Under review as a conference paper at ICLR 2026

RRLS : ROBUST REINFORCEMENT LEARNING SUITE

Anonymous authors
Paper under double-blind review

ABSTRACT

Robust reinforcement learning is the problem of learning control policies that
provide optimal worst-case performance against a span of adversarial environments.
It is a crucial ingredient for deploying algorithms in real-world scenarios with
prevalent environmental uncertainties and has been a long-standing object of
attention in the community, without a standardized set of benchmarks. This
contribution endeavors to fill this gap. We introduce the Robust Reinforcement
Learning Suite (RRLS), a benchmark suite based on Mujoco environments. RRLS
provides six continuous control tasks with two types of uncertainty sets for training
and evaluation. Our benchmark aims to standardize robust reinforcement learning
tasks, facilitating reproducible and comparable experiments, in particular those
from recent state-of-the-art contributions, for which we demonstrate the use of
RRLS. It is also designed to be easily expandable to new environments.

1 INTRODUCTION

Reinforcement learning (RL) algorithms frequently encounter difficulties in maintaining performance
when confronted with dynamic uncertainties and varying environmental conditions. This lack of
robustness significantly limits their applicability in the real world. Robust reinforcement learning
addresses this issue by focusing on learning policies that ensure optimal worst-case performance
across a range of adversarial conditions. For instance, an aircraft control policy should be capable of
effectively managing various configurations and atmospheric conditions without requiring retraining.
This is critical for applications where safety and reliability are paramount to avoid a drastic decrease
in performance Morimoto & Doyal (2005)); Tessler et al.| (2019).

The concept of robustness, as opposed to resilience, places greater emphasis on maintaining perfor-
mance without further training. In robust reinforcement learning (RL), the objective is to optimize
policies for the worst-case scenarios, ensuring that the learned policies can handle the most challeng-
ing conditions. This framework is formalized through robust Markov decision processes (MDPs),
where the transition dynamics are subject to uncertainties. Despite significant advancements in robust
RL algorithms, the field lacks standardized benchmarks for evaluating these methods. This hampers
reproducibility and comparability of experimental results (Moos et al.|[2022)). To address this gap, we
introduce the Robust Reinforcement Learning Suite, a comprehensive benchmark suite designed to
facilitate rigorous evaluation of robust RL algorithms.

The Robust Reinforcement Learning Suite (RRLS) provides six continuous control tasks based on
Mujoco [Todorov et al.| (2012) environments, each with distinct uncertainty sets for training and
evaluation. By standardizing these tasks, RRLS enables reproducible and comparable experiments,
promoting progress in robust RL research. The suite includes four compatible baselines with the
RRLS benchmark, which are evaluated in static environments to demonstrate their efficacy. In
summary, our contributions are the following :

* Our first contribution aims to establish a standardized benchmark for robust RL, addressing
the critical need for reproducibility and comparability in the field (Moos et al.,[2022). The
RRLS benchmark suite represents a significant step towards achieving this goal, providing a
robust framework for evaluating state-of-the-art robust RL algorithms.

* Our second contribution is a comparison and evaluation of different Deep Robust RL
algorithms in Section [5|on our benchmark, showing the pros and cons of different methods.

Under review as a conference paper at ICLR 2026

2 PROBLEM STATEMENT

Reinforcement learning. Reinforcement Learning (RL) (Sutton & Bartol 2018) addresses the
challenge of developing a decision-making policy for an agent interacting with a dynamic environment
over multiple time steps. This problem is modeled as a Markov Decision Process (MDP) (Puterman,
2014) represented by the tuple (S, A, p, r), which includes states S, actions A, a transition kernel
p(St+1]|8¢,a¢), and a reward function r(s;, a;). For simplicity, we assume a unique initial state sq,
though the results generalize to an initial state distribution pg(s). A stationary policy 7(s) € A4
maps states to distributions over actions. The objective is to find a policy 7 that maximizes the
expected discounted return

J™ = By plv7 (50)] = [Zv r(se,a0)lay ~ 5000~ pyso ~ o) (1
t=0
where v7 is the value function of 7, v € [0, 1) is the discount factor, and sg is drawn from the initial
distribution p. The value function vy of policy 7 assigns to each state s the expected discounted
sum of rewards when following 7 starting from s and following transition kernel p. An optimal
policy 7* maximizes the value function in all states. To converge to the (optimal) value function, the
value iteration (VI) algorithm can be applied, which consists in repeated application of the (optimal)
Bellman operator 7 to value functions:
Una1(8) = T v, (s) := (n)lgﬁ Eqr(s)[7(s,) + Eplvn(s)]]. 2)
Finally, the) function is also defined similarly to Equation equation [I] but starting from specific
state/action (s,a) as V(s,a) € S x A:

QW(S,(I) = E[thr(shatﬂat ~ T, St+1 ~ Py S0 = S,040 = CL:| . (3)
t=0

Robust reinforcement learning. In a Robust MDP (RMDP) [Iyengar| (2005); [Nilim & El Ghaoui
(2003}, the transition kernel p is not fixed and can be chosen adversarially from an uncertainty set P
at each time step. The pessimistic value function of a policy is defined as v (s) = minyep v7 (s).
An optimal robust policy maximizes the pessimistic value function vp in any state, leading to a
max, min, optimization problem. This is known as the static model of transition kernel uncertainty,
as 7 is evaluated against a static transition model 7. Robust Value Iteration (RVI) (Iyengar, 2005;
Wiesemann et al.,[2013)) addresses this problem by iteratively computing the one-step lookahead best
pessimistic value:

Un1(s) = Tpun(s) := 7T(ISI)lgﬁA ;IélgEaNﬂ-(s)[r(s,a) + Eyvn(s)]]. “4)
This dynamic programming formulation is called the dynamic model of transition kernel uncertainty,
as the adversary picks the next state distribution only for the current state-action pair, after observing
the current state and the agent’s action at each time step (and not a full transition kernel). The T’
operator, known as the robust Bellman operator, ensures that the sequence of v,, functions converges
to the robust value function v}, provided the adversarial transition kernel belongs to the simplex
of Ag and that the static and dynamic cases have the same solutions for stationary agent policies
Iyengar (2022)).

Robust reinforcement learning as a two-player game. Robust MDPs can be represented as
zero-sum two-player Markov games (Littman, [1994; Tessler et al.,[2019) where S, A are respectively
the state and action set of the adversarial player. In a zero-sum Markov game, the adversary tries
to minimize the reward or maximize —r. ertmg 7:8 — A:= Ag the policy of this adversary,
the robust MDP problem turns to max, minz v™", where v™ 7 (s) is the expected sum of discounted
rewards obtained when playing 7 (agent actlons) against 7 (transition models) at each time step
from s. In the specific case of robust RL as a two player-game, S = S x A. This enables introducing
the robust value iteration sequence of functions
L Rk - : ™,

Upt1(8) := T v, (s) : Tr(rsrgzﬁA ﬁ(sr}zl)lgAS(T) (8) Q)
where T™7 := Eqr(s)[1(5, a) + YEg w7 (s,0)0n(s')] is a zero-sum Markov game operator. These
operators are also y—contractions and converge to their respective fixed point v™™ and v** = v}
Tessler et al.| (2019). This two-player game formulation will be used in the evaluation of the RRLS
in Section

Under review as a conference paper at ICLR 2026

P(sisalsy, a5) = (sy, ar)

- s Adversary
Environment Agent >

T a; ~ 7(sy)

Figure 1: Relation between Robust RL and Zero-sum Markov Game

3 RELATED WORKS

3.1 REINFORCEMENT LEARNING BENCHMARK

The landscape of reinforcement learning (RL) benchmarks has evolved significantly, enabling the
accelerated development of RL algorithms. Prominent among these benchmarks are the Atari Arcade
Learning Environment (ALE) Bellemare et al.| (2012), OpenAl Gym [Brockman et al.|(2016), more
recently Gymnasium [Towers et al.|(2023)), and the DeepMind Control Suite (DMC)|Tassa et al.|(2018).
The aforementioned benchmarks have established standardized environments for the evaluation of
RL agents across discrete and continuous action spaces, thereby fostering the reproducibility and
comparability of experimental results. The ALE has been particularly influential, offering a diverse set
of Atari games that have become a standard testbed for discrete control tasks|Bellemare et al.| (2012).
Moreover, the OpenAl Gym extended this approach by providing a more flexible and extensive suite
of environments for various RL tasks, including discrete and continuous control [Brockman et al.
(2016). Similarly, the DMC Suite has been essential for benchmarking continuous control algorithms,
offering a set of challenging tasks that facilitate evaluating algorithm performance Tassa et al.| (2018).
In addition to these general-purpose benchmarks, specialized benchmarks have been developed to
address specific research needs. For instance, the DeepMind Lab focuses on 3D navigation tasks from
pixel inputs Beattie et al.| (2016)), while ProcGen (Cobbe et al.|(2019) offers procedurally generated
environments to evaluate the generalization capabilities of RL agents. The D4RL benchmark targets
offline RL methods by providing datasets and tasks specifically designed for offline learning scenarios
Fu et al.|(2021)), and RL Unplugged Gulcehre et al.|(2020) offers a comprehensive suite of benchmarks
for evaluating offline RL algorithms. RL benchmarks such as Meta-World | Yu et al.[(2021)) have been
developed to evaluate the ability of RL agents to transfer knowledge across multiple tasks. Meta-
World provides a suite of robotic manipulation tasks designed to test RL algorithms’ adaptability
and generalization in multitask learning scenarios. Similarly, RLBench |James et al.|(2020) offers a
variety of tasks for robotic learning, focusing on the performance of RL agents in multi-task settings.
Recent contributions such as the Unsupervised Reinforcement Learning Benchmark (URLB) Lee
et al.|(2021) have further expanded the scope of RL benchmarks by targeting unsupervised learning
methods. URLB aims to accelerate progress in unsupervised RL by providing a suite of environments
and baseline implementations, promoting algorithm development that does not rely on labeled data
for training. Additionally, the CoinRun benchmark |Cobbe et al.| (2020) and Sonic Benchmark |[Nichol
et al.| (2018) focus on evaluating generalization and transfer learning in RL through procedurally
generated levels and video game environments, respectively. Finally, benchmarks like the Behavior
Suite (bsuite) Osband et al.[(2019) have been designed to test specific capabilities of RL agents, such
as memory, exploration, and generalization. Closer to our work, safety in RL is another critical area
where benchmarks like SafetyGym|Achiam & Amodei| (2019) have been instrumental. SafetyGym
evaluates how well RL agents can perform tasks while adhering to safety constraints, which is
crucial for real-world applications where safety cannot be compromised. Despite the progress in
benchmarking RL algorithms, there has been a notable gap in benchmarks specifically designed for
robust RL, which aims to learn policies that perform optimally in the worst-case scenario against
adversarial environments. This gap highlights the need for standardized benchmarks (Moos et al.}
2022) that facilitate reproducible and comparable experiments in robust RL. In the next section, we
introduce existing robust RL algorithms.

Under review as a conference paper at ICLR 2026

3.2 ROBUST REINFORCEMENT LEARNING ALGORITHMS

Two principal classes of practical, robust reinforcement learning algorithms exist, those that can
interact solely with a nominal transition kernel (or center of the uncertainty set), and those that can
sample from the entire uncertainty ball. While the former is more mathematically founded, it is
unable to exploit transitions that are not sampled from the nominal kernel and consequently exhibits
lower performance. In this benchmark, only the Deep Robust RL as two-player games that use
samples from the entire uncertainty set are implemented.

Nominal-based Robust/risk-averse algorithms. The idea of this class of algorithms is to approxi-
mate the inner minimum operator present robust Bellman operator in Equation equation[d] Previous
work has typically employed a dual approach to the minimum problem, whereby the transition
probability is constrained to remain within a specified ball around the nominal transition kernel.
Practically, robustness is equivalent to regularization (Derman et al.l 2021) and for example the SAC
algorithm Haarnoja et al.|(2018)) has been shown to be robust due to entropic regularization. In this
line of work, (Kumar et al.,2022) derived approximate algorithm for RMPDS with L,, balls, (Clavier
et al., 2022) for X2 constrain and (Liu et al.;, |2022)) for KL divergence. Finally,[Wang et al.|(2023)
proposes a novel online approach to solve RMDP. Unlike previous works that regularize the policy or
value updates, |Wang et al.| (2023) achieves robustness by simulating the worst kernel scenarios for the
agent while using any classical RL algorithm in the learning process. These Robust RL approaches
have received recent theoretical attention, from a statistical point of view (sample complexity) (Yang
et al., [2022; |Panaganti & Kalathil, 2022} (Clavier et al.| 2023} |Shi et al., [2024) as well as from an
optimization point of view (Grand-Clément & Kroer, 2021), but generally do not directly translate to
algorithms that scale up to complex evaluation benchmarks.

Deep Robust RL as two-player games. A common approach to solving robust RL problems is
cast the optimization process as a two-player game, as formalized by Morimoto & Doyal (2005)),
described in Section [2] and summarized in Figure[I} In this framework, an adversary, denoted by
7:8 x A — P,isintroduced, and the game is formulated as

oo

mgxrr%inE Z'ytr(st,at,st+1)|so,at ~ m(st), pr = T(st, ar), Se41 ~ pe(-]se, ar)
t=0

Most methods differ in how they constrain 7’s action space within the uncertainty set. A
first family of methods define T(s;) = pre + + A(s¢), where p,.y denotes the reference (nominal)
transition function. Among this family, Robust Adversarial Reinforcement Learning (RARL) (Pinto
et al.,2017) applies external forces at each time step ¢ to disturb the reference dynamics. For instance,
the agent controls a planar monopod robot, while the adversary applies a 2D force on the foot. In
noisy action robust MDPs (NR-MDP) (Tessler et al., 2019) the adversary shares the same action
space as the agent and disturbs the agent’s action 7r(s). Such gradient-based approaches incur the
risk of finding stationary points for 7 and 7 which do not correspond to saddle points of the robust
MDP problem. To prevent this, Mixed-NE (Kamalaruban et al., 2020) defines mixed strategies
and uses stochastic gradient Langevin dynamics. Similarly, Robustness via Adversary Populations
(RAP) (Vinitsky et al.| 2020) introduces a population of adversaries, compelling the agent to exhibit
robustness against a diverse range of potential perturbations rather than a single one, which also
helps prevent finding stationary points that are not saddle points.

Aside from this first family, State Adversarial MDPs (Zhang et al., [2020; 2021} |Stanton et al., [202 1))
involve adversarial attacks on state observations, which implicitly define a partially observable MDP.
This case aims not to address robustness to the worst-case transition function but rather against noisy,
adversarial observations.

A third family of methods considers the general case of 7 (s, a;) = p; or T(s;) = pg, where p; € P.
Minimax Multi-Agent Deep Deterministic Policy Gradient (M3DDPG) (Li et al.,[2019) is designed
to enhance robustness in multi-agent reinforcement learning settings but boils down to standard
robust RL in the two-agents case. Max-min TD3 (M2TD3) (Tanabe et al., 2022) considers a policy
7, defines a value function Q(s, a, p) which approximates Q7 (s,a) = Eg,[r(s, a,s") + 7V (s')],
updates an adversary 7 so as to minimize Q(s, 7(s),7(s)) by taking a gradient step with respect
to 7’s parameters, and updates the policy 7 using a TD3 gradient update in the direction maximizing
Q(s,m(s),7(s)). As such, M2TD3 remains a robust value iteration method that solves the dynamic

Under review as a conference paper at ICLR 2026

RRLS Wrapper
ModifiedParamsEnv

Action Niujoc0
Observation | Environment
AN

State
[0a3u0d anbuaog)

Mujoco Physics
Engine

sette:

Figure 3: Visual representation of various reinforcement learning environments including Ant,
HalfCheetah, Hopper, Humanoid Stand Up, Inverted Pendulum, and Walker.

problem by alternating updates on 7 and 7, but since it approximates)7, it is also closely related
to the method we introduce in the next section.

Domain randomization. Domain randomization (DR) (Tobin et al.,|2017) learns a value function
V(s) = max, E, yp)V, (s) which maximizes the expected return on average across a fixed
distribution on P. As such, DR approaches do not optimize the worst-case performance. Nonetheless,
DR has been used convincingly in applications (Mehta et al., [2020; |OpenAl et al., 2019). Similar
approaches also aim to refine a base DR policy for application to a sequence of real-world cases
(Lin et al.;, 2020; Dennis et al., [2020; [Yu et al.||2018)). For a more complete survey of recent works
in robust RL, we refer the reader to the work of [Moos et al.|(2022).

4 RRLS: BENCHMARK ENVIRONMENTS FOR ROBUST RL

This section introduces the Robust Reinforcement Learning Suite, which extends the Gymnasium
Towers et al.| (2023)) API with two additional methods: set_params and get_params. These
methods are integral to the ModifiedParamsEnv interface, facilitating environment parameter
modifications within the benchmark environment. Typically, these methods are used within a
wrapper to simplify parameter modifications during evaluation. In the RRLS architecture (Figure[2),
the adversary begins by retrieving parameters from the uncertainty set and setting them in the
environment using the ModifiedParamsEnv interface. The agent then acts based on the current
state of the environment, and the Mujoco Physics Engine updates the state accordingly. The agent
observes this updated state, completing the interaction loop. Multiple MuJoCo environments are
provided (Figure [3), each with a two default uncertainty sets, inspired respectively by those used
in the experiments of RARL (Pinto et al.,[2017) (Table[I) and M2TD3 (Tanabe et al.| 2022) (Table [2).
This variety allows for a comprehensive evaluation of robust RL algorithms, ensuring that the
benchmarks encompass a wide range of scenarios.

Several MuJoCo environments are proposed, each with distinct action and observation spaces. Figure
[]shows a visual representation of all provided environments. In all environments, the observation
space corresponds to the positional values of various body parts followed by their velocities, with
all positions listed before all velocities. The environments are as follows:

Under review as a conference paper at ICLR 2026

* Ant: A 3D robot with one torso and four legs, each with two segments. The goal is to
move forward by coordinating the legs and applying torques on the eight hinges. The action
dimension is 8, and the observation dimension is 27.

* HalfCheetah: A 2D robot with nine body parts and eight joints, including two paws. The
goal is to run forward quickly by applying torque to the joints. Positive rewards are given
for forward movement, and negative rewards for moving backward. The action dimension
is 6, and the observation dimension is 17.

* Hopper: A 2D one-legged figure with four main parts: torso, thigh, leg, and foot. The goal
is to hop forward by applying torques on the three hinges. The action dimension is 3, and
the observation dimension is 11.

* Humanoid Stand Up: A 3D bipedal robot resembling a human, with a torso, legs, and
arms, each with two segments. The environment starts with the humanoid lying on the
ground. The goal is to stand up and remain standing by applying torques to the various
hinges. The action dimension is 17, and the observation dimension is 376.

* Inverted Pendulum: A cart that can move linearly, with a pole fixed at one end. The goal
is to balance the pole by applying forces to the cart. The action dimension is 1, and the
observation dimension is 4.

* Walker: A 2D two-legged figure with seven main parts: torso, thighs, legs, and feet. The
goal is to walk forward by applying torques on the six hinges. The action dimension is
6, and the observation dimension is 17.

The RRLS architecture enables parameter modifications and adversarial interactions using the
gymnas ium|Towers et al.| (2023) interface. The set_params and get_params methods in the
ModifiedParamsEnv interface directly access and modify parameters in the Mujoco Physics En-
gine. All modifiable parameters are listed in Appendix[A]and lie in the uncertainty set described below.

Uncertainty Sets. Non-rectangular uncertainty sets (opposed to rectangular ones as defined in
(Iyengar, [2005)) are proposed based on MuJoCo environments, detailed in Table[I] These sets, based
on previous work evaluating M2TD3 [Tanabe et al.|(2022) and RARL |Pinto et al.| (2017), ensure
thorough testing of robust RL algorithms under diverse conditions. For instance, the uncertainty
range for the torso mass in the HumanoidStandUp 2 and 3 environments spans from 0.1 to 16.0
(Table [I), ensuring challenging evaluation of RL methods. Three uncertainty sets—1D, 2D, and
3D—are provided for each environment, ranging from simple to challenging.

Table 1: List of parameters uncertainty sets based on M2TD3 in RRLS

Environment Uncertainty set P Reference values Uncertainty parameters
Ant 1 [0.1,3.0] 0.33 torsomass
Ant2 [0.1,3.0] x [0.01, 3.0] (0.33,0.04) torso mass; front left leg mass
Ant3 [0.1,3.0] x [0.01,3.0] x [0.01,3.0] | (0.33,0.04,0.06) | torso mass; front left leg mass; front right leg mass
HalfCheetah 1 [0.1,3.0] 0.4 world friction
HalfCheetah 2 [0.1,4.0] x [0.1,7.0] (0.4,6.36) world friction; torso mass
HalfCheetah 3 [0.1,4.0] x [0.1,7.0] x [0.1, 3.0] (0.4,6.36,1.53) world friction; torso mass; back thigh mass
Hopper 1 [0.1,3.0] 1.00 world friction
Hopper 2 [0.1,3.0] x [0.1, 3.0] (1.00, 3.53) world friction; torso mass
Hopper 3 [0.1,3.0] x [0.1,3.0] x [0.1,4.0] | (1.00,3.53,3.93) world friction; torso mass; thigh mass
HumanoidStandup I [0.1,16.0] 8.32 torsomass
HumanoidStandup 2 [0.1,16.0] x [0.1,8.0] (8.32,1.77) torso mass; right foot mass
HumanoidStandup 3 | [0.1,16.0] x [0.1,5.0] x [0.1,8.0] | (8.32,1.77,4.53) torso mass; right foot mass; left thigh mass
InvertedPendulum 1 [1.0,31.0] 4.90 polemass
InvertedPendulum 2 [1.0,31.0] x [1.0,11.0] (4.90,9.42) pole mass; cart mass
Walker 1 [0.1,4.0] 0.7 world friction
Walker 2 [0.1,4.0] x [0.1,5.0] (0.7,3.53) world friction; torso mass
Walker 3 [0.1,4.0] x [0.1,5.0] x [0.1,6.0] (0.7,3.53,3.93) world friction; torso mass; thigh mass

RRLS also directly provides the uncertainty sets from the RARL (Pinto et al.,[2017) paper. These
sets apply destabilizing forces at specific points in the system, encouraging the agent to learn robust
control policies.

Wrappers. We introduce environment wrappers to facilitate the implementation of various deep
robust RL baselines such as M2TD3 |Tanabe et al.| (2022), RARL [Pinto et al.| (2017), Domain
Randomization Tobin et al.|(2017), NR-MDP Tessler et al.|(2019) and all algorithms deriving from

Under review as a conference paper at ICLR 2026

Table 2: List of parameters uncertainty sets based on RARL in RRLS

Environment Uncertainty set P Uncertainty parameters
Ant Rarl —3.0,3.0%F torso force x; torso force y; front left leg force x; front left leg force y; front right leg force x; front right leg force y
HalfCheetah Rarl —3.0,3.0%F torso force x; torso force y; back foot force x; back foot force y; forward foot force x; forward foot force y
Hopper Rarl —3.0,3.0]%2 foot force x; foot force y
HumanoidStandup Rarl —3.0,3.0%° torso force x; torso force y; right thigh force x; right thigh force y; left foot force x; left foot force y
InvertedPendulum Rarl —3.0, 3.0] pole force x; pole force y
Walker Rarl —3.0,3.01 leg force x; leg force y; left foot force x; left foot force y

Robust Value Iteration, ensuring researchers can easily apply and compare different methods within a
standardized framework. The wrappers are described as follows:

e The ModifiedParamsEnv interface includes methods set_params and
get_params, which modifying and retrieving environment parameters. This in-
terface allows dynamic adjustment of the environment during training or evaluation.

* The DomainRandomization wrapper enables domain randomization by sampling envi-
ronment parameters from the uncertainty set between episodes. It wraps an environment
following the ModifiedParamsEnv interface and uses a randomization function to draw
new parameter sets. If no function is set, the parameter is sampled uniformly. Parameters
reset at the beginning of each episode, ensuring diverse training conditions.

* The Adversarial wrapper converts an environment into a robust reinforcement learn-
ing problem modeled as a zero-sum Markov game. It takes an uncertainty set and the
ModifiedParamsEnv as input. This wrapper extends the action space to include adver-
sarial actions, allowing for modifications of transition kernel parameters within a specified
uncertainty set. It is suitable for reproducing robust reinforcement learning approaches
based on adversarial perturbation in the transition kernel, such as RARL.

* The ProbabilisticActionRobust wrapper defines the adversary’s action space
as the same action space as the agent. The final action applied in the environment is a
convex sum between the agent’s action and the adversary’s action: a,, = aa + (1 — a)a.
The adversarial action’s effect is bounded by the environment’s action space, allowing the
implementation of robust reinforcement learning methods around a reference transition
kernel, such as NR-MDP or RAP.

Evaluation Procedure. Evaluating Robust Reinforcement Learning algorithms can feature a large
variability in outcome statistics depending on a number of minor factors (such as random seeds, initial
state, or collection of evaluation transition models). To address this, we propose a systematic approach
using a function called generate_evaluation_set. This function takes an uncertainty set
as input and returns a list of evaluation environments. In the static case, where the transition
kernel remains constant across time steps, the evaluation set consists of environments spanned by
a uniform mesh over the parameters set. The agent runs multiple trajectories in each environment
to ensure comprehensive testing. Each dimension of the uncertainty set is divided by a parameter
named nb_mesh_dim. This parameter controls the granularity of the evaluation environments. To
standardize the process, we provide a default evaluation set for each uncertainty set (Table[T). This
set allows for worst-case performance and average-case performance evaluation in static conditions.

5 BENCHMARKING ROBUST RL ALGORITHMS

Experimental setup. This section evaluates several baselines in static and dynamic settings using
RRLS. We conducted experimental validation by training policies in the Ant, HalfCheetah, Hopper,
HumanoidStandup, and Walker environments. We selected five baseline algorithms: TD3, Domain
Randomization (DR), NR-MDP, RARL, and M2TD3. We select the most challenging scenarios,
the 3D uncertainty set defined in Table [1} normalized between [0, 1]3. For static evaluation, we
used the standard evaluation procedure proposed in the previous section. Performance metrics were
gathered after five million steps to ensure a fair comparison after convergence. All baselines were
constructed using TD3 with a consistent architecture across all variants. The results were obtained by
averaging over ten distinct random seeds. Appendices[B] [D.T][D.2] and[D.3]provide further details on
hyperparameters, network architectures, implementation choices, and training curves.

Under review as a conference paper at ICLR 2026

Static worst-case performance. Tables [3|and] report normalized scores for each method, averaged
across 10 random seeds and 5 episodes per seed, for each transition kernel in the evaluation
uncertainty set. To compare metrics across environments, the score v of each method was normalized
relative to the reference score of TD3. TD3 was trained on the environment using the reference
transition kernel, and its score is denoted as vy p3. The M2TD3 score, vpro1r D3, Was used as the
comparison target. The formula used to get a normalized score is (v — vrps)/(|vamerps — vrpsl).
This defines vrps as the minimum baseline and vjsorps as the target. This standardization provides
a metric that quantifies the improvement of each method over TD3 relative to the improvement of
M2TD3 over TD3. Non-normalized results are available in Appendix[C] As expected, M2TD3, RARL
and DR perform better in terms of worst-case performance, than vanilla TD3. Surprisingly, RARL is
outperformed by DR except for HalfCheetah, Hopper, and Walker in worst-case performance. Finally,
M2TD3, which is a state-of-the-art algorithm, outperforms all baselines except on HalfCheetah
where DR achieves a slightly, non-statistically significant, better score. One potential explanation
for the superior performance of DR over robust reinforcement learning methods in the HalfCheetah
environment is that the training of a conservative value function is not necessary. The HalfCheetah
environment is inherently well-balanced, even with variations in mass or friction. Consequently,
robust training, which typically aims to handle worst-case scenarios, becomes less critical. This
insight aligns with the findings of[Moskovitz et al.| (202 1), who observed similar results in this specific
environment. The variance in the evaluations also needs to be addressed. In many environments, high
variance prevents drawing statistical conclusions. For instance, HumanoidStandup shows a variance
of 3.32 for M2TD3, complicating reliable performance assessments. Similar issues arise with DR in
the same environment, showing a variance of 4.1. Such variances highlight the difficulty of making
definitive comparisons across different robust reinforcement learning methods in these settings.

Table 3: Avg. of normalized static worst-case performance over 10 seeds for each method

| | Ant | HalfCheetah | Hopper | HumanoidStandup | Walker | Average |
TD3 0.0+0.34 0.0 £ 0.06 0.0£0.21 0.0 £2.27 0.0£0.1 0.0£0.6
DR 0.06+0.16 | 1.07+0.36 | 0.86£0.82 | 0.04+4.1 0.57£0.37 0.52+1.16
M2TD3 1.0£0.27 1.0£0.16 1.0£0.65 1.0£3.32 1.0£0.63 1.0£1.01
RARL 0.44+0.3 0.13+0.08 0.5+£0.22 0.44 +2.94 0.124+0.09 0.33+£0.73
NR-MDP | —0.25+0.1 | —=0.10£0.24 | —0.31 +0.4 | —2.22 £1.51 —0.04 £0.01 | —0.58 £0.45

Static average performance. Similarly to the worst-case performance described above, average
scores across a uniform distribution on the uncertainty set are reported in Table @] While robust
policies explicitly optimize for the worst-case circumstances, one still desires that they perform
well across all environments. A sound manner to evaluate this is to average their scores across a
distribution of environments. First, one can observe that DR outperforms the other algorithms. This
was expected since DR is specifically designed to optimize the policy on average across a (uniform)
distribution of environments. One can also observe that RARL performs worse on average than a
standard TD3 in most environments (except HumanoidStandup), despite having better worst-case
scores. This exemplifies how robust RL algorithms can output policies that lack applicability in
practice. Finally, M2TD3 is still better than TD3 on average, and hence this study confirms that
it optimizes for worst-case performance while preserving the average score.

Table 4: Avg. of normalized static average case performance over 10 seeds for each method

| | Ant | HalfCheetah | Hopper | HumanoidStandup | Walker | Average |
TD3 0.0+0.49 0.0+0.22 0.0+0.83 0.0+1.36 0.0+0.51 0.0 £0.68
DR 1.65+0.05 | 2.31 £0.27 | 2.08+0.49 1.15+2.47 1.22+0.34 | 1.68+£0.72
M2TD3 1.0+0.11 1.0+0.19 1.0 £0.55 1.0+£1.43 1.0 £0.65 1.0 £0.59
RARL 0.69+£0.13 | —1.3£0.54 —0.99 +0.11 0.47£1.92 —0.35+0.83 | —0.3£0.71
NR-MDP | 0.44£0.03 | —0.58 £0.17 | —0.85+0.001 | —0.83 +£0.24 —1.08 £0.01 | —0.58 £0.15

Dynamic adversaries. While the static and dynamic cases of transition kernel uncertainty lead to the
same robust value functions in the idealized framework of rectangular uncertainty sets, most real-life
situations (such as those in RRLS) fall short of this rectangularity assumption. Consequently, Robust
Value Iteration algorithms, which train an adversarial policy 7 (whether they store it or not) might
possibly lead to a policy that differs from those which optimize for the original max, min, problem

Under review as a conference paper at ICLR 2026

introduced in Section[2] RRLS permits evaluating this feature by running rollouts of agent policies
versus their adversaries, after optimization. RARL and NR-MDP simultaneously train a policy 7
and an adversary 7. The policy is evaluated against its adversary over ten episodes. Observations in
Table [5]demonstrate how RRLS can be used to compare RARL and NR-MDP against their respective
adversaries, in raw score. However, this comparison should not be interpreted as a dominance of
one algorithm over the other, since the uncertainty sets they are trained upon are not the same.

Table 5: Comparison of RARL and NR-MDP across different environments

Method HumanoidStandup (10%) Ant (10%) HalfCheetah (102) Hopper (103) Walker (10%)

RARL 9.84 &+ 3.36 2.90+0.70 —0.74 +6.69 1.04+0.16 3.45+1.13
NR-MDP 9.37+0.14 5.58 £ 0.64 109.90 +4.74 3.14+053 5.17+0.89

Training curves. Figure |§| reports training curves for TD3, DR, RARL, and M2TD3 on the Walker
environment, using RRLS (results for all other environments in Appendix [B). Each agent was trained
for 5 million steps, with cumulative rewards monitored over trajectories of 1,000 steps. Scores were
averaged over 10 different seeds. The training curves illustrate the steep learning curve of TD3 and
DR in the initial stages of learning, versus their robust counterparts. The M2TD3 agent ultimately
achieves the highest performance at 5 million steps. Similarly, RARL exhibits a significant delay
in learning, with stabilization occurring only toward the end of the training. Figures[#d|and Ac|show
a significant variance in training across different random seeds. This emphasizes the difficulty of
comparing different robust reinforcement learning methods along training.

Walker Walker

5000
5000
4000
4000

g < 3000
2 3000 2

2 2 2000
& 2000 &

1000 1000

0 1 2 3 4 5 o 1 2 3 4 H
step 1e6 step 1e6

(a) Training curve on Walker with (b) Training curve on Walker with
TD3 DR

Walker Walker

4000

5000
3500

3000 4000
© 2500 T
H £ 2000
E‘ 2000 g

H H

% 1500 § 2000
8

1000

1000
500

o 1 2 3 4 5 o 1 2 3 4 5
step 1e6 step 1e6

(c) Training curve on Walker with (d) Training curve on Walker with
RARL M2TD3

Figure 4: Averaged training curves for Walker over 10 seeds

6 CONCLUSION

We introduced the Robust Reinforcement Learning Suite (RRLS), a Gymnasium-compatible bench-
mark for robust RL. RRLS standardizes evaluation across six MuJoCo tasks with predefined uncer-
tainty sets and is simple to extend. We also provide four compatible baselines and static evaluations,
enabling fair, reproducible comparisons. We hope RRLS serves as a dependable testbed that acceler-
ates progress in robust reinforcement learning.

Under review as a conference paper at ICLR 2026

REFERENCES

Joshua Achiam and Dario Amodei. Benchmarking safe exploration in deep reinforcement learning.
2019. URL https://api.semanticscholar.org/CorpusID:208283920.

Charles Beattie, Joel Z. Leibo, Denis Teplyashin, Tom Ward, Marcus Wainwright, Heinrich Kiittler,
Andrew Lefrancq, Simon Green, Victor Valdés, Amir Sadik, Julian Schrittwieser, Keith Anderson,
Sarah York, Max Cant, Adam Cain, Adrian Bolton, Stephen Gaffney, Helen King, Demis Hassabis,
Shane Legg, and Stig Petersen. Deepmind lab, 2016.

Marc Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade learning environment:
An evaluation platform for general agents. Journal of Artificial Intelligence Research, 47, 07 2012.
doi: 10.1613/jair.3912.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. Openai gym, 2016.

Pierre Clavier, Stéphanie Allassoniere, and Erwan Le Pennec. Robust reinforcement learning with
distributional risk-averse formulation. arXiv preprint arXiv:2206.06841, 2022.

Pierre Clavier, Erwan Le Pennec, and Matthieu Geist. Towards minimax optimality of model-based
robust reinforcement learning. arXiv preprint arXiv:2302.05372, 2023.

Karl Cobbe, Christopher Hesse, Jacob Hilton, and John Schulman. Leveraging procedural generation
to benchmark reinforcement learning. arXiv preprint arXiv:1912.01588, 2019.

Karl Cobbe, Chris Hesse, Jacob Hilton, and John Schulman. Leveraging procedural generation
to benchmark reinforcement learning. In International conference on machine learning, pp.
2048-2056. PMLR, 2020.

Michael Dennis, Natasha Jaques, Eugene Vinitsky, A. Bayen, Stuart J. Russell, Andrew Critch, and
S. Levine. Emergent complexity and zero-shot transfer via unsupervised environment design.
Neural Information Processing Systems, 2020.

Esther Derman, Matthieu Geist, and Shie Mannor. Twice regularized mdps and the equivalence
between robustness and regularization. Advances in Neural Information Processing Systems, 34,
2021.

Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl: Datasets for deep
data-driven reinforcement learning, 2021.

Julien Grand-Clément and Christian Kroer. Scalable first-order methods for robust mdps. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 35, pp. 12086—-12094, 2021.

Caglar Gulcehre, Ziyu Wang, Alexander Novikov, Tom Le Paine, Sergio Gémez Colmenarejo, Konrad
Zolna, Rishabh Agarwal, Josh Merel, Daniel Mankowitz, Cosmin Paduraru, Gabriel Dulac-Arnold,
Jerry Li, Mohammad Norouzi, Matt Hoffman, Ofir Nachum, George Tucker, Nicolas Heess, and
Nando deFreitas. Rl unplugged: Benchmarks for offline reinforcement learning, 2020.

Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon Ha, Jie Tan, Vikash
Kumar, Henry Zhu, Abhishek Gupta, Pieter Abbeel, and Sergey Levine. Soft actor-critic algorithms
and applications. arXiv preprint arXiv: Arxiv-1812.05905, 2018.

Shengyi Huang, Rousslan Fernand Julien Dossa, Chang Ye, Jeff Braga, Dipam Chakraborty, Kinal
Mehta, and Jodo G.M. Aradjo. Cleanrl: High-quality single-file implementations of deep rein-
forcement learning algorithms. Journal of Machine Learning Research, 23(274):1-18, 2022. URL
http://jmlr.org/papers/v23/21-1342.htmll

Garud Iyengar. Robust dynamic programming. Technical report, CORC Tech Report TR-2002-07,
2022.

Garud N Iyengar. Robust dynamic programming. Mathematics of Operations Research, 30(2):
257-280, 2005.

10

https://api.semanticscholar.org/CorpusID:208283920
http://jmlr.org/papers/v23/21-1342.html

Under review as a conference paper at ICLR 2026

Stephen James, Zicong Ma, David Rovick Arrojo, and Andrew J. Davison. Rlbench: The robot
learning benchmark and learning environment. IEEE Robotics and Automation Letters, 5(2):
3019-3026, 2020. doi: 10.1109/LRA.2020.2974707.

Parameswaran Kamalaruban, Yu ting Huang, Ya-Ping Hsieh, Paul Rolland, C. Shi, and V. Cevher.
Robust reinforcement learning via adversarial training with langevin dynamics. Neural Information
Processing Systems, 2020.

Navdeep Kumar, Kfir Levy, Kaixin Wang, and Shie Mannor. Efficient policy iteration for robust
markov decision processes via regularization. arXiv preprint arXiv:2205.14327, 2022.

Kimin Lee, Laura Smith, Anca Dragan, and Pieter Abbeel. B-pref: Benchmarking preference-based
reinforcement learning. arXiv preprint arXiv:2111.03026, 2021.

Shihui Li, Yi Wu, Xinyue Cui, Honghua Dong, Fei Fang, and Stuart Russell. Robust multi-agent
reinforcement learning via minimax deep deterministic policy gradient. In Proceedings of the
AAAI conference on artificial intelligence, volume 33, pp. 4213-4220, 2019.

Zichuan Lin, Garrett Thomas, Guangwen Yang, and Tengyu Ma. Model-based adversarial meta-
reinforcement learning. In Advances in Neural Information Processing Systems, volume 33, pp.
10161-10173, 2020.

Michael L Littman. Markov games as a framework for multi-agent reinforcement learning. In
Machine learning proceedings 1994, pp. 157-163. Elsevier, 1994.

Zijian Liu, Qinxun Bai, Jose Blanchet, Perry Dong, Wei Xu, Zhengqing Zhou, and Zhengyuan
Zhou. Distributionally robust g-learning. In International Conference on Machine Learning, pp.
13623-13643. PMLR, 2022.

Bhairav Mehta, Manfred Diaz, Florian Golemo, Christopher J. Pal, and Liam Paull. Active domain
randomization. In Proceedings of the Conference on Robot Learning, volume 100, pp. 1162-1176,
2020.

Janosch Moos, Kay Hansel, Hany Abdulsamad, Svenja Stark, Debora Clever, and Jan Peters. Robust
reinforcement learning: A review of foundations and recent advances. Machine Learning and
Knowledge Extraction, 4(1):276-315, 2022.

Jun Morimoto and Kenji Doya. Robust reinforcement learning. Neural computation, 17(2):335-359,
2005.

Ted Moskovitz, Jack Parker-Holder, Aldo Pacchiano, Michael Arbel, and Michael Jordan. Tactical
optimism and pessimism for deep reinforcement learning. Advances in Neural Information
Processing Systems, 34:12849—-12863, 2021.

Alex Nichol, Vicki Pfau, Christopher Hesse, Oleg Klimov, and John Schulman. Gotta learn fast: A
new benchmark for generalization in rl. arXiv preprint arXiv:1804.03720, 2018.

Arnab Nilim and Laurent El Ghaoui. Robust control of markov decision processes with uncertain
transition matrices. Operations Research, 53(5):780-798, 2005.

OpenAl, Ilge Akkaya, Marcin Andrychowicz, Maciek Chociej, Mateusz Litwin, Bob McGrew, Arthur
Petron, Alex Paino, Matthias Plappert, Glenn Powell, Raphael Ribas, Jonas Schneider, Nikolas
Tezak, Jerry Tworek, Peter Welinder, Lilian Weng, Qiming Yuan, Wojciech Zaremba, and Lei
Zhang. Solving rubik’s cube with a robot hand. arXiv preprint arXiv: Arxiv-1910.07113,2019.

Ian Osband, Yotam Doron, Matteo Hessel, John Aslanides, Eren Sezener, Andre Saraiva, Katrina
McKinney, Tor Lattimore, Csaba Szepesvari, Satinder Singh, et al. Behaviour suite for reinforce-
ment learning. arXiv preprint arXiv:1908.03568, 2019.

Kishan Panaganti and Dileep Kalathil. Sample complexity of robust reinforcement learning with
a generative model. In International Conference on Artificial Intelligence and Statistics, pp.
9582-9602. PMLR, 2022.

11

Under review as a conference paper at ICLR 2026

Lerrel Pinto, James Davidson, Rahul Sukthankar, and Abhinav Gupta. Robust adversarial rein-
forcement learning. In International Conference on Machine Learning, pp. 2817-2826. PMLR,
2017.

Martin L Puterman. Markov decision processes: discrete stochastic dynamic programming. John
Wiley & Sons, 2014.

Laixi Shi, Gen Li, Yuting Wei, Yuxin Chen, Matthieu Geist, and Yuejie Chi. The curious price of
distributional robustness in reinforcement learning with a generative model. Advances in Neural
Information Processing Systems, 36, 2024.

Samuel Stanton, Rasool Fakoor, Jonas Mueller, Andrew Gordon Wilson, and Alex Smola. Robust
reinforcement learning for shifting dynamics during deployment. In Workshop on Safe and Robust
Control of Uncertain Systems at NeurIPS, 2021.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Takumi Tanabe, Rei Sato, Kazuto Fukuchi, Jun Sakuma, and Youhei Akimoto. Max-min off-policy
actor-critic method focusing on worst-case robustness to model misspecification. In Advances in
Neural Information Processing Systems, 2022.

Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe Li, Diego de Las Casas, David Budden,
Abbas Abdolmaleki, Josh Merel, Andrew Lefrancq, Timothy Lillicrap, and Martin Riedmiller.
Deepmind control suite, 2018.

Chen Tessler, Yonathan Efroni, and Shie Mannor. Action robust reinforcement learning and applica-
tions in continuous control. In International Conference on Machine Learning, pp. 6215-6224.
PMLR, 2019.

Josh Tobin, Rachel Fong, Alex Ray, Jonas Schneider, Wojciech Zaremba, and Pieter Abbeel. Domain
randomization for transferring deep neural networks from simulation to the real world. In 2017
IEEE/RSJ international conference on intelligent robots and systems (IROS), pp. 23-30. IEEE,
2017.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5026-5033.
IEEE, 2012. doi: 10.1109/IROS.2012.6386109.

Mark Towers, Jordan K. Terry, Ariel Kwiatkowski, John U. Balis, Gianluca de Cola, Tristan Deleu,
Manuel Gouldo, Andreas Kallinteris, Arjun KG, Markus Krimmel, Rodrigo Perez-Vicente, Andrea
Pierré, Sander Schulhoff, Jun Jet Tai, Andrew Tan Jin Shen, and Omar G. Younis. Gymnasium,
March 2023. URL https://zenodo.org/record/8127025.

Eugene Vinitsky, Yuqing Du, Kanaad Parvate, Kathy Jang, Pieter Abbeel, and Alexandre Bayen.
Robust reinforcement learning using adversarial populations. arXiv preprint arXiv:2008.01825,
2020.

Kaixin Wang, Uri Gadot, Navdeep Kumar, Kfir Levy, and Shie Mannor. Robust reinforcement
learning via adversarial kernel approximation. arXiv preprint arXiv:2306.05859, 2023.

Wolfram Wiesemann, Daniel Kuhn, and Ber¢ Rustem. Robust markov decision processes. Mathe-
matics of Operations Research, 38(1):153-183, 2013.

Wenhao Yang, Liangyu Zhang, and Zhihua Zhang. Toward theoretical understandings of robust
markov decision processes: Sample complexity and asymptotics. The Annals of Statistics, 50(6):
3223-3248, 2022.

Tianhe Yu, Deirdre Quillen, Zhanpeng He, Ryan Julian, Avnish Narayan, Hayden Shively, Adithya
Bellathur, Karol Hausman, Chelsea Finn, and Sergey Levine. Meta-world: A benchmark and
evaluation for multi-task and meta reinforcement learning, 2021.

Wenhao Yu, C. K. Liu, and Greg Turk. Policy transfer with strategy optimization. International
Conference On Learning Representations, 2018.

12

https://zenodo.org/record/8127025

Under review as a conference paper at ICLR 2026

Huan Zhang, Hongge Chen, Chaowei Xiao, Bo Li, Mingyan Liu, Duane Boning, and Cho-Jui Hsieh.
Robust deep reinforcement learning against adversarial perturbations on state observations. In
H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances in Neural
Information Processing Systems, volume 33, pp. 21024-21037, 2020.

Huan Zhang, Hongge Chen, Duane S Boning, and Cho-Jui Hsieh. Robust reinforcement learning

on state observations with learned optimal adversary. In International Conference on Learning
Representations, 2021.

A APPENDIX

A MODIFIABLE PARAMETERS

The following tables list the parameters that can be modified in different MuJoCo environments used
in the Robust Reinforcement Learning Suite. These parameters are accessed and modified through
the set_params and get_params methods in the ModifiedParamsEnv interface.

Parameter Name

Torso Mass

Front Left Leg Mass

Front Left Leg Auxiliary Mass
Front Left Leg Ankle Mass
Front Right Leg Mass

Front Right Leg Auxiliary Mass
Front Right Leg Ankle Mass
Back Left Leg Mass

Back Left Leg Auxiliary Mass
Back Left Leg Ankle Mass
Back Right Leg Mass

Back Right Leg Auxiliary Mass
Back Right Leg Ankle Mass

Table 6: Modifiable parameters from Ant environment

Parameter Name
World Friction
Torso Mass

Back Thigh Mass
Back Shin Mass
Back Foot Mass
Forward Thigh Mass
Forward Shin Mass
Forward Foot Mass

Table 7: Modifiable parameters from Halfcheetah environment

Parameter Name
World Friction
Torso Mass

Thigh Mass

Leg Mass

Foot Mass

Table 8: Modifiable parameters from Hopper environment

13

Under review as a conference paper at ICLR 2026

Parameter Name
Torso Mass

Lower Waist Mass
Pelvis Mass

Right Thigh Mass
Right Shin Mass

Right Foot Mass

Left Thigh Mass

Left Shin Mass

Left Foot Mass

Right Upper Arm Mass
Right Lower Arm Mass
Left Upper Arm Mass
Left Lower Arm Mass

Table 9: Modifiable parameters from Humanoid Stand Up environment

Parameter Name
World Friction
Torso Mass

Thigh Mass

Leg Mass

Foot Mass

Left Thigh Mass
Left Leg Mass
Left Foot Mass

Table 10: Modifiable parameters from Walker environment

Parameter Name
Pole Mass
Cart Mass

Table 11: Modifiable parameters from Inverted Pendulum environment

B TRAINING CURVES

We conducted training for each agent over a duration of 5 million steps, closely monitoring the
cumulative rewards obtained over a trajectory spanning 1,000 steps. To enhance the reliability of our
results, we averaged the performance curves across 10 different seeds.The graphs in Figures[5]to/[§]
illustrate how different training methods, including Domain Randomization, M2TD3, RARL, and
TD3 impact agent performance across various environments.

C NON-NORMALIZED RESULTS

Table[T2)reports the non-normalized worst case scores, averaged across 10 independent runs for each
benchmark. Table[I3|reports the average score obtained by each agent across a grid of environments,
also averaged across 10 independent runs for each benchmark.

D IMPLEMENTATION DETAILS

D.1 NEURAL NETWORK ARCHITECTURE

We employ the same neural network architecture for all baselines for the actor and the critic compo-
nents. The architecture’s design ensures uniformity and comparability across different models.

14

Under review as a conference paper at ICLR 2026

Ant HalfCheetah

8000 4
6000

5000
6000 4

s_reward
s
8
3
5

| 4000 ! 3000

es_reward

episode:
episod:

2000
2000 4
1000

0 1 2 3 4 5 [1 2 3 4 5
step 1e6 step 1e6

(a) Training curve on Ant with Domain Random- (b) Training curve on HalfCheetah with Domain

1zation Randomization
Hopper HumanoidStandup
2000
120000
1500 4
- 5 100000
© T
H H
2 L
a' !
$ 1000]
g g eoo00
- 2
g 5
500 1 60000
04 40000
o 1 2 3 4 5 o 1 2 3 4 5
step 1e6 step 1e6

(c) Training curve on Hopper with Domain Ran- (d) Training curve on HumanoidStandup with Do-
domization main Randomization

Walker

5000 o

4000

w
=1
S
=]

episodes_reward
5
2
g

1000 4

] 1 2 3 4 5
step 1e6

(e) Training curve on Walker with Domain Ran-
domization

Figure 5: Averaged training curves for the Domain Randomization method over 10 seeds

Table 12: Avg. of raw static worst-case performance over 10 seeds for each method

Ant HalfCheetah Hopper Humanoid StandUp Walker
DR 19.78 + 394.84 2211.48 £915.64 245.01 £167.21 64886.87 + 30048.79 1318.36 £ 777.51
M2TD3 2322.73 +649.3 2031.9 £ 409.7 273.6 £131.9 71900.97 £+ 24317.35 2214.16 + 1330.4
RARL 960.11 + 744.01 —211.8 £218.73 170.46 £45.73 67821.86 4 21555.24 360.31 + 186.06
NR-MDP —744.94 + 484.65 —818.64 £63.21 5.73 £8.87 48318.45+11092.99 16.42+3.5
TD3 —123.64 £824.35 —546.21 £158.81 69.3 £42.77 64577.24 +16606.51 114.41 £ 211.05

The critic network is structured with three layers, as depicted in Figure[94] the critic begins with an
input layer that takes the state and action as inputs, then passes through two fully connected linear

15

Under review as a conference paper at ICLR 2026

Ant HalfCheetah
6000

6000 4

5000
5000

4000

&
S
S
s

w
&
15}
S

13000 4

des_reward

episodes_reward
N
5
8
g

episo

2000 4

1000
1000 4

o 1 2 3 4 5] 1 2 3 4 5
step 1e6 step 1e6
(a) Training curve on Ant with M2TD3 (b) Training curve on HalfCheetah with M2TD3

HumanoidStandup

Hopper

120000
25004

100000
2000 4

80000

H
&
3
8
episodes_reward

60000

H
S
S
S

episodes_reward

40000

0 1 2 3 4 5
step 1e6

o 1 2 3 4 5
step 1e6

(d) Training curve on HumanoidStandup with
(c) Training curve on Hopper with M2TD3 M2TD3

Walker

5000 4

4000

3000 4

episodes_reward
~
3
g
S

1000 4

0 1 2 3 4 5
step 1e6

(e) Training curve on Walker with M2TD3

Figure 6: Averaged training curves for the M2TD3 method over 10 seeds

Table 13: Avg. of raw static average case performance over 10 seeds for each method

env name Ant HalfCheetah Hopper Humanoid Standup Walker
algo-name
DR 7500.88 £ 143.38 6170.33 £442.57 1688.36 +225.59 110939.89 £ 22396.41 4611.24 + 463.42

M2TD3 5577.41 £316.95 4000.98 £ 314.76 1193.32+£254.9 109598.43 £ 12992.35 4311.2 £ 877.89
RARL 4650.55 +395.03 206.71 £887.25 276.37 £ 52.42 104764.87 £ 17400.85 2493.26 £ 1113.74
NR-MDP 4197.80 £ 90.66 1388.90 4 283.25 340.15 £ 3.65 92972.45 £ 2251.18 1501.05 + 453.96
TD3 2600.43 £ 1468.87 2350.58 £357.12 733.18 £382.06 100533.0 £ 12298.37 2965.47 & 685.39

layers of 256 units each. The final layer is a single linear unit that outputs a real-valued function,
representing the estimated value of the state-action pair.

The actor neural network, shown in Figure also utilizes a three-layer design. It begins with an
input layer that accepts the state as input. This is followed by two linear layers, each consisting of

16

Under review as a conference paper at ICLR 2026

Ant HalfCheetah
3000 4 o
2500 —1000
s -
5 2000 s -2000
& g
m‘ ml
% 1500 g _3000
naf 1000 nsf
—4000
500
-5000
ol
—-6000
0 1 2 3 4 5 o 1 2 3 4 5
step 1e6 step 1e6
(a) Training curve on Ant with RARL (b) Training curve on HalfCheetah with RARL
HumanoidStandup
Hopper 120000
1000 1 110000
100000
s
800 1 £
£ 90000
k] g
2 g
% 500 g 80000
3 g 70000
&
§ 4007 60000
50000
200 4
40000
o] 0 1 2 3 4 5
r r T T T r step 1e6
0 1 2 3 4 5
step le6
(d) Training curve on HumanoidStandup with
(c) Training curve on Hopper with RARL RARL
Walker
4000
3500 1
3000 4
o 2500
:
= 2000 4
ki
8 1500
8
1000
500
o]
0 1 2 3 a 5
step 1e6

(e) Training curve on Walker with RARL

Figure 7: Averaged training curves for the RARL method over 10 seeds

256 units. The output layer of the actor neural network has a dimensionality equal to the number of
dimensions of the action space.

D.2 M2TD3

We use the official M2TD3 [Tanabe et al.| (2022)) implementation provided by the original authors,
accessible via the GitHub repository for M2TD3.

D.3 TD3

We adopted the TD3 implementation from the CleanRL library, as detailed in Huang et al.| (2022).

17

https://github.com/akimotolab/M2TD3

Under review as a conference paper at ICLR 2026

Ant HalfCheetah
14000
6000 4
12000
5000 4
10000
e B
& 4000 4 o
; § 8000
m‘ m‘
£ 3000 1 £ o0
2 2
¥ 2000 4 % 000
1000 2000
04]
0 1 2 3 4 5 o 1 2 3 4 5
step 1e6 step 1e6
(a) Training curve on Ant with TD3 (b) Training curve on HalfCheetah with TD3
Hopper HumanoidStandup

3500 q

110000
3000 4 100000
2500 4 90000

80000

s_reward

, 2000

1500 4 70000

episodes_reward

episode:

60000
1000

50000
500 1

40000

0 1 2 3 4 5] 1 2 3 4 5

step 1e6 step 1e6
(c) Training curve on Hopper with TD3 (d) Training curve on HumanoidStandup with TD3
Walker
5000 -
4000 4
£, 3000
4
é 2000
1000 4
ol
] 1 Z‘ 3 4 5
step 1e6

(e) Training curve on Walker with TD3

Figure 8: Averaged training curves for the TD3 method over 10 seeds

E COMPUTER RESSOURCES

All experiments were run on a desktop machine (Intel 19, 10th generation processor, 64GB RAM)
with a single NVIDIA RTX 4090 GPU. Averages and standard deviations were computed from 10
independent repetitions of each experiment.

F BROADER IMPACT

This paper proposes a benchmark for the robust reinforcement learning community. It addresses
general computational challenges. These challenges may have societal and technological impacts,
but we do not find it necessary to highlight them here.

18

Under review as a conference paper at ICLR 2026

X ()

967 Teaury

— —

E. =

= e
ELELR

) B

(J] P

(o)

(a) Critic neural network architecture

ARGHEE
S—>§‘>§e§
)
N N =
(%3 93 =

N (o)}
— AN J

(b) Actor neural network architecture

Figure 9: Actor critic neural network architecture

Hyperparameter Default Value
Policy Std Rate 0.1
Policy Noise Rate 0.2
Noise Clip Policy Rate 0.5
Noise Clip Omega Rate 0.5
Omega Std Rate 1.0
Min Omega Std Rate 0.1
Maximum Steps 5e6
Batch Size 100
Hatomega Number 5
Replay Size le6
Policy Hidden Size 256
Critic Hidden Size 256
Policy Learning Rate 3e-4
Critic Learning Rate 3e-4
Policy Frequency 2
Gamma 0.99
Polyak Se-3
Hatomega Parameter Distance 0.1
Minimum Probability Se-2
Hatomega Learning Rate (ho_Ir) | 3e-4
Optimizer Adam

Table 14: Hyperparameters for the M2TD3 Agent

19

Under review as a conference paper at ICLR 2026

Hyperparameter | Default Value
Maximum Steps 5e6
Buffer Size 1 x 10°
Learning Rate 3x 1071
Gamma 0.99

Tau 0.005
Policy Noise 0.2
Exploration Noise | 0.1
Learning Starts 2.5 x 10%
Policy Frequency | 2

Batch Size 256
Noise Clip 0.5
Action Min -1

Action Max 1
Optimizer Adam

20

Table 15: Hyperparameters for the TD3 Agent

	Introduction
	Problem statement
	Related works
	Reinforcement learning benchmark
	Robust Reinforcement Learning algorithms

	RRLS: Benchmark environments for Robust RL
	Benchmarking Robust RL algorithms
	Conclusion
	Appendix
	Modifiable parameters
	Training curves
	Non-normalized results
	Implementation details
	Neural network architecture
	M2TD3
	TD3

	Computer ressources
	Broader impact

