
Under review as a conference paper at ICLR 2022

Proving Theorems using Incremental Learn-
ing and Hindsight Experience Replay

Anonymous authors
Paper under double-blind review

Abstract

Traditional automated theorem provers for first-order logic depend on
speed-optimized search and many handcrafted heuristics that are designed
to work best over a wide range of domains. Machine learning approaches
in literature either depend on these traditional provers to bootstrap them-
selves or fall short on reaching comparable performance. In this paper,
we propose a general incremental learning algorithm for training domain-
specific provers for first-order logic without equality, based only on a basic
given-clause algorithm, but using a learned clause-scoring function. Clauses
are represented as graphs and presented to transformer networks with spec-
tral features. To address the sparsity and the initial lack of training data
as well as the lack of a natural curriculum, we adapt hindsight experience
replay to theorem proving, so as to be able to learn even when no proof can
be found. We show that provers trained this way can match and sometimes
surpass state-of-the-art traditional provers on the TPTP dataset in terms
of both quantity and quality of the proofs.

1 Introduction

I believe that to achieve human-level performance on hard problems, theo-
rem provers likewise must be equipped with soft knowledge, in particular soft
knowledge automatically gained from previous proof experiences. I also sus-
pect that this will be one of the most fruitful areas of research in automated
theorem proving. And one of the hardest. Schulz (2017, E’s author)

Automated theorem proving (ATP) is an important tool both for assisting mathematicians
in proving complex theorems as well as for areas such as integrated circuit design, and
software and hardware verification (Leroy, 2009; Klein, 2009). Initial research in ATP dates
back to 1960s (e.g., Robinson (1965); Knuth & Bendix (1970)) and was motivated partly by
the fact that mathematics is a hallmark of human intelligence. However, despite significant
research effort and progress, ATP systems are still far from human capabilities (Loos et al.,
2017). The highest performing ATP systems (e.g., Cruanes et al. (2019); Kovács & Voronkov
(2013)) are decades old and have grown to use an increasing number of manually designed
heuristics, mixed with some machine learning, to obtain a large number of search strategies
that are tried sequentially or in parallel. Recent advances (Loos et al., 2017; Chvalovskỳ
et al., 2019) build on top of these provers and used modern machine learning techniques to
augment, select or prioritize their heuristics, with some success. However, these machine-
learning based provers usually require initial training data in the form of proofs, or positive
and negative examples (provided by the high-performing existing provers) from which to
bootstrap. Recent works do not build on top of other provers, but still require existing proof
examples (e.g., Goertzel (2020); Polu & Sutskever (2020)).
Our perspective is that the reliance of current machine learning techniques on high-end
provers limits their potential to consistently surpass human capabilities in this domain.
Therefore, in this paper we start with only a basic theorem proving algorithm, and develop
machine learning methodology for bootstrapping automatically from this prover. In partic-
ular, given a set of conjectures without proofs, our system trains itself, based on its own
attempts and (dis)proves an increasing number of conjectures, an approach which can be

1

Under review as a conference paper at ICLR 2022

viewed as a form of incremental learning. A particularly interesting recent advance is rlCop
(Kaliszyk et al., 2018; Zombori et al., 2020), which is based on the minimalistic leanCop
theorem prover (Otten & Bibel, 2003), and is similar in spirit to our approach. It manages
to surpass leanCop’s performance—but falls short of better competitors such as E, likely
because it is based on a ‘tableau’ proving style rather than a saturation-based one. This
motivated Crouse et al. (2021) to build on top of a saturation-based theorem prover and
indeed see some improvement, while still not quite getting close to E.
However, all previous approaches using incremental learning have a blind spot, because they
learn exclusively from the proofs of successful attempts: If the given set of conjectures have
large gaps in their difficulties, the system may get stuck at a suboptimal level due to the lack
of new training data. This could in principle even happen at the very start, if all theorems
are too hard to bootstrap from. To tackle this issue, Aygün et al. (2020) propose to create
synthetic theorem generators based on the axioms of the actual conjectures, so as to provide
a large initial training set with diverse difficulty. Unfortunately, synthetic theorems can be
very different from the target conjectures, making transfer difficult.
In this paper, we adapt instead hindsight experience replay (HER) (Andrychowicz et al.,
2017) to ATP: clauses reached in proof attempts are turned into goals in hindsight. This
generates a large amount of “auxiliary” theorems with proofs for the learner, even when no
theorem from the original set can be proven.
We compare our approach on a subset of TPTP (Sutcliffe, 2017) with the state-of-the-art E
prover (Schulz, 2002; Cruanes et al., 2019), which performs very well on this dataset. Our
learning prover eventually reaches equal or better performance on 16 domains out of 20. In
addition, it finds shorter proofs than E in approximately 98% of the cases. We perform an
ablation experiment to highlight specifically the role of hindsight experience replay. In the
next sections, we explain our incremental learning methodology with hindsight experience
replay, followed by a description of the network architecture and experimental results.

2 Methodology

For the reader unfamiliar with first-order logic, we give a succinct primer in Appendix A.
From an abstract viewpoint, in our setting the main object under consideration is the clause,
and two operations, factoring and resolution. These operations produce more clauses from
one or two parent clauses. Starting from a set of axiom clauses and negated conjecture
clauses (which we will call input clauses), the two operations can be composed sequentially
to try to reach the empty clause, in which case its ancestors form a refutation proof of
the input clauses and correspond to a proof of the non-negated conjecture. We call the
tree_size of a clause the number of symbols (with repetition) appearing in the clause; for
example tree_size(p(X, a,X, b) ∨ q(a)) is 7.
We start by describing the search algorithm, which allows us then to explain how we integrate
machine learning and to describe our overall incremental learning system.

2.1 Search algorithm

To assess the incremental learning capabilities of recent machine learning advances, we have
opted for a simple base search algorithm (see also Kaliszyk et al. (2018) for example), in-
stead of jump-starting from an existing high-performance theorem prover. Indeed, E is a
state-of-art prover that incorporates a fair number of heuristics and optimizations (Schulz,
2002; Cruanes et al., 2019), such as: axiom selection, simplifying the axioms and input
clauses, more than 60 literal selection strategies, unit clause rewriting, multiple fast index-
ing techniques, clause evaluation heuristics (tree size preference, age preference, preference
toward symbols present in the conjecture, watch lists, etc.), strategy selection based on the
analysis of the prover on similar problems, multiple strategy scheduling with 450 strategies
tuned on TPTP 7.3.0,1 integration of a PicoSAT solver, etc. Other machine learning provers

1See http://www.tptp.org/CASC/J10/SystemDescriptions.html#E---2.5.

2

http://www.tptp.org/CASC/J10/SystemDescriptions.html#E---2.5

Under review as a conference paper at ICLR 2022

based on E (e.g., Jakub̊uv et al. (2020); Loos et al. (2017)) automatically take advantage of
at least some of these improvements (but see also Goertzel (2020)).
Like E and many other provers, we use a variant of the DISCOUNT loop (Denzinger et al.,
1997), itself a variant of the given-clause algorithm (McCune & Wos, 1997) (See Algo-
rithm 3 in Appendix B). The input clauses are initially part of the candidates, while the
active_clauses list starts empty. A candidate clause is selected at each iteration. New
factors of the clause, as well as all its resolvents with the active clauses are pushed back into
candidates. The given clause is then added to active_clauses, and we say that it has
been processed. We also use the standard forward and backward subsumptions, as well as
tautology deletion, which allow to remove too-specific clauses that are provably unnecessary
for refutation. If candidates becomes empty before the empty clause can be produced, the
algorithm returns "saturated", which means that the input clauses are actually counter-
satisfiable (the original conjecture is dis-proven).
Given-clause-based theorem provers often use several priority queues to sort the set of can-
didates (e.g., McCune & Wos (1997); Schulz (2002); Kovács & Voronkov (2013)). We also
use three priority queues: the age queue, ordered from the oldest generated clause to the
youngest, the weight queue, ordered by increasing tree_size of the clauses, and the learned-
cost queue, which uses a neural network to assign a score to each generated clause. The
age queue ensures that every generated clause is processed after a number of steps that is
at most a constant factor times its age. The weight queue ensures that small clauses are
processed early, as they are “closer” to the empty clause. The learned-cost queue allows us
to integrate machine learning into the search algorithm, as detailed below.

2.2 Clause-scoring network and hindsight experience replay

The clause-scoring network can be trained in many ways so as to find proofs faster. A
method utilized by Loos et al. (2017) and Jakubuv & Urban (2019) turns the scoring task
into a classification task: a network is trained to predict whether the clause to be scored will
appear in the proof or not. In other words, the probability predicted by an ‘in-proofness’
classifier is used as the score. To train, once a proof is found, the clauses that participate in
the proof (i.e., the ancestors of the empty clause) are considered to be positive examples,
while all other generated clauses are taken as negative examples.2 Then, given as input one
such generated clause x along with the input clauses Cs, the network must learn to predict
whether x is part of the (found) proof.
There are two main drawbacks to this approach. First, if all conjectures are too hard for the
initially unoptimized prover, no proof is found and no positive examples are available, mak-
ing supervised learning impossible. Second, since proofs are often small (often a few dozen
steps), only few positive examples are generated. As the number of available conjectures
is often small too, there is far too little data to train a modern high-capacity neural net-
work. Moreover, for supervised learning to be successful, the conjectures that can be proven
must be sufficiently diverse, so the learner can steadily improve. Unfortunately, there is no
guarantee that such a curriculum is available. If the difficulty suddenly jumps, the learner
may be unable to improve further. These shortcomings arise because the learner only uses
successful proofs, and all the unsuccessful proof attempts are discarded. In particular, the
overwhelming majority of the generated clauses become negative examples, and most need
to be discarded to maintain a good balance with the positive examples.
To leverage the data generated in unsuccessful proof attempts, we adapt the concept of
hindsight experience replay (HER) (Andrychowicz et al., 2017) from goal-conditioned rein-
forcement learning to theorem proving. The core idea of HER is to take any “unsuccessful”
trajectory in a goal-based task and convert it into a successful one by treating the final state
as if it were the goal state, in hindsight. A deep network is then trained with this trajectory,
by contextualizing the policy with this state instead of the original goal. This way, even in

2These examples are technically not necessarily negative, as they may be part of another proof.
But avoiding these examples during the search still helps the system to attribute more significance
to the positive examples.

3

Under review as a conference paper at ICLR 2022

the absence of positive feedback, the network is still able to adapt to the domain, if not to
the goal, thus having a better chance to reach the goal on future tries.
Inspired by HER, we use the clauses generated during any proof attempt as additional
conjectures, which we call hindsight goals, leading to a supply of positive and negative
examples. Let D be any non-input clause generated during the refutation attempt of Cs.
We call D a hindsight goal.3 Then, the set Cs∪{¬D} can be refuted. Furthermore, once the
prover reaches D starting from Cs ∪ {¬D}, only a few more resolution steps are necessary
to reach the empty clause; that is, there exists a refutation proof of Cs ∪ {¬D} where
D is an ancestor of the empty clause. Hence, we can use the ancestors of D as positive
examples for the negated conjecture and axioms Cs ∪ {¬D}. This generates a very large
number of examples, allowing us to effectively train the neural network, even with only a
few conjectures at hand.
Since each domain has its own set of axioms, and a separate network is trained per domain,
axioms are not provided as input to the scoring network. Although the set of active clauses
is an important factor in determining the usefulness of a clause, we ignore it in the network
input to keep the network size smaller.

2.3 Incremental learning algorithm

Typical supervised learning ATP systems require a set of proofs (provided by other provers)
to optimize their model (e.g., Loos et al. (2017); Jakub̊uv et al. (2020); Aygün et al. (2020)).
Success is assessed by cross-validation. In contrast, we formulate ATP as an incremental
learning problem—see in particular Orseau & Lelis (2021); Jabbari Arfaee et al. (2011).
Given a pool of unproven conjectures, the objective is to prove as many as possible, even
using multiple attempts, and ideally as quickly as possible. Hence, the learning system
must bootstrap directly from initially-unproven conjectures, without any initial supervised
training data. Success is assessed by the number of proven conjectures, and the time spent
solving them. Hence, we do not need to split the set of conjectures into train/test/validate
sets because, if the system overfits to the proofs of a subset of conjectures, it will not be
able to prove more conjectures.
Our incremental learning system is described in Algorithm 1. Initially, all conjectures are
unproven and the clause-scoring network is initialized randomly. At this stage, we have no
information on how long it takes to prove a certain conjecture, or whether it can be proven
at all. The prover attempts to prove all conjectures provided using a scheduler (described
below), so as to vary time limits for each conjecture. This ensures that proofs for easy
conjectures are obtained early, and the resulting positive and negative examples are then
used to train the clause-scoring network. As the network learns, more conjectures can be
proven, providing in turn more data, and so on. This incremental learning algorithm thus
allows us to automatically build a capable prover for a given domain, starting from a basic
prover that may not even be able to prove a single conjecture in the given set.
Time scheduling. All conjectures are attempted in parallel, each on a CPU. For each
conjecture, we use the uniform budgeted scheduler (UBS) algorithm (Helmert et al., 2019,
section 7) to further simulate running in (pseudo-)parallel the solver with varying time
budgets, and restarting each time the budget is exhausted. In the terminology of UBS, we
take T (k, r) = 3r2k−1 in seconds, but we cap k ≤ kmax = 10. A UBS instance simulates on
a single CPU running kmax restarting programs, by interleaving them: On a ‘virtual’ CPU
of index k ∈ {1, . . . , kmax}, a program corresponds to running the prover for a budget of
3 · 2k−1 seconds before restarting it for the same budget of time and so on; r is the number
of restarts. Hence, as the network learns, each conjecture is incrementally attempted with
time budgets of varying sizes (3s, 6s, 12s, . . . , 3072s), using no more than one hour, while
carefully balancing the cumulative time spent within each budget (Luby et al., 1993; Helmert
et al., 2019). Once a proof has been found for a conjecture, the scheduler is not stopped, so
as to continue searching for more (often shorter) proofs.

3Note that, while the original version of HER (Andrychowicz et al., 2017) only uses the last
reached state as a single hindsight goal, we use all intermediate clauses, providing many more data
points.

4

Under review as a conference paper at ICLR 2022

Algorithm 1 Distributed incremental learning. launch starts a new process in parallel. For
each conjecture an instance of UBS decides the sequence of time limits for solving attempts.

def main(conjectures):
Launch and connect learners, actors and manager with example buffer & task queue
example_buffer = create_example_buffer()
task_queue = create_task_queue()
learners = [for i = 1..10: launch learner(example_buffer)]
for i = 1..1000: launch actor(task_queue, learners, example_buffer)
actor_manager = launch actor_manager(conjectures, task_queue)
wait for actor_manager to finish

def learner(example_buffer):
repeat forever:

Sample a batch of examples and train the network.
batch = sample_batch_uniformly(example_buffer)
minimize_classification_loss(batch) # we use cross-entropy

def actor(task_queue, learners, example_buffer)
repeat forever:

Fetch a task and attempt to prove the conjecture.
conjecture, time_limit = get_task(task_queue)
learner = sample_uniformly(learners)
call search(conjecture) for at most time_limit seconds # see Alg. 3 Appendix B

and obtain generated_clauses
examples = sample_examples(generated_clauses) # see Alg. 2
put_examples(example_buffer, examples)

def actor_manager(conjectures, task_queue):
schedulers = []
for conjecture in conjectures:

schedulers[conjecture] = initialize_UBS() # see Section 2.3
repeat until all conjectures have been proven:

Choose a random conjecture and enqueue it.
conjecture = sample_uniformly(conjectures)
scheduler = schedulers[conjecture]
time_limit = get_next_time_limit(scheduler)
put_task(task_queue, (conjecture, time_limit))

Distributed implementation. Our implementation consists of multiple actors running in
parallel, a manager that distributes tasks to the actors using the time scheduling algorithm,
and a task queue that handles manager-actors communication. We used ten learners training
ten separate models to increase the diversity of the search without having to increase the
number of actors. These learners are fed with training examples from the actors and use
them to update their parameters of their clause-scoring networks. Note that during the first
1 000 updates, the actors do not use the clause-scoring network as its outputs are mostly
random.4

Subsampling hindsight goals and examples. With HER, the number of available
examples is actually far too large: if, after a proof attempt, n clauses have been generated
(n may be in the thousands), not only can each clause be used as a hindsight goal, but there
are about n2 pairs (positive example, hindsight goal), and far more negative examples.
This suddenly puts us in a very data-rich regime, which contrasts with the data scarcity of
learning only from proofs of the given conjecture. Hence, we need to subsample the examples
to prevent overwhelming the learner (see Algorithm 2 in the appendix). To this end, we first
estimate the number of examples the learner can consume per second before sampling. But
there is an additional difficulty: the number of possible clauses is exponentially large in the
tree_size of the clause, while small clauses are likely more relevant since the empty clause

4We picked 1000 as it appeared to be approximately the number of steps required for the learner
to reach the base prover performance on a few experiments.

5

Under review as a conference paper at ICLR 2022

Algorithm 2 Example sampling algorithm.

def sample_examples(generated_clauses):
Estimate the number of examples that can be consumed by the learner
target_num_examples =

time_elapsed_since_last_attempt × target_num_examples_per_second

Remove the input clauses
hindsight_goals = generated_clauses \ input_clauses

Subsample the goals and the examples
examples = []
sizes = {tree_size(c) : c ∈ hindsight_goals}
for size in sizes:

size_goals = {c ∈ hindsight_goals : tree_size(c) == size}
w_size = 1 / ln(size + e) - 1 / ln(size + e + 1) # See Appendix C
num_examples = ceil(target_num_examples × w_size)
for _ in range(num_examples):

goal = uniform_sample(size_goals) # pick hindsight goal of this size
anc = ancestors(goal)
examples += [positive_example(uniform_sample(anc), goal)]
examples += [negative_example(uniform_sample(hindsight_goals \ anc), goal)]

return examples

(which is the true target) has size 0. Moreover, clauses can be rather large: a tree_size
over 300 is quite common, and we observed some tree_size over 6 000. To correct for this,
we fix the proportion of positive and negative examples for each hindsight goal clause size,
ensuring that small hindsight goal clauses are favoured, while allowing a diverse sample of
large clauses, using a heavy-tail distribution ws described in Appendix C. Finally, all the
positive and negative examples thus sampled are added to the training pool for the learners.

2.4 Representation

Our clause scoring network receives as input the clause to score, x, the hindsight goal clause,
g, and a sequence of negated conjecture clauses Cs. Individual clauses are transformed to
directed acyclic graphs (an example is depicted in Figure 1) with five different node types.
First, there is a clause node, whose children are literal nodes, corresponding to all literals of
the clause (each one is associated with a predicate). The children of literal nodes represent
the arguments of the predicate; they are either variable-term nodes if the argument is a
variable, or atomic-term nodes otherwise5. Children of atomic-term nodes follow the same
description. Finally, each variable-term node is linked to a variable node, which has as many
parents as there are instances of the corresponding variable in the clause.
To each node, we associate a feature vector composed of the following five components:
(i) A one-hot vector of length 3, encoding if the node belongs to x, g or a member of
Cs. (ii) A one-hot vector of length 5 encoding the node type: clause, literal, atomic-term,
variable-term or variable. (iii) A one-hot vector of length 2 encoding if the node belongs to
a positive or negative literal (null vector for clause and variable nodes). (iv) A hash vector
representing the predicate name or the function/constant name respectively for predicate
or atomic-term nodes (null vector for other nodes). (v) A hash vector representing the
predicate/function argument slot in which the term is present (null vector for clause, literal
and variable nodes). Hash vectors are randomly sampled uniformly on the 64 dimensional
unit hyper-sphere, using the name of the predicate, function or constant (and the argument
position for slots) as seed.
The node feature vectors are projected into a 64-dimensional node embedding space using a
linear layer that trains during learning. We use a Transformer encoder architecture (Vaswani
et al., 2017) for the clause-scoring network, whose input is composed of the set of node

5A constant argument is equivalent with a function of arity 0.

6

Under review as a conference paper at ICLR 2022

0 0 0

− p 0 + q 0

− 0 p@1

+ f q@1

+ c q@2

+ 0 f@1

variable

0 0 0

¬p(X) ∨ q(f(X), c)

¬p(X) q(f(X), c)

X c

f(X)

X

goal

v termgoal

a termgoal

a termgoal

literalgoal

v termgoal

literalgoal

clausegoal

Figure 1: Clause graph of a goal clause. Each node has five features: clause type, node type,
literal polarity, symbol hash and argument slot hash. The parts of formula corresponding
to each node are shown outside of the nodes.

embeddings in the current clause x, goal clause g and conjecture clauses Cs, up to 128
nodes. For each node, we compute a spectral encoding vector representing its position in
the clause graph (Dwivedi & Bresson, 2020); this is given by the eigenvectors of the Laplacian
matrix of the graph from which we keep only the 64 first dimensions, corresponding to the
low frequency components. It replaces the traditional positional encoding of Transformers.
Note that if there are more than 128 nodes in the set of clause graphs, we prioritize x, then
g and Cs. Within each graph, we order the nodes from top to bottom then left to right
(e.g. the first nodes to be filtered out would be variable- or atomic-term nodes of the last
conjecture clause). We only keep the transformer encoder output corresponding to the root
node of the target clause and project it, using a linear layer, into a single logit, representing
the probability that x will be used to reach g starting from Cs.

3 Experiments

To evaluate our approach, we use the Thousands of Problems for Theorem Proving (TPTP)
library (Sutcliffe, 2017) version 7.5.0. We focus on FOF and CNF domains without the
equality predicate (those which use the symbol =) that refer to axioms files and contain
less than 1 000 axioms. This results in 20 domains, named after the corresponding axioms
files. Note that the GEO6 and GEO8 axiom files often appear together, and we group them
into the GEO6 domain. The resulting list of domains and conjectures can be found in the
supplementary material.
We ran our incremental learning algorithm with hindsight experience replay (IL w/HER)
for seven days on the twenty domains. For each domain, we trained ten models using 1000
actors. We logged every successful attempt that lead to a proof during training, along with
the time elapsed, the number of clauses generated, the length of the proof, and the proof
itself.
In order to show the importance of HER in achieving the results above, we ran the same
experiments without HER (IL w/o HER), training the clause-scoring network using solely
the data extracted from proofs found for the input problems.

7

Under review as a conference paper at ICLR 2022

Domain Conjectures Basic IL w/o HER IL w/HER E (1h) E (7d)
FLD1 135 9 12 66 69 75
FLD2 143 6 8 86 87 97
GEO6 164 86 164 164 164 164
GEO7 38 36 38 38 38 38
GEO9 37 37 37 37 37 37
GRP5 10 6 10 10 10 10
KRS1 41 9 37 41 40 40
LCL3 65 33 60 60 60 60
LCL4 168 35 120 155 134 153
MED1 9 0 0 9 9 9
NUM1 10 9 9 9 9 9
NUM9 36 4 9 19 25 25
PLA1 26 3 26 26 26 26
PUZ4 7 1 2 5 4 4
SET1 11 6 11 11 11 11
SWB2 6 3 3 6 4 6
SWB3 3 3 3 3 3 3
SYN1 199 199 199 199 199 199
SYN2 7 4 4 4 5 5
TOP1 1 1 1 1 1 1
Total 1116 490 753 949 935 972

Table 1: Number of conjectures proven on the twenty domains. E results at the one hour
mark (1h) are shown in addition to the E results at the full seven day mark (7d).

(a) Survival plot

100 102 104

training time in seconds

200

400

600

800

1000

p
ro
o
fs

E

IL w/HER

IL w/o HER

(b) Proof lengths

0 50 100 150 200

E

0

50

100

150

200

IL
w
/
H
E
R

Figure 2: (a) Survival plot showing the progress of E and incremental learning with and
without hindsight experience replay over the course of seven days of training. The time scale
is logarithmic. (b) Scatter plot of the shortest proof lengths achieved by E vs. incremental
learning with hindsight experience replay on the conjectures that can be proven by both.

To compare our results to the state-of-the-art, we also ran the E prover (Cruanes et al., 2019)
version 2.5 on each of the conjectures in the same domains, in “auto” and “auto-schedule”
modes and with time limits of 2 days, 4 days and 7 days. We then took the union of all
solved conjectures from these runs, so as to give E the best shot possible, and because E’s
behaviour is sensitive to the given time limit. As we never run our prover longer than one
hour at a time, we measured E’s performance at the one hour mark in addition to the full
seven day mark.
The hyperparameters used in all experiments are given in Appendix D.
Conjectures proven. Table 1 shows the number of conjectures proven by our basic prover
(without the learned-cost queue), IL w/o HER, IL w/HER, E at one hour mark (E 1h), and

8

Under review as a conference paper at ICLR 2022

E at full seven day mark (E 7d), as well as the actual number of conjectures, in each domain
and in total. According to these results, IL w/HER proved 1.94 times as many problems as
the basic prover, improving its performance by almost a factor of two. It proved 14 (1.5%)
more conjectures than E 1h and 23 (2.42%) fewer conjectures than E 7d. It outperformed
E 7d on three of the domains and matching its performance on 13 of the domains. Nine of
the proofs found by IL w/HER were missed by E, which implies that the combination of
these provers are better than either of them.
Without hindsight. IL w/o HER performed significantly worse, failing to prove 198
(20.9%) of the conjectures that can be proven by IL w/HER. As expected, most of the
failures happened in the “hard” domains, where the basic prover was not performing well.
Without enough proofs from which to learn, IL w/o HER stalled and showed little to no
progress on these domains.
Training vs. searching. In Figure 2a, a comparison of the progress of E and the improve-
ment of our systems can be seen as a survival plot over seven days of run time (wall-clock).
Unlike E, which performed up to seven days of proof search per conjecture but has been
under constant development for almost two decades, IL w/HER spent the same seven days
to train provers based on a simple proof search algorithm from scratch, and ended up finding
almost as many proofs as E.
Quality of proofs. We also looked at the individual proofs discovered by both systems.
Incremental learning combined with the revisiting of previously proven conjectures allowed
our system to discover shorter proofs continually. On average, proofs got 13% shorter after
their initial discovery. We also observed that the shortest proofs found by our system were
shorter than those found by E. Out of the 941 conjectures proven by both systems, our
proofs were shorter for 921 conjectures (97.9%) whereas E’s proofs were shorter for only 9
conjectures (0.956%) with 11 proofs being of the same length. Figure 2b shows a scatter
plot of the lengths of the shortest proofs found by E vs. found by IL w/HER.
Speed of search. E was able to perform the proof search 25.6 times faster than our
provers in terms of clauses generated per second. We believe that the only way for our
system to compete with E under these conditions is to find scoring functions that are as
strong as the numerous heuristics built into E for these domains.

4 Conclusion

In this work, we provide a method for training domain-specific theorem provers given a set
of conjectures without proofs. Our proposed method starts from a very simple given-clause
algorithm and uses hindsight experience replay (HER) to improve, prove an increasing num-
ber of conjectures in incremental fashion. We train a transformer network using spectral
features in order to provide a useful scoring function for the prover. Our comparison with
the state-of-the-art heuristic-based prover E demonstrates that our approach achieves com-
parable performance to E, while our proofs are almost always shorter than those generated
by E. To our knowledge, the provers trained by our system are the only ones that use ma-
chine learning to match the performance of a state-of-the-art first-order logic prover without
already being based on one. The experiments also demonstrate that HER allows the learner
to improve more smoothly than when learning from proven conjectures alone. We believe
that HER is a very desirable component of future ATP/ML systems.
Providing more side information to the transformer network, so as to make decisions more
context-aware, should lead to further significant improvements. More importantly, while
classical first-order logic is a large and important formalism in which many conjectures can
be expressed, various other formal logic systems have been developed which are either more
expressive or more adapted to different domains (temporal logic, higher-order logic, FOL
with equality, etc.). It would be very interesting to try our approach on domains from these
logic systems. While the given-clause algorithm and possibly the input representation for
the neural networks would need to be adapted, the rest of our methodology is sufficiently
general to be used with other logic systems, and still be able to deal with domains without
known proofs.

9

Under review as a conference paper at ICLR 2022

Reproducibility Statement

The details of how the dataset is created and divided in different domains is explained in
Section 3. Additionally, we include the list of problem files and axiom files used in each
domain in the attached supplementary material. The variant of DISCOUNT algorithm is
provided in appendix B. The heavy tail distribution used to sample the hindsight goals is
provided in appendix C. The details of the hyperparameters used for all the experiments
are included in appendix D. The training code was written in JAX (Bradbury et al., 2018).
For training, we use 1 CPU for each actor and 1 NVIDIA V100 GPU for each learner.

10

Under review as a conference paper at ICLR 2022

References

Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter Welin-
der, Bob McGrew, Josh Tobin, OpenAI Pieter Abbeel, and Wojciech Zaremba. Hindsight
experience replay. In Advances in Neural Information Processing Systems, volume 30.
Curran Associates, Inc., 2017.

Eser Aygün, Zafarali Ahmed, Ankit Anand, Vlad Firoiu, Xavier Glorot, Laurent Orseau,
Doina Precup, and Shibl Mourad. Learning to prove from synthetic theorems. arXiv
preprint arXiv:2006.11259, 2020.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and
Qiao Zhang. JAX: composable transformations of Python+NumPy programs, 2018. URL
http://github.com/google/jax.

Karel Chvalovskỳ, Jan Jakub̊uv, Martin Suda, and Josef Urban. Enigma-ng: efficient neural
and gradient-boosted inference guidance for e. In International Conference on Automated
Deduction, pp. 197–215. Springer, 2019.

Maxwell Crouse, Ibrahim Abdelaziz, Bassem Makni, Spencer Whitehead, Cristina Cornelio,
Pavan Kapanipathi, Kavitha Srinivas, Veronika Thost, Michael Witbrock, and Achille
Fokoue. A deep reinforcement learning approach to first-order logic theorem proving.
Proceedings of the AAAI Conference on Artificial Intelligence, 35(7):6279–6287, 2021.

Simon Cruanes, Stephan Schulz, and Petar Vukmirović. Faster, Higher, Stronger: E 2.3. In
TACAS 2019, volume 11716 of LNAI, pp. 495–507, April 2019.

Jörg Denzinger, Martin Kronenburg, and Stephan Schulz. Discount - a distributed and
learning equational prover. J. Autom. Reason., 18(2):189–198, 1997.

Vijay Prakash Dwivedi and Xavier Bresson. A generalization of transformer networks to
graphs. CoRR, abs/2012.09699, 2020.

Peter Elias. Universal codeword sets and representations of the integers. IEEE Transactions
on Information Theory, 21(2):194–203, 1975.

Melvin Fitting. First-order logic and automated theorem proving. Springer Science & Busi-
ness Media, 2012.

Zarathustra Amadeus Goertzel. Make E smart again (short paper). In Automated Reasoning,
pp. 408–415. Springer International Publishing, 2020.

Malte Helmert, Tor Lattimore, Levi H. S. Lelis, Laurent Orseau, and Nathan R. Sturtevant.
Iterative budgeted exponential search. In Proceedings of the 28th International Joint
Conference on Artificial Intelligence, pp. 1249–1257. AAAI Press, 2019.

S. Jabbari Arfaee, S. Zilles, and R. C. Holte. Learning heuristic functions for large state
spaces. Artificial Intelligence, 175(16-17):2075–2098, 2011.

Jan Jakub̊uv, Karel Chvalovskỳ, Miroslav Oľsák, Bartosz Piotrowski, Martin Suda, and
Josef Urban. Enigma anonymous: Symbol-independent inference guiding machine (system
description). In International Joint Conference on Automated Reasoning, pp. 448–463.
Springer, 2020.

Jan Jakubuv and Josef Urban. Hammering Mizar by Learning Clause Guidance (Short
Paper). In 10th International Conference on Interactive Theorem Proving (ITP 2019),
volume 141, pp. 34:1–34:8. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2019.

Cezary Kaliszyk, Josef Urban, Henryk Michalewski, and Miroslav Oľsák. Reinforcement
learning of theorem proving. In Advances in Neural Information Processing Systems,
volume 31. Curran Associates, Inc., 2018.

11

http://github.com/google/jax

Under review as a conference paper at ICLR 2022

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In 3rd
International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA,
May 7-9, 2015, Conference Track Proceedings, 2015.

Gerwin Klein. Operating system verification—an overview. Sadhana, 34(1):27–69, 2009.

Donald E. Knuth and Peter B. Bendix. Simple word problems in universal algebras. In
Computational Problems in Abstract Algebra, pp. 263–297. Pergamon, 1970.

Laura Kovács and Andrei Voronkov. First-order theorem proving and vampire. In Interna-
tional Conference on Computer Aided Verification, pp. 1–35. Springer, 2013.

Xavier Leroy. Formal verification of a realistic compiler. Communications of the ACM, 52
(7):107–115, 2009.

Sarah Loos, Geoffrey Irving, Christian Szegedy, and Cezary Kaliszyk. Deep network guided
proof search. In LPAR-21. 21st International Conference on Logic for Programming,
Artificial Intelligence and Reasoning, volume 46 of EPiC Series in Computing, pp. 85–
105, 2017.

Michael Luby, Alistair Sinclair, and David Zuckerman. Optimal speedup of Las Vegas
algorithms. Inf. Process. Lett., 47(4):173–180, September 1993.

William McCune and Larry Wos. Otter - the CADE-13 competition incarnations. Journal
of Automated Reasoning, 18(2):211–220, 1997.

Laurent Orseau and Levi H. S. Lelis. Policy-guided heuristic search with guarantees. Proceed-
ings of the AAAI Conference on Artificial Intelligence, 35(14):12382–12390, May 2021.

Jens Otten and Wolfgang Bibel. leancop: lean connection-based theorem proving. Journal
of Symbolic Computation, 36(1):139–161, 2003.

Stanislas Polu and Ilya Sutskever. Generative language modeling for automated theorem
proving. arXiv preprint arXiv:2009.03393, 2020.

J. A. Robinson. A machine-oriented logic based on the resolution principle. J. ACM, 12(1):
23–41, 1965.

Stephan Schulz. E–a brainiac theorem prover. AI Communications, 15(2, 3):111–126, 2002.

Stephan Schulz. We know (nearly) nothing! But can we learn? In ARCADE 2017. 1st
International Workshop on Automated Reasoning: Challenges, Applications, Directions,
Exemplary Achievements, volume 51 of EPiC Series in Computing, pp. 29–32. EasyChair,
2017.

Geoff Sutcliffe. The TPTP Problem Library and Associated Infrastructure. From CNF to
TH0, TPTP v6.4.0. Journal of Automated Reasoning, 59(4):483–502, 2017.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
 L ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural
Information Processing Systems, volume 30. Curran Associates, Inc., 2017.

Zsolt Zombori, Josef Urban, and Chad E Brown. Prolog technology reinforcement learning
prover. In International Joint Conference on Automated Reasoning, pp. 489–507. Springer,
2020.

12

Under review as a conference paper at ICLR 2022

A A quick primer on first-order logic and resolution
calculus

First-order logic (FOL) is a formal language used to express mathematical or logical state-
ments. We give a brief introduction to first-order logic here. For more information, see
(Fitting, 2012). Any statement expressed in first-order logic is called first-order logic for-
mula. For example the statement: “for all people X,Y and Z, if X is a parent of Y and
Y is a parent of Z, then X is grandparent of Z” can be expressed as the FOL formula:
∀X,∀Y,∀Z,parent(X,Y) ∧ parent(Y, Z)⇒ grandparent(X,Z). Here, X,Y, Z are variables,
and parent and grandparent are predicates. We will only consider FOL formulas expressed
in Conjunctive Normal Form (CNF), as a conjunction (∧) of clauses, in which all variables
are implicitly universally quantified (∀). Consider the following CNF formula:

(¬parent(X,Y) ∨ ¬parent(Y,Z) ∨ grandparent(X,Z))︸ ︷︷ ︸
C1

∧ parent(alice,bob)︸ ︷︷ ︸
C2

∧parent(bob, charlie)︸ ︷︷ ︸
C3

A clause is a disjunction (∨) of a number of literals; we will also consider clauses to be sets
of literals to simplify the notation. C1, C2 and C3 are clauses. Note that C1 is equivalent to
the first FOL formula example above, expressed as a clause. A literal is an atom, possibly
preceded by the negation ¬, in which case it is a negative literal (positive otherwise). For
example, parent(X,Y) and ¬parent(Y, Z) are literals. An atom is a predicate name of arity
n ∈ N followed by a list of n terms. A term is either a function name of associated arity
n ∈ N followed by a list of n terms, or a constant (such as alice, bob), or a variable. We
assume that two different clauses of the same formula cannot share variables. A clause C
is a tautology if C contains both a literal ` and its negation ¬`. Tautologies can be safely
removed from a CNF formula without changing its truth value. The tree_size of a clause
is the number is the number of nodes when the clause is represented as a tree of terms. For
example, tree_size(parent(X,bob)) is 3.
A substitution is a set {V1 t1, V2 t2, . . . } where V1, V2, . . . are variables and t1, t2, . . .
are terms. The set of variables {V1, V2, . . . } is the domain of the substitution. The ap-
plication σ(C) of a substitution σ to a clause C (or also to a single literal) results in a
new clause C ′ = σ(C) where all occurrences of the variables (of the domain of σ) in C are
replaced with their corresponding terms according to the substitution σ. For example, if
C = parent(X,Y) and σ = {X alice, Y Z} then σ(C) = parent(alice, Z).
Two literals `1 and `2 can be unified if there exists a substitution σ such that applying
it to both literals result in the same literal, that is, σ(`1) = σ(`2). In such a case, the
most general unifier mgu(`1, `2) of `1 and `2 is the smallest substitution that unifies the two
literals, and it is unique (up to a renaming of the variables). For example, the most general
unifier of C = parent(X,Y) and C ′ = parent(alice, Z) is {X alice, Y Z}, such that
σ(C) = σ(C ′) = parent(alice, Z).
A clause C1 subsumes a clause C2 if there exists a substitution σ such that σ(C1) ⊆ C2
where the clauses are considered to be sets of literals.6 For example the clause p(X, a)
subsumes the clause p(b, a) ∨ p(c, a), with σ = {X b} (or also with σ = {X c}) as
σ({p(X, a)}) ⊆ {p(b, a), p(c, a)}.
The clause C ′ is a factor of a clause C if there exist a substitution σ and two literals `
and `′ in C such that σ = mgu(`, `′) and C ′ = σ(C \ {`}). The operation factoring(C)
returns the set of all factors (unique up to renaming of the variables) of C, with ‘fresh’
(never used) variables. For example, we can factor C1 on its first two literals to obtain the
clause ¬parent(Y ′, Y ′) ∨ grandparent(Y ′, Y ′) with the substitution {X Y, Z Y }. A
clause is the sole parent of its factors.
The clause C ′′ is a resolvent of two clauses C and C ′ if there exist a substitution σ, a positive
literal ` in C and a negative literal `′ in C ′ such that σ = mgu(`, `′) and C ′′ = σ(C \ {`} ∪
C ′ \ {`′}). The operation resolution(C,C ′) produces the set of all possible resolvents of C
and C ′ (Robinson, 1965), with ‘fresh’ variables. For example, the resolvents of C1 and C2

6We assume that syntactic duplicate literals are removed automatically.

13

Under review as a conference paper at ICLR 2022

are {¬parent(bob, Z ′) ∨ grandparent(alice, Z ′),¬parent(X ′, alice) ∨ grandparent(X ′,bob)}.
The clauses C and C ′ are called the parents of C ′′. The ancestors of a clause are its parents,
the parents of its parents and so on.
Together, resolution and factoring are sound and also sufficient for refutation completeness,
that is, they can only produce clauses that are logically implied by the initial clauses, and
if the empty clause is logically implied by the initial clauses, then the empty clause can
be also be produced by a sequence of resolution and factoring operations starting from the
initial clauses. For example, suppose that we want to prove that alice is the grandparent of
someone, that is, that grandparent(alice, A) can be satisfied for some value of A. Then we
negate this conjecture to obtain the clause (implicitly universally quantified over A) with
a single literal: C4 = ¬grandparent(alice, A) and we attempt to refute the CNF formula
C1 ∧ · · · ∧ C4, that is, to reach the empty clause using resolution and factoring. First we
can resolve C4 with C1 to obtain C5 = ¬parent(alice, Y ′) ∨ ¬parent(Y ′, A′). Then we can
resolve C5 with C2 to obtain C6 = ¬parent(bob, A′′) and finally we can resolve C6 with C3
to obtain the empty clause, which means that indeed alice is the grandparent of someone.

B Our DISCOUNT-like algorithm

Our simple search algorithm is given in Algorithm 3. See the main text for more details.

Algorithm 3 Our variant of the DISCOUNT algorithm. Note that we use three priority
queues for the candidates (see main text).

def search(input_clauses)
candidates = input_clauses
active_clauses = {}
Saturation loop.
while candidates is not empty:

given_clause = extract_best_clause(candidates)
if given_clause is empty_clause: return "refuted"
if tautology(given_clause): continue # discard the given_clause
for c in active_clauses:

if c subsumes given_clause: continue # forward subsumption
if given_clause subsumes c: active_clauses.remove(c) # backward

subsumption
Generate factors and resolvents.
candidates.append(given_clause.factors())
for c in active_clauses:

candidates.append(resolve(given_clause, c))
active_clauses.insert(given_clause)

return "saturated"

C A heavy-tail distribution over the integers

To ensure a preference for smaller clauses, while ensuring some diversity of the clause sizes,
we use the following heavy-tail distribution for s ∈ {0, 1, 2 . . . }:

ws = 1/ ln(s+ e)− 1/ ln(s+ e+ 1) .

These weights constitute a telescoping series and ensure that
∑∞

s=0 ws = 1 while, using
ln(1 + 1/x) ≥ 1/(x+ 1),

ws =
ln
(

1 + 1
s+e

)
ln(s+ e) ln(s+ e+ 1) ≥

1
(s+ e+ 1)(ln(s+ e+ 1))2 .

Thus, w is a heavy-tailed universal distribution over the nonnegative integers in the sense
that − lnws ∈ O(ln s), similarly to Elias’ delta coding (Elias, 1975).

14

Under review as a conference paper at ICLR 2022

Tangentially, sampling according to ws is simple since its cumulative distribution telescopes:
Sample u uniformly in [0, 1], then select the integer min{s ≥ 0 : 1 − 1/ ln(s + e + 1) ≥ u},
that is, select s = dexp(1/(1− u))− e− 1e.

D Hyperparameters

For the transformer encoder, hyperparameter notations from Vaswani et al. (2017) are given
in parenthesis for reference. The model is trained using stochastic gradient descent with the
Adam optimizer (Kingma & Ba, 2015) with β1 = 0.9, β2 = 0.999 and ε = 10−8. A subset of
hyper-parameters have been selected by running the model on the FLD1 domain, selected
values are underlined: number of layers (N) in {3, 4, 5}, embedding size (dk, dv) in {64, 128,
256}, hash vector size in {16, 64, 256}, learning rate in {0.003, 0.001, 0.0003}, probability
of dropout (Pdrop) in {0., 0.1, 0.2, 0.3, 0.5, 0.7}. The other hyperparameters were fixed: the
batch size is 2560, the number of attention heads (h) is 8, which leads to a dimensionality
(dmodel) of 512, the inner-layers have a dimensionality (dF F) of 1024. To ensure diversity
in the training examples, learners wait for the experience replay buffer to contain at least
65536 examples and then sample uniformly from it. The learners used Nvidia V100s GPUs
with 16GB of memory.
For the actors, the age, weight, and learned-cost queues in our given-clause algorithm are
selected on average 1/13th, 3/13th and 9/13th of the steps, respectively. The batch size is
set at 320. All actors and E are limited at 8GB of memory on modern AMD 64bit platforms.

15

	Introduction
	Methodology
	Search algorithm
	Clause-scoring network and hindsight experience replay
	Incremental learning algorithm
	Representation

	Experiments
	Conclusion
	A quick primer on first-order logic and resolution calculus
	Our DISCOUNT-like algorithm
	A heavy-tail distribution over the integers
	Hyperparameters

