrated into HESSO or future joint optimizers to ensure
reliable model performance by offering a more accurate assessment of group significance.

• Numerical Experiments. We validate the efficacy of HESSO and its enhanced version HESSO-CRIC across a
variety of tasks. Specifically, we evaluate its performance on high-level computer vision tasks such as image clas-
sification and object detection, low-level vision tasks like super-resolution, as well as natural language processing
tasks including large language models. The numerical results demonstrate that HESSO performs competitively, and
in many cases, exceeds the state-of-the-art benchmarks, offering significant practical convenience. Additionally,
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CRIC effectively mitigates the issues of irreversible collapse in pruned models, especially in challenging cases,
further showcasing its utility.

2 Related Works

In this section, we present a brief literature review on automatic structured pruning, knowledge transfer and neural
architecture optimization.

General Pruning Procedures. Structured pruning aims to compress DNNs by removing unnecessary structures
while maintaining performance (Han et al., 2015; Wen et al., 2016). The general procedure typically involves: (i)
training a full model; (ii) identifying and removing redundant structures to construct a slimmer DNN based on various
criteria (Lin et al., 2019; He et al., 2018a; Wen et al., 2016; Li et al., 2020b; Zhuang et al., 2020; Chen et al., 2017;
2018; 2021a; 2020b; Gao et al., 2020; Zhuang et al., 2020; Meng et al., 2020; Yang et al., 2019; Zhou et al., 2019; van
Baalen et al., 2020; Frankle & Carbin, 2018); and (iii) retraining the pruned model to recover any accuracy lost during
pruning. These methods often require a complex and time-consuming process, involving multiple training iterations
and significant domain knowledge to manually handle each step.

Automated Pruning Given Pre-defined Search Space. To resolve the pain points of human interventions, au-
tomated pruning is raising interests from different perspectives. Given a predefined search space, AMC He et al.
(2018b) employs reinforcement learning agents to automatically determine the optimal pruning ratio. EagleEye Li
et al. (2020a) further introduces a sub-network evaluation scheme based on adaptive batch normalization, which can
be integrated into AMC. OFA Cai et al. (2020) automates the generation of sub-networks for different hardware
platforms in a single process. While these approaches yield impressive performance, their application is limited to
predefined search spaces. Moreover, AMC incurs additional training costs for its reinforcement learning agent. OFA’s
training procedure is complex and heavy to adopt all sub-networks, which requires prior knowledge of the optimal
training procedure for the largest super-network to ensure performance, making its implementation inconvenient.

Automated Pruning Over Any DNNs. On the other hand, automatically pruning arbitrary models without prior
knowledge of the search space remained a significant challenge. Recent methods, such as OTO (Chen et al., 2021b;
2023c;b) and DepGraph Fang et al. (2023), have made progress in automating the structured pruning process for gen-
eral DNNs via dependency graph analysis. Subsequent works like Wang et al. (2024) and Ren et al. (2024) automates
pruning over ONNX models. ATO Wu et al. (2024) introduces ControlNet upon OTOv2. Among these, OTO offers
a one-shot joint training and pruning framework that can seamlessly integrate into various training processes to pro-
duce high-performing sub-networks in a single run. While these automated approaches have significantly improved
user convenience, end-users still face significant challenges with hyper-parameter tuning and optimization expertise
to calibrate OTO’s built-in HSPG family (Chen et al., 2020c; Dai et al., 2023). Furthermore, some DNNs contain
indispensable structures, the pruning of which leads to irreversible performance degradation. Identifying these critical
structures remains an open problem that is often handled manually on a case-by-case basis, complicating practical use.

In this work, we address these challenges by proposing an efficient, tuning-free, and user-friendly joint training and
pruning optimizer, HESSO along with its enhanced version, HESSO-CRIC, which reliably identifies indispensable
structures to ensure performance.

Knowledge Transfer. To retain the performance of a pruned sub-network, HESSO-(CRIC) incorporates a knowl-
edge transfer mechanism through a hybrid training schema. This approach differs from prior methods, which explicitly
use knowledge distillation from unpruned models to preserve information in pruned models. Existing techniques typ-
ically require expensive computations that involve both pruned and unpruned models, either by processing logits La-
gunas et al. (2021) or the hidden activations of intermediate layers (Xia et al., 2022; Ko et al., 2023). In contrast, our
approach preserves knowledge without incurring such computational costs. Another related works, ResRep Ding et al.
(2021b) and SliceGPT Ashkboos et al. (2024), also aim to preserve computational invariance. The knowledge transfer
in HESSO-(CRIC) similarly seeks to maintain computational invariance but does so by preserving objective function
levels. However, SliceGPT is restricted to transformer architectures and requires manually injecting additional layers.
ResRep is restricted to CNN architectures and require conducting structurally re-parametrization via computing reset-
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ting gradients. HESSO-(CRIC) is architecture-agnostic, efficient and user-friendly, demonstrating both scalability and
versatility.

Neural Architecture Optimization. Another related realm is the optimization over pre-specified neural architecture.
NAO Luo et al. (2018) encodes the DNN architecture into a latent representation, search over the latent space, then
decodes back to a revised architecture. NAT Guo et al. (2019) performs operator transformation upon the given DNN
to produce more accurate network. These approaches transform and improve the existing DNNs, yet not search an
optimal sub-network. As a result, their produced networks are typically not significantly compact compared to the
baseline models. Contrarily, our approach focuses on automatically and effectively discovering compact sub-networks
given pre-specified DNNs via structured pruning.
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(a) Trace graph of target DNN.
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(b) Pruning dependency graph.
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Figure 2: Automated trainable variable partitions for one-shot structured pruning. Given the trace graph shown in
Figure 2a, automatic pruning frameworks such as OTOv2 Chen et al. (2023c) construct a pruning dependency graph
shown as Figure 2b and partition the trainable variables as pruning zero-invariant groups G in Figure 2c.

3 HESSO

Given a target DNN with variables and architecture to be optimized, HESSO formulates a structured sparsity con-
strained optimization problem upon the set of parameter groups G. Specifically, it aims to achieve group sparsity over
the prunable variables with a target sparsity level of K. The optimization problem is formulated as:

minimize
x∈Rn

f(x), s.t. Card ({g ∈ G|[x]g = 0}) = K, (1)

where the constraint enforces that exactly K parameter groups in G are pruned. These parameter groups can be defined
as zero-invariant groups, which are identified through pruning dependency graph analysis, or in other general group
formats (Chen et al., 2023c;b).

During the optimization process, HESSO begins with a warm-up phase, where the variables are trained using gradient
descent or its variants. The purpose of the warm-up stage is to collect gradient information and guide the DNN into
a relatively favorable region for convergence. Following this, HESSO performs progressive pruning by periodically
identifying redundant parameter groups based on predefined saliency scores. Throughout the progressive pruning
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Algorithm 1 HESSO: Hybrid Efficient Structured Sparsity Optimizer

1: Input. Initial variable x0, learning rate α, warm-up steps Tw, pruning periods P , period length Tp, target group
sparsity level K, and variable partition G = GI

⋃
GR.

2: Warm up Tw steps via SGD or its variants.
3: Initialize redundant groups GR ← ∅.
4: Initialize important groups GI ← G.
5: Compute sparsity for each pruning period K̂ := K/Tp.
6: for each pruning period p = 0, 1, · · · , P − 1 do
7: Pickup Ĝp in GI with K̂-least saliency scores.
8: Update GR ← GR ∪ Ĝp and GI ← GI/Ĝp.
9: for t = 0, 1, · · · , Tp − 1 do

10: Compute trial iterate x̂t+1 ← xt − αt∇f(xt).
11: Compute transferring ratio for each g ∈ Ĝp:

[γt]g ←
Tp − t− 1

Tp − t

∥[xt]g∥
∥[x̂t+1]g∥

.

12: Update redundant and important variables:

[xt+1]Ĝp
← [γt]Ĝp

[x̂t+1]Ĝp
,

[xt+1]GI
← [x̂t+1]GI

.

13: end for
14: end for
15: Training important group variables till convergence.
16: Return the final iterate x∗

HESSO.

phase, HESSO gradually forgets the knowledge in the redundant groups while the remaining important groups continue
training, thereby facilitating the transfer and recapture of knowledge. We refer to this approach as hybrid training,
where distinct training strategies are applied to different groups. Finally, once all redundant groups are identified
and projected onto zero, the remaining important groups continue to be trained until final convergence. The main
procedure is outlined in Algorithm 1.

3.1 Saliency Score

After warming up Tw steps in Algorithm 1, HESSO has typically collected reasonable information regarding the
gradient and the iterate. It then starts to identify redundant groups upon the target group sparsity level K to partition
the groups G into important group set GI and redundant group set GR, i.e., GI

⋃
GR = G and |GR| = K. HESSO

achieves it by periodically measuring the importance of each parameter group g ∈ G. To begin, we initialize the
important group set as the whole group set GI ← G, and the redundant group set as empty GR ← ∅. Given a pre-
defined pruning periods P , we identify K̂ ← K/P important groups to designate as redundant during each period.
The redundant groups are the ones with bottom-K̂ saliency scores. In particular, the redundant group set GR and the
important group set GI are updated as follows:

GR ← GR

⋃
Bottom-K̂

g∈GI

SaliencyScore([x]g, [∇f(x)]g),

GI ← GI/ Bottom-K̂
g∈GI

SaliencyScore([x]g, [∇f(x)]g).

The selection of the saliency score in HESSO is flexible and can be tailored to different purposes. By default, we
consider the categories presented in Appendix B.

5



Under review as submission to TMLR

3.2 Hybrid Training in HESSO

After identifying the redundant groups in Section 3.1, the next step involves projecting these groups onto zero and
transfering their knowledge to the important groups, ensuring that the pruned model retains its performance. This is
accomplished through a hybrid training schema.

For the redundant groups GR, we progressively and uniformly push their parameters towards zero. This process is
detailed in line 11-12 in Algorithm 1 and decipted in Figure 3. The goal is to ensure that the parameters in the redundant
groups become zero after Tp steps. During this penalization process, there is a risk of forgetting the knowledge
contained in the redundant groups, which may manifest as a degradation in the objective function’s value. To mitigate
this, we employ a standard optimization method, such as vanilla SGD or its variants such as Adam, on the important
groups GI . This step aims to continue optimizing the objective function f and preserve the model’s performance
despite the pruning of redundant groups. By maintaining the optimization of the important groups, the knowledge lost
from the redundant groups can be transferred and compensated for, ensuring that the pruned model remains effective.

g1 g2 g3

g4 g5 g6

g7 g8 g9

g10 g11 g12

Variable Groups G

Saliency

Score

g1 g5 g6

g8 g10 g11
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[xk+1]GR

−αk[∇f(xk)]GR

Knowledge

Transfer
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Figure 3: HESSO uses saliency scores to periodically identify redundant groups GR from the group set G and marks
the remaining groups as important groups GI . A knowledge transfer mechanism is proceeded by employing hybrid
training strategies onto GR and GI . In particular, the variables in GR are progressively projected onto zeros after
gradient descent. The important variables are kept training via gradient descent to migrate the impact of redundant
project onto the objective function.

Next, we provide brief intuitive comparisons of HESSO against two popular pruning algorithms.

Minimize tuning efforts compared to DHSPG. DHSPG in OTOv2 involves significant hyper-parameter tuning to
adjust parameters for sparsity exploration. This tuning often requires domain-specific knowledge, as the appropriate
settings can vary depending on the particular application or dataset. This requirement can make DHSPG more complex
and less accessible, particularly for practitioners without extensive expertise in hyper-parameter and sparse optimiza-
tion. Contrarily, HESSO offers more explicit control over sparsity exploration. The pruning process in HESSO is
regulated by the pruning periods P and the period length TP , which determine the pace and extent of the pruning
procedure. This structured approach simplifies the process, making it easier to manage.

Architecture-agnostic computational invariance compared to ResRep and SliceGPT. ResRep (Ding et al.,
2021b) and SliceGPT (Ashkboos et al., 2024) are proposed to preserve computational invariance, i.e., making pruned
and full models produce similar outputs, for CNNs and transformers, respectively. However, they are architecture
specific, requires additional efforts, such as injecting additional layers in SliceGPT and computing reset gradients
in ResRep. The knowledge transfer in HESSO similarly seeks to maintain computational invariance but does so by
preserving objective function levels. In addition, HESSO is architecture-agnostic, efficient and user-friendly, demon-
strating both scalability and versatility compared with ResRep and SliceGPT.

As a result, HESSO is generally easier to use and more adaptable to various applications, as it significantly reduces the
need for extensive tuning and specialized knowledge. The design of hybrid training for knowledge transfer effectively
promotes the performance of pruned model. It makes HESSO a more efficient and user-friendly option for achieving
structured sparsity and ensuring consistent application across different tasks and domains.

3.3 Approximation Errors of Saliency Scores

Although HESSO can tackle most DNNs and tasks, it may yield unsatisfactory results when the target DNN possesses
certain indispensable structures, defined as follows.
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Definition 3.1 (Indispensable structure). Given a deep neural network M, a minimally removal structure is called
indispensable if removing it fromM would cause significant performance degradation, which can not be recovered
given user resources. In particular, we say a minimally removal structure as ϵ-indispensable associated with an objec-
tive f if pruning the variables [x]g → 0 deteriorates f at least ϵ, i.e., f(x|[x]g → 0) ≥ f(x) + ϵ for a minimization
optimization problem. The degradation ϵ can not be recovered by (i) keeping trainingM, (ii) the training cost such as
GPU days exceeding user budget, or (iii) the training receipt forM is black-box and hard to be reproduced.

The origin of indispensable structures varies. One reason may be due to architectural design issues where certain
layers in M play more critical roles than others and are very sensitive to any modifications, as exemplified by a
low-level vision benchmark in Section 4.1. Another reason could be the learning strategy. For instance, in large
language models (LLMs), it has been observed that knowledge is unevenly distributed across different layers (Chen
et al., 2023a). Removing any of these structures could result in an irreversible collapse of the DNN’s performance.

Saliency score approximation errors. The existing saliency scores might fail to identify these indispensable com-
ponents accurately. As described in Appendix B, they are typically designed to approximate the impact of projecting
groups of variables to zero over the objective function. Such approximations, for example, perhaps the most commonly
used Taylor importance scores, are more accurate when the iterate is close enough to the origin point.

Remark 3.2 (Approximation error of Taylor importance). Suppose the gradient and second-order derivative of f
are bounded. Use first-order mL and second-order mQ Taylor approximations to measure the function value f after
pruning g ∈ G, i.e., [x]g → 0. Let s satisfy [s]G/g = [0]G/g and [s]g = −[x]g , Then the approximation error bound
|f(x + s)−mL(x + s)| and |f(x + s)−mQ(x + s)| are proportional toO(∥[x]g∥2) andO(∥[x]g∥3), respectively.

However, during realistic training and pruning, this requirement is usually not met. As stated in Remark 3.2, the
approximation error bounds increase proportionally with ∥[x]g∥, indicating that the further the distance from the
origin, the larger the approximation error. As a result, this can lead to the false positively pruning of indispensable
structures, which in turn causes performance issues.

3.4 Corrective Redundancy Identification Cycle

To address the limitations discussed in Section 3.3, we propose a novel Corrective Redundant Identification Cycle
(CRIC). This method aims to more reliably identify redundant structures within the target DNN, even when indispens-
able structures are present. The CRIC mechanism can be seamlessly integrated into HESSO, enhancing its ability to
accurately discern which parts of the model can be pruned without compromising performance.

To mitigate the issue of false positive redundant predictions caused by the approximation error, such as Taylor ex-
pansion, CRIC measures the saliency score of redundant group candidates multiple times along the projection to the
origin. Unlike the greedy approach in HESSO, CRIC incorporates a corrective cycle mechanism. This mechanism
iteratively promotes groups as redundant and tracks the outlier groups. The cycle terminates when the redundancy
prediction is deemed reliable, i.e., no outlier appearance is detected. The final output is a set of redundant groups GR

with the bottom-K overall saliency scores. This approach significantly reduces false positive redundant identifications
and addresses the failure cases of HESSO, as demonstrated numerically in Section 4.

In Algorithm 2, we utilize a violating group set V to track outlier or violating groups, which are more redundant or
deviate from the current redundant group prediction. V is initialized with the group set having the bottom-K saliency
scores (see line 3). A historical set H is also used to track groups whose saliency scores have been fully exploited
through multiple sampling along the projection to the origin. This set is initialized as empty ∅, as shown in line 4.

When the violating set is fairly large, i.e., |V| > T with T as a predefined terminating tolerance which is by default as
empty set, i.e., T = ∅, we progressively project these violating groups onto zero. By default, saliency score sampling
points are uniformly distributed along the projection process. Groups with lower importance scores that have not been
visited in H are added to a newly constructed violating set V̂ for the next corrective cycle. The corrective cycling
algorithm continues until violating instances rarely appear, i.e., |V| ≤ T , see line 5.

Theorem 3.3 guarantees that CRIC terminates within a finite number of iterations, preventing endless loops and exe-
cuting efficiently. We provided detailed proof for Theorem 3.3 in Appendix A. Furthermore, Corollary 3.4 provides
an upper bound on the number of cycles required by CRIC, ensuring a practical and efficient pruning process.
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Algorithm 2 Corrective Redundant Identification Cycle (CRIC)

1: Input. Trainable variable x, learning rate α, termination tolerance T , target group sparsity K, sample steps T ,
and prunable variable partition G.

2: Initialize S to store saliency scores for each g ∈ G.
3: Initialize violating group set V:

V ← {g : g ∈ G with bottom-K saliency scores}.

4: Initialize historical setH ← V .
5: while |V| ≤ T do
6: Initialize trial violating group set V̂ ← ∅.
7: Initialize α0 ← α, λ0 ← λ, and x0 ← x.
8: for t = 0, 1, · · · , T − 1 do
9: Compute trial x̃t+1 ← xt − αt∇f(xt).

10: Penalize variables in the violating set:

[xt+1]V ←
T − t− 1

T − t

[xt]V
∥[x̃t+1]V∥

.

11: Compute saliency scores of G and merge to S.
12: Update set V̂ if new violating groups appear:

V̂ ← V̂ ∪ {g : g ∈ G with bottom-K scores}/V.

13: Update penalty λt and learning rate αt.
14: end for
15: Update violating set V ← V̂/H.
16: Update historical setH ← H

⋃
V .

17: end while
18: Set redundant set GR upon saliency score collection S:

GR ← {g : g with bottom-K scores in S}.

19: Return. Identified redundant group set GR and important group set GI as G/GR.

Theorem 3.3 (Finite termination of CRIC). The corrective redundancy identification cycle (Algorithm 2) terminates
within a finite number of steps for any termination tolerance T .

Corollary 3.4 (Upper bounds of cycle numbers). Given the termination tolerance T , CRIC terminates with no more
than (|G| −K)/ max {T , 1} cycles.

Once the corrective cycles terminate, the saliency scores obtained are deemed reliable. At this point, the redundant set
GR is constructed based on these reliable saliency scores, as indicated in line 18. This set of redundant groups is then
returned for further use, such as hybrid training in HESSO (as detailed in Algorithm 1). For simplicity, the HESSO
variant that utilizes CRIC for identifying redundant groups is referred to as HESSO-CRIC throughout the paper, as
outlined in Algorithm 3. This naming convention distinguishes the variant from HESSO, highlighting the addition of
the corrective cycle mechanism that enhances the reliability of the pruning process.

4 Numerical Experiments

We numerically demonstrate the efficacy of HESSO across a wide range of applications, from high-level vision tasks
including image classification (He et al., 2016), to low-level vision tasks such as super-resolution (Zhou et al., 2024),
and object detection (Shi et al., 2020), as well as natural language processing tasks such as question answering (Ra-
jpurkar et al., 2016) and the popular foundational large language models (Ding et al., 2023). The architectures used
in these experiments encompass a variety of CNN benchmarks (Chen et al., 2023c) and transformers (Vaswani et al.,
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2017). These experiments involve training either from scratch or using a pre-trained checkpoint (when available) to
validate the versatility of HESSO-(CRIC). Furthermore, we provided ablation studies of CRIC over different saliency
scores in Section 4.6, hyper-parameter tuning effort studies in Section 4.7, and computational complexity analysis in
Appendix D. For details of the experiment setup, we refer readers to Appendix E.

4.1 Super Resolution
Table 1: Structurally pruning CARNx2.

Optimizer Exclusion of Group Sparsity FLOPS # of Params PSNR
Dispensable Structure Set14 B100 Urban100

Baseline – – 100% 100% 33.5 32.1 31.5
DHSPG Manual 50% 24.3% 24.1% 33.2 31.9 31.1
DHSPG No 50% ✗ ✗ ✗ ✗ ✗
HESSO Manual 20% 66.9% 66.8% 33.5 32.1
HESSO Manual 30% 50.8% 50.6% 32.3 32.0 31.5
HESSO Manual 40% 40.0% 39.7% 33.3 32.0 31.3
HESSO Manual 50% 30.8% 30.5% 33.2 31.9 31.1
HESSO Manual 60% 33.1 31.8 31.0
HESSO No 50% ✗ ✗ ✗ ✗ ✗

HESSO-CRIC Automatic 20% 66.9% 66.8% 33.5 32.1 31.8
HESSO-CRIC Automatic 30% 53.4% 53.2% 33.4 32.1 31.7
HESSO-CRIC Automatic 40% 40.4% 40.1% 33.3 32.0 31.5
HESSO-CRIC Automatic 50% 28.7% 28.4% 33.3 32.0 31.3
HESSO-CRIC Automatic 60% 18.1% 17.7% 33.2 31.9 31.1
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We then selected the popular CARN architecture (Ahn et al., 2018) for the super-resolution task with a scaling factor of
two, referred to as CARNx2. The benchmark DIV2K dataset (Agustsson & Timofte, 2017) was used for training, while
Set14 (Zeyde et al., 2010), B100 (Martin et al., 2001), and Urban100 (Huang et al., 2015) datasets were employed
for evaluation. Initially, we utilized OTO’s pruning dependency analysis to identify minimally removable structures
and partitioned the trainable variables into pruning-zero-invariant groups. However, directly applying DHSPG or
HESSO led to significant performance degradation that was not reversible. This issue stems from the architectural
design, where the penultimate convolutional layer is critical for generating satisfactory visual results, making it an
indispensable structure. Pruning this layer caused the remaining filters to fail in generating reasonable visual outcomes.
However, the saliency score deems them as redundant due to significant approximation errors and thus, results in
irreversible performance collapse.

OTOv2 (Chen et al., 2023c) manually excluded these indispensable structures from pruning. However, this manual
identification is time-consuming and requires expert knowledge. To address this, we applied HESSO-CRIC to CARN
and observed that it automatically identified these crucial structures as important groups, leading to a successfully high-
performing pruned model. As shown in Table 1, when manually excluding indispensable structures, both DHSPG and
HESSO significantly reduced FLOPs and parameters by approximately 33% to 80%, with negligible PSNR degrada-
tion. HESSO-CRIC achieved a better trade-off between FLOP reduction and PSNR, as demonstrated by exhibiting
the frontier curve under varying pruning ratios. Visual examples shown in Figure 6 at Appendix F further cross-verify
the performance preservation by our approaches.

4.2 Image Classification
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Figure 4: ResNet50 on ImageNet.

We first conducted the benchmark ResNet50 (He et al., 2016) on ImageNet.
As displayed in Figure 4, HESSO-CRIC roughly exhibits a Pareto frontier in
terms of top-1 accuracy and FLOPs reduction under various group sparsities
from 40% to 70%. HESSO and DHSPG perform competitively in this appli-
cation. Moreover, all of then could produce structurally pruned sub-networks
associated with smaller size fewer FLOPs, and higher accuracy compared to
most of the existing approaches (Huang & Wang, 2018; Zhou et al., 2019;
Ding et al., 2021a; Yang et al., 2019; You et al., 2019; Zhou et al., 2019).
These results well validate the efficacy of the newly proposed joint pruning
and training optimizer on this popular structured pruning benchmark.

We further employ HESSO-(CRIC) to structurally prune a pretrained OFA
network (Cai et al., 2020) on the benchmark ImageNet (Deng et al., 2009).
The OFA network was produced by searching from a MobileNetV3 based
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super-network and could achieve 80.0% top-1 test accuracy on ImageNet. We find that both HESSO-(CRIC) could
effectively discover pruned sub-networks with similar size and MACs while with higher performance than other OFA
networks, i.e., 78.6% and 78.2% versus 76.9% test accuracy.

Table 2: Structurally pruning MobileNet Search Space.

Method # of Params (M) MACs (M) Top Acc-1 (%)
OFALARGE # 75 (Cai et al., 2020) 9.14 595 80.0
MobileNetV2 (Sandler et al., 2018) 3.4 300 72.0
MobileNetV3-Large (Howard et al., 2019) 5.4 219 75.2
OFA # 75 (Cai et al., 2020) 5.81 230 76.9
HESSO 5.60 220 78.2
HESSO-CRIC 5.71 225 78.6

4.3 Object Detection

Table 3: Structurally pruning Yolov5l on COCO.

Method # of Params mAP0.5 mAP0.5:0.95
Baseline 100% 66.31% 47.71%
HFP (Enderich et al., 2021) 50% 63.5% 43.4%
TCFP (Jeon et al., 2022) 50% 61.8% 42.7%
HESSO (30% group sparsity) 49% 63.1% 44.4%
HESSO-CRIC (30% group sparsity) 49% 63.1% 44.5%

Next, we tested HESSO on the popular YOLO (Redmon
et al., 2016) object detection model using the COCO
benchmark dataset (Lin et al., 2014). Table 3 presents the
structured pruning results for YOLOv5l (Jocher et al.,
2022). Note that we selected YOLOv5l to facilitate com-
parisons with other existing benchmarks. We applied
HESSO and HESSO-CRIC with a target group sparsity
of 30%, resulting in a sub-network containing 49% of the original parameters. This allows for direct comparison with
benchmarks that retain 50% of the model’s parameters. The results show that a single run of HESSO and HESSO-
CRIC achieved significantly higher Mean Average Precision (mAP) compared to other pruning approaches, which
often require more complex, multi-stage procedures. For further visualization, additional details can be found in
Figure 6 in Appendix F.

4.4 Question and Answering

Table 4: Structurally pruning Bert on SQuAD.

Method Group Sparsity # of Params F1-score
Baseline 100% 88.3% 88.5%

ProxSSI (Deleu & Bengio, 2021) – 83.4%† 82.0%
HSPG (Chen et al., 2021b) – 91.0% 84.1%
HSPG (Chen et al., 2021b) – 66.7% 82.0%

DHSPG 10% 93.3% 87.7%
DHSPG 30% 80.1% 87.3%
DHSPG 50% 68.3% 86.2%
DHSPG 70% 55.0% 83.8%
HESSO 10% 94.78% 87.20%
HESSO 30% 84.33% 86.72%
HESSO 50% 73.88% 86.46%
HESSO 70% 63.34% 85.50%
HESSO 90% 53.0% 84.25%

HESSO-CRIC 10% 94.78% 87.48%
HESSO-CRIC 30% 84.32% 87.10%
HESSO-CRIC 50% 73.88% 86.50%
HESSO-CRIC 70% 63.44% 85.96%
HESSO-CRIC 90% 53.0% 84.10%

† Approximate value based on (Deleu & Bengio, 2021).
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Later, we compare HESSO-(CRIC) with DHSPG, HSPG, and a representative proximal method ProxSSI (Deleu
& Bengio, 2021) for pruning a transformer model Bert (Vaswani et al., 2017), evaluated on the SQuAD question-
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answering benchmark (Rajpurkar et al., 2016). It is important to note that proximal methods have been standard
algorithms for solving sparse optimization problems for decades. However, they are not effective at exploring sparsity
while maintaining model performance in deep learning applications (Dai et al., 2023).

As shown in Table 4, HESSO, HESSO-CRIC, and DHSPG perform competitively on this task in terms of parameter
reduction while maintaining F1 scores. However, DHSPG achieves these results after extensive hyper-parameter
tuning, which is not convenient. HSPG penalizes all variables toward zero which severely restricts the optimization
search space, leading to suboptimal performance. ProxSSI additionally lacks sufficient sparsity exploration capacity,
being not comparable.

4.5 Large Language Model

Finally, we evaluated HESSO-(CRIC) on large language models (LLMs). Since both HESSO and HESSO-CRIC
utilize full gradient information, we focused on LLMs with fewer than 3 billion parameters, such as the represen-
tative Phi-2-2.7B (Javaheripi et al., 2023), to ensure that a single 80GB GPU is sufficient, without requiring tensor
parallelism (Ding et al., 2023). Our experimental setup followed that of LoRAShear (Chen et al., 2023a).

Table 5: HESSO-CRIC over Phi-2-2.7B.

Pruning Ratio Method BoolQ PIQA HellaSwag WinoGrande ARC-e ARC-c OBQA Average
Baseline Phi-2-2.7B 83.30 79.11 73.82 75.77 80.05 54.18 51.40 71.09
Ratio = 20% SliceGPT (Ashkboos et al., 2024) 68.56 74.16 61.22 67.56 70.20 41.04 38.80 60.22

LLM-Pruner (Ma et al., 2023) 61.28 62.79 36.79 53.12 52.23 31.06 30.00 46.75
LoraShear (Chen et al., 2023a) 62.29 68.12 45.28 58.8 61.91 32.42 34.00 51.81
LoraPrune (Zhang et al., 2023) 57.22 67.79 45.1 54.85 61.87 35.15 33.80 50.83
HESSO-CRIC 69.67 74.37 62.27 66.54 72.30 41.44 38.20 60.67

Ratio = 25% SliceGPT (Ashkboos et al., 2024) 63.70 71.49 57.72 66.46 65.86 38.99 39.80 57.71
LLM-Pruner (Ma et al., 2023) 62.26 60.55 33.86 51.07 47.81 30.63 28.80 45.00
LoraShear (Chen et al., 2023a) 62.17 64.85 41.27 55.56 56.52 30.46 31.80 48.95
LoraPrune (Zhang et al., 2023) 62.54 64.69 40.19 52.33 56.02 33.62 32.40 48.83
HESSO-CRIC 67.06 73.77 58.51 65.18 70.66 38.60 38.00 58.74

Ratio = 30% SliceGPT (Ashkboos et al., 2024) 38.17 61.04 42.05 60.38 50.80 28.07 31.2 44.53
LLM-Pruner (Ma et al., 2023) 62.11 59.36 32.27 51.54 44.07 30.03 29.8 44.17
LoraShear (Chen et al., 2023a) 62.17 63.22 39.25 57.14 51.77 28.58 30.00 47.45
LoraPrune (Zhang et al., 2023) 62.29 63.10 35.86 51.62 51.43 31.74 32.40 46.92
HESSO-CRIC 67.61 72.14 53.11 62.75 62.74 34.81 36.20 55.62

We observed that without conducting a knowledge distribution analysis and manually skipping certain layers from
pruning, as LoRAShear (Chen et al., 2023a) did, HESSO often led to an irreversible performance collapse. This is
because knowledge in LLMs is unevenly distributed across layers due to the learning strategy. The saliency scores
calculated upon the pretraining weights may fail to identify essential structures, making it difficult to differentiate
between indispensable components and those that could be pruned. As a result, pruning such critical structures severely
degrades the model’s performance, making recovery with limited resources nearly impossible.

HESSO-CRIC was able to automatically bypass these crucial structures, enabling effective and successful pruning. We
then compared with SliceGPT (Ashkboos et al., 2024), LLM-Pruner (Ma et al., 2023), LoraShear (Chen et al., 2023a)
and LoraPrune (Zhang et al., 2023) across several popular benchmarks. Our findings indicate that HESSO-CRIC con-
sistently outperforms them at varying pruning ratios, with performance improvements becoming more pronounced as
the pruning ratio increases. This is because LLM-Pruner, LoRA-Prune, and LoRAShear are LoRA-based techniques.
Lora primarily focuses on fine-tuning well-trained models and is less effective in capturing knowledge for underfitted
models, such as pruned LLMs.

4.6 Ablation Studies of CRIC on Saliency Scores

The default format of CRIC primarily targets the most commonly used saliency scores that are sensitive to approxi-
mation errors caused by distances to the origin. For saliency scores with such higher sensitivities, CRIC’s multiple
sampling strategy—gathering information along the direction toward the origin—and its voting mechanism over his-
torical statistics can effectively mitigate these identification issues.
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To validate this, we have included a new ablation study for CRIC to demonstrate its improvements across varying
saliency scores. As shown in the results, for commonly used saliency scores, CRIC effectively improves performance.
However, magnitude and average magnitude benefits less from CRIC due to the persistence of large approximation
errors, even as the groups of iterates move closer to the origin.

Table 6: Ablation Studies of CRIC on Zero-Shot Pruning Phi2.

Magnitude Avg Magnitude Cosine Similarity 1st Taylor 2nd Taylor
No CRIC CRIC No CRIC CRIC No CRIC CRIC No CRIC CRIC No CRIC CRIC

Perplexity↓ 629.1 489.4 713.5 644.6 525.5 53.4 438.3 28.6 378.2 37.1

Furthermore, for saliency scores whose approximation errors are not dependent on the distance to the origin, the
philosophy of CRIC can still be applied with proper adaptations. In such cases, it is critical to analyze the root causes
of the approximation errors for the given saliency scores. Based on these root causes, CRIC’s multiple sampling
strategy can be adjusted to collect more targeted signals, thereby reducing identification errors in these scenarios.

4.7 Comparative Analysis of Hyper-parameter Tuning Efforts

The key advantage of HESSO-(CRIC) over HSPGs in the OTO series lies in its white-box optimization design. Unlike
HSPGs, which are black-box optimizers requiring extensive task-specific hyper-parameter tuning for optimal perfor-
mance, HESSO-(CRIC) significantly reduces this sensitivity by design. To highlight this difference, we present a
comparative analysis of the total number of training recipes required for three shared applications:

Table 7: Sparse optimization related hyper-parameter recipe comparisons.

HESSO-(CRIC) DHSPG
Super-Resolution CARNx2 General Recipe as described in Table 5 of manuscript. Recipe #1: λ = 10−2, λamplify = 20, ϵ = 0.0, etc.
Image-Classification ResNet General Recipe as described in Table 5 of manuscript. Recipe #2: λ = 10−3, λamplify = 2, ϵ = 0.95, etc.
Question-Answering Bert General Recipe as described in Table 5 of manuscript. Recipe #3: λ = 10−3, λamplify = 2, ϵ = 0.0, etc.
Total # of training recipes 1 3

As shown in Table 7, HESSO-(CRIC) achieves competitive or superior performance using a single general-purpose
recipe, whereas DHSPG requires distinct task-specific hyper-parameter settings for each application.

Additionally, this comparison focuses only on hyper-parameters specific to sparse optimizers. Black-box optimizers
like HSPGs inherently manage sparsity exploration processes, which demand further tuning of broader training param-
eters, such as learning rate schedules and the number of epochs. In contrast, the white-box design of HESSO-(CRIC)
avoids such complexities, offering a more user-friendly, efficient, and practical solution.

5 Conclusion

In this work, we introduced HESSO-(CRIC), a novel Hybrid Efficient Structured Sparse Optimizer tailored for pruning
deep neural networks while preserving performance. By combining a hybrid training strategy with explicit, progres-
sive pruning control, and the Corrective Redundant Identification Cycle (CRIC), HESSO-(CRIC) effectively tackles
challenges such as tuning efforts, user difficulty, and irreversible performance degradation. Our experiments across
diverse domains show that it not only competes with but often surpasses state-of-the-art methods.

Overall, HESSO and its enhanced version, HESSO-CRIC, represent a significant advancement in the field of structured
pruning, offering a robust and versatile solution for optimizing deep neural networks with minimal human intervention.
These contributions pave the way for more efficient and scalable model compression techniques, potentially leading
to broader adoption in real-world applications where resource constraints are critical.
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