
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

RRLS : ROBUST REINFORCEMENT LEARNING SUITE

Anonymous authors
Paper under double-blind review

ABSTRACT

Robust reinforcement learning is the problem of learning control policies that
provide optimal worst-case performance against a span of adversarial environments.
It is a crucial ingredient for deploying algorithms in real-world scenarios with
prevalent environmental uncertainties and has been a long-standing object of
attention in the community, without a standardized set of benchmarks. This
contribution endeavors to fill this gap. We introduce the Robust Reinforcement
Learning Suite (RRLS), a benchmark suite based on Mujoco environments. RRLS
provides six continuous control tasks with two types of uncertainty sets for training
and evaluation. Our benchmark aims to standardize robust reinforcement learning
tasks, facilitating reproducible and comparable experiments, in particular those
from recent state-of-the-art contributions, for which we demonstrate the use of
RRLS. It is also designed to be easily expandable to new environments.

1 INTRODUCTION

Reinforcement learning (RL) algorithms frequently encounter difficulties in maintaining performance
when confronted with dynamic uncertainties and varying environmental conditions. This lack of
robustness significantly limits their applicability in the real world. Robust reinforcement learning
addresses this issue by focusing on learning policies that ensure optimal worst-case performance
across a range of adversarial conditions. For instance, an aircraft control policy should be capable of
effectively managing various configurations and atmospheric conditions without requiring retraining.
This is critical for applications where safety and reliability are paramount to avoid a drastic decrease
in performance Morimoto & Doya (2005); Tessler et al. (2019).

The concept of robustness, as opposed to resilience, places greater emphasis on maintaining perfor-
mance without further training. In robust reinforcement learning (RL), the objective is to optimize
policies for the worst-case scenarios, ensuring that the learned policies can handle the most challeng-
ing conditions. This framework is formalized through robust Markov decision processes (MDPs),
where the transition dynamics are subject to uncertainties. Despite significant advancements in robust
RL algorithms, the field lacks standardized benchmarks for evaluating these methods. This hampers
reproducibility and comparability of experimental results (Moos et al., 2022). To address this gap, we
introduce the Robust Reinforcement Learning Suite, a comprehensive benchmark suite designed to
facilitate rigorous evaluation of robust RL algorithms.

The Robust Reinforcement Learning Suite (RRLS) provides six continuous control tasks based on
Mujoco Todorov et al. (2012) environments, each with distinct uncertainty sets for training and
evaluation. By standardizing these tasks, RRLS enables reproducible and comparable experiments,
promoting progress in robust RL research. The suite includes four compatible baselines with the
RRLS benchmark, which are evaluated in static environments to demonstrate their efficacy. In
summary, our contributions are the following :

• Our first contribution aims to establish a standardized benchmark for robust RL, addressing
the critical need for reproducibility and comparability in the field (Moos et al., 2022). The
RRLS benchmark suite represents a significant step towards achieving this goal, providing a
robust framework for evaluating state-of-the-art robust RL algorithms.

• Our second contribution is a comparison and evaluation of different Deep Robust RL
algorithms in Section 5 on our benchmark, showing the pros and cons of different methods.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

2 PROBLEM STATEMENT

Reinforcement learning. Reinforcement Learning (RL) (Sutton & Barto, 2018) addresses the
challenge of developing a decision-making policy for an agent interacting with a dynamic environment
over multiple time steps. This problem is modeled as a Markov Decision Process (MDP) (Puterman,
2014) represented by the tuple (S,A, p, r), which includes states S, actions A, a transition kernel
p(st+1|st, at), and a reward function r(st, at). For simplicity, we assume a unique initial state s0,
though the results generalize to an initial state distribution p0(s). A stationary policy π(s) ∈ ∆A

maps states to distributions over actions. The objective is to find a policy π that maximizes the
expected discounted return

Jπ = Es0∼ρ[v
π
p (s0)] = E

[∞∑
t=0

γtr(st, at)|at ∼ π, st+1 ∼ p, s0 ∼ ρ
]
, (1)

where vπp is the value function of π, γ ∈ [0, 1) is the discount factor, and s0 is drawn from the initial
distribution ρ. The value function vπp of policy π assigns to each state s the expected discounted
sum of rewards when following π starting from s and following transition kernel p. An optimal
policy π∗ maximizes the value function in all states. To converge to the (optimal) value function, the
value iteration (VI) algorithm can be applied, which consists in repeated application of the (optimal)
Bellman operator T ∗ to value functions:

vn+1(s) = T ∗vn(s) := max
π(s)∈∆A

Ea∼π(s)[r(s, a) + Ep[vn(s
′)]]. (2)

Finally, the Q function is also defined similarly to Equation equation 1 but starting from specific
state/action (s, a) as ∀(s, a) ∈ S ×A:

Qπ(s, a) = E
[∞∑

t=0

γtr(st, at)|at ∼ π, st+1 ∼ p, s0 = s, a0 = a
]
. (3)

Robust reinforcement learning. In a Robust MDP (RMDP) Iyengar (2005); Nilim & El Ghaoui
(2005), the transition kernel p is not fixed and can be chosen adversarially from an uncertainty set P
at each time step. The pessimistic value function of a policy π is defined as vπP(s) = minp∈P vπp (s).
An optimal robust policy maximizes the pessimistic value function vP in any state, leading to a
maxπ minp optimization problem. This is known as the static model of transition kernel uncertainty,
as π is evaluated against a static transition model π. Robust Value Iteration (RVI) (Iyengar, 2005;
Wiesemann et al., 2013) addresses this problem by iteratively computing the one-step lookahead best
pessimistic value:

vn+1(s) = T ∗
Pvn(s) := max

π(s)∈∆A

min
p∈P

Ea∼π(s)[r(s, a) + Ep[vn(s
′)]]. (4)

This dynamic programming formulation is called the dynamic model of transition kernel uncertainty,
as the adversary picks the next state distribution only for the current state-action pair, after observing
the current state and the agent’s action at each time step (and not a full transition kernel). The T ∗

P
operator, known as the robust Bellman operator, ensures that the sequence of vn functions converges
to the robust value function v∗P , provided the adversarial transition kernel belongs to the simplex
of ∆S and that the static and dynamic cases have the same solutions for stationary agent policies
Iyengar (2022).

Robust reinforcement learning as a two-player game. Robust MDPs can be represented as
zero-sum two-player Markov games (Littman, 1994; Tessler et al., 2019) where S̄, Ā are respectively
the state and action set of the adversarial player. In a zero-sum Markov game, the adversary tries
to minimize the reward or maximize −r. Writing π̄ : S̄ → Ā := ∆S the policy of this adversary,
the robust MDP problem turns to maxπ minπ̄ v

π,π̄ , where vπ,π̄(s) is the expected sum of discounted
rewards obtained when playing π (agent actions) against π̄ (transition models) at each time step
from s. In the specific case of robust RL as a two player-game, S̄ = S ×A. This enables introducing
the robust value iteration sequence of functions

vn+1(s) := T ∗∗vn(s) := max
π(s)∈∆A

min
π̄(s,a)∈∆S

(Tπ,π̄vn)(s) (5)

where Tπ,π̄ := Ea∼π(s)[r(s, a) + γEs′∼π̄(s,a)vn(s
′)] is a zero-sum Markov game operator. These

operators are also γ−contractions and converge to their respective fixed point vπ,π̄ and v∗∗ = v∗P
Tessler et al. (2019). This two-player game formulation will be used in the evaluation of the RRLS
in Section 5.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Adversary
AgentEnvironment

Figure 1: Relation between Robust RL and Zero-sum Markov Game

3 RELATED WORKS

3.1 REINFORCEMENT LEARNING BENCHMARK

The landscape of reinforcement learning (RL) benchmarks has evolved significantly, enabling the
accelerated development of RL algorithms. Prominent among these benchmarks are the Atari Arcade
Learning Environment (ALE) Bellemare et al. (2012), OpenAI Gym Brockman et al. (2016), more
recently Gymnasium Towers et al. (2023), and the DeepMind Control Suite (DMC) Tassa et al. (2018).
The aforementioned benchmarks have established standardized environments for the evaluation of
RL agents across discrete and continuous action spaces, thereby fostering the reproducibility and
comparability of experimental results. The ALE has been particularly influential, offering a diverse set
of Atari games that have become a standard testbed for discrete control tasks Bellemare et al. (2012).
Moreover, the OpenAI Gym extended this approach by providing a more flexible and extensive suite
of environments for various RL tasks, including discrete and continuous control Brockman et al.
(2016). Similarly, the DMC Suite has been essential for benchmarking continuous control algorithms,
offering a set of challenging tasks that facilitate evaluating algorithm performance Tassa et al. (2018).
In addition to these general-purpose benchmarks, specialized benchmarks have been developed to
address specific research needs. For instance, the DeepMind Lab focuses on 3D navigation tasks from
pixel inputs Beattie et al. (2016), while ProcGen Cobbe et al. (2019) offers procedurally generated
environments to evaluate the generalization capabilities of RL agents. The D4RL benchmark targets
offline RL methods by providing datasets and tasks specifically designed for offline learning scenarios
Fu et al. (2021), and RL Unplugged Gulcehre et al. (2020) offers a comprehensive suite of benchmarks
for evaluating offline RL algorithms. RL benchmarks such as Meta-World Yu et al. (2021) have been
developed to evaluate the ability of RL agents to transfer knowledge across multiple tasks. Meta-
World provides a suite of robotic manipulation tasks designed to test RL algorithms’ adaptability
and generalization in multitask learning scenarios. Similarly, RLBench James et al. (2020) offers a
variety of tasks for robotic learning, focusing on the performance of RL agents in multi-task settings.
Recent contributions such as the Unsupervised Reinforcement Learning Benchmark (URLB) Lee
et al. (2021) have further expanded the scope of RL benchmarks by targeting unsupervised learning
methods. URLB aims to accelerate progress in unsupervised RL by providing a suite of environments
and baseline implementations, promoting algorithm development that does not rely on labeled data
for training. Additionally, the CoinRun benchmark Cobbe et al. (2020) and Sonic Benchmark Nichol
et al. (2018) focus on evaluating generalization and transfer learning in RL through procedurally
generated levels and video game environments, respectively. Finally, benchmarks like the Behavior
Suite (bsuite) Osband et al. (2019) have been designed to test specific capabilities of RL agents, such
as memory, exploration, and generalization. Closer to our work, safety in RL is another critical area
where benchmarks like SafetyGym Achiam & Amodei (2019) have been instrumental. SafetyGym
evaluates how well RL agents can perform tasks while adhering to safety constraints, which is
crucial for real-world applications where safety cannot be compromised. Despite the progress in
benchmarking RL algorithms, there has been a notable gap in benchmarks specifically designed for
robust RL, which aims to learn policies that perform optimally in the worst-case scenario against
adversarial environments. This gap highlights the need for standardized benchmarks (Moos et al.,
2022) that facilitate reproducible and comparable experiments in robust RL. In the next section, we
introduce existing robust RL algorithms.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

3.2 ROBUST REINFORCEMENT LEARNING ALGORITHMS

Two principal classes of practical, robust reinforcement learning algorithms exist, those that can
interact solely with a nominal transition kernel (or center of the uncertainty set), and those that can
sample from the entire uncertainty ball. While the former is more mathematically founded, it is
unable to exploit transitions that are not sampled from the nominal kernel and consequently exhibits
lower performance. In this benchmark, only the Deep Robust RL as two-player games that use
samples from the entire uncertainty set are implemented.

Nominal-based Robust/risk-averse algorithms. The idea of this class of algorithms is to approxi-
mate the inner minimum operator present robust Bellman operator in Equation equation 4. Previous
work has typically employed a dual approach to the minimum problem, whereby the transition
probability is constrained to remain within a specified ball around the nominal transition kernel.
Practically, robustness is equivalent to regularization (Derman et al., 2021) and for example the SAC
algorithm Haarnoja et al. (2018) has been shown to be robust due to entropic regularization. In this
line of work, (Kumar et al., 2022) derived approximate algorithm for RMPDS with Lp balls, (Clavier
et al., 2022) for χ2 constrain and (Liu et al., 2022) for KL divergence. Finally, Wang et al. (2023)
proposes a novel online approach to solve RMDP. Unlike previous works that regularize the policy or
value updates, Wang et al. (2023) achieves robustness by simulating the worst kernel scenarios for the
agent while using any classical RL algorithm in the learning process. These Robust RL approaches
have received recent theoretical attention, from a statistical point of view (sample complexity) (Yang
et al., 2022; Panaganti & Kalathil, 2022; Clavier et al., 2023; Shi et al., 2024) as well as from an
optimization point of view (Grand-Clément & Kroer, 2021), but generally do not directly translate to
algorithms that scale up to complex evaluation benchmarks.

Deep Robust RL as two-player games. A common approach to solving robust RL problems is
cast the optimization process as a two-player game, as formalized by Morimoto & Doya (2005),
described in Section 2, and summarized in Figure 1. In this framework, an adversary, denoted by
π̄ : S ×A → P , is introduced, and the game is formulated as

max
π

min
π̄

E

[∞∑
t=0

γtr(st, at, st+1)|s0, at ∼ π(st), pt = π̄(st, at), st+1 ∼ pt(·|st, at)

]
.

Most methods differ in how they constrain π̄’s action space within the uncertainty set. A
first family of methods define π̄(st) = pref + ∆(st), where pref denotes the reference (nominal)
transition function. Among this family, Robust Adversarial Reinforcement Learning (RARL) (Pinto
et al., 2017) applies external forces at each time step t to disturb the reference dynamics. For instance,
the agent controls a planar monopod robot, while the adversary applies a 2D force on the foot. In
noisy action robust MDPs (NR-MDP) (Tessler et al., 2019) the adversary shares the same action
space as the agent and disturbs the agent’s action π(s). Such gradient-based approaches incur the
risk of finding stationary points for π and π̄ which do not correspond to saddle points of the robust
MDP problem. To prevent this, Mixed-NE (Kamalaruban et al., 2020) defines mixed strategies
and uses stochastic gradient Langevin dynamics. Similarly, Robustness via Adversary Populations
(RAP) (Vinitsky et al., 2020) introduces a population of adversaries, compelling the agent to exhibit
robustness against a diverse range of potential perturbations rather than a single one, which also
helps prevent finding stationary points that are not saddle points.

Aside from this first family, State Adversarial MDPs (Zhang et al., 2020; 2021; Stanton et al., 2021)
involve adversarial attacks on state observations, which implicitly define a partially observable MDP.
This case aims not to address robustness to the worst-case transition function but rather against noisy,
adversarial observations.

A third family of methods considers the general case of π̄(st, at) = pt or π̄(st) = pt, where pt ∈ P .
Minimax Multi-Agent Deep Deterministic Policy Gradient (M3DDPG) (Li et al., 2019) is designed
to enhance robustness in multi-agent reinforcement learning settings but boils down to standard
robust RL in the two-agents case. Max-min TD3 (M2TD3) (Tanabe et al., 2022) considers a policy
π, defines a value function Q(s, a, p) which approximates Qπ

p (s, a) = Es′∼p[r(s, a, s
′) + γV π

p (s′)],
updates an adversary π̄ so as to minimize Q(s, π(s), π̄(s)) by taking a gradient step with respect
to π̄’s parameters, and updates the policy π using a TD3 gradient update in the direction maximizing
Q(s, π(s), π̄(s)). As such, M2TD3 remains a robust value iteration method that solves the dynamic

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Figure 2: RRLS architecture

Figure 3: Visual representation of various reinforcement learning environments including Ant,
HalfCheetah, Hopper, Humanoid Stand Up, Inverted Pendulum, and Walker.

problem by alternating updates on π and π̄, but since it approximates Qπ
p , it is also closely related

to the method we introduce in the next section.

Domain randomization. Domain randomization (DR) (Tobin et al., 2017) learns a value function
V (s) = maxπ Ep∼U(P)V

π
p (s) which maximizes the expected return on average across a fixed

distribution on P . As such, DR approaches do not optimize the worst-case performance. Nonetheless,
DR has been used convincingly in applications (Mehta et al., 2020; OpenAI et al., 2019). Similar
approaches also aim to refine a base DR policy for application to a sequence of real-world cases
(Lin et al., 2020; Dennis et al., 2020; Yu et al., 2018). For a more complete survey of recent works
in robust RL, we refer the reader to the work of Moos et al. (2022).

4 RRLS: BENCHMARK ENVIRONMENTS FOR ROBUST RL

This section introduces the Robust Reinforcement Learning Suite, which extends the Gymnasium
Towers et al. (2023) API with two additional methods: set_params and get_params. These
methods are integral to the ModifiedParamsEnv interface, facilitating environment parameter
modifications within the benchmark environment. Typically, these methods are used within a
wrapper to simplify parameter modifications during evaluation. In the RRLS architecture (Figure 2),
the adversary begins by retrieving parameters from the uncertainty set and setting them in the
environment using the ModifiedParamsEnv interface. The agent then acts based on the current
state of the environment, and the Mujoco Physics Engine updates the state accordingly. The agent
observes this updated state, completing the interaction loop. Multiple MuJoCo environments are
provided (Figure 3), each with a two default uncertainty sets, inspired respectively by those used
in the experiments of RARL (Pinto et al., 2017) (Table 1) and M2TD3 (Tanabe et al., 2022) (Table 2).
This variety allows for a comprehensive evaluation of robust RL algorithms, ensuring that the
benchmarks encompass a wide range of scenarios.

Several MuJoCo environments are proposed, each with distinct action and observation spaces. Figure
3 shows a visual representation of all provided environments. In all environments, the observation
space corresponds to the positional values of various body parts followed by their velocities, with
all positions listed before all velocities. The environments are as follows:

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

• Ant: A 3D robot with one torso and four legs, each with two segments. The goal is to
move forward by coordinating the legs and applying torques on the eight hinges. The action
dimension is 8, and the observation dimension is 27.

• HalfCheetah: A 2D robot with nine body parts and eight joints, including two paws. The
goal is to run forward quickly by applying torque to the joints. Positive rewards are given
for forward movement, and negative rewards for moving backward. The action dimension
is 6, and the observation dimension is 17.

• Hopper: A 2D one-legged figure with four main parts: torso, thigh, leg, and foot. The goal
is to hop forward by applying torques on the three hinges. The action dimension is 3, and
the observation dimension is 11.

• Humanoid Stand Up: A 3D bipedal robot resembling a human, with a torso, legs, and
arms, each with two segments. The environment starts with the humanoid lying on the
ground. The goal is to stand up and remain standing by applying torques to the various
hinges. The action dimension is 17, and the observation dimension is 376.

• Inverted Pendulum: A cart that can move linearly, with a pole fixed at one end. The goal
is to balance the pole by applying forces to the cart. The action dimension is 1, and the
observation dimension is 4.

• Walker: A 2D two-legged figure with seven main parts: torso, thighs, legs, and feet. The
goal is to walk forward by applying torques on the six hinges. The action dimension is
6, and the observation dimension is 17.

The RRLS architecture enables parameter modifications and adversarial interactions using the
gymnasium Towers et al. (2023) interface. The set_params and get_params methods in the
ModifiedParamsEnv interface directly access and modify parameters in the Mujoco Physics En-
gine. All modifiable parameters are listed in Appendix A and lie in the uncertainty set described below.

Uncertainty Sets. Non-rectangular uncertainty sets (opposed to rectangular ones as defined in
(Iyengar, 2005)) are proposed based on MuJoCo environments, detailed in Table 1. These sets, based
on previous work evaluating M2TD3 Tanabe et al. (2022) and RARL Pinto et al. (2017), ensure
thorough testing of robust RL algorithms under diverse conditions. For instance, the uncertainty
range for the torso mass in the HumanoidStandUp 2 and 3 environments spans from 0.1 to 16.0
(Table 1), ensuring challenging evaluation of RL methods. Three uncertainty sets—1D, 2D, and
3D—are provided for each environment, ranging from simple to challenging.

Table 1: List of parameters uncertainty sets based on M2TD3 in RRLS

Environment Uncertainty set P Reference values Uncertainty parameters
Ant 1 [0.1, 3.0] 0.33 torsomass
Ant 2 [0.1, 3.0]× [0.01, 3.0] (0.33, 0.04) torso mass; front left leg mass
Ant 3 [0.1, 3.0]× [0.01, 3.0]× [0.01, 3.0] (0.33, 0.04, 0.06) torso mass; front left leg mass; front right leg mass

HalfCheetah 1 [0.1, 3.0] 0.4 world friction
HalfCheetah 2 [0.1, 4.0]× [0.1, 7.0] (0.4, 6.36) world friction; torso mass
HalfCheetah 3 [0.1, 4.0]× [0.1, 7.0]× [0.1, 3.0] (0.4, 6.36, 1.53) world friction; torso mass; back thigh mass

Hopper 1 [0.1, 3.0] 1.00 world friction
Hopper 2 [0.1, 3.0]× [0.1, 3.0] (1.00, 3.53) world friction; torso mass
Hopper 3 [0.1, 3.0]× [0.1, 3.0]× [0.1, 4.0] (1.00, 3.53, 3.93) world friction; torso mass; thigh mass

HumanoidStandup 1 [0.1, 16.0] 8.32 torsomass
HumanoidStandup 2 [0.1, 16.0]× [0.1, 8.0] (8.32, 1.77) torso mass; right foot mass
HumanoidStandup 3 [0.1, 16.0]× [0.1, 5.0]× [0.1, 8.0] (8.32, 1.77, 4.53) torso mass; right foot mass; left thigh mass
InvertedPendulum 1 [1.0, 31.0] 4.90 polemass
InvertedPendulum 2 [1.0, 31.0]× [1.0, 11.0] (4.90, 9.42) pole mass; cart mass

Walker 1 [0.1, 4.0] 0.7 world friction
Walker 2 [0.1, 4.0]× [0.1, 5.0] (0.7, 3.53) world friction; torso mass
Walker 3 [0.1, 4.0]× [0.1, 5.0]× [0.1, 6.0] (0.7, 3.53, 3.93) world friction; torso mass; thigh mass

RRLS also directly provides the uncertainty sets from the RARL (Pinto et al., 2017) paper. These
sets apply destabilizing forces at specific points in the system, encouraging the agent to learn robust
control policies.

Wrappers. We introduce environment wrappers to facilitate the implementation of various deep
robust RL baselines such as M2TD3 Tanabe et al. (2022), RARL Pinto et al. (2017), Domain
Randomization Tobin et al. (2017), NR-MDP Tessler et al. (2019) and all algorithms deriving from

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 2: List of parameters uncertainty sets based on RARL in RRLS

Environment Uncertainty set P Uncertainty parameters
Ant Rarl [−3.0, 3.0]×6 torso force x; torso force y; front left leg force x; front left leg force y; front right leg force x; front right leg force y

HalfCheetah Rarl [−3.0, 3.0]×6 torso force x; torso force y; back foot force x; back foot force y; forward foot force x; forward foot force y
Hopper Rarl [−3.0, 3.0]×2 foot force x; foot force y

HumanoidStandup Rarl [−3.0, 3.0]×6 torso force x; torso force y; right thigh force x; right thigh force y; left foot force x; left foot force y
InvertedPendulum Rarl [−3.0, 3.0]×2 pole force x; pole force y

Walker Rarl [−3.0, 3.0]×4 leg force x; leg force y; left foot force x; left foot force y

Robust Value Iteration, ensuring researchers can easily apply and compare different methods within a
standardized framework. The wrappers are described as follows:

• The ModifiedParamsEnv interface includes methods set_params and
get_params, which modifying and retrieving environment parameters. This in-
terface allows dynamic adjustment of the environment during training or evaluation.

• The DomainRandomization wrapper enables domain randomization by sampling envi-
ronment parameters from the uncertainty set between episodes. It wraps an environment
following the ModifiedParamsEnv interface and uses a randomization function to draw
new parameter sets. If no function is set, the parameter is sampled uniformly. Parameters
reset at the beginning of each episode, ensuring diverse training conditions.

• The Adversarial wrapper converts an environment into a robust reinforcement learn-
ing problem modeled as a zero-sum Markov game. It takes an uncertainty set and the
ModifiedParamsEnv as input. This wrapper extends the action space to include adver-
sarial actions, allowing for modifications of transition kernel parameters within a specified
uncertainty set. It is suitable for reproducing robust reinforcement learning approaches
based on adversarial perturbation in the transition kernel, such as RARL.

• The ProbabilisticActionRobust wrapper defines the adversary’s action space
as the same action space as the agent. The final action applied in the environment is a
convex sum between the agent’s action and the adversary’s action: apr = αa+ (1− α)ā.
The adversarial action’s effect is bounded by the environment’s action space, allowing the
implementation of robust reinforcement learning methods around a reference transition
kernel, such as NR-MDP or RAP.

Evaluation Procedure. Evaluating Robust Reinforcement Learning algorithms can feature a large
variability in outcome statistics depending on a number of minor factors (such as random seeds, initial
state, or collection of evaluation transition models). To address this, we propose a systematic approach
using a function called generate_evaluation_set. This function takes an uncertainty set
as input and returns a list of evaluation environments. In the static case, where the transition
kernel remains constant across time steps, the evaluation set consists of environments spanned by
a uniform mesh over the parameters set. The agent runs multiple trajectories in each environment
to ensure comprehensive testing. Each dimension of the uncertainty set is divided by a parameter
named nb_mesh_dim. This parameter controls the granularity of the evaluation environments. To
standardize the process, we provide a default evaluation set for each uncertainty set (Table 1). This
set allows for worst-case performance and average-case performance evaluation in static conditions.

5 BENCHMARKING ROBUST RL ALGORITHMS

Experimental setup. This section evaluates several baselines in static and dynamic settings using
RRLS. We conducted experimental validation by training policies in the Ant, HalfCheetah, Hopper,
HumanoidStandup, and Walker environments. We selected five baseline algorithms: TD3, Domain
Randomization (DR), NR-MDP, RARL, and M2TD3. We select the most challenging scenarios,
the 3D uncertainty set defined in Table 1, normalized between [0, 1]3. For static evaluation, we
used the standard evaluation procedure proposed in the previous section. Performance metrics were
gathered after five million steps to ensure a fair comparison after convergence. All baselines were
constructed using TD3 with a consistent architecture across all variants. The results were obtained by
averaging over ten distinct random seeds. Appendices B, D.1, D.2, and D.3 provide further details on
hyperparameters, network architectures, implementation choices, and training curves.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Static worst-case performance. Tables 3 and 4 report normalized scores for each method, averaged
across 10 random seeds and 5 episodes per seed, for each transition kernel in the evaluation
uncertainty set. To compare metrics across environments, the score v of each method was normalized
relative to the reference score of TD3. TD3 was trained on the environment using the reference
transition kernel, and its score is denoted as vTD3. The M2TD3 score, vM2TD3, was used as the
comparison target. The formula used to get a normalized score is (v − vTD3)/(|vM2TD3 − vTD3|).
This defines vTD3 as the minimum baseline and vM2TD3 as the target. This standardization provides
a metric that quantifies the improvement of each method over TD3 relative to the improvement of
M2TD3 over TD3. Non-normalized results are available in Appendix C. As expected, M2TD3, RARL
and DR perform better in terms of worst-case performance, than vanilla TD3. Surprisingly, RARL is
outperformed by DR except for HalfCheetah, Hopper, and Walker in worst-case performance. Finally,
M2TD3, which is a state-of-the-art algorithm, outperforms all baselines except on HalfCheetah
where DR achieves a slightly, non-statistically significant, better score. One potential explanation
for the superior performance of DR over robust reinforcement learning methods in the HalfCheetah
environment is that the training of a conservative value function is not necessary. The HalfCheetah
environment is inherently well-balanced, even with variations in mass or friction. Consequently,
robust training, which typically aims to handle worst-case scenarios, becomes less critical. This
insight aligns with the findings of Moskovitz et al. (2021), who observed similar results in this specific
environment. The variance in the evaluations also needs to be addressed. In many environments, high
variance prevents drawing statistical conclusions. For instance, HumanoidStandup shows a variance
of 3.32 for M2TD3, complicating reliable performance assessments. Similar issues arise with DR in
the same environment, showing a variance of 4.1. Such variances highlight the difficulty of making
definitive comparisons across different robust reinforcement learning methods in these settings.

Table 3: Avg. of normalized static worst-case performance over 10 seeds for each method

Ant HalfCheetah Hopper HumanoidStandup Walker Average

TD3 0.0± 0.34 0.0± 0.06 0.0± 0.21 0.0± 2.27 0.0± 0.1 0.0± 0.6
DR 0.06± 0.16 1.07± 0.36 0.86± 0.82 0.04± 4.1 0.57± 0.37 0.52± 1.16
M2TD3 1.0± 0.27 1.0± 0.16 1.0± 0.65 1.0± 3.32 1.0± 0.63 1.0± 1.01
RARL 0.44± 0.3 0.13± 0.08 0.5± 0.22 0.44± 2.94 0.12± 0.09 0.33± 0.73
NR-MDP −0.25± 0.1 −0.10± 0.24 −0.31± 0.4 −2.22± 1.51 −0.04± 0.01 −0.58± 0.45

Static average performance. Similarly to the worst-case performance described above, average
scores across a uniform distribution on the uncertainty set are reported in Table 4. While robust
policies explicitly optimize for the worst-case circumstances, one still desires that they perform
well across all environments. A sound manner to evaluate this is to average their scores across a
distribution of environments. First, one can observe that DR outperforms the other algorithms. This
was expected since DR is specifically designed to optimize the policy on average across a (uniform)
distribution of environments. One can also observe that RARL performs worse on average than a
standard TD3 in most environments (except HumanoidStandup), despite having better worst-case
scores. This exemplifies how robust RL algorithms can output policies that lack applicability in
practice. Finally, M2TD3 is still better than TD3 on average, and hence this study confirms that
it optimizes for worst-case performance while preserving the average score.

Table 4: Avg. of normalized static average case performance over 10 seeds for each method

Ant HalfCheetah Hopper HumanoidStandup Walker Average

TD3 0.0± 0.49 0.0± 0.22 0.0± 0.83 0.0± 1.36 0.0± 0.51 0.0± 0.68
DR 1.65± 0.05 2.31± 0.27 2.08± 0.49 1.15± 2.47 1.22± 0.34 1.68± 0.72
M2TD3 1.0± 0.11 1.0± 0.19 1.0± 0.55 1.0± 1.43 1.0± 0.65 1.0± 0.59
RARL 0.69± 0.13 −1.3± 0.54 −0.99± 0.11 0.47± 1.92 −0.35± 0.83 −0.3± 0.71
NR-MDP 0.44± 0.03 −0.58± 0.17 −0.85± 0.001 −0.83± 0.24 −1.08± 0.01 −0.58± 0.15

Dynamic adversaries. While the static and dynamic cases of transition kernel uncertainty lead to the
same robust value functions in the idealized framework of rectangular uncertainty sets, most real-life
situations (such as those in RRLS) fall short of this rectangularity assumption. Consequently, Robust
Value Iteration algorithms, which train an adversarial policy π̄ (whether they store it or not) might
possibly lead to a policy that differs from those which optimize for the original maxπ minp problem

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

introduced in Section 2. RRLS permits evaluating this feature by running rollouts of agent policies
versus their adversaries, after optimization. RARL and NR-MDP simultaneously train a policy π
and an adversary π̄. The policy is evaluated against its adversary over ten episodes. Observations in
Table 5 demonstrate how RRLS can be used to compare RARL and NR-MDP against their respective
adversaries, in raw score. However, this comparison should not be interpreted as a dominance of
one algorithm over the other, since the uncertainty sets they are trained upon are not the same.

Table 5: Comparison of RARL and NR-MDP across different environments

Method HumanoidStandup (104) Ant (103) HalfCheetah (102) Hopper (103) Walker (103)

RARL 9.84± 3.36 2.90± 0.70 −0.74± 6.69 1.04± 0.16 3.45± 1.13
NR-MDP 9.37± 0.14 5.58± 0.64 109.90± 4.74 3.14± 0.53 5.17± 0.89

Training curves. Figure 4 reports training curves for TD3, DR, RARL, and M2TD3 on the Walker
environment, using RRLS (results for all other environments in Appendix B). Each agent was trained
for 5 million steps, with cumulative rewards monitored over trajectories of 1,000 steps. Scores were
averaged over 10 different seeds. The training curves illustrate the steep learning curve of TD3 and
DR in the initial stages of learning, versus their robust counterparts. The M2TD3 agent ultimately
achieves the highest performance at 5 million steps. Similarly, RARL exhibits a significant delay
in learning, with stabilization occurring only toward the end of the training. Figures 4d and 4c show
a significant variance in training across different random seeds. This emphasizes the difficulty of
comparing different robust reinforcement learning methods along training.

(a) Training curve on Walker with
TD3

(b) Training curve on Walker with
DR

(c) Training curve on Walker with
RARL

(d) Training curve on Walker with
M2TD3

Figure 4: Averaged training curves for Walker over 10 seeds

6 CONCLUSION

We introduced the Robust Reinforcement Learning Suite (RRLS), a Gymnasium-compatible bench-
mark for robust RL. RRLS standardizes evaluation across six MuJoCo tasks with predefined uncer-
tainty sets and is simple to extend. We also provide four compatible baselines and static evaluations,
enabling fair, reproducible comparisons. We hope RRLS serves as a dependable testbed that acceler-
ates progress in robust reinforcement learning.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Joshua Achiam and Dario Amodei. Benchmarking safe exploration in deep reinforcement learning.
2019. URL https://api.semanticscholar.org/CorpusID:208283920.

Charles Beattie, Joel Z. Leibo, Denis Teplyashin, Tom Ward, Marcus Wainwright, Heinrich Küttler,
Andrew Lefrancq, Simon Green, Víctor Valdés, Amir Sadik, Julian Schrittwieser, Keith Anderson,
Sarah York, Max Cant, Adam Cain, Adrian Bolton, Stephen Gaffney, Helen King, Demis Hassabis,
Shane Legg, and Stig Petersen. Deepmind lab, 2016.

Marc Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade learning environment:
An evaluation platform for general agents. Journal of Artificial Intelligence Research, 47, 07 2012.
doi: 10.1613/jair.3912.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. Openai gym, 2016.

Pierre Clavier, Stéphanie Allassonière, and Erwan Le Pennec. Robust reinforcement learning with
distributional risk-averse formulation. arXiv preprint arXiv:2206.06841, 2022.

Pierre Clavier, Erwan Le Pennec, and Matthieu Geist. Towards minimax optimality of model-based
robust reinforcement learning. arXiv preprint arXiv:2302.05372, 2023.

Karl Cobbe, Christopher Hesse, Jacob Hilton, and John Schulman. Leveraging procedural generation
to benchmark reinforcement learning. arXiv preprint arXiv:1912.01588, 2019.

Karl Cobbe, Chris Hesse, Jacob Hilton, and John Schulman. Leveraging procedural generation
to benchmark reinforcement learning. In International conference on machine learning, pp.
2048–2056. PMLR, 2020.

Michael Dennis, Natasha Jaques, Eugene Vinitsky, A. Bayen, Stuart J. Russell, Andrew Critch, and
S. Levine. Emergent complexity and zero-shot transfer via unsupervised environment design.
Neural Information Processing Systems, 2020.

Esther Derman, Matthieu Geist, and Shie Mannor. Twice regularized mdps and the equivalence
between robustness and regularization. Advances in Neural Information Processing Systems, 34,
2021.

Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl: Datasets for deep
data-driven reinforcement learning, 2021.

Julien Grand-Clément and Christian Kroer. Scalable first-order methods for robust mdps. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 35, pp. 12086–12094, 2021.

Caglar Gulcehre, Ziyu Wang, Alexander Novikov, Tom Le Paine, Sergio Gómez Colmenarejo, Konrad
Zolna, Rishabh Agarwal, Josh Merel, Daniel Mankowitz, Cosmin Paduraru, Gabriel Dulac-Arnold,
Jerry Li, Mohammad Norouzi, Matt Hoffman, Ofir Nachum, George Tucker, Nicolas Heess, and
Nando deFreitas. Rl unplugged: Benchmarks for offline reinforcement learning, 2020.

Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon Ha, Jie Tan, Vikash
Kumar, Henry Zhu, Abhishek Gupta, Pieter Abbeel, and Sergey Levine. Soft actor-critic algorithms
and applications. arXiv preprint arXiv: Arxiv-1812.05905, 2018.

Shengyi Huang, Rousslan Fernand Julien Dossa, Chang Ye, Jeff Braga, Dipam Chakraborty, Kinal
Mehta, and João G.M. Araújo. Cleanrl: High-quality single-file implementations of deep rein-
forcement learning algorithms. Journal of Machine Learning Research, 23(274):1–18, 2022. URL
http://jmlr.org/papers/v23/21-1342.html.

Garud Iyengar. Robust dynamic programming. Technical report, CORC Tech Report TR-2002-07,
2022.

Garud N Iyengar. Robust dynamic programming. Mathematics of Operations Research, 30(2):
257–280, 2005.

10

https://api.semanticscholar.org/CorpusID:208283920
http://jmlr.org/papers/v23/21-1342.html

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Stephen James, Zicong Ma, David Rovick Arrojo, and Andrew J. Davison. Rlbench: The robot
learning benchmark and learning environment. IEEE Robotics and Automation Letters, 5(2):
3019–3026, 2020. doi: 10.1109/LRA.2020.2974707.

Parameswaran Kamalaruban, Yu ting Huang, Ya-Ping Hsieh, Paul Rolland, C. Shi, and V. Cevher.
Robust reinforcement learning via adversarial training with langevin dynamics. Neural Information
Processing Systems, 2020.

Navdeep Kumar, Kfir Levy, Kaixin Wang, and Shie Mannor. Efficient policy iteration for robust
markov decision processes via regularization. arXiv preprint arXiv:2205.14327, 2022.

Kimin Lee, Laura Smith, Anca Dragan, and Pieter Abbeel. B-pref: Benchmarking preference-based
reinforcement learning. arXiv preprint arXiv:2111.03026, 2021.

Shihui Li, Yi Wu, Xinyue Cui, Honghua Dong, Fei Fang, and Stuart Russell. Robust multi-agent
reinforcement learning via minimax deep deterministic policy gradient. In Proceedings of the
AAAI conference on artificial intelligence, volume 33, pp. 4213–4220, 2019.

Zichuan Lin, Garrett Thomas, Guangwen Yang, and Tengyu Ma. Model-based adversarial meta-
reinforcement learning. In Advances in Neural Information Processing Systems, volume 33, pp.
10161–10173, 2020.

Michael L Littman. Markov games as a framework for multi-agent reinforcement learning. In
Machine learning proceedings 1994, pp. 157–163. Elsevier, 1994.

Zijian Liu, Qinxun Bai, Jose Blanchet, Perry Dong, Wei Xu, Zhengqing Zhou, and Zhengyuan
Zhou. Distributionally robust q-learning. In International Conference on Machine Learning, pp.
13623–13643. PMLR, 2022.

Bhairav Mehta, Manfred Diaz, Florian Golemo, Christopher J. Pal, and Liam Paull. Active domain
randomization. In Proceedings of the Conference on Robot Learning, volume 100, pp. 1162–1176,
2020.

Janosch Moos, Kay Hansel, Hany Abdulsamad, Svenja Stark, Debora Clever, and Jan Peters. Robust
reinforcement learning: A review of foundations and recent advances. Machine Learning and
Knowledge Extraction, 4(1):276–315, 2022.

Jun Morimoto and Kenji Doya. Robust reinforcement learning. Neural computation, 17(2):335–359,
2005.

Ted Moskovitz, Jack Parker-Holder, Aldo Pacchiano, Michael Arbel, and Michael Jordan. Tactical
optimism and pessimism for deep reinforcement learning. Advances in Neural Information
Processing Systems, 34:12849–12863, 2021.

Alex Nichol, Vicki Pfau, Christopher Hesse, Oleg Klimov, and John Schulman. Gotta learn fast: A
new benchmark for generalization in rl. arXiv preprint arXiv:1804.03720, 2018.

Arnab Nilim and Laurent El Ghaoui. Robust control of markov decision processes with uncertain
transition matrices. Operations Research, 53(5):780–798, 2005.

OpenAI, Ilge Akkaya, Marcin Andrychowicz, Maciek Chociej, Mateusz Litwin, Bob McGrew, Arthur
Petron, Alex Paino, Matthias Plappert, Glenn Powell, Raphael Ribas, Jonas Schneider, Nikolas
Tezak, Jerry Tworek, Peter Welinder, Lilian Weng, Qiming Yuan, Wojciech Zaremba, and Lei
Zhang. Solving rubik’s cube with a robot hand. arXiv preprint arXiv: Arxiv-1910.07113, 2019.

Ian Osband, Yotam Doron, Matteo Hessel, John Aslanides, Eren Sezener, Andre Saraiva, Katrina
McKinney, Tor Lattimore, Csaba Szepesvari, Satinder Singh, et al. Behaviour suite for reinforce-
ment learning. arXiv preprint arXiv:1908.03568, 2019.

Kishan Panaganti and Dileep Kalathil. Sample complexity of robust reinforcement learning with
a generative model. In International Conference on Artificial Intelligence and Statistics, pp.
9582–9602. PMLR, 2022.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Lerrel Pinto, James Davidson, Rahul Sukthankar, and Abhinav Gupta. Robust adversarial rein-
forcement learning. In International Conference on Machine Learning, pp. 2817–2826. PMLR,
2017.

Martin L Puterman. Markov decision processes: discrete stochastic dynamic programming. John
Wiley & Sons, 2014.

Laixi Shi, Gen Li, Yuting Wei, Yuxin Chen, Matthieu Geist, and Yuejie Chi. The curious price of
distributional robustness in reinforcement learning with a generative model. Advances in Neural
Information Processing Systems, 36, 2024.

Samuel Stanton, Rasool Fakoor, Jonas Mueller, Andrew Gordon Wilson, and Alex Smola. Robust
reinforcement learning for shifting dynamics during deployment. In Workshop on Safe and Robust
Control of Uncertain Systems at NeurIPS, 2021.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Takumi Tanabe, Rei Sato, Kazuto Fukuchi, Jun Sakuma, and Youhei Akimoto. Max-min off-policy
actor-critic method focusing on worst-case robustness to model misspecification. In Advances in
Neural Information Processing Systems, 2022.

Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe Li, Diego de Las Casas, David Budden,
Abbas Abdolmaleki, Josh Merel, Andrew Lefrancq, Timothy Lillicrap, and Martin Riedmiller.
Deepmind control suite, 2018.

Chen Tessler, Yonathan Efroni, and Shie Mannor. Action robust reinforcement learning and applica-
tions in continuous control. In International Conference on Machine Learning, pp. 6215–6224.
PMLR, 2019.

Josh Tobin, Rachel Fong, Alex Ray, Jonas Schneider, Wojciech Zaremba, and Pieter Abbeel. Domain
randomization for transferring deep neural networks from simulation to the real world. In 2017
IEEE/RSJ international conference on intelligent robots and systems (IROS), pp. 23–30. IEEE,
2017.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5026–5033.
IEEE, 2012. doi: 10.1109/IROS.2012.6386109.

Mark Towers, Jordan K. Terry, Ariel Kwiatkowski, John U. Balis, Gianluca de Cola, Tristan Deleu,
Manuel Goulão, Andreas Kallinteris, Arjun KG, Markus Krimmel, Rodrigo Perez-Vicente, Andrea
Pierré, Sander Schulhoff, Jun Jet Tai, Andrew Tan Jin Shen, and Omar G. Younis. Gymnasium,
March 2023. URL https://zenodo.org/record/8127025.

Eugene Vinitsky, Yuqing Du, Kanaad Parvate, Kathy Jang, Pieter Abbeel, and Alexandre Bayen.
Robust reinforcement learning using adversarial populations. arXiv preprint arXiv:2008.01825,
2020.

Kaixin Wang, Uri Gadot, Navdeep Kumar, Kfir Levy, and Shie Mannor. Robust reinforcement
learning via adversarial kernel approximation. arXiv preprint arXiv:2306.05859, 2023.

Wolfram Wiesemann, Daniel Kuhn, and Berç Rustem. Robust markov decision processes. Mathe-
matics of Operations Research, 38(1):153–183, 2013.

Wenhao Yang, Liangyu Zhang, and Zhihua Zhang. Toward theoretical understandings of robust
markov decision processes: Sample complexity and asymptotics. The Annals of Statistics, 50(6):
3223–3248, 2022.

Tianhe Yu, Deirdre Quillen, Zhanpeng He, Ryan Julian, Avnish Narayan, Hayden Shively, Adithya
Bellathur, Karol Hausman, Chelsea Finn, and Sergey Levine. Meta-world: A benchmark and
evaluation for multi-task and meta reinforcement learning, 2021.

Wenhao Yu, C. K. Liu, and Greg Turk. Policy transfer with strategy optimization. International
Conference On Learning Representations, 2018.

12

https://zenodo.org/record/8127025

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Huan Zhang, Hongge Chen, Chaowei Xiao, Bo Li, Mingyan Liu, Duane Boning, and Cho-Jui Hsieh.
Robust deep reinforcement learning against adversarial perturbations on state observations. In
H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances in Neural
Information Processing Systems, volume 33, pp. 21024–21037, 2020.

Huan Zhang, Hongge Chen, Duane S Boning, and Cho-Jui Hsieh. Robust reinforcement learning
on state observations with learned optimal adversary. In International Conference on Learning
Representations, 2021.

A APPENDIX

A MODIFIABLE PARAMETERS

The following tables list the parameters that can be modified in different MuJoCo environments used
in the Robust Reinforcement Learning Suite. These parameters are accessed and modified through
the set_params and get_params methods in the ModifiedParamsEnv interface.

Parameter Name
Torso Mass
Front Left Leg Mass
Front Left Leg Auxiliary Mass
Front Left Leg Ankle Mass
Front Right Leg Mass
Front Right Leg Auxiliary Mass
Front Right Leg Ankle Mass
Back Left Leg Mass
Back Left Leg Auxiliary Mass
Back Left Leg Ankle Mass
Back Right Leg Mass
Back Right Leg Auxiliary Mass
Back Right Leg Ankle Mass

Table 6: Modifiable parameters from Ant environment

Parameter Name
World Friction
Torso Mass
Back Thigh Mass
Back Shin Mass
Back Foot Mass
Forward Thigh Mass
Forward Shin Mass
Forward Foot Mass

Table 7: Modifiable parameters from Halfcheetah environment

Parameter Name
World Friction
Torso Mass
Thigh Mass
Leg Mass
Foot Mass

Table 8: Modifiable parameters from Hopper environment

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Parameter Name
Torso Mass
Lower Waist Mass
Pelvis Mass
Right Thigh Mass
Right Shin Mass
Right Foot Mass
Left Thigh Mass
Left Shin Mass
Left Foot Mass
Right Upper Arm Mass
Right Lower Arm Mass
Left Upper Arm Mass
Left Lower Arm Mass

Table 9: Modifiable parameters from Humanoid Stand Up environment

Parameter Name
World Friction
Torso Mass
Thigh Mass
Leg Mass
Foot Mass
Left Thigh Mass
Left Leg Mass
Left Foot Mass

Table 10: Modifiable parameters from Walker environment

Parameter Name
Pole Mass
Cart Mass

Table 11: Modifiable parameters from Inverted Pendulum environment

B TRAINING CURVES

We conducted training for each agent over a duration of 5 million steps, closely monitoring the
cumulative rewards obtained over a trajectory spanning 1,000 steps. To enhance the reliability of our
results, we averaged the performance curves across 10 different seeds.The graphs in Figures 5 to 8
illustrate how different training methods, including Domain Randomization, M2TD3, RARL, and
TD3 impact agent performance across various environments.

C NON-NORMALIZED RESULTS

Table 12 reports the non-normalized worst case scores, averaged across 10 independent runs for each
benchmark. Table 13 reports the average score obtained by each agent across a grid of environments,
also averaged across 10 independent runs for each benchmark.

D IMPLEMENTATION DETAILS

D.1 NEURAL NETWORK ARCHITECTURE

We employ the same neural network architecture for all baselines for the actor and the critic compo-
nents. The architecture’s design ensures uniformity and comparability across different models.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

(a) Training curve on Ant with Domain Random-
ization

(b) Training curve on HalfCheetah with Domain
Randomization

(c) Training curve on Hopper with Domain Ran-
domization

(d) Training curve on HumanoidStandup with Do-
main Randomization

(e) Training curve on Walker with Domain Ran-
domization

Figure 5: Averaged training curves for the Domain Randomization method over 10 seeds

Table 12: Avg. of raw static worst-case performance over 10 seeds for each method

Ant HalfCheetah Hopper Humanoid StandUp Walker

DR 19.78± 394.84 2211.48± 915.64 245.01± 167.21 64886.87± 30048.79 1318.36± 777.51
M2TD3 2322.73± 649.3 2031.9± 409.7 273.6± 131.9 71900.97± 24317.35 2214.16± 1330.4
RARL 960.11± 744.01 −211.8± 218.73 170.46± 45.73 67821.86± 21555.24 360.31± 186.06
NR-MDP −744.94± 484.65 −818.64± 63.21 5.73± 8.87 48318.45± 11092.99 16.42± 3.5
TD3 −123.64± 824.35 −546.21± 158.81 69.3± 42.77 64577.24± 16606.51 114.41± 211.05

The critic network is structured with three layers, as depicted in Figure 9a, the critic begins with an
input layer that takes the state and action as inputs, then passes through two fully connected linear

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

(a) Training curve on Ant with M2TD3 (b) Training curve on HalfCheetah with M2TD3

(c) Training curve on Hopper with M2TD3
(d) Training curve on HumanoidStandup with
M2TD3

(e) Training curve on Walker with M2TD3

Figure 6: Averaged training curves for the M2TD3 method over 10 seeds

Table 13: Avg. of raw static average case performance over 10 seeds for each method

env name Ant HalfCheetah Hopper Humanoid Standup Walker
algo-name

DR 7500.88± 143.38 6170.33± 442.57 1688.36± 225.59 110939.89± 22396.41 4611.24± 463.42
M2TD3 5577.41± 316.95 4000.98± 314.76 1193.32± 254.9 109598.43± 12992.35 4311.2± 877.89
RARL 4650.55± 395.03 206.71± 887.25 276.37± 52.42 104764.87± 17400.85 2493.26± 1113.74
NR-MDP 4197.80± 90.66 1388.90± 283.25 340.15± 3.65 92972.45± 2251.18 1501.05± 453.96
TD3 2600.43± 1468.87 2350.58± 357.12 733.18± 382.06 100533.0± 12298.37 2965.47± 685.39

layers of 256 units each. The final layer is a single linear unit that outputs a real-valued function,
representing the estimated value of the state-action pair.

The actor neural network, shown in Figure 9b, also utilizes a three-layer design. It begins with an
input layer that accepts the state as input. This is followed by two linear layers, each consisting of

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

(a) Training curve on Ant with RARL (b) Training curve on HalfCheetah with RARL

(c) Training curve on Hopper with RARL
(d) Training curve on HumanoidStandup with
RARL

(e) Training curve on Walker with RARL

Figure 7: Averaged training curves for the RARL method over 10 seeds

256 units. The output layer of the actor neural network has a dimensionality equal to the number of
dimensions of the action space.

D.2 M2TD3

We use the official M2TD3 Tanabe et al. (2022) implementation provided by the original authors,
accessible via the GitHub repository for M2TD3.

D.3 TD3

We adopted the TD3 implementation from the CleanRL library, as detailed in Huang et al. (2022).

17

https://github.com/akimotolab/M2TD3

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

(a) Training curve on Ant with TD3 (b) Training curve on HalfCheetah with TD3

(c) Training curve on Hopper with TD3 (d) Training curve on HumanoidStandup with TD3

(e) Training curve on Walker with TD3

Figure 8: Averaged training curves for the TD3 method over 10 seeds

E COMPUTER RESSOURCES

All experiments were run on a desktop machine (Intel i9, 10th generation processor, 64GB RAM)
with a single NVIDIA RTX 4090 GPU. Averages and standard deviations were computed from 10
independent repetitions of each experiment.

F BROADER IMPACT

This paper proposes a benchmark for the robust reinforcement learning community. It addresses
general computational challenges. These challenges may have societal and technological impacts,
but we do not find it necessary to highlight them here.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

(a) Critic neural network architecture (b) Actor neural network architecture

Figure 9: Actor critic neural network architecture

Hyperparameter Default Value
Policy Std Rate 0.1
Policy Noise Rate 0.2
Noise Clip Policy Rate 0.5
Noise Clip Omega Rate 0.5
Omega Std Rate 1.0
Min Omega Std Rate 0.1
Maximum Steps 5e6
Batch Size 100
Hatomega Number 5
Replay Size 1e6
Policy Hidden Size 256
Critic Hidden Size 256
Policy Learning Rate 3e-4
Critic Learning Rate 3e-4
Policy Frequency 2
Gamma 0.99
Polyak 5e-3
Hatomega Parameter Distance 0.1
Minimum Probability 5e-2
Hatomega Learning Rate (ho_lr) 3e-4
Optimizer Adam

Table 14: Hyperparameters for the M2TD3 Agent

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Hyperparameter Default Value
Maximum Steps 5e6
Buffer Size 1× 106

Learning Rate 3× 10−4

Gamma 0.99
Tau 0.005
Policy Noise 0.2
Exploration Noise 0.1
Learning Starts 2.5× 104

Policy Frequency 2
Batch Size 256
Noise Clip 0.5
Action Min -1
Action Max 1
Optimizer Adam

Table 15: Hyperparameters for the TD3 Agent

20

	Introduction
	Problem statement
	Related works
	Reinforcement learning benchmark
	Robust Reinforcement Learning algorithms

	RRLS: Benchmark environments for Robust RL
	Benchmarking Robust RL algorithms
	Conclusion
	Appendix
	Modifiable parameters
	Training curves
	Non-normalized results
	Implementation details
	Neural network architecture
	M2TD3
	TD3

	Computer ressources
	Broader impact

