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Abstract

We study a stochastic multi-armed bandit setting where arms are partitioned into known
clusters, such that the parameters of arms within a cluster differ by at most a known thresh-
old. While the clustering structure is known a priori, the arm parameters are unknown. We
derive an asymptotic lower bound on the regret that improves upon the classical bound
of |[Lai & Robbins| (1985)). We then propose Clus-UCB, an efficient algorithm that closely
matches this lower bound asymptotically by exploiting the clustering structure and intro-
ducing a new index to evaluate an arm, which depends on other arms within the cluster. In
this way, arms share information among each other. We present simulation results of our
algorithm and compare its performance against KL-UCB and other well-known algorithms
for bandits with dependent arms. We discuss the robustness of the proposed algorithm
under misspecified prior information, address some limitations of this work, and conclude
by outlining possible directions for future research.

1 Introduction

The multi-armed bandit (MAB) is a fundamental problem in probability theory that encapsulates the classic
trade-off between exploration and exploitation. It is typically abstracted as a scenario in which a gambler
is faced with k slot machines (arms), each with an unknown reward distribution, and must decide which
arm to pull at each timestep to maximize the cumulative reward. Arms are assumed to belong to the same
distribution family, but with different (and unknown) parameters.

A seminal contribution in this area is by |[Lai & Robbing| (1985), who showed that any uniformly good
algorithm E]must incur at least O(log N) regret, where N is the horizon. Several algorithms such as KL-
UCB, UCB, and e-greedy have been proposed that asymptotically attain this logarithmic regret. This
framework models arms that are independent of each other.

Bandit problems where arms are correlated or dependent have also been studied in the literature. These
fall into the category of structured bandit problems. Many times, information about the structure results
in fewer suboptimal arm pulls and results in lower regret bounds. In this paper, we work with a similar
structured bandit problem, specifically one in which arms are clustered together.

1.1 Related Work

The classical MAB problem has received significant attention in the past, with one of the most notable
contributions being by [Lai & Robbins| (1985)). Using a change-of-measure argument, they derived theoretical

LA uniformly good algorithm is one which incurs o(N¢) regret for all @ > 0 on all instances
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lower bounds on the regret incurred by comparing an algorithm’s performance on two similar instances that
differ only in their optimal arms. They also proposed a framework for constructing asymptotically efficient
algorithms that achieve logarithmic regret.

A closely related work is that of |Graves & Lai (1997), where regret bounds were established for bandits in
a controlled Markov chain setting. This work generalizes the procedure of finding a regret lower bound as a
linear optimization problem. We use this approach in Section [3| to derive the lower bound for our problem.

For the classical MAB setting with independent arms, several algorithms have been proposed to achieve
optimal regret asymptotically. Among the most influential are UCB by |Auer et al| (2002)), and KL-UCB
by |Garivier & Cappé| (2011). KL-UCB works by selecting the arm with the most optimistic estimate of
the mean reward, derived from a KL-divergence-based upper confidence bound. Our proposed algorithm is
inspired by this principle and extends it to settings that showcase clustering.

Structured bandits, where dependencies among arms are leveraged to minimize regret, have also been ex-
plored. For example, |Combes & Proutiere (2014) and Magureanu et al.| (2014) studied bandits under
uni-modal and Lipschitz structures, respectively, and developed near-optimal algorithms. |Mersereau &
Tsitsiklis (2009) and |[Dani et al| (2008]) considered linear bandits, where rewards are assumed to be linear
functions of unknown parameters. |Zhang et al.| (2023)) studied the MAB problem on a graph, where an agent
has to maximize the cumulative reward collected from the nodes of a known graph. |Agrawal et al.| (1989)
studied the case of controlled IID processes with a known finite parameter space, and drew parallels between
this and a specialized MAB setting.

Singh et al. (2020) studied a problem setting in which arms are clustered and all arms in a cluster have
the same parameter. They assumed that the distributions of rewards for arms in a cluster can be different,
depending on the cluster parameter. However, we assume that the parameters of arms in a cluster are
within a known threshold, with the same distribution family for all arms in the cluster. |Gupta et al.[(2021)
worked on correlated bandits, where the expected reward of an arm given the reward of another arm is
upper-bounded by a known function. This upper bound might be available through domain knowledge or
offline estimates.

Pandey et al.| (2007) investigated bandits with dependent arms, specifically instances where arms are or-
ganized into clusters. They assumed that arm parameters in a cluster are drawn from a known generative
model. They formulated a two-level policy assuming that the parameter distribution is tightly centered
around its mean. Our problem formulation is a special case of this, where the parameter distribution is
uniform over a predefined range, making it spread out rather than tightly centered. It can be seen from the
simulation results in Section [5|that the algorithm proposed by them would fail in our setting. This motivates
the need for a new algorithm, specific to our case.

Another line of work is dedicated to the online clustering of arms. [Ban & He| (2021) and |Gentile et al.
(2014) studied clustering in contextual bandits and provided algorithms that confidently cluster users by
the proximity of their parameter vectors. Note that this is distinct from our setting, which assumes known
clusters.

To our knowledge, our clustering criterion has not been explored in the literature and is useful if confident
cluster width estimates are available through domain knowledge or offline data sampling.

1.2 Our Contributions:

e We introduce a framework where arms are organized into constrained overlapping clusters, and derive
theoretical lower bounds on regret in this structured bandit setting. By constrained, we mean that the
arm parameters within a cluster cannot differ by more than a known threshold.

e We propose Clus-UCB, an algorithm that efficiently exploits this structure and asymptotically achieves
the regret lower bound on most instances.

o We provide both the theoretical analysis of the algorithm’s performance in the Appendix, and simulation
results in a later section, that demonstrate the practical effectiveness and theoretical optimality of our
algorithm.
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2 Model and Problem Formulation

In this section, we first describe the standard stochastic bandit framework, followed by the specific structure
of clustered arms that we address in this work.

2.1 Stochastic Bandit Framework

At eachround n = 1,2,...T, a learner selects one of K arms and receives a reward sampled from an unknown
distribution. Each arm k is associated with an unknown parameter 0, € © and a known density f(x;0%)
with respect to a measure v. We assume:

/|x\f(m,0) dv(z) < 00, V0 € 0.
The expected reward for arm k is given by:

e = p(fk) = /:cf(x;@) dv(z).

Policy: A sequence of arms m = (7,,), where 7, € {1,..., K}, where m, is F,,_1-measurable (depends only
on past actions and rewards).

Let p* = maxy py and denote by I} (n) the number of times arm k is pulled up to round n under policy 7.
Regret: Regret under policy 7 until round n is:
R™(n,v(0)) = Y (" — m)E[T{ (n)].
kg <p*

Here, 6 is the parameter vector and v(6) is the instance.

2.1.1 KL Divergence

The Kullback-Leibler(KL) divergence is a measure of difference between two distributions. In bandit prob-
lems, this arises naturally to account for the complexity of the problem. If two arm distributions are similar,
then it is harder to gauge the optimal arm among these. For densities parameterized by 6 and ¢:

1(0,9) = /log (;Ezgi) F(2:0) dv(z).

The one-sided KL divergence is defined as:

’ 0 otherwise.

Assumptions:

o 0<I(0,9) < ooif u() > ud),

o I(6,9) is continuous in p(¥).

For Bernoulli distributions with parameters 6 and ¢,

1(0,9) = 0log <g) +(1—0)log G_g) .

For the rest of this work, we analyze settings where there is a one to one relation between 6 and g, and
hence interchangeably use 1(0,,6,) and I(uq, tp) when the context is clear.
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Figure 1: The widths represent cluster spans. While the fifth green point also lies within the red span, it’s
labeled green. Similarly, the first red point also falls within the green span but is labeled red.

2.1.2 KL-UCB Algorithm
For each arm k, define the KL-UCB in the n*" round as:
sup{® : Ti(n) - I(Ax(n),9) < logn + aloglogn},

where 0y, (n) is the empirical parameter estimate of k' arm in the n*® round, and a is a constant greater
than 3. At each round, select the arm with the highest KL-UCB. Note that each arm must be pulled at least
once, for the empirical means to be defined.

2.2 Clustered Arm Structure

We now introduce the clustering structure in which arms are grouped into overlapping clusters. Throughout
this work, we index the M clusters by ¢ € {1,2,..., M}. Each cluster ¢ contains K. arms, which we index
by i € {1,2,..., K.}, and we denote the set of arms in cluster ¢ by K.. For simplicity, we assume there is a
unique optimal arm.

For any two arms i, j belonging to the same cluster ¢ with parameters 6 and 64 respectively, we require:
00 — 09| < B., foralli,jek, ce{l,...,M},

where . > 0 is the known cluster width for cluster ¢. We define © as the set of all parameter vectors
satisfying this clustering condition.

The assumption of known cluster widths is not purely theoretical but also practical when a rough estimate
or non-trivial upper bound on £, is available through domain knowledge or offline sampling. This framework
applies naturally to settings where arms share similar attributes. For instance, in online advertising, products
from the same category (e.g., electronics) can be assumed to cluster together. Similarly, in clinical trials,
drugs with similar chemical compositions form natural clusters. While domain knowledge provides guidance
on cluster membership, the widths S, must be estimated from offline data. One possible estimator is:

~

_ AN i
Be = maxu(f) — min I(6),

where u(-) and {(-) are appropriately chosen upper and lower confidence bound functions, respectively.

Importantly, each arm may satisfy the clustering property for multiple clusters. For example, an arm may fall
within the allowed parameter ranges of two different clusters simultaneously. However, each arm is assigned
to exactly one cluster, and this assignment is known. This overlapping structure is illustrated in Figure [I]

3 Lower Bound for Regret

In this section, we state an asymptotic regret lower bound satisfied by any uniformly good algorithm 7. Let
v(#) be an instance dependent on the parameter vector 6, and let R™(T,v(6)) be the regret incurred by 7
over horizon T on this instance. The algorithm is uniformly good if the regret R™(T,v(0)) = o(T%) as T
grows large for all & > 0 and for all § € ©.
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Theorem 1: Let 7w € II be a uniformly good rule. For any 6 € ©, we have:

tim inf L v(0))

>
T—o0 logT o),

where

M * k * min * k
_ . /’L - /’Lc ,U/ - :u’c /1’ - :uc*
co)= 2, min ( 2 L. TR o m) toX Ty

e=1,cc* ke, kel \{k*}

o u* =maxy pu(0F), 0* = maxy, . 0%

min

o p™" = ming pu(0%), 67" = miny 6%
o af =TF(07,0%) — I*(0¢,0" — Be)
o VF=T1(0%0"-3.)

K. b*
. Lc=1+2k:1;}

The lower bound of regret is derived using the results of controlled Markov chains from |Graves & Lail (1997)).
The proof outline is presented in Appendix[A.2] In general, the main idea used for deriving lower bounds is to
consider an alternate instance, which is ’close’ to the actual instance under consideration, but has a different
optimal mean. The algorithm needs to explore sufficiently to distinguish between the original instance and
the alternate instance. For the clustered case under consideration, the alternate instance parameters also
belong to the clustered parameter space, unlike the classical case, where the parameters were unconstrained.
This fact results in a better lower bound in the structured case. In the proof, we consider an alternate
instance as mentioned earlier, and the terms in the lower bound arise naturally as a result of the cluster
constraints. The following are some important points:

« The exploration term for an arm, i.e., ¥L., depends on the parameters of other arms in that cluster.
This is in contrast to the classical regret bound, where this term only depends on that arm’s parameter.

e This regret bound is always lower than that of the classical bandits derived in |[Lai & Robbins| (1985)),
which is u

. RT(T,v(9)) o= g = pg-

hmlnf%>zzic+ Z —_—

0o — k px k *

T logT foptvercy 1(0%,6%) VIR I(0%.,0%)

e For arms belonging to ¢*, the regret term is the same as that of classical bandits. This is because inside

c*, the cluster structure makes no difference. On the other hand, for suboptimal clusters, we exploit the

structure and make improvements in the bound.

o It is seen that the regret contains a min(a,b) term. The second argument in this corresponds to the
regret incurred by only pulling the worst arm in a cluster. All other arms in the cluster must be pulled
sub-logarithmic times in expectation. Intuitively, the second term corresponds to instances where it is
relatively easier to distinguish the minimum arm in a cluster from the best arm in the instance, while
the first term corresponds to instances where the agent must pull all arms in the cluster to be certain of
its suboptimality. Hence, it is likely that if we have a loosely constrained cluster, the first term would be
the minimum, while for tight clusters, the second term would be the minimum. However, in most of our
presented here or otherwise, we found that the first term appears in the lower bound.

o Note that for the trivial case of 8. = 1 for Bernoulli bandits, we essentially have no clustering information.
Thus, the lower bound term for that cluster becomes the same as in the classical case. Here, we slightly
abuse notation to convey that

woo et e

I+ (67 6% — Be) 0
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and . ) .
Z ,[L* — He — Z :LL* — He¢ — H He
S olLe T 2 TOR )+ Speopan TTO0 07— Bo) 2 1(65,6°)

e For the trivial case of 3. = 0, we have K, arms with the same parameter. Hence, §™" = §* = f(let). So,
pmin = % = 1(0) = p(let).This essentially means that we have only one arm in the cluster.
min

W= e W=

I+H(Omin 0x — B.)  I+(0,0%)’

and

Zu*—uﬁzz 1= p W
Lo ofLe T 22 TO0.0) F Speeppn 10,69 106,67

4 Clus-UCB Algorithm

We now present an algorithm whose regret closely matches the lower bound derived in the previous section
for clustered overlapping bandits.

Algorithm 1 Clus-UCB Algorithm

Require: Horizon T, number of clusters M, arm sets {K.}M, with |[K.| = K., total number of arms K,
cluster gap parameters {8.}2, constant a > 5
1: Pull each arm once; initialize t¥(K + 1) = 1 and estimates 6% (K + 1)
2: forn=K+1toT do

3: for each cluster c=1,..., M and each arm k € K. do
4 Update empirical estimate é’c‘ (n)

5: end for

6: for each cluster c=1,..., M and each arm k € K. do
7 Compute Clus-UCB index:

ob(n) =sup { g eI (0 (m),a) + D ' (m)I*(0F (n).q — B.) <logn + aloglogn

k'€l \{k}
8: end for
9: if 3(c, k) such that t¥(n) < loglogn then
10: Pull arm £ in cluster ¢
11: else
12: Select (¢, k') = arg max,  v¥(n)
13: Pull arm %’ in cluster ¢/
14: end if
15: Observe reward and update counts
16: end for

Theorem 2: Assuming that the bandit arms have bounded rewards or belong to the canonical exponential
family pg(z) = exp(z0 — b(6) + c(x)), with parameters clustered according to Section Clus-UCB’s
asymptotic regret is upper-bounded as

. RT(T,v(9))
— T K
R T <0
where
M ,LL* o :uk /’L* — Mk
9) = c 7@.
co= > > L. T > 1+ (0F.. %)
c=1,c#c* k€K, ke A\{k*} 3
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The proof of Theorem 2 for Bernoulli bandits is present in Appendix This can be extended to any
family with bounded rewards according to Lemma 9 and Theorem 10 in |Garivier & Cappé| (2011). Theorem
2 in |Magureanu et al.| (2014) implies that this holds for the canonical exponential family.

The following are some key points about this algorithm:

e Forced Exploration of Under-Explored Arms: The algorithm design ensures that an arm with
less than loglogn pulls at time n gets pulled eventually. This ensures that no arm faces starvation
and all arms get pulled infinitely often.

e« Rare Suboptimal Pulls Due to Confidence Underestimation: The event in which an arm of
a suboptimal cluster is pulled because the Clus-UCB of the optimal arm falls below its mean occurs
only O(loglogT) times.

e Pull Ratio Among Arms in a Suboptimal Cluster: Within a suboptimal cluster, arms are
pulled in inverse proportion to their exploration coefficients . That is, for two arms with exploration
parameters af and af,_, the expected number of times they are pulled over a long time satisfies:

1 2
E[th] : E[th2] =~ ak2 : oM

o Expected Pulls of Arms in Suboptimal Clusters: An arm k belonging to a suboptimal cluster

c is pulled approximately
logT
ak- L,

+ O(loglogT).

times in expectation, over a long time, where a’j and L. are as defined earlier.

e Near-Optimality: The upper bound presented above, matches the regret lower bound derived
earlier on most instances, but not all. This makes the algorithm near-optimal.

The motivation to use the Clus-UCB index as done in the algorithm is through the lower bound derived and
the analysis done by |Garivier & Cappé (2011). A forced exploration term is also added to ensure all arms
get pulled infinitely often.

Intuitively, the optimality of an arm is evaluated not only by its individual performance but also through
the collective behavior of its cluster. When other members of the same cluster provide sufficient evidence
indicating that the cluster as a whole is suboptimal, the index of an arm is accordingly suppressed even if
its own empirical mean remains high, thereby reducing unnecessary exploration.

The regret lower bound formally captures this interdependence, justifying the proposed index as a theoreti-
cally motivated choice. Specifically, the index quantifies the exploration required to distinguish the current
instance from one in which arm k in cluster ¢ is optimal. The term corresponding to arm k coincides with
the standard KL-UCB term, while the additional I+ (é’g’, q — B.) components represent the information con-
tributions from other arms within the same cluster, under the hypothesis that arm k& were optimal. The
offset term g — . incorporates the effective range of these dependencies.

5 Simulation Results and Discussion:

We ran simulations comparing KL-UCB, Clus-UCB and a KL-UCB-based Two-level-Policy (TLP) on different
bandit instances, and figures show the results. For simplicity, the simulations omit the forced exploration
component (lines 9-10 of the algorithm). Given our time horizon of 10° steps, this omission has negligible
impact on performance. All experiments were performed on a computer with 16 gigabytes of RAM. No
GPU was used. The plots show the results of 200 simulations, with the means and the 95% confidence
intervals presented. To speed up the simulations, we used a multiprocessing framework with 16 CPU cores.
Furthermore, we updated the UCBs every 50 timesteps to reduce computation time. The UCBs were
calculated using binary search, and are accurate up to 4 decimal places. Here, (8 is the cluster width vector.
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We consider two variants of the Two-Level Policy (TLP) suggested by [Pandey et al.|(2007): MEAN and
MAX. TLP treats each cluster as a “super arm” and uses a base policy (KL-UCB) to choose which cluster
to play. Once a cluster is selected, the base policy is applied to its arms. Cluster selection requires a cluster
reward estimate:

e In MEAN, this is the total successes of all arms in the cluster divided by the total cluster pulls.

MEAN, « _ ke tk(n)pk(n)
TC (n) - k
ZkEICC tc (TL)

e In MAX, it is the maximum empirical mean among the cluster’s arms

,]gé\/[AX

(n) = max ()

In our experiments, Clus-UCB consistently outperforms KL-UCB. However, on certain instances, TLP can
outperform Clus-UCB. That said, TLP is not asymptotically optimal, as it lacks knowledge of cluster widths.
Moreover, since TLP assumes arm parameters are tightly clustered, it is straightforward to construct hard
instances where its performance degrades sharply (see Figure [5]). This is because on average, the suboptimal
cluster will have a higher cluster estimate as compared to the optimal cluster, which results in the suboptimal
cluster being pulled more often. We also ran a simulation with 20 clusters and 55 arms, incorporating a wide
variety of cluster types together. The result can be found in the Appendix

5.1 TLP vs Clus-UCB

The simulation results demonstrate that TLP either significantly outperforms Clus-UCB or performs simi-
larly when clusters are non-overlapping, while Clus-UCB significantly outperforms TLP for heavily overlap-
ping clusters. This performance difference can be explained theoretically: for instances with non-overlapping
clusters, the regret lower bound is independent of cluster widths and is lower than the bound presented in
Section [3] In such cases, Clus-UCB’s design makes it overly conservative during exploitation, leading to
unnecessary exploration beyond what is required. TLP, however, does not suffer from this issue, as the
non-overlapping structure allows the cluster reward estimates to accurately identify the optimal cluster most
times.

Therefore, we recommend using TLP when clusters are known to be non-overlapping. However, when such
well-separation assumptions cannot be guaranteed, Clus-UCB is the preferred choice, as it leverages cluster
width information to achieve more efficient exploration in these challenging scenarios.

6 Misspecification of Cluster Widths

An important point to consider is the misspecification of cluster widths. Cases where the exact widths
are not known, but an estimate is available, might be more practical. If the widths are overestimated, the
proposed algorithm continues to outperform KIL-UCB. The case of underestimated widths, however, is more
nuanced. In the proof of Clus-UCB’s optimality (Appendix), we divide the total number of pulls of an arm
in a suboptimal cluster into two cases:

e when the Clus-UCB index of the optimal arm is less than its mean, and

e when the index is greater than or equal to its mean.
We bound these two terms separately. It is noteworthy that the cluster constraint is used only in bounding
the first term, which leads to an O(loglogT) bound. Moreover, this bound depends solely on the width

of the optimal cluster. In fact, throughout the proof, there is no requirement that the other (suboptimal)
clusters satisfy their respective constraints.

At first glance, this may appear surprising. However, the problem formulation we present is actually a special
case of a more general setting of the allowed instances: every cluster has an associated width, but the cluster
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Multi-Armed Bandit Algorithm Comparison (200 Simulations)
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Figure 2: Comparison of Clus-UCB with other algorithms on the instance [0.40,0.41,0.42], [0.60,0.61,0.62]
with 8 = [0.02,0.02] and a horizon of 10° time steps. These represent well separated clusters. The first term
in min appears in the regret lower bound for the suboptimal cluster in this instance.

constraint is required to hold only for the optimal cluster in the fixed instance, while suboptimal clusters may
violate it. Our formulation imposes the stricter condition that all clusters satisfy their constraints, which
is a subset of the general case. This is distinct from the scenario where, in a given instance, a fixed cluster
(which happens to be optimal) satisfies the constraint but an originally suboptimal cluster which becomes
optimal in an alternate instance need not satisfy this constraint. In the general setting, while constructing
an alternate instance, the originally suboptimal cluster may become optimal and must then satisfy its width
constraint. In our setting, the regret lower bound derived earlier continues to apply to this more general
case as well.

From this perspective, underestimating the width of a suboptimal cluster does not harm performance—in
fact, it improves the performance due to the larger denominator (,/3’C < f.) in the regret bound. This is
shown in Figures [] and [6] where the cluster width estimate for the suboptimal cluster is reduced from
correctly estimated to underestimated. However, underestimating the width of the optimal cluster can lead
to substantial regret. This is because the O(loglogT) bound may not hold now. This is shown in Figure

If all cluster widths are specified correctly or are overestimated, Clus-UCB retains the property of being
uniformly good. Hence, for the algorithm to work well, the sufficient condition is that the optimal cluster
must have an overestimated width.

7 Limitations and Future Work

The algorithm provided is asymptotically optimal for most instances, but not all. However, we believe that
a more carefully chosen optimistic index, might perform optimally on all instances, albeit with increased
complexity of analysis. It is also possible to develop a randomized Bayesian algorithm, similar to Thompson
sampling. The beliefs would still be Beta distributed, but only supporting parameter values that satisfy the
clustering constraint. We leave the proof of optimality of this algorithm for future work. Finally, though
overestimation of the optimal cluster’s width does not harm much, underestimating it may be significantly
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Multi-Armed Bandit Algorithm Comparison (200 Simulations)
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Figure 3: Comparison of Clus-UCB with other algorithms on the instance [0.80,0.82,0.84], [0.81,0.83,0.85]
with 8 = [0.04,0.04] and a horizon of 10° time steps. These represent overlapping clusters. The first term
in min appears in the regret lower bound for the suboptimal cluster in this instance.

Multi-Armed Bandit Algorithm Comparison (200 Simulations)
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Figure 4: Comparison of Clus-UCB with other algorithms on the instance [0.41,0.42,0.43], [0.43,0.44,0.45]
with 8 = [0.02,0.02] and a horizon of 10° time steps. These represent close but separated clusters. The first
term in min appears in the regret lower bound for the suboptimal cluster in this instance.
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Multi-Armed Bandit Algorithm Comparison (200 Simulations)
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Figure 5: Comparison of Clus-UCB awith other algorithms on the instance [0.68,0.69,0.67], [0.1,0.2,0.7] with
B = [0.02,0.8] and a horizon of 10° time steps. This represents an instance where the TLP-Mean policy
performs poorly. The first term in min appears in the regret lower bound for the suboptimal cluster in this
instance.

Multi-Armed Bandit Algorithm Comparison (200 Simulations)
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Figure 6: Comparison of Clus-UCB with other algorithms on the instance [0.41,0.42,0.43], [0.43,0.44,0.45]
with 3 = [0.00,0.02] and a horizon of 10° time steps. These represent close but separated clusters. The
second term in min appears in the regret lower bound for the suboptimal cluster in this instance.
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KL-UCB vs Clus-UCB with Different Beta Values (48 Simulations)
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Figure 7: Comparison of Clus-UCB and KL-UCB on the instance [0.3,0.7],[0.1,0.2,0.8] with 8 = [0.5,0.9],
B =10.4,0.7], B =1[0.1,0.7], and B = [0.4,0.2] and a horizon of 10° time steps.

harmful. Thus, a separate framework dealing with width estimates as unreliable side-information seems
worth exploring.

8 Conclusion

In this work, we analyzed a clustered bandit setting where prior information on an upper bound of cluster
widths is available. We established an improved regret lower bound compared to the classical result of [Lai
& Robbins| (1985) for unstructured bandits, and proposed the Clus-UCB algorithm to exploit this structure.
Our analysis showed its near-optimality, and simulations confirmed its advantages over structure-unaware
algorithms as well as its competitiveness with the two-level policy of [Pandey et al. (2007). We further
examined cases where cluster widths are misspecified and identified a necessary condition for Clus-UCB to
remain robust under such settings. Despite these contributions, certain limitations remain. In particular,
our algorithm is near-optimal, however, a more carefully chosen index might lead to an optimal algorithm.
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A Appendix

A.1 Extra Simulation Results:

The instance under consideration was [0.1,0.7,0.9], [0.1,0.15], [0.12,0.14,0.13], [0.23,0.30], [0.28,0.34,0.32],
[0.16,0.17], [0.65,0.61,0.63,0.67], [0.1,0.2,0.95], [0.91,0.92], [0.40,0.41,0.42], [0.81,0.86,0.89], [0.78,0.85,0.88],
[0.1,0.5,0.9], [0.92,0.93,0.94], [0.01,0.02,0.03], [0.05,0.1], [0.2,0.36], [0.2,0.21,0.78], [0.3,0.29,0.53,0.54],
[0.57,0.6] with cluster widths [ 0.8, 0.05, 0.02, 0.07, 0.06, 0.01, 0.05, 0.85, 0.01, 0.02, 0.08, 0.10, 0.8, 0.02,
0.02, 0.05, 0.16, 0.58, 0.25, 0.03 |

A.2 Proof of Theorem 1

We follow the analytical framework developed by |Graves & Lai| (1997). Let © denote the set of all problem
instances consistent with the given cluster structure. For each arm j, define ©; as the set of instances in
which arm j is optimal. Given an instance 6 € O, let J(6) be the set of optimal arms under 6.

We define the set of bad instances as:

BO)=<{A€O©:up=p,VjeJ@®), and X ¢ | ] ©;
JEJ(0)
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Multi-Armed Bandit Algorithm Comparison (200 Simulations)
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Figure 8: Comparison of Clus-UCB with other algorithms for 20 clusters with 55 arms.

Here ug is the mean of arm j in the instance v(6). Let C(0) be the value of the following optimization
problem:

CO) =inf QD Cilwg—pp):Ci 20, inf > Cillypl) =1,
J¢J(0) J¢J(0)

where I(-,-) is the KL divergence.

According to Theorem 1 of |Graves & Lail (1997)), this quantity characterizes the asymptotic lower bound on
regret for any uniformly good algorithm 7:

lim inf R(n, v(6)) = C(0).

n—00 logn

Computing C(#) reduces to solving a linear program. Suppose that under a bad instance A, some arm ¢ from
a suboptimal cluster ¢y becomes optimal. The value of

J¢J(0)

is minimized when, for all clusters except cg, the arm means under A\ match those of the suboptimal arms in
6. For cluster cp, the i-th arm has a mean greater than pj, while other arms in ¢y have means

iy, = max(pig, 1} — Be)-
The minimum is achieved when u} = uj.

For a given cluster ¢y with K, arms indexed by k =1, ..., K,,, the system of inequalities becomes:

OZI(MZMU’*) + Z Ck‘I+(/J“k7,U* - /BC) 2 1)
k€ \{i}
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where y; = ph, and p* = .

Let B be a K, x K, matrix, where each column i has elements b. Let a be a diagonal matrix of o terms,
and c a column vector of the C; variables. Define the reward gap vector a with entries a; = p* — p;.

The linear program becomes:

min a'c
c>0

subject to (B + a)c > 1.

This optimization can be solved using standard techniques, and we get the desired lower bound.

This process is repeated across all clusters to compute the global infimum C(8).

A.3 Proof of Theorem 2
This work follows the outline of the proof of Theorem 2 in|Garivier & Cappé| (2011). We now state theorem
from [Magureanu et al.| (2014)).

Theorem 3:
For all 6 > K + 1, n € N, we have:

(Ztk I () > 5> <(M)K6m> |
K
If 6, = logn 4+ aloglogn ,with a > 5, then

LZIJI{Zt’f Yt (ak, uk) > 6, }

= O(loglogT)

Let ¢ be the best arm in cluster ¢. Let A, be the arm-cluster pair pulled by the algorithm at time step n.
Now, we proceed by bounding the number of pulls as:

~
5
—
~
N~—
I
=
—~
I
3
I
—
\.N
o
<
—

n=1
T
= D H{Aw = (0,007 () 2 i} + T{A, = (i), 0" (n) < p°},
n=1
where v*(n) is the Clus-UCB of the optimal arm at timestep n. Now,
T
> I{A, = (i.0),v"(n) < }<ZH{U ) <}
n=1

Notice that

kel N\{k*} kel \{k*}

as uk. > u* — B Vk € ¢*, and as KL-divergence is increasing in the second term.

Define
By =t () (A (), i)+ 0tk (dt (ke (), k)

ke N\{k*}

Cp =t (md* (Al () )+ 30t () (@l (), " = Bee)

kel \{k*}
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Hence, B,, > C,,

Now P(v*(n) < px) < P(Cp, > logn + aloglogn) < P(B, > logn + aloglogn)
Hence, using Theorem 3, we have

T T
ZH{U )< ' < ZP(Cn>logn+aloglogn) SZP(Bn > logn + aloglogn) = O(loglogT)
n=1 n=1

Other term: .
ZH{An = (i,¢),v*(n) > u*}
T
Z = vt (n) > u*, ti(n )<log10gn}+ZH{An7 (i,¢),v*(n) > u*,ti(n) > loglogn}
n=1 n=1
T
= O(loglogT) + Z]I{An = (i,¢),v*(n) > u*,t.(n) > loglogn, }
n=1
Note that

{A, = (i,¢),v*(n) > u*,ti(n) > loglogn} = vi(n) > v*(n) > u*

Thus, the inequality continues as

<Y X I t(n)d (fhn), 1)+ Y tEn)dt (pF(n), u" — B) <logn +aloglogn ¢,

kel \{i}

where
X, =1{A, = (i,¢),v}(n) > u*,t\(n) > loglogn}

T k
< 3 KXo A )+ 3 j:((;‘;ﬁ (A5(n). 1 — B)] < logn + aloglogn
n=1 kek\{i} ¢

We now make 2 key observations about the behavior of the algorithm:

1. Regret upper bound: The regret of the algorithm can be upper bounded by that of the KL-UCB
algorithm. This follows as:

T k
) . t
Z L4 th(n)[d (pk(n), 1*) + Z t:((Z)) d* (fE(n), p* — B)] < logn + aloglogn
kekA\{i} ¢

< Z I{ti(n)d (A%(n), p*) <logn +aloglogn} .
n=1
The right hand term is what we get while analyzing KL-UCB. Thus, the regret of Clus-UCB is
upper bounded by the regret of KL-UCB. Hence, all suboptimal arms are pulled O(logT') times in
expectation.

2. Convergence of Clus-UCB values: The Clus-UCB values of all suboptimal arms must converge
to p*, the mean of the optimal arm. We prove this by contradiction:

(a) Suppose the Clus-UCB of a suboptimal arm ¢ converges to some value u < p*. Then, eventually,
the algorithm will stop selecting this arm. As a result, the number of times it is pulled will be
sub-logarithmic, contradicting the earlier claim that every suboptimal arm is pulled O(logT)
times.
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(b) Suppose instead that the Clus-UCB of a suboptimal arm converges to u > p*. Since the Clus-
UCB of the optimal arm converges to u*, the suboptimal arm will eventually have a strictly
higher UCB. This would lead the algorithm to pull it linearly often, resulting in linear regret,
which contradicts the O(log T') upper bound.

Now, notice that

ti(n)d ((n),ol(n)) + Y ti(n)d" (if(n),vi(n) - Bc) =logn +aloglogn,

kel A\{i}

= t(n)(d (fik(n), vi(n) — d* (fE(n),vin) = B.)) + 3 th(m)d* (i (n), vi(n) — B.) = logn + aloglogn.
ke,
Let £i(n) = ti(n)(d (iii(n), vi(n)) — d* (fi(n), vi(n) — B.)) and gi(n) = Syex, th(m)d* (i (), vi(n) — B.)

Thus, fr(n)+ gr(n) =logn + aloglogn for all arms k in cluster ¢. Also, since we are interested in the time
instances when arm i has the maximum cluster index, g;(n) > gr(n)Vk € 1,2...K. as vi(n) > v¥(n)
This implies, f;(n) < fr(n)Vk € 1,2...K.. Thus,

te(n) _ d(jig(n), vi(n)) — d* (jig(n), ve(n) — Be)
ti(n) — d(fig(n), vE(n)) — d* (jig(n), vE(n) — Be)

Due to the design of the algorithm(forced exploration of arms with less than loglogn pulls), all arms are
pulled infinitely often asymptotically, i.e, no arm faces starvation. Hence, by the Strong Law of Large
Numbers, the empirical mean of each arm converges almost surely to its true mean. This implies that for
any € > 0, each arm’s empirical mean differs from its true mean by more than e only finitely many times
along its pull sequence. Consequently, almost surely, there exists a random time after which each arm’s
empirical mean remains e-close to its true mean. For a finite cluster of arms, by taking the maximum of
these (finite) random times, we can conclude that almost surely, there exists a finite time N, after which
all empirical means in the cluster are simultaneously e-close to their true means. Also, vi(n) > p* and
vi(n) > v¥(n). Thus, after time N,

d(fie(n), ve(n)) — d* (fre(n), vi(n) — Be)  d(pe — € ve(n)) — d* (ug — €, vi(n) — Be)
d(fug (n), v (n)) — d+ (g (n), v (n) = Be) — d(pg + €, vi(n)) — d* (g + €, vi(n) — Be)

We also have pf > p¥, and hence the right hand side is increasing with respect to v%(n).

s, — e, vi(m)) = d* (i — e, vi(m) ~ B) b
Ak + e, vi(n) — d* (b e, oi(m) = Bo) ~ b

Thus, the inequality continues as

T k
. . £
< N.+ Z X, IS th(n)[d (pl(n), u*) + Z t;EZ;C# (AFn), pe — B:)] <logn + aloglogn
n=Nc+1 kekA\{i} ¢
)+ ZX tin)d (pl+ e, p") + > %d* (1k + e, ™ = Bc)] < logn + aloglogn + O(e)
n=1 kech\{'L} ¢
T i
Z : d (h+en) + D %cﬁ (uk + e, 5" = Bc)] <log T + aloglog T + O(e)
n=1 ke \{i} ¢
T n 7
+ZZYn]I [d (i + e p*) + Z %dJr(u’j—i—e,,u*—ﬂc)]SlogT—i—aloglogT—FO(e)
n=1s=1 ke A\{i} ¢
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where 4
Y, =1{A, = (i,c),ti(n) = s}
<O(1)+ZZYn.]I{sd(,uf:+e,u*)+ Z %aﬁ (,u’j—i—e,u*—ﬁc) <logT+aloglogT+O(e)}
n=1s=1 kek\{i} c

oo n )
< O(l)—i—ZZYn.H{sd (ui,u*) + Z %d+ (,u’(f,u* - Be) §logT+aloglogT—i—O(e)}
ke A\{i} ¢

<0(1) + Z ZYn.H{s(d (i i) + Z %d* (uF, % — Be)) <logT + aloglog T + O(e)}
kek\{i} ¢

<o)+ ZYn.H{sach <logT + aloglog T + O(e)}
n=1s=1

oo oo
<O(1)+ Z]I{saiLc <logT + aloglogT + O(e)} ZY"

s=1

<o0(1)+ logT—l—al(;giE)gT—FO(e)

Since all Clus-UCBs converge to p* and all empirical means converge to their actual means, we have f;(n) =
fx(n) as n tends to infinity. Thus, for any other arm in the cluster,

EtH(T)] o 1 1
limsup e M — Qe = 2
1;n:01ip logT ok ail, aFL,
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