ShareLLoRA: Less Tuning, More Performance for LoRA Fine-tuning of
LLMs

Anonymous ACL submission

Abstract

Due to the prohibitively expensive full fine-
tuning costs of large language models (LLMs),
various popular parameter-efficient fine-tuning
(PEFT) methods have been developed. These
methods majorly rely on fine-tuning few add-
on modules, popularly referred to as adapters,
that corresponds to only small fraction of LLM
parameters. In specific, low rank adaptation
(LoRA), has demonstrated impressive parame-
ter efficiency while yielding performance close
to the full fine-tuning. However, classical
LoRA may still fine-tune more parameters
as compared to the inherent rank of the pre-
trained weights (Aghajanyan et al., 2020), leav-
ing room for further parameter reduction. To
mitigate this, only recently, few researches had
proposed various freezing strategy of LoRA
projection matrices, however, at the cost of ad-
ditional FLOPs. To improve fine-tuning effi-
ciency, in this work, we present SHARELORA,
that leverages a novel approach to use the re-
dundancy in pre-trained model weights and
share LoRA modules to significantly reduce
the trainable parameter counts. In specific,
SHARELORA automatically finds the redun-
dancy of the pre-trained weights and deter-
mines which LoRA adapters can share param-
eters. For this, SHARELORA uses the similar-
ity between representations to assess the infor-
mation redundancy and a greedy algorithm to
maximize the sharing of LORA modules. We
performed extensive evaluations with LLaMA
family LLMs across various tasks. In specific,
at reduced PEFT parameter count of up to 23%,
SHARELORA performs similar or better that
of the existing PEFT alternatives.

1 Introduction

Large language models (LLMs), e.g., GPT-4 and
LLaMAZ2, are at the forefront of advances in the
field of machine learning (ML). These large mod-
els are pre-trained on vast datasets (e.g., images or
text corpora) and are subsequently fine-tuned for

specialized tasks, demonstrating proficiency in do-
mains such as natural language, image processing,
and fundamental scientific discoveries (Bommasani
et al., 2021; Touvron et al., 2023a; Singhal et al.,
2022, 2023). Foundation models (FMs), such as
LLaMAZ2, Falcon, and MPT, are typically referred
to as the base model. They are pre-trained solely to
predict the next token to generate from their entire
vocabulary space (Touvron et al., 2023a; Penedo
et al., 2023; Team, 2023). To employ the base
model for real applications, e.g., building chatbots,
these models must be further fine-tuned (e.g., on
multi-turn human-human or human-chatbot conver-
sations) to either follow specific human instructions
or align with human preferences (Leike et al., 2018;
Ziegler et al., 2019; Chung et al., 2022).

The massive parameter scales of FMs make fine-
tuning a computationally daunting task. For in-
stance, the GPU memory capacity must be suffi-
ciently large to host the fine-tuning of the entire set
of FM parameters using a reasonably large batch
size. PEFT methods have been proposed that allow
for the fine-tuning of only a small fraction of FM
parameters or merely a few small add-on adapters
atop the FM pre-trained model backbone, all the
while keeping the majority of the base FM parame-
ters frozen (Houlsby et al., 2019; Hu et al., 2021;
Zaken et al., 2021; Zhang et al., 2023). These
PEFT methods democratize FM fine-tuning across
a wide range of computing platforms, such as com-
modity hardware. LoRA, which is one of the most
popular PEFT methods, has been shown to effec-
tively reduce the GPU memory requirement during
FM fine-tuning (Hu et al., 2021). LoRA achieves
parameter efficiency by adding low-rank adapters
in parallel with specific FM parameters, such as
MLP layers or the query, key, and value parameter
weights in multi-head attention. During fine-tuning,
LoRA focuses solely on these low-rank adapters,
leaving the large FM parameters untouched.

However, the approach of LoRA is relatively

FT Method GSMSK 1 ARC-Challenge T WinoGrande I Hellaswag 1

LoRA(r = 12) 37.98 48.21 64.25 51.96
Naive-shared LoORA 37.23 47.95 62.83 48.38

Table 1: Accuracy comparison of LoRA and a naive-
share LoRA (that shares weights naively) strategy.

straightforward and does not take into account the
importance and similarity of each layer, lacking
finer control over the LoRA modules. Currently,
there are some improvements to LoRA, such as
AdalL.oRA (Zhang et al., 2023), which dynamically
adjusts the rank based on importance scores dur-
ing finetuning, DoRA (Liu et al., 2024a), which
separates weights into direction and magnitude for
more personalized finetuning, and LoRA+ (Hayou
et al., 2024), which adjusts the learning rates of
A and B separately to achieve better finetuning re-
sults. However, they all overlook the redundancy in
pretrained foundation models, where some layers
exhibit similar behaviors. These redundancy layers
can share parameters during finetuning to further
reduce the memory requirements for fine-tuning.

We find that sharing the weights of the LoRA
module does not significantly impact performance
while reducing the number of trainable parame-
ters. Specifically, we have experimented with shar-
ing the LoRA weights of odd-numbered layers
with those of even-numbered layers, effectively
halving the number of trainable parameters. As
shown in Table 1, even using this simple method
of weight sharing results in only a minimal per-
formance degradation. However, there are likely
more sophisticated methods for weight sharing that
could further optimize this approach. However,
identifying which layers to share the weights of
the LoORA module with others is challenging. This
difficulty arises because the explainability of foun-
dation models (FMs) (Zhao et al., 2024) is still
an active area of research, and there is no defini-
tive conclusion about which layers exhibit similar
behaviors.

We have observed that in some current foun-
dation models, there are cases where layer repre-
sentations are similar. Due to the lack of suffi-
cient data during training, not every parameter can
learn unique information, leading to the extraction
of similar features and redundant representations.
Consequently, some works have used this obser-
vation to perform structural compression of the
model (Gromov et al., 2024). In our approach,
we share LoRA weights among redundancy layers
during finetuning. By significantly reducing the

number of distinct LORA weights, we can slightly
increase the LoRA rank, thereby greatly improving
the finetuning performance without increasing the
number of training parameters.

Our SHARELORA method consists of two main
components: (i) computing similarity matrices be-
tween representations of layers and (ii) sharing the
LoRA module parameters among redundancy lay-
ers. This method identifies layers with similar rep-
resentations and shares their weights, reducing the
number of trainable parameters while maintaining
model performance. By leveraging layer similari-
ties, SHARELORA significantly improves finetun-
ing efficiency. We conduct extensive experiments
on a wide range of tasks and models to demon-
strate the effectiveness of SHARELORA. Specifi-
cally, we evaluate the performance using LLaMA-
7B, LLaMA2-7B, and LLaMA3-8B for natural lan-
guage commonsense reasoning and LLava-1.5-7B
for image-text understanding. The results show
that SHARELORA performs similar or better than
LoRA, while only using 80% trainable parameter.

The summary of our contributions is as follows:

* We propose SHARELORA, a novel parameter-
efficient fine-tuning (PEFT) method that lever-
ages the similarity of layer representations to
enable weight sharing, achieving this without
introducing any additional train or inference
latency compared to LoRA.

* We develop a greedy algorithm to determine
which layers should share the weights of the
LoRA module based on the similarity of their
representations.

* We conduct extensive experiments demon-
strating that SHARELORA consistently per-
forms similar or better LORA across various
tasks, while using less trainable parameters.

2 Background and Motivation

Parameter Efficient of Fine Tuning. A primary
research trajectory aimed at reducing the fine-tune
parameters of pretrained FMs is to model the
incremental updates of pretrained weights in a
parameter-efficient manner. For example, given
a pretrained weight matrix W, diff pruning (Guo
et al., 2021) initializes A as the same dimensions
as W and performs magnitude-based pruning on
A. Diff pruning characterizes A as the incremental
updates of W, and it can improve the parameter
efficiency due to the sparsity of A. However, it

requires specific hardware support to accelerate the
computation of unstructured sparse matrices. This
hardware-specific dependency underscores a cru-
cial consideration for the practical deployment of
such an approach in real-world applications. In
addition, it does not significantly reduce computa-
tional cost compared to full fine-tuning (Hu et al.,
2021), as every entry of A needs to be updated and
then be pruned.

To tackle those limitations, Hu et al. propose
LoRA (Hu et al., 2021), which parameterize A as
the product of two low-rank matrices:

W' =W + A=W + BA, (1)

where A € RT1*%2 B € R*" and A € R™*%
with r < {d1, d2}. As the rank r is much smaller
than the dimension of W (e.g., r = 8 and d; =
ds = 4096), the number of trainable parameters
and training overhead dramatically decreases.

However, LoRA has its limitations, as it typi-
cally applies separate parameters for each B and
A by default. This approach overlooks the signif-
icant variation in the redundancy of weight matri-
ces across different layers and modules during the
fine-tuning of pretrained foundation models. We
will demonstrate this issue later. Consequently,
LoRA cannot adaptively share the LoRA modules
among the redundancy layers, which could other-
wise achieve comparable performance with fewer
trainable parameters.

Weight Sharing. Although PEFT methods can
reduce the number of trainable parameters, thereby
decreasing GPU memory footprint during fine-
tuning, the number of parameters in LLMs also
scales rapidly, making it increasingly challenging
to conduct even PEFT on commodity GPUs. In
this paper, we explore the possibility of combining
LoRA with weight sharing, a method that allows
multiple neural network layers to share the same
model weights. Weight sharing has been a widely
adopted technique to reduce the number of train-
able parameters while maintaining performance
and sometimes helping mitigate overfitting (Press
and Wolf, 2017; de Lhoneux et al., 2018; Lan et al.,
2020; Dai et al., 2020; Takase and Kiyono, 2021).

Similarity Across Layers. Our motivation for
weight sharing among LoRAs across layers comes
from the observation that the representations
among model layers/blocks attain high levels of
similarity, especially for bottom layer blocks (as

(=4
o
-0.8
bE
= 0.6
S
o
=
a2 0.4
0.2
(e}
0 10 20 30
Layer Index

Figure 1: Cosine similarity among layers’ represen-
tations experimented on LLaMA2-7B model over the
GSMB8k evaluation dataset.

shown in Figure 1). This effect has also been ob-
served by many prior works (Kornblith et al., 2019;
Gromov et al., 2024). This effect is also connected
to methods like layer skipping and mixture of depth
for LLMs (Fan et al., 2024; Elhoushi et al., 2024;
Raposo et al., 2024).

3 AutoLoRA Method

As illustrated in Figure 2, our method comprises
two key components: (i) layer similarity computa-
tion and (i1) LoRA sharing.

3.1 The Formulation of SHARELORA

In this subsection, we present the formulation of
SHARELORA as an optimization problem. Specifi-
cally, we consider an L-layer LLM. We denote S as
the collection of shared sets of LLM layer indices,
eg.,S=14(2,3),(5,6,7),(11,13)}.

Our objective is to maximize the number of
shared LLM layers while ensuring that the sim-
ilarity measure between any two layers with shared
weights exceeds a predefined threshold, €. This
can be formulated as the following optimization
problem:

max Z |s]

VseS
s.t.e(xi,x;) > €

where |s| is the number of layers in set s, and S
is the collection of sets such that each set s contains
layers with similarity measure (i.e., c(-, -)) between
each pair exceeding the threshold .

Input text

0 [: Compute the cosine
: similarity between each
___) —— layer.
nCC) l
R —
....................... Find all blocks ([I3,1; +
—— nl, [, 83 +m,) has
i the similarity under
C— threshold.
Y — l
L +m (D
_______________________ Share the LoRA
C—) parameters within the
: blocks ([I7, 1 +
L-1(C_——) nl, [, +m], ...
Output text

lnplitext
o)+cRA
)+
o B
i +| Shared LoRA
b+n(C___——)
)+
LCC)
i +| Shared LoRA
L+m(C___)
CCC)+
L -1)+

Output text

Figure 2: An overview of our proposed AutoLoRA, which computes the cosine similarity between each layer, and

shares the LoRA parameters within redundancy blocks.

The objective of SHARELORA is to maximize
the total number of layers sharing LoRA. The re-
maining question is How to find S? We will present
our algorithm of SHARELORA in section 3.3.

3.2 Similarity Between Representations of
Layers

To decide which layer’s LoRA module could be
shared with another, we have to compute the angu-
lar distance c(x;,x;) between the representations
of layer ¢ and layer j. The similarity of a single
sequence of length 7' is given by

T.
X; Xj

Lo 1
i, Xj5) = —) 2
elbxi, %) 1= 7 cos (Hxﬂl!lxﬂl) @

where the inner product is over the hidden di-
mension of the model for the final token 7" of the
sequence, || - || denotes the ¢o-norm, and the factor
of 1/ is a convention. This distance should then
be summed over a number of examples that is large
enough to get a low-fluctuation estimate but overall
should be quite small.

3.3 Similarity-based Weight Sharing

The objective of the algorithm is to identify sets of
neural network layers that can share LoORA modules
based on the angular distance of their representa-
tions. The algorithm employs a greedy strategy

to maximize the size of these shared sets while
adhering to a predefined similarity threshold.

First, the algorithm processes the similarity ma-
trix to create an upper triangular matrix, excluding
the diagonal, which represents the pairwise simi-
larities between layers. It then identifies all eligi-
ble pairs of layers (¢, j) where the similarity score
exceeds the threshold e. Formally, this can be ex-
pressed as: shared_pairs = {(4,j) | c(xi,x;) >
eand 0 <i < j < L}.

Next, the algorithm constructs sets of shared lay-
ers by iterating through the identified shared pairs.
It maintains a set visited to avoid reprocessing lay-
ers. The construction of the shared sets proceeds is
shown in Algorithm 1.

The algorithm ensures that layers are grouped
into shared sets only if their pairwise similarities
exceed the threshold ¢, thus maximizing the num-
ber of layers that can share the LoRA modules
while maintaining high similarity within each set.

Furthermore, after sharing layers using the set S,
the number of layers with shared parameters will
be > g.cs|Si| — |S|. This allows us to optionally
expand the original rank r to Lmﬂ,
where L is the total number of layers. We summa-
rize the algorithm in Algorithm 2.

Algorithm 1 Construct Shared Sets

1: Input: Similarity matrix C, threshold ¢;

2: Output: Collection of shared sets S;
Initialize shared_pairs < {(i, j) | c(x;,x;) >
eand 0 < i < j < L} and sort it;

4: Initialize S + {};

5: Initialize visited < set();

6: for all (4, j) in shared_pairs do

7

8

9

w

if ¢ not in visited and j not in visited then
if ¢ not in S then
Initialize S; < {i}

10: end if

11: Add jto S;;

12: Add j to visited

13: if All pairs starting with ¢ is done then
14: Add i to visited

15: end if

16: end if

17: end for

Algorithm 2 SHARELORA

1: Input: Sample Dataset D*; Train Dataset D;
hyper-parameter similarity threshold e.

2: Inference on D* and save the representations
x (1) for each layer [;

3: Compute the angular distance d(z(l,), z(l;))
between each layer /,, and [4;

4: Compute the share set S and update LoRA
rank 7;

5: Share parameters using .S;

6: Finetune weight sharing model W with D.

7: Output: The fine-tuned parameters W*.

4 Experiments

Models and datasets. We implemented
SHARELORA to fine-tune LLaMA family LLMs,
namely, LLaMA-7B (Touvron et al., 2023a),
LLaMAZ2-7B (Touvron et al., 2023b) and LLaMA3-
8B (Meta, 2024). We follow the settings of LLM-
Adapters (Hu et al., 2023), and evaluate the effec-
tiveness of the several natural language common-
sense reasoning task including BoolQ (Clark et al.,
2019), PIQA (Bisk et al., 2019), SIQA (Sap et al.,
2019), HellaSwag (Zellers et al., 2019), Wino-
grande (Sakaguchi et al., 2021), ARC-Easy (Clark
et al., 2018), ARC-Challenge, and OBQA (Mi-
haylov et al., 2018). Additionally, we implemented
SHARELORA to fine-tune LLaVA-1.5-7B (Liu
et al., 2023), a popular vision language founda-
tion model (VLM) and used on image-text pair

understanding, and evaluated on LLaVA-Bench (in-
the-wild) evaluation dataset (Liu et al., 2023).

Setup. We use PyTorch (Paszke et al., 2019)
to implement all the algorithms. Our fine-tuning
algorithm implementation is based on the publicly
available Huggingface Transformers (Wolf et al.,
2019) and LLM-Adapters code base. All the exper-
iments are conducted on NVIDIA A6000 GPUs.

Baselines. We compare SHARELOR Awith the
following baselines.

* Prompt learning (Prefix): (Li and Liang, 2021)
Involves fine-tuning a small set of continuous
task-specific vectors (prefixes) while keeping
the large language model parameters frozen
to pre-trained weights.

* Adapter tuning (AdapterH): (Houlsby et al.,
2019) Inserts small add-on layers between
the multi-head attention modules and FFN
modules of the the pre-trained model that can
be fine-tuned for downstream task learning,
while keeping the rest of the model parame-
ters frozen.

* Pfeiffer adapter (AdapterP): (Pfeiffer et al.,
2020) Unlike adapter tuning it inserts add-
on layers after FFN modules and LayerNorm
modules, allows them to fine-tune and keeps
the rest of the model frozen.

* Parallel adapter (Parallel): (He et al., 2021)
Modifies the hidden representations in a trans-
former model by inserting additional trainable
parameters in parallel to the original model’s
layers.

* LoRA: (Hu et al., 2021) Is the most popular
PEFT method that injects trainable low-rank
matrices into transformer layers parallel to the
frozen main path, to approximate the weight
updates.

4.1 Evaluations on LLMs

We assess the fine-tuning performance of LLaMA-
7B, LLaMA2-7B, and LLaMA3-8B using all base-
line methods along with the proposed algorithm.
The commonsense reasoning evaluation includes
eight sub-tasks, each with its own predefined train-
ing and testing sets. Following the setup from LLM-
Adapters (Hu et al., 2023), we combine the training
datasets from all the eight tasks to form a com-
prehensive training dataset for the fine-tuning, and

Model PEFT Method #Params BoolQ PIQA SIQA HellaSwag WinoGrande ARC-e ARC-c OBQA Avg.
Prefix 10.5M 5746 5049 33.62 28.38 64.8 29.84 2449 266 39.46
AdapterH 20.1IM 71.19 7448 4545 57.24 59.51 5690 3370 39.0 54.68
LLaMA-7B AdapaterP 20.1M 67.65 7345 4427 57.04 58.48 57.62 33.87 37.0 53.67
Parallel 448M 7336 7454 7381 57.08 60.22 56.23 35.58 36.8 54.70
LoRA(r = 8) 14.0M 78.53 7845 4698 7341 70.17 7024 4121 422 62.65
SHARELORA (ours) 10.8M 77.55 79.65 47.54 73.04 70.96 69.95 4070 454 63.10
LLaMA2-7B LoRA(r = 8) 14.0M 80.64 79.16 47.85 75.18 69.93 69.70 42.06 44.0 63.56
SHARELORA(ours) 11.8M 80.89 79.22 46.78 74.04 71.27 68.73 41.81 44.0 63.36
LLaMA3-8B LoRA(r = 8) 14.2M 82.17 8134 4949 7838 74.19 7639 50.77 464 67.39
SHARELORA(ours) 11.4M 82.17 81.56 4877 79.32 73.80 76.85 50.00 442 67.07

Table 2: Accuracy with LLaMA model family with various PEFT methods on commonsense reasoning tasks.

perform evaluations on the individual testing sets
for each sub-task.

Implementation details. All of LLaMA mod-
els have 32 hidden layers. Initially, we calcu-
late the similarity c(x;, x;) between each layer’s
representation using 256 randomly sampled C4
validation dataset. We set the similarity thresh-
old ¢ to 0.85 for LLaMA-7B and LLaMA2-7B,
and 0.80 for LLaMA3-8B. Utilizing our similarity-
based weight-sharing algorithm, the share set col-
lection S for LLaMA-7B is {{16, 17}, {18,19},
{20,21,22}, {23,24,25,26,27}, {28,29,30}},
enabling the sharing the LoRA modules of ten sim-
ilar layers. The share set collection S for LLaMA2-
7B and LLaMA3-8B are {{17,18}, {19,20},
{21,22,23}, {24,25,26,27}, {28,29}} and
{{19,20}, {21,22}, {23,24,25}, {26,27,28}}
separate. Note, for these three models, we expand
the original LoRA rank from 8 to 9.

Table 2 shows experimental results on the eight
commonsense reasoning tasks. SHARELORA
achieves similar or better performance across all
datasets for all the models. Notably, our proposed
approach saves up to 23% of the trainable param-
eters yet achieves a 1.5% improvement in perfor-
mance with LLaMA-7B, while maintaining similar
performance on LLaMA2-7B and LLaMA3-8B.

4.2 Evaluations on Multi-Modal VLMs

We now present the results of SHARELORAon
vision-language models. We used the LLaVA-1.5-
7B (Liu et al., 2023), which consists of a lan-
guage model, a visual encoder and a projection
layer for feature alignment. Specifically, the lan-
guage model and visual encoder were initialized
with Vicuna-1.5-7B (Zheng et al., 2024) and CLIP
ViT-L/336px (Radford et al., 2021), respectively. In
addition, we employed the pre-trained projection
layer! and directly performed visual instruction
fine-tuning stage. In contrast to the setup of LLaVA,

"https://huggingface.co/liuhaotian/llava-v1.5-mlp2x-
336px-pretrain-vicuna-7b-v1.5

we chose a subset of their dataset, i. e. LLaVA-
Instruct-80K. It consists of 80k image-instruction
pairs filtered out from LLaVA-Instruct-150K?. We
set the rank to 64 and performed instruction tun-
ing for one epoch of the LLM component using
SHARELORAand LoRA, respectively. Note, we
keep the feature transformation module trainable
for both.

Implementation details. For SHARELORA we
compute the similarity between the inputs and out-
puts of each layer based on 128 samples, with
each sample comprising of visual-text inputs. The
similarity threshold was set to 0.9 and the share
set collection S for language model is {{2,3},
{4,5}, {6,7}, {17,18}, {19,20}, {21,22,23},
{24,25,26}, {27,28,29} }. Please see Table 3 for
detailed hyperparameters setting. We use GPT-4
generated answers as the golden answers. Sub-
sequently, we employed GPT-40 to evaluate the
instruction-following capabilities of the fine-tuned
model and selected the challenging LLaVA-Bench
(in-the-wild). It comprises 24 images with a total
of 60 questions. In Table 4, we demonstrate the per-
formance of SHARELORA and LoRA fine-tuned
LLaVA model. Overall, SHARELORA exhibits su-
perior performance compared to that with LoRA,
with a significant advantage in the conversation as-
pect. Additionally, SHARELOR Arequires around
13% fewer trainable parameters to yield this im-
proved performance.

4.3 Ablations and Discussions

Robustness towards different rank setting. Here
we investigate the impact of various rank configu-
rations on SHARELORA and LoRA by adjusting
the original r within the set {2, 4,8, 16}. We then
evaluate the performance of fine-tuned LLaMA-
7B on commonsense reasoning tasks as described
in §4.1. Fig. 3 depicts the results with different
ranks for both LoORA and SHARELORA. Across

Zhttps://huggingface.co/datasets/liuhaotian/LLaVA-
Instruct-150K

Hyperparameters | LORA SHARELORA
Similarity threshold — 0.9
Rank 64

e 128

Dropout 0.05

Target layer Q.K,V,0,Up,Down,Gate
Epochs 1

LR 2e-4

LR Scheduler Cosine
Optimizer AdamW

Batch Size 64

‘Warmup Ratio 0.03

Table 3: Hyperparameters of LORA and SHARELORA
for fine-tuning vision-language model.

LoRA(rank=64) SHARELORA
Params 159.9M 139.4M
Description 45.57 + 0.60 45.80 + 0.40
Conversation | 46.87 + 1.27 54.10 + 0.00
Reasoning 66.90 + 0.85 65.37 £ 0.72
All 55.47 £ 0.55 57.00 + 0.44

Table 4: Instruction-following capability comparison
between LoRA and SHARELORA (ours). We conduct
three repeated evaluations and report the average scores.
The results are reported in the format of mean =+ std.

all four original rank settings, SHARELORA con-
sistently improves performance compared to the
baseline LoRA. Despite using the same original
rank, SHARELOR A employs only 80% of the train-
able parameters relative to the LoRA. For instance,
SHARELORA achieves an average accuracy of
63.35% on the eight commonsense reasoning tasks
with 5M trainable parameters, whereas LoRA re-
quires 7M parameters for the same rank level.
Similarity threshold. Table 5 presents the
experimental results of fine-tuning LLaMA-
7B with different similarity thresholds
{0.75,0.80,0.85,0.90}. The best performance is
achieved when the similarity threshold € is set to
0.85. Higher similarity thresholds result in more
eligible shared layers. As the number of shared
layers increases, the rank of the LoRA modules can
be adjusted upward within the constraints of the
trainable parameter budget, which is determined
by the original rank. Thus, there is a tradeoff
between having more independent layers and a

Similarity threshold | Accuracy

0.75 61.80
0.80 62.81
0.85 63.10
0.90 61.80

Table 5: Accuracy comparison of different similarity
thresholds evaluated with LLaMA-7B.

=y
(=)

LoRA
ShareLoRA

Accuracy (%)
D N D N f=a) N
(=} —_ 5] w - W

w
o

2 4 8 16
Original Rank (%)

Figure 3: Accuracy comparison with different rank val-
ues for LoORA and SHARELORA.

Target Modules ‘ Accuracy

Q 64.19
K 64.31
v 63.71
Down 62.63
Up 62.91

Q.K,V,Down,Up | 63.10

Table 6: Accuracy comparison of placing LoRA at
different target modules.

larger rank. Consequently, selecting an appropriate
similarity threshold € is crucial for optimizing the
performance of our proposed method.

Adapter sensitivity to different layer types.
In subsection 4.1, we adapt our proposed method
to the Q, K, V, Down, and Up weights. Table 6
presents the performance of fine-tuning the weights
associated to each module type separately. We use
r = 8 for the LoRA modules. The results indicate
that adapting our proposed method to the Q and K
weights yields the most significant benefits in fine-
tuning. This improvement can be attributed to the
critical role these weights play in attention mech-
anisms, highlighting the importance of carefully
selecting target modules for optimization.

5 Related Works

Generative foundation models. Generative deep
learning models pre-trained on large datasets are
called generative foundation models (Bommasani
et al., 2021). These foundation models can be
applied to downstream tasks by fine-tuning. Ad-
vanced generative foundation models in natural
language processing (NLP) such as GPT (Brown
et al., 2020; Ouyang et al., 2022) and LLaMA (Tou-
vron et al., 2023a) model have shown great suc-
cess in assisting and generating human-like text
across a wide range of topics. These generative
language models can also be applied to many prac-

tical downstream tasks, such as education (Kas-
neci et al., 2023) and healthcare (Thirunavukarasu
etal., 2023). Another kind of generative foundation
model that has developed maturely is the diffusion
model (Ho et al., 2020; Rombach et al., 2022). The
diffusion model works well in various computer
vision tasks such as text-to-image generation (Ev-
eraert et al., 2023) and image editing (Kawar et al.,
2023).

Efficient fine-tuning methods. Efficient fine-
tuning methods aim to reduce the number of train-
able parameters to save the GPU memory and
training time during fine-tuning large-scale models.
Some PEFT methods freeze most of the parameters
in the model and only fine-tune specific modules,
e.g., BitFit (Zaken et al., 2021) fine-tunes only the
bias of the model, which significantly saves the
GPU memory. However, it cannot be executed on
models without bias parameters. (Houlsby et al.,
2019) and (Pfeiffer et al., 2020) add adapter lay-
ers between transformer blocks. These methods
accelerate fine-tuning by transferring knowledge
from adapter layers pre-trained on general tasks.
LoRA (Hu et al., 2021; Liu et al., 2024b) is the
most popular adapter for fine-tuning large founda-
tion models. It adopts the product of two small
matrices to represent the full gradient during fine-
tuning. It can reduce the number of trainable pa-
rameters by 10,000 times and the GPU memory
requirement by 3 times. Some adaptive algorithms
work together with LoRA that can dynamically
adjust the number of trainable parameters to fit spe-
cific needs. For instance, AdaLoRA (Zhang et al.,
2023) adaptively allocates the trainable parameters
to fit the GPU memory budget. These adaptive
algorithms on LoRA require heterogeneous LoRA
configuration when implemented in federated fine-
tuning.

6 Future work

Our proposed SHARELOR A method is orthogonal
to other LoRA variants, suggesting that future work
could explore combining SHARELOR A with exist-
ing PEFT methods. For example, LoRA+ (Hayou
et al., 2024) sets different learning rates for the
adapter matrices A and B. By adjusting the learn-
ing rate ratio between these two matrices, the ef-
ficiency and performance of fine-tuning can be
significantly improved. Specifically, LoORA+ sets
the learning rate of B to be A times that of A.
This technique could easily be integrated with

SHARELORA. Additionally, DoRA (Liu et al.,
2024a) is a novel PEFT method that enhances
LoRA by decomposing pre-trained weights into
magnitude and direction components for more pre-
cise fine-tuning. This weight decomposition allows
DoRA to optimize the magnitude and direction
of weights separately. SHARELORA could also
be combined with DoRA to share the magnitude
and direction components among redundant layers.
In summary, SHARELORA not only offers a stan-
dalone solution for fine-tuning but also provides a
flexible framework that can be enhanced by inte-
grating with other advanced PEFT methods. This
opens up new avenues for research and develop-
ment, potentially leading to even greater improve-
ments in PEFT performance and efficiency.

7 Conclusion

In this paper, we present SHARELORA, a
parameter-efficient fine-tuning method that deter-
mines which layers share the LoORA weights based
on layer redundancy. SHARELORA leverages
the cosine similarity between each layer’s repre-
sentations to ascertain redundancy. Utilizing a
greedy algorithm, we maximize the sharing of
LoRA weights while adhering to a predefined simi-
larity threshold. This approach effectively reduces
the number of trainable parameters. We conduct
extensive experiments on large language models
and multi-modal vision-language foundation mod-
els. The results demonstrate that SHARELORA
achieves comparable or superior performance to
existing PEFT methods, while using only 80% of
the trainable parameter budget.

8 Limitations

There are two limitations to this work. Firstly, due
to constrained computing resources, we were un-
able to evaluate the performance of larger language
models such as LLaMA2-70B and LLaMA3-70B.
It is anticipated that these larger models, containing
more redundancy with a fixed number of training
datasets, would yield superior performance. Sec-
ondly, this paper does not explore other, more pre-
cise metrics for identifying layer redundancy in
large language models. Designing more precise
and fine-grind metrics to determine which layer is
redundancy is still a challenge, we intend to inves-
tigate this direction in future research endeavors.

References

Armen Aghajanyan, Luke Zettlemoyer, and Sonal
Gupta. 2020. Intrinsic dimensionality explains the
effectiveness of language model fine-tuning. arXiv
preprint arXiv:2012.13255.

Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng
Gao, and Yejin Choi. 2019. Piga: Reasoning about
physical commonsense in natural language. Preprint,
arXiv:1911.11641.

Rishi Bommasani, Drew A Hudson, Ehsan Adeli,
Russ Altman, Simran Arora, Sydney von Arx,
Michael S Bernstein, Jeannette Bohg, Antoine Bosse-
lut, Emma Brunskill, et al. 2021. On the opportuni-
ties and risks of foundation models. arXiv preprint
arXiv:2108.07258.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877-1901.

Hyung Won Chung, Le Hou, Shayne Longpre, Bar-
ret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi
Wang, Mostafa Dehghani, Siddhartha Brahma, et al.
2022. Scaling instruction-finetuned language models.
arXiv preprint arXiv:2210.11416.

Christopher Clark, Kenton Lee, Ming-Wei Chang,
Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. 2019. Boolq: Exploring the surpris-
ing difficulty of natural yes/no questions. Preprint,
arXiv:1905.10044.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot,
Ashish Sabharwal, Carissa Schoenick, and Oyvind
Tafjord. 2018. Think you have solved question an-
swering? try arc, the ai2 reasoning challenge. arXiv
preprint arXiv:1803.05457.

Dawei Dai, Liping Yu, and Hui Wei. 2020. Parameters
sharing in residual neural networks. Neural Process-
ing Letters, 51(2):1393-1410.

Miryam de Lhoneux, Johannes Bjerva, Isabelle Augen-
stein, and Anders Sggaard. 2018. Parameter sharing
between dependency parsers for related languages.
arXiv preprint arXiv:1808.09055.

Mostafa Elhoushi, Akshat Shrivastava, Diana Liskovich,
Basil Hosmer, Bram Wasti, Liangzhen Lai, Anas
Mahmoud, Bilge Acun, Saurabh Agarwal, Ahmed
Roman, et al. 2024. Layer skip: Enabling early
exit inference and self-speculative decoding. arXiv
preprint arXiv:2404.16710.

Martin Nicolas Everaert, Marco Bocchio, Sami Arpa,
Sabine Siisstrunk, and Radhakrishna Achanta. 2023.
Diffusion in style. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages
2251-2261.

Siqi Fan, Xin Jiang, Xiang Li, Xuying Meng, Peng
Han, Shuo Shang, Aixin Sun, Yequan Wang, and
Zhongyuan Wang. 2024. Not all layers of 1lms
are necessary during inference. arXiv preprint
arXiv:2403.02181.

Andrey Gromov, Kushal Tirumala, Hassan Shapourian,
Paolo Glorioso, and Daniel A Roberts. 2024. The un-
reasonable ineffectiveness of the deeper layers. arXiv
preprint arXiv:2403.17887.

Demi Guo, Alexander M Rush, and Yoon Kim. 2021.
Parameter-efficient transfer learning with diff prun-
ing. In Proceedings of the 59th Annual Meeting of the
Association for Computational Linguistics and the
11th International Joint Conference on Natural Lan-
guage Processing (Volume 1: Long Papers), pages
4884—-4896.

Soufiane Hayou, Nikhil Ghosh, and Bin Yu. 2024.
Lora+: Efficient low rank adaptation of large models.
arXiv preprint arXiv:2402.12354.

Junxian He, Chunting Zhou, Xuezhe Ma, Taylor Berg-
Kirkpatrick, and Graham Neubig. 2021. Towards a
unified view of parameter-efficient transfer learning.
arXiv preprint arXiv:2110.04366.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. 2020. De-
noising diffusion probabilistic models. Advances
in neural information processing systems, 33:6840—
6851.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,
Bruna Morrone, Quentin De Laroussilhe, Andrea
Gesmundo, Mona Attariyan, and Sylvain Gelly. 2019.
Parameter-efficient transfer learning for nlp. In In-
ternational Conference on Machine Learning, pages
2790-2799. PMLR.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. 2021. Lora: Low-rank adap-
tation of large language models. arXiv preprint
arXiv:2106.09685.

Zhiqiang Hu, Lei Wang, Yihuai Lan, Wanyu Xu, Ee-
Peng Lim, Lidong Bing, Xing Xu, Soujanya Po-
ria, and Roy Ka-Wei Lee. 2023. Llm-adapters:
An adapter family for parameter-efficient fine-

tuning of large language models. arXiv preprint
arXiv:2304.01933.

Enkelejda Kasneci, Kathrin SeBler, Stefan Kiichemann,
Maria Bannert, Daryna Dementieva, Frank Fischer,
Urs Gasser, Georg Groh, Stephan Giinnemann, Eyke
Hiillermeier, et al. 2023. Chatgpt for good? on op-
portunities and challenges of large language models
for education. Learning and individual differences,
103:102274.

Bahjat Kawar, Shiran Zada, Oran Lang, Omer Tov, Hui-
wen Chang, Tali Dekel, Inbar Mosseri, and Michal
Irani. 2023. Imagic: Text-based real image edit-
ing with diffusion models. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 6007-6017.

https://arxiv.org/abs/1911.11641
https://arxiv.org/abs/1911.11641
https://arxiv.org/abs/1911.11641
https://arxiv.org/abs/1905.10044
https://arxiv.org/abs/1905.10044
https://arxiv.org/abs/1905.10044

Simon Kornblith, Mohammad Norouzi, Honglak Lee,
and Geoffrey Hinton. 2019. Similarity of neural
network representations revisited. In International

conference on machine learning, pages 3519-3529.
PMLR.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman,
Kevin Gimpel, Piyush Sharma, and Radu Soricut.
2020. Albert: A lite bert for self-supervised learning
of language representations. In International Confer-
ence on Learning Representations.

Jan Leike, David Krueger, Tom Everitt, Miljan Martic,
Vishal Maini, and Shane Legg. 2018. Scalable agent
alignment via reward modeling: a research direction.
arXiv preprint arXiv:1811.07871.

Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning:
Optimizing continuous prompts for generation. arXiv
preprint arXiv:2101.00190.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae
Lee. 2023. Visual instruction tuning.

Shih-Yang Liu, Chien-Yi Wang, Hongxu Yin, Pavlo
Molchanov, Yu-Chiang Frank Wang, Kwang-Ting
Cheng, and Min-Hung Chen. 2024a. Dora: Weight-
decomposed low-rank adaptation. arXiv preprint
arXiv:2402.09353.

Zeyu Liu, Souvik Kundu, Anni Li, Junrui Wan, Liang-
hao Jiang, and Peter Anthony Beerel. 2024b. Aflora:
Adaptive freezing of low rank adaptation in parameter
efficient fine-tuning of large models. arXiv preprint
arXiv:2403.13269.

Al Meta. 2024. Introducing meta llama 3: The most
capable openly available 1lm to date. Meta Al

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish
Sabharwal. 2018. Can a suit of armor conduct elec-
tricity? a new dataset for open book question answer-
ing. arXiv preprint arXiv:1809.02789.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, et al.
2022. Training language models to follow instruc-
tions with human feedback. Advances in Neural
Information Processing Systems, 35:27730-27744.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, et al. 2019. Pytorch: An imperative style,
high-performance deep learning library. Advances in
neural information processing systems, 32.

Guilherme Penedo, Quentin Malartic, Daniel Hesslow,
Ruxandra Cojocaru, Alessandro Cappelli, Hamza
Alobeidli, Baptiste Pannier, Ebtesam Almazrouei,
and Julien Launay. 2023. The refinedweb dataset
for falcon llm: outperforming curated corpora with
web data, and web data only. arXiv preprint
arXiv:2306.01116.

10

Jonas Pfeiffer, Aishwarya Kamath, Andreas Riicklé,
Kyunghyun Cho, and Iryna Gurevych. 2020.
Adapterfusion: Non-destructive task composition for
transfer learning. arXiv preprint arXiv:2005.00247.

Ofir Press and Lior Wolf. 2017. Using the output embed-
ding to improve language models. In Proceedings of
the 15th Conference of the European Chapter of the
Association for Computational Linguistics: Volume
2, Short Papers, pages 157-163.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sas-
try, Amanda Askell, Pamela Mishkin, Jack Clark,
et al. 2021. Learning transferable visual models from
natural language supervision. In International confer-
ence on machine learning, pages 8748-8763. PMLR.

David Raposo, Sam Ritter, Blake Richards, Timothy
Lillicrap, Peter Conway Humphreys, and Adam San-
toro. 2024. Mixture-of-depths: Dynamically allocat-
ing compute in transformer-based language models.
arXiv preprint arXiv:2404.02258.

Robin Rombach, Andreas Blattmann, Dominik Lorenz,
Patrick Esser, and Bjorn Ommer. 2022. High-
resolution image synthesis with latent diffusion mod-
els. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pages
10684-10695.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavat-
ula, and Yejin Choi. 2021. Winogrande: An adver-
sarial winograd schema challenge at scale. Commu-
nications of the ACM, 64(9):99-106.

Maarten Sap, Hannah Rashkin, Derek Chen, Ronan
LeBras, and Yejin Choi. 2019. Socialiga: Com-
monsense reasoning about social interactions. arXiv
preprint arXiv:1904.09728.

Karan Singhal, Shekoofeh Azizi, Tao Tu, S Sara Mah-
davi, Jason Wei, Hyung Won Chung, Nathan Scales,
Ajay Tanwani, Heather Cole-Lewis, Stephen Pfohl,
et al. 2022. Large language models encode clinical
knowledge. arXiv preprint arXiv:2212.13138.

Karan Singhal, Tao Tu, Juraj Gottweis, Rory Sayres,
Ellery Wulczyn, Le Hou, Kevin Clark, Stephen
Pfohl, Heather Cole-Lewis, Darlene Neal, et al.
2023. Towards expert-level medical question an-
swering with large language models. arXiv preprint
arXiv:2305.09617.

Sho Takase and Shun Kiyono. 2021. Lessons on pa-
rameter sharing across layers in transformers. arXiv
preprint arXiv:2104.06022.

MosaicML NLP Team. 2023. Introducing mpt-7b: A
new standard for open-source, commercially usable

Ilms. Accessed: 2023-05-05.

Arun James Thirunavukarasu, Darren Shu Jeng Ting,
Kabilan Elangovan, Laura Gutierrez, Ting Fang Tan,
and Daniel Shu Wei Ting. 2023. Large language
models in medicine. Nature medicine, 29(8):1930—
1940.

Hugo Touvron, Thibaut Lavril, Gautier [zacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal
Azhar, et al. 2023a. Llama: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023b. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
et al. 2019. Huggingface’s transformers: State-of-
the-art natural language processing. arXiv preprint
arXiv:1910.03771.

Elad Ben Zaken, Shauli Ravfogel, and Yoav Gold-
berg. 2021. Bitfit: Simple parameter-efficient
fine-tuning for transformer-based masked language-
models. arXiv preprint arXiv:2106.10199.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali
Farhadi, and Yejin Choi. 2019. Hellaswag: Can a
machine really finish your sentence? In Proceedings
of the 57th Annual Meeting of the Association for
Computational Linguistics, pages 4791-4800.

Qingru Zhang, Minshuo Chen, Alexander Bukharin,
Pengcheng He, Yu Cheng, Weizhu Chen, and
Tuo Zhao. 2023. Adaptive budget allocation for
parameter-efficient fine-tuning. In The Eleventh In-
ternational Conference on Learning Representations.

Haiyan Zhao, Hanjie Chen, Fan Yang, Ninghao Liu,
Huiqi Deng, Hengyi Cai, Shuaiqiang Wang, Dawei
Yin, and Mengnan Du. 2024. Explainability for large
language models: A survey. ACM Transactions on
Intelligent Systems and Technology, 15(2):1-38.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,
Zhuohan Li, Dacheng Li, Eric Xing, et al. 2024.
Judging 1lm-as-a-judge with mt-bench and chatbot
arena. Advances in Neural Information Processing
Systems, 36.

Daniel M Ziegler, Nisan Stiennon, Jeffrey Wu, Tom B
Brown, Alec Radford, Dario Amodei, Paul Chris-
tiano, and Geoffrey Irving. 2019. Fine-tuning lan-
guage models from human preferences. arXiv
preprint arXiv:1909.08593.

11

https://openreview.net/forum?id=lq62uWRJjiY
https://openreview.net/forum?id=lq62uWRJjiY
https://openreview.net/forum?id=lq62uWRJjiY

	Introduction
	Background and Motivation
	AutoLoRA Method
	The Formulation of ShareLoRA
	Similarity Between Representations of Layers
	Similarity-based Weight Sharing

	Experiments
	Evaluations on LLMs
	Evaluations on Multi-Modal VLMs
	Ablations and Discussions

	Related Works
	Future work
	Conclusion
	Limitations

