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ABSTRACT

Recent studies have shown that paddings in convolutional neural networks encode
absolute position information which can negatively affect the model performance
for certain tasks. However, existing metrics for quantifying the strength of po-
sitional information remain unreliable and frequently lead to erroneous results.
To address this issue, we propose novel metrics for measuring and visualizing
the encoded positional information. We formally define the encoded information
as Position-information Pattern from Padding (PPP) and conduct a series of ex-
periments to study its properties as well as its formation. The proposed metrics
measure the presence of positional information more reliably than the existing
metrics based on PosENet and tests in F-Conv. We also demonstrate that for any
extant (and proposed) padding schemes, PPP is primarily a learning artifact and is
less dependent on the characteristics of the underlying padding schemes.

1 INTRODUCTION

Padding, one of the most fundamental components in neural network architectures, has received
much less attention than other modules in the literature. In convolutional neural networks (CNNs),
zero padding is frequently used perhaps due to its simplicity and low computational costs. This
design preference remains almost unchanged in the past decade. Recent studies (Islam* et al.,
2020; Islam et al., 2021b; Kayhan & Gemert, 2020; Innamorati et al., 2020) show that padding
can implicitly provide a network model with positional information. Such positional information
can cause unwanted side-effects by interfering and affecting other sources of position-sensitive
cues (e.g., explicit coordinate inputs (Lin et al., 2022; Alsallakh et al., 2021a; Xu et al., 2021;
Ntavelis et al., 2022; Choi et al., 2021), embeddings (Ge et al., 2022), or boundary conditions of the
model (Innamorati et al., 2020; Alguacil et al., 2021; Islam et al., 2021a)). Furthermore, padding may
lead to several unintended behaviors (Lin et al., 2022; Xu et al., 2021; Ntavelis et al., 2022; Choi
et al., 2021), degrade model performance (Ge et al., 2022; Alguacil et al., 2021; Islam et al., 2021a),
or sometimes create blind spots (Alsallakh et al., 2021a). Meanwhile, simply ignoring the padding
pixels (known as no-padding or valid-padding) leads to the foveal effect (Alsallakh et al., 2021b; Luo
et al., 2016) that causes a model to become less attentive to the features on the image border. These
observations motivate us to thoroughly analyze the phenomenon of positional encoding including the
effect of commonly used padding schemes.

Conducting such a study requires reliable metrics to detect the presence of positional information
introduced by padding, and more importantly, quantify its strength consistently. We observe that
the existing methods for detecting and quantifying the strength of positional information yield
inconsistent results. In Section 3, we revisit two closely related evaluation methods, PosENet (Islam*
et al., 2020) and F-Conv (Kayhan & Gemert, 2020). Our extensive experiments demonstrate that
(a) metrics based on PosENet are unreliable with an unacceptably high variance, and (b) the Border
Handling Variants (BHV) test in F-Conv suffers from unaware confounding variables in its design,
leading to unreliable test results.

In addition, we observe all commonly-used padding schemes actually encode consistent patterns
underneath the highly dynamic model features. However, such a pattern is rather obscure, noisy,
and visually imperceptible for most paddings (except zeros-padding), which makes recognizing and
analyzing it difficult. Fortunately, we show that such patterns can be consistently revealed with a
sufficient number of samples by defining an optimal padding scheme (see Section 2.1 and Figure 1).

The source codes and data collection scripts will be made publicly available.
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Figure 1: Position-information Pattern from Padding (PPP). We propose a method that can
consistently and effectively extract PPPs through the distributional difference between optimally-
padded (gray-scale surfaces) and algorithmically-padded features (colored surfaces). The results
show that the two distributions become distinguishable as the number of sample increases. Following
the procedure in Section 2.2, we extract a clear view of PPP with the expectation of the pair-
wise differences between optimally-padded and algorithmically-padded features. We render each
visualization in tilted view (first row) and top view (second row). The colors represent the magnitude
(blue/cold/weak to green/warm/strong) at each pixel. The features are extracted at the 3rd layer of
interest (Appendix A) from a randn-padded (Section 2.4) ResNet50 pretrained on ImageNet.

We accordingly propose a new evaluation paradigm and develop a method to consistently detect
the presence of the Position-information Pattern from Padding (PPP), which is a persistent pattern
embedded in the model features to retain positional information. We present two metrics to measure
the response of PPP from the signal-to-noise perspective and demonstrate its robustness and low
deviation among different settings, each with multiple trials of training.

To weaken the effect of PPP, in Section 2.4, we design a padding scheme with built-in stochasticity,
making it difficult for the model to consistently construct such biases. However, our experiments
show that the models can still circumvent the stochasticity and end up consistently constructing PPPs.
These results suggest that a model likely constructs PPPs purposely to facilitate its training, rather
than falsely or accidentally learning some filters that respond to padding features.

With reliable PPP metrics, we conduct a series of experiments to analyze the characteristics of PPP in
Section 4.1. Specifically, we analyze the formation of PPP throughout each model training process in
Section 4.3. The results show PPPs are formed expeditiously at the early stage of model training,
slowly but steadily strengthen through time, and eventually shaped in clear and complete patterns.
These results show that a model intentionally develops and reinforces PPPs to facilitate its learning
process. Moreover, we observe the PPPs of all pretrained networks are significantly stronger than
those in their initial states. This indicates an unbiased training procedure is of great importance in
resolving the critical failures caused by PPP in numerous vision tasks (Alsallakh et al., 2021a; Xu
et al., 2021; Ge et al., 2022; Alguacil et al., 2021).

2 OBSERVATIONS AND METHODOLOGY

In this section, we first define symbols for expressing the functionality of paddings and define the
optimal-padding scheme. We then give a formal definition of Position-information Pattern from
Padding (PPP) and utilize the optimal-padding scheme to develop propose a method to capture PPP
and measure its response with two metrics.

2.1 OPTIMAL PADDING

The process of capturing an image from the real world can be simplified into two steps: (a) 3D
information of the environment is first projected onto an infinitely large 2D plane, and then (b) the
camera determines resolution as well as field-of-view to form a digital image from such infinitely large
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Figure 2: Principal point shift. (a) The stride-2 Conv2d only pads on one side, causing the principal
point shift (red squares) in earlier layers. (b) Such a shift requires careful margin correction while
aligning algorithmically-padded and optimally-padded features (we describe the details of point shift
in Appendix A). (c) The shift is visible in the feature space (marked with red and yellow boxes). (d)
It is crucial to correct the principal point shift while measuring PPP. The PPP calculation involves
pixel-wise distance functions, which are not robust to spatial shifts (Zhang et al., 2018).

and continuous 2D signals (Liu et al., 2019; Ravi et al., 2020). Let S∗ = {s∗n}Nn=1 be a collection of
such infinitely large and continuous 2D signals, and the collection of 2D images captured by cameras
at a spatial size (hn, wn) be S′ = {s′n}Nn=1. A padding scheme can be used to generate a set of
algorithmically-padded images Ŝ = {ŝn}Nn=1 by a padding function ρ:

ŝn[i, j] =

{
s′n[i, j] = s∗[i, j] if 0 < i < hn and 0 < j < wn ,

ρ(s′n, i, j) otherwise,
(1)

where i and j are indexes of a pixel in the spatial dimension. We define a theoretical optimally-padded
collection S† = {s†n}Nn=1 with an optimal-padding function ρ† by:

s†n[i, j] =

{
s′n[i, j] = s∗[i, j] if 0 < i < hn and 0 < j < wn ,

ρ†(s′n, i, j) = s∗[i, j] otherwise.
(2)

In practice, without curated data, the optimal-padding scheme described in Eq. 2 is difficult to achieve.
We describe how we relax this constraint in Section 2.3

2.2 POSITIONAL-INFORMATION PATTERN FROM PADDING

Despite the previous literature discovered the existence of positional information caused by the
model paddings, there is still no clear definition for such information, and lacks effective metrics
to detect or quantify it. Ideally, an effective metric for such positional information should have
two properties. First, it is a spatial pattern, it contributes distinctive information to different spatial
locations. Its shape enables the network to develop and exploit the absolute positional information of
each pixel, eventually leading to the unattended and undesirable effects in certain tasks (Lin et al.,
2022; Alsallakh et al., 2021a; Xu et al., 2021; Ntavelis et al., 2022; Choi et al., 2021; Ge et al.,
2022; Alguacil et al., 2021). Second, as it represents the positional information purely contributed
by the padding, it is a constant pattern irrelevant to the image contents. We accordingly name it the
Positional-information Pattern from Padding (PPP).

Unfortunately, such a pattern shares space with image features, where the image features typically
have very diverse appearances and high dimensionality. When these two signals interfere with each
other, the appearance of PPP becomes extremely obscure and imperceptible in most cases (except
zeros padding). Figure 1 shows if we visualize features sample-by-sample, there are no obvious
differences between optimally-padded features (gray-scale surface) and algorithmically-padded
features (colored surface). To address the issue, we show that, by assuming the interferences between
PPP and image features to be random, its expectation over a large set of images will saturate to a
constant bias and no longer hinder us from capturing PPP.
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Based on these observations and assumptions, we define PPP as the constant component independent
of model inputs, and its presence is completely contributed by the existence of a padding scheme ρ.
Given Ŝ and a model F (ŝ; θ, ρ), which θ is the model parameters and ρ is a padding scheme applied
to F . Let the model feature extracted at k-th layer be fn,k = Fk(ŝn; θ, ρ), where Fk is the model
from the first layer to the k-th layer. The PPP at k-th layer (PPPk) can be formulated by:

PPPk = E
n

[
d
(
Fk(s

†
n; θ, ρ

†) , Fk(ŝn; θ, ρ)
) ]

, (3)

where d(·, ·) can be any distance function. We use ℓ1 distance in this work, and accordingly name the
metric PPP-MAE.

Pitfalls: feature misalignment. It is important to note that, some CNN components can cause
serious feature misalignment while computing PPP and leads to erroneous results. A typical example
is principal point shift, where the uneven padding in stride-2 convolution causes the center of features
slightly drifted, as shown in Figure 2. Since the measurement of PPP requires perfect alignment, such
a drift should be carefully considered while integrating PPP into new architectures. We discuss the
issue along with other pitfalls in Appendix A and provide three detailed examples of correcting the
principal point shifting.

2.3 SIMULATED OPTIMAL PADDING

In practice, it is impossible to gain access to S∗ for calculating the optimal padding S† described in
Eq. 2. But fortunately, given our goal in Eq. 3 is to analyze the model features within the (hn, wn)
region, S∗ is an overshoot of the data we actually required. Given a vision model F (ŝ; θ, ρ) trained
at a field-of-view (hn, wn) pixels, the receptive field of such vision model is (hm, wm) pixels (we
show the computation in Appendix A), where hm ≫ hn and wm ≫ wn. Let an alternative image
collection S⊙ = {s⊙n }Nn=1 at (hm, wm) pixels, the definition of receptive field implies Fk(s

†
n; θ, ρ)

equals to Fk(s
⊙
n ; θ, ρ

†) for all k.

In other words, in terms of computing Eq. 3, S⊙ is equivalent to S∗ within the finite (hn, wn) region
for a given model architecture. Therefore, we can simulate the procedure described in Eq. 1 and Eq. 2
using S⊙ instead of S†, as long as ∀s⊙n ∈ S⊙ the spatial size of s⊙n is strictly larger than (hm, wm).

2.4 RANDN PADDING

Most of the existing padding schemes (e.g., zeros, reflect, replicate, circular) exhibit certain consistent
patterns that can be easily detected by some designed convolutional kernels. One may argue that the
nature of easy detectability can be a root cause of encouraging the models to learn to rely on these
obvious patterns. This motivates us to design an additional sampling-based padding scheme without
any consistent patterns, namely randn (i.e., random normal) padding, which produces dynamical
values from a normal distribution while following the local statistics. We first determine the maximal
and minimal values of a sliding window (which can be easily achieved with max-pooling), use the
average of them as a proxy mean µp, and use the difference between the mean and the maximal
value as a proxy standard deviation σp. For each padding location, we sample the padding value
according to a normal distribution N (µp, σ

2
p) from the nearest sliding window. We include more

implementation details in Appendix A.

Aside from creating a pattern-less padding scheme with sampling, the design of randn padding is
based on several factors. The sampled padding pixels are allowed to occasionally exceed the min/max
bound of the sliding window. Without breaking the min/max bound can introduce detectable patterns
in certain extreme cases, such as a gradient-like feature that has its maximal intensity at the top-left
corner and minimal intensity at the bottom-right corner. We also design the padding scheme to
follow the local distribution. The padding exhibits high entropy when the local variation is high,
while degenerates to value repetition with imperceptible perturbations while padding a flat area. As
such, not only do the padding pixels exhibit less pattern, but it also prevents the padding pixels from
breaking the features in the border region. We later show that a model still deliberately and incredibly
built up PPP over time even with such a sophisticated padding scheme.

3 REVISITING PRIOR WORK

In this section, we first reproduce two experiments from the prior art, which aim to assess positional
information from paddings. We show several critical design issues in these experiments and discuss
how these problems affect the drawn conclusions. Finally, we propose two additional experiments to
quantify the amount of positional information embedded in the paddings.
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Table 1: Background color as a critical confounding variable in BHV test. We show that using a
grey background similar to Figure 3 leads to discrepant results. The standard deviations are reported
among 10 individual trials. We mark the best performance in green, and the worst two in red.

Padding F-Conv? Black Background Grey Background

Similar (%) Dissimilar (%) Diff (%) Inconsistency (%) Similar (%) Dissimilar (%) Diff (%) Inconsistency (%)

Zeros N 99.83±0.00 3.21± 8.35 −87.68 95.81± 2.07 100.00± 0.00 4.96± 5.93 −95.04 97.85± 4.55
Y 89.24±0.98 89.24± 0.98 0.00 18.02± 8.08 100.00± 0.00 4.77± 6.52 −95.23 96.79± 7.13

Circular N 80.31±3.23 80.31± 3.23 0.00 34.25± 8.32 72.75± 0.96 72.75± 0.96 0.00 26.30± 5.55
Y 99.20±0.23 93.14± 2.88 −6.06 18.48± 3.55 98.26± 0.50 92.40± 4.23 −5.87 28.67± 6.18

Reflect N 100.00±0.00 15.67±12.72 −84.33 91.18±13.19 100.00± 0.00 19.96±13.54 −80.04 90.33±11.95
Y 100.00±0.00 11.70±15.38 −88.30 97.33± 6.16 100.00± 0.00 17.16±12.19 −82.84 98.13± 3.44

Replicate N 100.00±0.00 43.39±11.42 −56.61 75.32± 8.20 100.00± 0.00 33.16± 6.42 −66.83 84.09± 6.47
Y 98.32±0.39 93.65± 1.36 −4.67 32.60± 4.97 97.17± 0.48 94.99± 1.20 −2.18 32.15± 5.11

Randn N 100.00±0.00 10.31±12.56 −89.70 94.88± 5.55 99.97± 0.13 35.47±10.82 −64.50 83.59± 8.48
Y 100.00±0.00 20.80±14.15 −79.20 92.54± 8.37 77.28±16.13 66.70±11.58 −10.59 45.70±20.62

No-pad - 100.00±0.00 3.21± 8.35 −96.79 95.81± 2.07 100.00± 0.00 30.07± 4.06 −69.93 81.30± 2.44

3.1 POSENET

Islam et al. show zeros-padding provides CNN models positional information cues, and propose
PosENet (Islam* et al., 2020) to quantify the amount of positional information encoded within CNN
features. A PosENet experiment involves several components: a pretrained CNN model F , a shallow
CNN Epem (i.e., position encoding module), an image dataset X = {xi}Ni=1 to examine, and a
constant target pattern y (e.g., 2D Gaussian pattern). PosENet first extracts intermediate features at
k-th layer with f(i,k) = Fk(xi) using the pretrained CNN, and then optimizes Epem to minimize
Ei,k[||Epem(f(i,k))−y||2] . Finally, the amount of positional information is quantified by the average
Spearman’s correlation (SPC) and Mean Absolute Error (MAE) overall Epem(f(i,k)) toward y.

A critical issue with PosENet is the use of an optimization-based metric. It is sensitive to hyperparam-
eters with large variation. As shown in Table 2, for all the PosENet results, the standard deviation over
five trials significantly dominates the differences between different types of paddings, and thus no
definitive conclusions can be drawn. We also observed that PosENet can report NaN results in certain
setups. Furthermore, PosENet quantifies the amount of positional information by the faithfulness
of the final reconstruction. However, a better reconstruction does not have a clear relationship to
measuring the strength and significance of positional information. For instance, PosENet sometimes
shows responses to no-padding models, demonstrating it is a metric with an indefinite bias pending
on the memorization ability of Epem. Moreover, optimizing for pattern reconstruction is highly
dependent on the underlying data distribution, simply changing the evaluation data distribution
without changing the model weights can drastically change the PosENet numerical magnitudes and
the conclusions of which model embeds the strongest positional information.

Another issue is that the no-padding scheme used in the Epem module in PosENet is known to have
the foveal effect (Alsallakh et al., 2021b; Luo et al., 2016), where a model pays less attention to the
information on the edge of inputs. Using such a padding scheme for detecting positional information
from paddings, which is mostly concentrated on the edge of the feature maps, is less effective. This
is an inevitable dilemma as PosENet aims to identify positional information from the padding of the
pretrained F , while applying any padding scheme to Epem introduces intractable effects between the
paddings of the two models.

3.2 F-CONV

Kayhan et al. propose a full-padding scheme (F-Conv) (Kayhan & Gemert, 2020) and demonstrate it
is more translational invariant than the alternatives. One of the critical results is on “border handling
variants” (Exp 2 of (Kayhan & Gemert, 2020)), which we call it BHV test. The BHV test creates a
toy dataset, where each image has a black background with a green square and a red square in the
foreground. The task is to predict if the red square is on the left of the green square (class 1), or vice
versa (class 2). In addition, Kayhan et al. intentionally adds a location bias such that both squares
are located in the upper half of the image for class 1, and located in the lower half of the image for
class 2. During testing, a “similar test” inherits the same bias, while a “dissimilar test” exchanges the
bias (i.e., both squares are in the lower half of the image for class 1). As a truly translation-invariant
CNN model should not be affected by the location bias, it should focus on the relation between
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Figure 4: Visualization of Position-Information Pattern from Padding (PPP). The visualiza-
tions are calculated based on Eq. 3 over 480 GMap samples extracted at the 3rd layer-of-interest
(Appendix A). The results show that the pretrained model significantly reinforces PPP compared to
randomly initialized networks. Note that each image is normalized to [0, 1] separately, therefore the
colors between images are not comparable. More visualizations are presented in Appendix B.

the red and green squares and perform similarly on both tests. Since the experimental results show
that F-Conv performs best on the dissimilar test, it is concluded that F-Conv is less sensitive to the
location bias. The authors also conclude the circular padding performs worse due to the behavior of
wrapping the pixels to the other side of the image, which leads to confusion between two classes.

Zeros Padding Zeros Padding

Figure 3: The BHV test trains
a binary classifier to predict the
relative position of the two col-
ored squares. It hypothesizes
if the padding provides no po-
sitional information, the classi-
fier will only focus on the rela-
tive position of the two squares.
(Left) The black background is
a confounding variable. (Right)
Zeros padding no-longer pads
optimum values after changing
the background color.

However, as shown in Figure 3, we find the experimental design
does not consider a crucial confounding variable: the black back-
ground has a zero intensity, making zeros padding the optimal
padding that perfectly follows the background distribution. In Ta-
ble 1, we show that the dissimilar test is no longer in favor of
F-Conv zeros after changing the background color to grey. We also
show that F-Conv replicate and F-Conv circular perform best on
the dissimilar test, which is different from the original observation.

Finally, we report an additional inconsistency rate to show that the
CNN architecture used in the BHV test actually has access to the
absolute position of the squares. Given a random sample in class
1, we create a trajectory of samples by simultaneously moving the
two squares to the bottom of the canvas and recording the CNN-
model prediction in all intermediate states. We label a trajectory
to be inconsistent if the prediction of the CNN-model switches
classes at any step of the trajectory. A CNN model with no access
to the absolute-position information should have all trajectories
maintaining consistent predictions, with 0% inconsistency. Table 1
shows the inconsistent ratio over 228 uniformly sampled trajecto-
ries, where all models maintain high inconsistency rates, even with
a no-padding architecture. These results show that the CNN model used in the BHV test is not
translation invariant. This can be attributed to that a CNN model has a large receptive field covering
the whole experiment canvas, therefore capable of gradually constructing absolute coordinates for
each input pixel. Note that we only show the design of the BHV test is not suitable for quantifying
the amount of positional information exhibited in a CNN model. Such a conclusion does not imply
that F-Conv cannot potentially improve the translation-invariant property of CNNs.

4 EXPERIMENTS AND ANALYSIS

Datasets Since most vision models are trained on tasks for recognizing objects, an image collection
containing a diverse object appearance is more suitable for the task. As mentioned in Section 2.3,
evaluating PPP requires images at a large field-of-view, in practice, we collect images at 2,048×2,048
pixels, which is larger than the receptive field of all the models we tested. Due to the constraint of
large field-of-view, we compute PPP on three datasets (all at 2,048× 2,048 pixels): (a) 480 satellite
images crawled from Google Map, (b) 1,024 images synthesized by InfinityGAN (Lin et al., 2022)
trained with Flickr-Landscape dataset, and (c) 1,024 images synthesized by InfinityGAN trained with
LSUN-Tower (Yu et al., 2015) dataset. We crop the images depending on the requested input image
sizes and principal point shifts from each model (see Appendix A for details). We will release the
script for collecting and composing these large images.
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Table 2: Comparing PosENet and our proposed PPP metrics. Most of the PosENet results are
not distinguishable due to the high standard deviations. The standard deviation is computed by
five different pretrained models for each test. The performance shows the accuracy (for classification)
or weighted F-measure score (for saliency object detection). We use 2D Gaussian as PosENet
reconstruction pattern, and PPP-MAE is measured at the 4th layer of interest. Here, (↑) indicates a
higher value corresponds to stronger positional information or better performance on the task (vice
versa for (↓)). For each group of pretrained models, we label the strongest positional information
response with red, and the experiments within its standard deviation range with orange.

Model Padding Eval Dataset
PosENet

PPP-MAE(ours) (↑) Performance (↑)
SPC (↑) MAE (↓)

VGG-19

Zeros
GMap 0.107±0.128 0.196±0.006 0.0176±0.0005

InfinityGAN-flickr 0.368±0.116 0.183±0.007 0.0163±0.0006 74.0972±0.0870

InfinityGAN-tower 0.492±0.106 0.173±0.010 0.0179±0.0001

Circular
GMap 0.098±0.139 0.197±0.007 0.0158±0.0006

InfinityGAN-flickr 0.323±0.147 0.185±0.009 0.0137±0.0004 74.4716±0.0863

InfinityGAN-tower 0.460±0.102 0.176±0.009 0.0184±0.0005

Reflect
GMap 0.109±0.139 0.196±0.007 0.0158±0.0002

InfinityGAN-flickr 0.343±0.132 0.185±0.008 0.0146±0.0008 74.0516±0.0621

InfinityGAN-tower 0.460±0.113 0.177±0.009 0.0168±0.0005

Replicate
GMap 0.084±0.137 0.197±0.006 0.0144±0.0009

InfinityGAN-flickr 0.356±0.111 0.184±0.007 0.0128±0.0012 73.9964±0.1079

InfinityGAN-tower 0.498±0.111 0.173±0.010 0.0156±0.0006

Randn
GMap 0.125±0.154 0.195±0.006 0.0182±0.0012

InfinityGAN-flickr 0.374±0.137 0.185±0.007 0.0167±0.0008 73.7716±0.0758

InfinityGAN-tower 0.421±0.161 0.181±0.010 0.0186±0.0012

NoPad
GMap 0.001±0.239 0.204±0.013 0.0000±0.0000

InfinityGAN-flickr 0.303±0.192 0.187±0.012 0.0000±0.0000 62.0396±0.0830

InfinityGAN-tower 0.516±0.139 0.172±0.014 0.0000±0.0000

ResNet50

Zeros
GMap 0.191±0.188 0.193±0.008 0.0162±0.0012

InfinityGAN-flickr 0.682±0.107 0.152±0.019 0.0137±0.0004 75.6856±0.0924

InfinityGAN-tower 0.721±0.077 0.144±0.017 0.0153±0.0013

Circular
GMap 0.398±0.115 0.197±0.007 0.0188±0.0016

InfinityGAN-flickr 0.628±0.084 0.159±0.013 0.0178±0.0005 76.1432±0.1026

InfinityGAN-tower 0.585±0.105 0.165±0.014 0.0189±0.0012

Reflect
GMap 0.197±0.185 0.192±0.008 0.0150±0.0004

InfinityGAN-flickr 0.594±0.096 0.169±0.012 0.0134±0.0009 75.5068±0.1213

InfinityGAN-tower 0.667±0.087 0.153±0.016 0.0157±0.0002

Replicate
GMap 0.249±0.192 0.189±0.009 0.0138±0.0003

InfinityGAN-flickr 0.700±0.095 0.147±0.018 0.0114±0.0003 75.6122±0.0911

InfinityGAN-tower 0.726±0.069 0.142±0.016 0.0142±0.0007

Randn
GMap 0.210±0.192 0.191±0.009 0.0147±0.0007

InfinityGAN-flickr 0.566±0.100 0.171±0.011 0.0122±0.0011 75.3076±0.1016

InfinityGAN-tower 0.714±0.068 0.142±0.015 0.0153±0.0004

SOD
(PiCANet)

Zeros
GMap 0.156±0.212 0.201±0.017 0.0049±0.0001

InfinityGAN-flickr 0.365±0.140 0.184±0.012 0.0036±0.0001 0.6269±0.0015

InfinityGAN-tower 0.449±0.120 0.179±0.013 0.0032±0.0001

Circular
GMap 0.011±0.209 0.207±0.014 0.0062±0.0001

InfinityGAN-flickr 0.329±0.133 0.187±0.012 0.0068±0.0001 0.6260±0.0009

InfinityGAN-tower 0.398±0.115 0.182±0.011 0.0050±0.0002

Reflect
GMap 0.062±0.210 0.205±0.016 0.0053±0.0001

InfinityGAN-flickr 0.322±0.133 0.188±0.013 0.0030±0.0001 0.6243±0.0022

InfinityGAN-tower 0.396±0.125 0.183±0.013 0.0039±0.0001

Replicate
GMap 0.071±0.215 0.204±0.016 0.0043±0.0002

InfinityGAN-flickr 0.335±0.139 0.186±0.012 0.0023±0.0001 0.6255±0.0013

InfinityGAN-tower 0.409±0.120 0.182±0.012 0.0032±0.0001

Randn
GMap 0.002±0.244 0.202±0.009 0.0001±0.0000

InfinityGAN-flickr 0.228±0.173 0.197±0.010 0.0001±0.0000 0.2570±0.0022

InfinityGAN-tower 0.212±0.148 0.200±0.011 0.0001±0.0000

NoPad
GMap 0.000±0.264 0.211±0.019 0.0000±0.0000

InfinityGAN-flickr 0.454±0.194 0.178±0.021 0.0000±0.0000 0.4759±0.0013

InfinityGAN-tower 0.520±0.167 0.172±0.020 0.0000±0.0000
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Table 3: Significant PPP gain from model training. We measure PPP-MAE on GMap with
randomly initialized and fully trained models. The results show a consistent and significant increment
of PPP is developed through the model training.

Model Pretrained Padding

Zeros Circular Reflect Replicate Randn

VGG-19 × 0.0132±0.0006 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000
ImageNet 0.0176±0.0005 0.0158±0.0006 0.0158±0.0002 0.0144±0.0009 0.0182±0.0012

ResNet50 × 0.0052±0.0004 0.0032±0.0004 0.0018±0.0001 0.0015±0.0001 0.0020±0.0002
ImageNet 0.0162±0.0012 0.0188±0.0016 0.0150±0.0004 0.0150±0.0004 0.0147±0.0007

4.1 VISUALIZING POSITION-INFORMATION PATTERN FROM PADDING (PPP)

We start with visualizing PPP in Figure 4. All the visualizations are conducted at the 3rd layer of
interest as detailed in Appendix A. We compute PPP using Eq. 3 and ℓ1 norm as the distance metric,
then average the resulting PPP in the channel dimension to generate a gray-scale image. Since the
quantities are small and difficult to perceive, we normalize the gray-scale image to [0, 1] range, and
thus the colors between images are not directly comparable.

In all scenarios, PPP noticeably spreads out after being pretrained on ImageNet. In Table 3, the PPP-
MAE of the VGG19 and ResNet50 also reflects that the response of PPP is significantly strengthened
after model training. That is, the model training has substantial effects on the construction of PPP.
Although the formation of padding pattern is suggested to be mainly caused by the distributional
difference between features and paddings (Alsallakh et al., 2021a), our results show that it only
increases the response slightly, compared to the considerable PPP-MAE gain through training.

Another intriguing observation is that, despite some variations in the detailed patterns, the overall
structure of PPP remains similar. Regardless of padding minimum values with zero-padding (consider
the features are processed with ReLU activation), randn-padding that can sometimes produce large
quantities by chance, or the unbalanced initial state of ResNet50 caused by strided convolution (the
first row of ResNet50 in Figure 4), all models tend to have the maximal PPP response in the corner of
the features after fully trained. While the underlying mechanism causing such consistent preferences
remains unknown, such preferences may be an important factor to consider in future model design.

4.2 QUANTIFYING PPP AND COMPARING WITH POSENET

Table 2 shows the measurements of PPP and PosENet on various architectures and padding schemes.
We train five models for each setup and measure the standard deviation of these models. Our
PPP-MAE has significantly lower standard deviations compared to PosENet, where the standard
deviation of PosENet dominates the differences between padding variants, and thus the quantities
from PosENet cannot provide sufficient information for any analysis. Evaluating the true mean
of PosENet requires an even larger number of pretrained models, each requiring full training on
the target dataset (e.g., ImageNet), which is impractical in reality. The main reason that PosENet
has such a large variation is due to its optimization-based formulation, and thus the final quantities
highly depend on the convergence of the PosENet training. In fact, we also observe a similar level of
standard deviation even when the PosENet is measured on the same model for multiple trials. On the
other hand, PPP is based on a closed-form formulation, and thus the variations are only introduced by
the differences among the parameters of the pretrained models. Furthermore, PosENet often reports
positive SPC responses from no-padding models, as shown in its large standard deviation. In contrast,
PPP has zero response to no-padding models by definition, and therefore is less biased for measuring
the positional information from padding.

Although certain paddings seem to have slightly lower PPP-MAE than other paddings, in Table 3,
we find the differences are not significant when comparing the extremely low PPP-MAE from most
of the randomly initialized networks. In most cases, the network can effectively construct its PPP,
even with the highly stochastic randn padding. The only exception seems to be the case of randn
padding in the salient object detection (SOD) task, where the network fails to achieve a compatible
performance with other paddings1. The results show that the model training plays an important role

1We use the same setting as PosENet to evaluates PiCANet (Liu et al., 2018) on the SOD task. PiCANet is
initialized by a model pretrained on ImageNet (with zero padding). The discrepancy in the padding scheme can
be the major cause of failure while training the network on SOD task with randn padding.
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VGG19

ResNet50

Figure 5: Chronological PPP. We quantify PPP every 10 epochs and plot its development in four
different layer of depth (the rightmost layer is the one closest to model output). All curves consistently
show a sudden surge at the early stage, and all the later layers are slowly but steadily gaining stronger
PPP until the end of training. The shadow region represents standard deviations among 5 individual
training episodes. The colors represent zeros, circular, reflect, replicate, and randn paddings.

in the formation of PPP, and perhaps its contribution is much larger than which underlying padding
scheme is being used. This motivates us to further analyze the PPP formulation during model training.

4.3 CHRONOLOGICAL PPP
To understand the formulation of PPP through time, we snapshot checkpoints every 10 epochs for all
training episodes. By measuring the PPP-MAE at all the checkpoints, we plot a chronological curve
and monitor the progress of PPP. We train 5 individual models for each pair of model-padding setting
and report the standard deviations, which demonstrates the significance of the trend.

Figure 5 shows all models achieve a significant gain of PPP within the first 10 epochs in all inter-
mediate layers. Most models continuously increase their PPP as training proceeds, especially in the
fourth layer of interest, which is the last output from the convolutional layers before the final linear
projection. Another interesting observation is that our randn padding, which is designed to be less
easily detectable with built-in stochasticity, indeed shows less PPP built-up at the intermediate stages
in certain layers. However, the network still adjusts the behavior and ends up forming complete PPPs
at the fourth layer of interest in all scenarios. All these evidences show that the network builds PPP
purposely as a favorable representation to assist its learning.

5 CONCLUSION AND LIMITATIONS

In this paper, we develop a reliable method for measuring PPP and conduct a series of analyses toward
understanding the formation and properties of PPP. Through a large-scale study, we demonstrate that
PPP is a representation that the network favorably develops as a part of its learning process, and its
formation has weak connections to the underlying padding algorithm. We show that reliable PPP
metrics are important steps for understanding the effects of PPPs in different tasks, and useful for
measuring the effectiveness of future methods in debiasing PPP.

However, an unfortunate and inevitable limitation of the PPP metrics is that their measure is biased
by the model architecture and parameters. Since the PPP metrics are based on the distributional
differences between the paired model outputs (i.e., optimal padding to algorithmic padding), different
architecture and layers of depth exhibit different and intractable biases due to different interactions
between PPP and model parameters. Such a bias makes PPP metrics less comparable while dissecting
models with different architectures or parameter distributions (e.g., weight decay and weight normal-
ization), which is important for studying the effect of architectural changes. However, this limitation
is inevitable for any (and all existing) metric that attempts to measure PPP using the outputs of a
model. We note future studies in measuring PPP without model inferences2 will be an important step
toward tackling and understanding the property of PPP under different architectural choices.

2A related analogy of the contradictory problem can be found in neural architecture search literature (Mellor
et al., 2021), which aims to assess the final performance of architecture without training the model.
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Supplementary Material

APPENDIX A IMPLEMENTATION DETAILS

A.1 ARCHITECTURE AND FEATURE ALIGNMENTS
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Figure 6: The architecture for VGG19 and ResNet50 used in the paper. We mark the calculation
of optimal padding in orange arrows and principal point in blue arrows. We label the layers of interest
that are used in the paper. The red † indicates where a principal point shift is identified.
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A.2 PPP FEATURE MISALIGNMENT

There are several pitfalls in visualizing and quantifying PPP. We identify two critical pitfalls from
the architectures we implemented. However, these may not be sufficient to cover all potential issues
while integrated into other architectures. Therefore one must be alerted to any unusual behavior
(e.g., Figure 2(d) in the main paper) throughout their implementation.

Principal point shifting. Conv2d has a hidden behavior that few people are aware of, the operation
is one-pixel skewed while applying a stride-two Conv2d on even-shaped features. To understand how
the one-pixel shift happens, we first define the principal point of a feature map. We first define the
principal point of the last feature map as the center pixel (note that we define it as the middle-point
between the center-two pixels in case the last feature size is even). Then, we recursively define the
principal point of the (N − 1)-th layer as the pixel that positions at the center of the Conv2d receptive
field that mainly forms the principal point of the N -th layer. In the case of optimally-padded features,
the principal points in every layer are the center of the feature map. But, as shown in Figure 2(a),
the principal point of algorithmically-padded features will have a one-pixel shift when a stride-2
convolution is applied to even-shaped features, which can be further amplified as more layers stack up.
Such a skew causes the principal points of algorithmically-padded features shift several pixels away
from the principal points of optimally-padded features. As PPP metrics use pixel-wise subtraction to
distinguish the image content from PPP, the misalignment becomes a critical issue, since the image
contents are no longer aligned and subtractable.

In Figure 6, we show the procedure of calculating the principal point in blue arrows and marking the
values impacted by principal point shift with red †. For the ResNet50 architecture, the principal point
shift accumulates to 16(= 224/2− 96) pixels in the early layers.

Fortunately, such a displacement can be fixed by adding corrections to how we calculate the feature
margins. As shown in Figure 2(b), the concept of the margin correction is to make the two principal
points overlapping each other after adding the margin. In the example, the left-right margins are
corrected to (209, 180) (instead of the more intuitive choice of (195, 194) or (194.5, 194.6)).

We also show how the principal point shift visually looking like in Figure 2(c), notice the patterns
have right-bottom shifted 16 pixels. As shown in Figure 2(d), failing to identify the principal point
shift will result in checkerboard artifacts while calculating PPP, and adding correction eliminates the
artifacts.

Maxpooling misalignment. This is a hypothetical condition that may potentially happen but has not
been observed in the three architectures we tested. Consider a case of a Maxpooling layer of window
size 2 and stride 2, the sliding windows of each pooling operation have no overlap, therefore the
initial index of the first sliding window solely determines the spatial location of all sliding windows.
Accordingly, there is a chance that the initial condition of the optimally-padded features causes all of
its sliding windows to be one-pixel misaligned to the algorithmically-padded features. Fortunately,
the condition can be easily determined by calculating the top and left margins of the feature alignment
(similar to the aforementioned principal point shift calculation). For the case of a Maxpooling layer
of window size 2 and stride 2, the misalignment will not happen if the top and left margins are even
numbers, and that is exactly the case for VGG19 and ResNet50, as shown in Figure 6.

A.3 RANDN PADDING

A critical implementation detail is that such a padding scheme must be applied before activation func-
tions. Since the paddings are based on the distribution within sliding windows, activation functions
such as ReLU, which clamps all negative values, can discard a significant amount of information be-
forehand. Instead of the traditional use of padding-convolution-normalization-activation, we modify
the order to convolution-normalization-padding-activation. Note that such a change of order does not
affect the behavior or results of other padding schemes.

A.4 ACKNOWLEDGING OPEN-SOURCE CONTRIBUTORS

Our implementation reuses codes from several open-source codebases, which greatly supports our
development. The repositories used in the paper are F-Conv (Oskyhn, 2019), torchvision (Pytorch,
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APPENDIX B MORE PPP VISUALIZATIONS

Layer of
Interest

Pretrained
VGG19

Zeros Circular Reflect Replicate Randn

1

×

ImageNet

2

×

ImageNet

3

×

ImageNet

4

×

ImageNet

Figure 7: Visualization of Position-Information Pattern from Padding (PPP). The visualizations
are calculated based on Eq. 3 over 480 GMap samples. The results show that the pretrained model
significantly reinforces PPP compared to randomly initialized networks. Note that each image is
normalized to [0, 1] separately, therefore the colors between images are not comparable.
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Layer of
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Pretrained
ResNet50

Zeros Circular Reflect Replicate Randn
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ImageNet
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ImageNet

4
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ImageNet

Figure 8: Visualization of Position-Information Pattern from Padding (PPP). The visualizations
are calculated based on Eq. 3 over 480 GMap samples. The results show that the pretrained model
significantly reinforces PPP compared to randomly initialized networks. Note that each image is
normalized to [0, 1] separately, therefore the colors between images are not comparable.
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Layer of
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ImageNet
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Figure 9: Visualization of Position-Information Pattern from Padding (PPP). The visualizations
are calculated based on Eq. 3 over 480 GMap samples. The results show that the pretrained model
significantly reinforces PPP compared to randomly initialized networks. Note that each image is
normalized to [0, 1] separately, therefore the colors between images are not comparable.
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