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Abstract

Common representation learning (CRL) learns a shared embedding between two or more modalities
to improve in a given task over using only one of the modalities. CRL from different data types
such as images and time-series data (e.g., audio or text data) requires a deep metric learning loss that
minimizes the distance between the modality embeddings. In this paper, we propose to use the triplet
loss, which uses positive and negative identities to create sample pairs with different labels, for CRL
between image and time-series modalities. By adapting the triplet loss for CRL, higher accuracy in
the main (time-series classification) task can be achieved by exploiting additional information of the
auxiliary (image classification) task. Our experiments on synthetic data and handwriting recognition
data from sensor-enhanced pens show an improved classification accuracy, faster convergence, and
a better generalizability.

1 Introduction

Cross-modal retrieval such as common representation learning (CRL) Peng et al. (2017) for learning across two or
more modalities (i.e., image, audio, text and 3D data) has attracted a lot of attention recently. It can be applied in
a wide range of applications such as multimedia management Lee et al. (2020) and identification Sarafianos et al.
(2019). Extracting information from several modalities and adapting the domain with cross-modal learning allows to
use information in all domains Ranjan et al. (2015). CRL, however, remains challenging due to the heterogeneity gap
(inconsistent representation forms of different modalities) Huang et al. (2020).

A limitation of CRL is that most approaches require the availability of all modalities at inference time. However,
in many applications certain data sources are only available during training by means of elaborate laboratory setups
Lim et al. (2019). For instance, consider a human pose estimation task that uses inertial sensors together with RGB
videos during training. A camera setup might not be available at inference time due to bad lighting conditions or
other application-specific restrictions. This requires a model that allows inference on the main modality only, while
auxiliary modalities may only be used to improve the training process (as they are not available at inference time)
Hafner et al. (2022). Learning using privileged information Vapnik & Izmailov (2015) is one approach in the literature
that describes and tackles this problem. During training it is assumed that in addition to X additional information X∗,
the privileged information, is available which is, however, not present in the inference stage Momeni & Tatwawadi
(2018).

For CRL, we need a deep metric learning (DML) technique that aims to transform training samples into feature
embeddings that are close for samples that belong to the same class and far apart for samples from different classes
Wei et al. (2016). As DML requires no model update (simply fine-tuning for training samples of new classes), DML
is an interesting approach for continual learning Do et al. (2019). Typical DML methods use simple distances (e.g.,
Euclidean distance) but also highly complex distances (e.g., canonical correlation analysis Ranjan et al. (2015) and
maximum mean discrepancy Long et al. (2015)). While CRL learns representations from all modalities, single-modal
learning commonly uses pair-wise learning. The triplet loss Schroff et al. (2015) selects a positive and negative triplet
pair for a corresponding anchor and forces the positive pair distance to be smaller than the negative pair distance.
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Figure 1: Method overview: Common representation learning between image and time-series data using the triplet
loss based on DML functions to improve the time-series classification task.

While research of triplet selection for single-modal classification is very advanced Do et al. (2019), pair-wise selection
for CRL is investigated for specific applications only Zhen et al. (2015); Lee et al. (2020); Zhang & Zheng (2020).

One exemplary application for cross-modal learning is handwriting recognition (HWR). HWR can be categorized into
offline and online HWR. Offline HWR such as optical character recognition (OCR) deals with the analysis of the
visual representation of handwriting only, but cannot be applied for real-time recognition applications Fahmy (2010).
Online HWR works on different types of spatio-temporal signals and can make use of temporal information such as
writing speed and direction Plamondon & Srihari (2000). Many recording systems make use of a stylus pen together
with a touch screen surface Alimoglu & Alpaydin (1997). Systems for writing on paper are only prototypical Chen
et al. (2021); Schrapel et al. (2018); Wang et al. (2013); Deselaers et al. (2015) and cannot be applied for real-world
applications. A novel sensor-enhanced pen based on inertial measurement units (IMUs) enables new applications for
writing on normal paper. This pen has previously been used for single character Ott et al. (2020; 2022a;b) and sequence
Ott et al. (2022c) classification. However, the accuracy of previous online HWR methods is limited due to the limited
size of datasets as recording of larger amounts of data is time consuming. A possible solution is to combine datasets of
different modalities using common representation learning to increase the generalizability. In this work, we combine
offline HWR from generated images (i.e., OCR) and online HWR from sensor-enhanced pens by learning a common
representation between both modalities. The aim is to integrate information of OCR, i.e., typeface, cursive or printed
writing, and font thickness, into the online HWR task, i.e., writing speed and direction Vinciarelli & Perrone (2003).

Our Contribution. Models that use rich data (e.g., images) usually outperform those that use a less rich modality
(e.g., time-series). We therefore propose to train a shared representation using the triplet loss between pairs of image
and time-series data to learn a common representation between both modality embeddings (cf. Figure 1). This allows
to improve the accuracy for single-modal inference in the main task. We prove the efficacy of our DML-based triplet
loss for CRL both with simulated data and in a real-world application. More specifically, our proposed CRL technique
1) improves the multivariate time-series (MTS) classification accuracy and convergence, 2) results in a small MTS-
only network independent from the image modality while allowing for fast inference, and 3) has better generalizability
and adaptability Huang et al. (2020). Code and datasets are available upon publication.1

The paper is organized as follows. Section 2 discusses related work followed by the mathematical foundation of our
method in Section 3. The experimental setup is described in Section 4 and the results are discussed in Section 5.

2 Related Work

In this section, we discuss related work, in particular approaches for learning a common representation from different
modalities (in Section 2.1) and DML (in Section 2.2) to minimize the distance between feature embeddings.

2.1 Cross-Modal Representation Learning

For traditional methods that learn a common representation, a cross-modal similarity for the retrieval can be calculated
with linear projections as basic models Rasiwasia et al. (2010). However, cross-modal correlation is highly complex,

1Code and datasets: https://www.anonymous-submission.org
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and hence, recent methods are based on a modal-sharing network to jointly transfer non-linear knowledge from a
single modality to all modalities Wei et al. (2016). Huang et al. (2020) use a cross-modal network between different
modalities (image to video, text, audio and 3D models) and a single-modal network (shared features between images
of source and target domains). They use two convolutional layers (similar to our proposed architecture) that allows
the model to adapt more trainable parameters. However, while their auxiliary network uses the same modality, our
auxiliary network is based on another modality. Lee et al. (2020) learn a common embedding between video frames
and audio signals with graph clusters, but at inference both modalities must be available. Sarafianos et al. (2019)
proposed an image-text modality adversarial matching approach that learns modality-invariant feature representations,
but their projection loss is used for learning discriminative image-text embeddings only. Hafner et al. (2022) propose a
model for single-modal inference. However, they use image and depth modalities for person re-identification without
a time-series component, which makes the problem considerably different. Lim et al. (2019) handled multisensory
modalities for 3D models only.

2.2 Deep Metric Learning

Networks trained for the classification task can produce useful feature embeddings with efficient runtime complexity
O(NC) per epoch, where N is the number of training samples and C the number of classes. The classical cross-
entropy (CE) loss, however, is not useful for DML as it ignores how close each point is to its class centroid (or how far
apart from other class centroids). The pairwise contrastive loss Chopra et al. (2005) minimizes the distance between
feature embedding pairs of the same class and maximizes the distance between feature embedding pairs of different
classes dependent on a margin parameter. The issue is that the optimization of positive pairs is independent from
negative pairs, but the optimization should force the distance between positive pairs to be smaller than negative pairs
Do et al. (2019).

The triplet loss Yoshida et al. (2019) addresses this by defining an anchor and a positive as well as a negative point,
and forces the positive pair distance to be smaller than the negative pair distance by a certain margin. The runtime
complexity of the triplet loss is O(N3/C), and can be computationally challenging for large training sets. Hence,
several works exist to reduce this complexity such as hard or semi-hard triplet mining Schroff et al. (2015), or smart
triplet mining Harwood et al. (2017). Often, data is evolving over time, and hence, Semedo & Magalhães (2020)
proposed a formulation of the triplet loss where the traditional static margin is superseded by a temporally adaptive
maximum margin function. While Zeng et al. (2017); Li et al. (2021) combine the triplet loss with the CE loss, Guo
et al. (2019) use a triplet selection with L2-normalization for language modeling, but considered all negative pairs for
triplet selection with fixed similarity intensity parameter. For our experiments, we use a triplet loss with a dynamic
margin together with a novel word level triplet selection. The DeepTripletNN Zeng et al. (2020) also uses the triplet
loss on embeddings between an anchor from audio data and positive and negative samples from visual data, and the
cosine similarity for the final representation comparison. CrossATNet Chaudhuri et al. (2020), another triplet loss-
based method which uses single class labels, defines class sketch instances as anchor, the same class image instance
as positive sample and a different class image instance as negative sample. While the previous methods are based on
a triplet selection method using single label classification, we are – to the best of our knowledge – the first to propose
the triplet loss for sequence-based classification (i.e., words).

Most of the related work uses the Euclidean metric as distance loss, although the triplet loss can be defined based on
any other (sub-)differentiable distance metric. Wan & Zou (2021) proposed a method for offline signature verification
based on a dual triplet loss that uses the Euclidean space to project an input image to an embedding function. While
Rantzsch et al. (2016) use the Euclidean metric to learn the distance between feature embeddings, Zeng et al. (2017) use
the Cosine similarity. Hermans et al. (2017) state that using the non-squared Euclidean distance is more stable, while
the squared distance made the optimization more prone to collapsing. Recent methods extend the canonical correlation
analysis (CCA) Ranjan et al. (2015) that learns linear projection matrices by maximizing pairwise correlation of cross-
modal data. To share information between the same modality (i.e., images), typically the maximum mean discrepancy
(MMD) Long et al. (2015) is minimized.

3 Methodology

We define the problem of common representation learning and present DML loss functions in Section 3.1. In Sec-
tion 3.2 we propose the triplet loss for cross-modal learning.
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3.1 Common Representation Learning

A multivariate time-series (MTS) U = {u1, . . . , um} ∈ Rm×l is an ordered sequence of l ∈ N streams with ui =
(ui,1, . . . , ui,l), i ∈ {1, . . . , m}, where m ∈ N is the length of the time-series. The MTS training set is a subset
of the array U = {U1, . . . , UnU

} ∈ RnU ×m×l, where nU is the number of time-series. Let X ∈ Ro×p with
entries xi,j ∈ [0, 255] represent an image from the image training set. The image training set is a subset of the
array X = {X1, . . . , XnX

} ∈ RnX ×o×p, where nX is the number of time-series. The aim of joint MTS and image
classification tasks is to predict an unknown class label v ∈ Ω for single class prediction or v ∈ Ω for sequence
prediction for a given MTS or image (see also Section 4.2). The time-series samples denote the main training data,
while the image samples represent the privileged information that is not used for inference. In addition to good
prediction performance, the goal is to learn representative embeddings fc(U) and fc(X) ∈ Rq×w to map MTS
and image data into a feature space Rq×w, where fc is the output of the convolutional layer(s) c ∈ N of the latent
representation.

We force the embedding to live on the q×w-dimensional hypersphere by using a Softmax attention, i.e., ||fc(U)||2 =
1 and ||fc(X)||2 = 1 ∀c (see (Weinberger et al., 2005)). In order to obtain a small distance between the embeddings
fc(U) and fc(X), we minimize DML functions LDML(fc(X), fc(U)). Well-known DML metrics are the distance-
based mean squared error (MSE) LMSE, the spatio-temporal cosine similarity (CS) LCS, the Pearson correlation (PC)
LPC, or the distribution-based Kullback-Leibler (KL) divergence LKL. In our experiments, we additionally evaluate
the kernalized maximum mean discrepancy (kMMD) LkMMD, Bray Curtis (BC) LBC, and Poisson LPO losses. We
study their performance in Section 5. A combination of classification and CRL losses can be realized by dynamic
weight averaging Liu et al. (2019) as a multi-task learning approach that performs dynamic task weighting over time
(see Appendix A.1).

3.2 Triplet Loss
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Figure 2: Triplet pair.

While the training with the previous loss functions uses inputs where the image and
MTS have the same label, pairs with similar but different labels can improve the train-
ing process. This can be achieved using the triplet loss Schroff et al. (2015) which
enforces a margin between pairs of image and MTS data with the same identity to
all other different identities. As a consequence, the convolutional output for one and
the same label lives on a manifold, while still enforcing the distance and thus dis-
criminability to other identities. We therefore seek to ensure that the embedding of
the MTS Ua

i (anchor) of a specific label is closer to the embedding of the image Xp
i

(positive) of the same label than it is to the embedding of any image Xn
i (negative)

of another label (see Figure 2). Thus, we want the following inequality to hold for all
training samples

(
fc(Ua

i ), fc(Xp
i ), fc(Xn

i )
)

∈ Φ:

LDML
(
fc(Ua

i ), fc(Xp
i )

)
+ α < LDML

(
fc(Ua

i ), fc(Xn
i )

)
, (1)

where LDML
(
fc(X), fc(U)

)
is a DML loss, α is a margin between positive and negative pairs, and Φ is the set of all

possible triplets in the training set. Based on (1), we can formulate a differentiable loss function that we can use for
optimization:

Ltrpl,c(Ua, Xp, Xn) =
N∑

i=1
max

[
LDML

(
fc(Ua

i ), fc(Xp
i )

)
− LDML

(
fc(Ua

i ), fc(Xn
i )

)
+ α, 0

]
, (2)

where c ∈ N.2 Selecting negative samples that are too close to the anchor (in relation to the positive sample) can cause
slow training convergence. Hence, triplet selection must be handled carefully and application-specific Do et al. (2019).
We choose negative samples based on the class distance (single labels) and on the Edit distance (sequence labels), see
Section 4.2.

2To have a larger number of trainable parameters in the latent representation with a greater depth, we evaluate one and two stacked convolutional
layers, each trained with a shared loss Ltrpl,c.
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Figure 3: Synthetic signal data (a) for 10 classes, and image data (b-c) for classes 0 (left) and 6 (right).

4 Experiments

We now demonstrate the efficacy of our proposal. In Section 4.1 we generate sinusoidal time-series with introduced
noise (main task) and compute the corresponding Gramian angular summation field (GASF) with different noise
parameters (auxiliary task), see Figure 1. In Section 4.2 we combine online (inertial sensor signals, main task) and
offline data (visual representations, auxiliary task) for handwriting recognition (HWR) with sensor-enhanced pens.
This task is particularly challenging due to different data representations based on images and MTS data. For both
applications, our approach allows to only use the main modality (MTS) for inference. We further analyze and evaluate
different DML functions to minimize the distance between the learned embeddings.

4.1 Cross-Modal Learning on Synthetic Data

We first investigate the influence of the triplet loss for cross-modal learning between synthetic time-series and image-
based data. For this, we generate signal data of 1,000 timesteps with different frequencies for 10 classes (see Figure 3a)
and add noise from a continuous uniform distribution U(a, b) for a = 0 and b = 0.3. We use a recurrent CNN with
the CE loss to classify these signals. From each signal without noise, we generate a GASF Wang & Oates (2015). For
classes with high frequencies, this results in a fine-grained pattern, and for low frequencies in a coarse-grained pattern.
We generate GASFs with different added noise between b = 0 (Figure 3b) and b = 1.95 (Figure 3c). A small CNN
classifies these images with the CE loss. To combine both networks, we train each signal-image pair with the triplet
loss. As the frequency of the sinusoidal signal is closer for more similar class labels, the distance in the manifold
embedding should also be closer. For each batch, we select negative sample pairs for samples with the class label
CL = 1 + ⌊ maxe −e−1

25 ⌋ as lower bound for current epoch e and maximum epoch maxe. We set the margin α in the
triplet loss separately for each batch such that α = β · (CLp − CLn) depends on the positive CLp and negative CLn

class labels of the batch and is in the range [1, 5] with β = 0.1. The batch size is 100 and maxe = 100. Appendix A.2
provides further details. This combination of the CE loss with the triplet loss can lead to a mutual improvement of the
utilization of the classification task and embedding learning.

4.2 Cross-Modal Learning for HWR

Method Overview. Figure 4 gives a method overview. The main task is online HWR to classify words written
with a sensor-enhanced pen and represented by MTS of the different pen sensors. To improve the classification task
with a better generalizability, the auxiliary network performs offline HWR based on an image input. We pre-train
ScrabbleGAN Fogel et al. (2020) on the IAM-OffDB Liwicki & Bunke (2005) dataset and for all MTS word labels
generate the corresponding image as the positive MTS-image pair. Each MTS and each image is associated with
v, a sequence of L class labels from a pre-defined label set Ω with K classes. For our classification task, v ∈ ΩL

describes words. The MTS training set is a subset of the array U with labels VU = {v1, . . . , vnU
} ∈ ΩnU ×L. The

image training set is a subset of the array X , and the corresponding labels VX = {v1, . . . , vnX
} ∈ ΩnX ×L. Offline

HWR techniques are based on Inception, ResNet34, or GTR Yousef et al. (2018) modules. The online method is
improved by sharing layers with a common representation by minimizing the distance of the feature embedding of
the convolutional layers c ∈ {1, 2} (integrated in both networks) with a shared loss Lshared,c. We set the embedding
size Rq×w to 400 × 200. Both networks are trained with the connectionist temporal classification (CTC) Graves
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Figure 4: Detailed method overview: The middle pipeline consists of data recording with a sensor-enhanced pen,
feature extraction of inertial MTS data, and word classification with CTC. We generate image data with the pre-trained
ScrabbleGAN for corresponding word labels. The top pipeline (four GTR blocks) extracts features from images. The
distances of the embeddings are minimized with the triplet loss and DML functions. The classification network with
two BiLSTM layers are fine-tuned for the OnHW task for a common representation.

(a) Metropolis. (b) Citizen. (c) Concerts. (d) Starnberg.

Figure 5: Overview of four generated words with ScrabbleGAN Fogel et al. (2020) with various text styles.

et al. (2009) loss LCTC to avoid pre-segmentation of the training samples by transforming the network outputs into a
conditional probability distribution over label sequences.

Datasets for Online HWR. We make use of two word datasets proposed in Ott et al. (2022c). These datasets
are recorded with a sensor-enhanced pen that uses two accelerometers (3 axes each), one gyroscope (3 axes), one
magnetometer (3 axes), and one force sensor at 100 Hz Ott et al. (2020; 2022b). One sample of size m × l represents
an MTS of a written word of m timesteps from l = 13 sensor channels. One word is a sequence of small or capital
characters (52 classes) or with mutated vowels (59 classes). The OnHW-words500 dataset contains 25,218 samples
where each of the 53 writers contributed the same 500 words. The OnHW-wordsRandom dataset contains 14,641
randomly selected words from 54 writers. For both datasets, 80/20 train/validation splits are available for writer-
(in)dependent (WD/WI) tasks. We transform (zero padding, interpolation) all samples to 800 timesteps.

Image Generation for Offline HWR. In order to couple the online MTS data with offline image data, we use a
generative adversarial network (GAN) to generate arbitrarily many images. ScrabbleGAN Fogel et al. (2020) is a state-
of-the-art semi-supervised approach that consists of a generator G that generates images of words with arbitrary length
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Figure 6: Number image-MTS pairs dependent on mismatches.

from an input word label, a discriminator D, and a recognizer R promoting style and data fidelity. For the generator,
four character filters (km, ke, ke and kt) are concatenated, multiplied by a noise vector and fed into a class-conditioned
generator. This allows for adjacent characters to interact, e.g., enabling cursive text. We train ScrabbleGAN with the
IAM-OffDB Liwicki & Bunke (2005) dataset and generate three different datasets. Exemplary images are shown in
Figure 5. First, we generate 2 million images randomly selected from a large lexicon (OffHW-German), and pre-train
the offline HWR architectures. Second, we generate 100,000 images based on the same word labels for each of the
OnHW-words500 and OnHW-wordsRandom datasets (OffHW-[words500, wordsRandom]), and fine-tune the offline
HWR architectures.

Methods for Offline HWR. OrigamiNet Yousef & Bishop (2020) is a state-of-the-art multi-line recognition method
using only unsegmented image and text pairs. An overview of offline HWR methods is given in Appendix A.3.
Similar to OrigamiNet, our offline method is based on different encoder architectures with one or two additional
1D convolutional layers (each with filter size 200, Softmax activation Zeng et al. (2017)) with 20% dropout for
the latent representation, and a common representation decoder with BiLSTMs. For the encoder, we make use of
Inception modules from GoogLeNet, the ResNet34 architecture, and re-implement the newly proposed gated, fully
convolutional method gated text recognizer (GTR) Yousef et al. (2018). See Appendix A.4 for detailed information
on the architectures. We train the networks on the generated OffHW-German dataset for 10 epochs, and fine-tune on
the OffHW-[500, wordsRandom] datasets for 15 epochs. For comparison with state-of-the-art techniques, we train
OrigamiNet and compare with IAM-OffDB. For OrigamiNet, we apply interline spacing reduction via seam carving
Avidan & Shamir (2007), resizing the images to 50% height, and random projective (rotating and resizing lines) and
random elastic transform Wigington et al. (2017). We augment the OffHW-German dataset with random width resizing
and apply no augmentation for the OffHW-[words500, wordsRandom] datasets for fine-tuning.

Offline/Online Common Representation Learning. Our architecture for online HWR is based on Ott et al. (2022c).
The encoder extracts features of the inertial data and consists of three convolutional layers (each with filter size 400,
ReLU activation) and one convolutional layer (filter size 200, ReLU activation), a max pooling, batch normalization
and a 20% dropout layer. As for the offline architecture, the network then learns a latent representation with one or
two convolutional layers (each with filter size 200, Softmax activation) with 20% dropout and the same CRL decoder.
The output of the convolutional layers of the latent representation are minimized with the Lshared,c loss. The layers
of the common representation are fine-tuned based on the pre-trained weights of the offline technique. Here, two
BiLSTM layers with 60 units each and ReLU activation extract the temporal context of the feature embedding. As for
the baseline classifier, we train for 1,000 epochs. For evaluation, the main MTS network is independent of the image
auxiliary network by using only the weights of the main network.

Triplet Selection. To ensure (fast) convergence, it is crucial to select triplets that violate the constraint from Equa-
tion 1. Typically, it is infeasible to compute the loss for all triplet pairs or this leads to poor training performance as
poorly chosen pairs dominate hard ones. This requires an elaborate triplet selection Do et al. (2019). We use the Edit
distance (ED) to define the identity and select triplets. The ED is the minimum number of substitutions S, insertions I
and deletions D required to change the sequences h = (h1, . . . , hr) into g = (g1, . . . , gt) with length r and t, respec-
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tively. We define two sequences with an ED of 0 as positive pair, and with an ED larger than 0 as negative pair. Based
on preliminary experiments, we use only substitutions for triplet selection that lead to a higher accuracy compared to
additional insertions and deletions (whereas these would also change the length difference of image and MTS pairs).
We constrain p − m/2, the difference in pixels p of the images and half the number of timesteps of the MTS, to be
maximal ±20. The goal is a small distance for positive pairs, and a large distance for negative pairs that increases
with a larger ED (between 1 and 10). And despite a limited number of word labels, there still exist a large number of
image-MTS pairs per word label for every possible ED (see Figure 6). For each batch, we search in a dictionary of
negative sample pairs for samples with ED = 1 + ⌊ maxe −e−1

100 ⌋ as lower bound for the current epoch e and maximal
epochs maxe. For every label we randomly pick one image. We let the margin α in the triplet loss vary for each batch
such that α = β · ED is depending on the mean ED of the batch and is in the range [1, 11] with β = 10−3 for MSE,
β = 0.1 for CS and PC, and β = 1 for KL. The batch size is 100 and maxe = 1, 000.

5 Experimental Results

Hardware and Training Setup. For all experiments we use Nvidia Tesla V100-SXM2 GPUs with 32 GB VRAM
equipped with Core Xeon CPUs and 192 GB RAM. We use the vanilla Adam optimizer with a learning rate of 10−4.

5.1 Evaluation of Synthetic Data
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Figure 7: Comparison of single- and cross-
modal CRL.

We train the time-series (TS) model 18 times with noise b = 0.3,
and the combined model with the triplet loss for all 40 noise com-
binations

(
b ∈ {0, . . . , 1.95}

)
with different DML functions. Fig-

ure 7 shows the validation accuracy averaged over all trainings as
well as the combined cases separately for noise b < 0.2 and noise
0.2 ≤ b < 2.0 (for the LCS loss). The accuracy of the models
that use only images and in combination with MTS during infer-
ence reach an accuracy of 99.7% (which can be seen as an un-
reachable upper bound for the TS-only models). The triplet loss
improves the final TS baseline accuracy from 92.5% to 95.36%
(averaged over all combinations) while combining TS and image
data leads to a faster convergence. Conceptually similar to Long
et al. (2015), we use the LkMMD loss which yields 95.83% accu-
racy. The LPC (96.03%), LKL (96.22%), LMSE (96.25%), LBC (96.62%), and LPO (96.76%) loss functions can further
improve the accuracy. We conclude that the triplet loss can be successfully used for cross-modal learning by utilizing
negative identities.

5.2 Evaluation of HWR

Evaluation Metrics. A metric for sequence evaluation is the character error rate (CER) defined as CER = Sc+Ic+Dc

Nc

as the Edit distance (the sum of character substitutions Sc, insertions Ic and deletions Dc) divided by the total number
of characters in the set Nc. Similarly, the word error rate (WER) is defined as WER = Sw+Iw+Dw

Nw
computed with

word operations Sw, Iw and Dw, and number of words in the set Nw.

Evaluation of Offline HWR Methods. All our models yield low error rates on the generated OffHW-German
dataset. Our approach with GTR blocks outperforms (0.24% to 0.44% CER) the models with Inception (1.27%
CER) and ResNet (1.24% CER). OrigamiNet achieves the lowest error rates of 1.50% WER and 0.11% CER. Four
GTR blocks yield the best results at a significantly lower training time compared to six or eight blocks. We fine-tune
the model with four GTR blocks for one and two convolutional layers and achieve notably low error rates between
0.22% to 0.76% CER, and between 0.85% to 2.95% WER on the OffHW-[words500, wordsRandom] datasets. For
more results, see Appendix A.5.

Evaluation of CRL Feature Embeddings. Table 1 shows the feature embeddings for image f2(Xi) and MTS data
f2(Ui) of the positive sample Export and the two negative samples Expert (ED = 1) and Import (ED = 2)
based on four DML loss functions. The pattern of characters are similar as the words differ only in the fourth letter.

8
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Table 1: Feature embeddings fc(Xi) and fc(Ui) of exemplary image Xi and MTS Ui data of the convolutional layer
c = conv2 for different deep metric learning functions for positive pairs (ED = 0) and negative pairs (ED > 0)
trained with the triplet loss. The feature embeddings are similar in the red box (character x) or blue box (character p)
for f2(Xi), or the last pixels (character t) of f2(Ui) for LPC marked green.

ED Label Image Ui f2(Xi) f2(Ui): LMSE f2(Ui): LCS f2(Ui): LPC f2(Ui): LKL

0 Export

1 Expert

2 Import

3 Vorort

Embedding
Time-series
(single modality)

(a) Feature embedding of IMU samples for the single modalitiy
network.

Embedding
cross-modal

Time-series
Image

(b) Feature embeddings of IMU and image samples for the
cross-modal network.

Figure 8: Plot of 400 × 200 feature embeddings of image and IMU modalities with t-SNE.

In contrast, Import has a different feature embedding as the replacement of E with I and x with m leads to a higher
feature distance in the embedding hypersphere. Note that image and MTS data can vary in length for ED > 0. Figure 8
shows the feature embeddings of the output of the convolutional layers (c = 1) processed with t-SNE van der Maaten
& Hinton (2008). Figure 8a visualizes the MTS embeddings f1(Ui) of the single modal network, and Figure 8b
visualizes the MTS and image embeddings, f1(Ui) and f1(Xi) respectively, in a cross-modal setup. While the
embedding of the single modal network is unstructured, the embeddings of the cross-modal network are structured
(distance of samples visualizes the Edit distance between words).

Evaluation of Cross-Modal CRL. Table 2 gives an overview of CRL (for c = 1). The first row are baseline results
by Ott et al. (2022c): 13.04% CER on OnHW-words500 (WD) and 6.75% CER on OnHW-wordsRandom (WD) with
mutated vowels (MV). Compared to various time-series classification techniques, their benchmark results showed
superior performance of CNN+BiLSTMs on these OnHW recognition tasks. In general, the word error rate (WER)
can vary for a similar character error rate (CER). The reason is that a change of one character of a correctly classified
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Table 2: Evaluation results (WER and CER in %) average over five splits of the baseline MTS-only technique and
our cross-modal learning technique for the inertial-based OnHW datasets Ott et al. (2022c) with and without mutated
vowels (MV) for one convolutional layer c = 1.

OnHW-words500 OnHW-wordsRandom
WD WI WD WI

Method WER CER WER CER WER CER WER CER
LCTC, w/ MV 42.81 13.04 60.47 28.30 37.13 6.75 83.28 35.90
LCTC, w/o MV 42.77 13.44 59.82 28.54 38.02 7.81 83.54 36.51
LMSE 40.76 12.71 55.54 25.97 37.31 7.01 82.25 33.85
LCS 38.62 11.55 56.37 25.90 38.85 7.35 82.48 35.67
LPC 39.09 11.69 57.90 27.23 38.46 7.15 82.71 35.13
LKL 38.36 11.28 60.23 27.99 38.76 7.49 81.07 33.96
Ltrpl,1(LMSE) 42.95 14.13 56.48 26.66 37.66 7.04 81.64 34.39
Ltrpl,1(LCS) 38.01 11.29 58.50 27.10 37.12 6.98 82.71 33.09
Ltrpl,1(LPC) 40.43 12.41 58.20 27.48 37.40 7.01 81.90 33.89
Ltrpl,1(LKL) 37.55 11.21 63.52 30.52 38.39 7.36 83.18 35.21

word leads to a large change in the WER, while the change of the CER is marginal. We compare to results without MV
as ScrabbleGAN is pretrained on IAM-OffDB that does not contain MV, and hence, such words cannot be generated.
Here, the error rates are slightly higher for both datasets. As expected, cross-modal learning improves the baseline
results up to 11.28% CER on the OnHW-words500 WD dataset and up to 7.01% CER on the OnHW-wordsRandom
WD dataset. With triplet loss, LCS outperforms other metrics on the OnHW-wordsRandom dataset, but is inconsistent
on the OnHW-words500 dataset. The importance of the triplet loss is more significant for one convolutional layer
(c = 1) than for two convolutional layers (c = 2), see Appendix A.5. Further, training with kMMD (implemented as
in (Long et al., 2015)) does not yield reasonable results. We assume that this metric cannot make use of the important
time component in the HWR application.

6 Conclusion

We evaluated DML-based triplet loss functions for CRL between image and time-series modalities with class label
specific triplet selection. On synthetic data as well as on different HWR datasets, our method yields notable accuracy
improvements for the main time-series classification task and can be decoupled from the auxiliary image classifica-
tion task at inference time. Our cross-modal triplet selection further yields a faster training convergence with better
generalization on the main task.

Broader Impact Statement

While research for offline handwriting recognition (HWR) is very advanced (an overview is proposed in the appendix),
research for online HWR from sensor-enhanced only emerged in 2019. Hence, the methodological research currently
does not meet the requirements for real-world applications. Handwriting is still important in different fields, in par-
ticular graphomotoric. The visual feedback provided by the pen helps young students to learn a new language. A
well-known bottleneck for many machine learning algorithms is their requirement for large amounts of datasets, while
data recording of handwriting data is time consuming. This paper extends the online HWR dataset with generated
images from offline handwriting, and closes the gap between offline and online HWR by using offline HWR as aux-
iliary task by learning with privileged information. One downside of training the offline architecture (consisting of
GTR blocks) is its long training time. But as this model is not required at inference time, processing the time-series
is still fast. The common representation between both modalities (image and time-series) is achieved by using the
triplet loss and a sample selection depending on the Edit distance. This approach is important in future applications
of sequence-based classification as the triplet loss may also evolve for language processing applications as strong as
in typically applied fields such as image recognition. Ethical statement about collection consent and personal infor-
mation: For data recording, the consent of all participants was collected. The datasets only contain the raw data from
the sensor-enhanced pen, and for statistics the age and gender of the participants and their handedness. The dataset is
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fully pseudonymized by assigning an ID to every participant. The dataset does not contain any offensive content. The
approach proposed in this paper, in particular used for the application of online handwriting recognition from sensor-
enhanced pens, does not (1) facilitate injury to living beings, (2) raise safety or security concerns due to the anonymity
of the data, (3) raise human rights concerns, (4) have a detrimental effect on people’s livelihood, (5) develop harmul
forms of surveillance as the data is pseudonymized, (6) damage the environment, and (7) deceive people in ways that
cause harm.
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A Appendices

We present the multi-task learning technique in Section A.1, and show more details on learning with the triplet loss on
synthetically generated signal and image data in Section A.2. We present an method overview for offline handwriting
recognition (HWR) in Section A.3, and propose more details of our architectures in Section A.4. Section A.5 presents
results of representation learning for HWR.

A.1 Multi-Task Learning (MTL)

We simultaneously train the LCTC loss for sequence classification combined with one or two shared losses Lshared,1 and
Lshared,2 for common representation learning (CRL). As both losses are in different ranges, the naive weighting

Ltotal =
|T |∑
i=1

ωiLi, (3)

with pre-specified, constant weights ωi = 1, ∀i ∈ {1, . . . , |T |} can harm the training process. Hence, we apply
dynamic weight average (DWA) Liu et al. (2019) as an MTL approach that performs dynamic task weighting over
time (i.e., after each batch).

A.2 Training Synthetic Data with the Triplet Loss

Signal and Image Generation. We combine the networks for both, signal and image classification, to improve the
classification accuracy over each single-modal network. The aim is to show that the triplet loss can be used for such
a cross-modal setting in the field of common representation learning. Hence, we generate synthetic data where the
image data contains information of the signal data. We generate signal data x with xi,k = sin

(
0.05 · ti

k

)
for all

ti ∈ {1, . . . , 1, 000} where ti is the timestep of the signal. The frequency of the signal is dependent on the class
label k. We generate signal data for 10 classes (see Figure 9a). We add noise from a continuous uniform distribution
U(a, b) for a = 0 and b = 0.3 (see Figure 9b), and add time and magnitude warping (see Figure 9c). We generate a
signal-image pair such that the image is based on the signal data. We make use of the Gramian angular field (GAF) that
transforms time-series into images. The time-series is defined as x = (x1, . . . , xn) for n = 1, 000. The GAF creates a
matrix of temporal correlations for each (xi, xj) by rescaling the time-series in the range [p, q] with −1 ≤ p < q ≤ 1
by

x̂i = p + (q − p) · xi − min(x)
max(x) − min(x) , ∀i ∈ {1, . . . , n}, (4)

and computes the cosine of the sum of the angles for the Gramian angular summation field (GASF) Wang & Oates
(2015) by

GASFi,j = cos (ϕi + ϕj), ∀i, j ∈ 1, . . . , n, (5)

with ϕi = arccos (x̂i), ∀i ∈ {1, . . . , n}, being the polar coordinates. We generate image datasets based on signal
data with different noise parameters (b ∈ {0.0, . . . , 1.95}) to show the influence of the image data on the classification
accuracy. Figure 10 exemplarily shows the GASF plots for the noise parameters b = [0, 0.5, 1.0, 1.5, 1.95]. We present
the GASF for the classes 0, 5 and 9 to show the dependency of the frequency of the signal data on the GASF.
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1.0

(a) Signal data of 10 classes.
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(b) Signal data with noise b = 0.3.
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(c) Applying augmentation techniques.

Figure 9: Plot of the 1D signal data for 10 classes.
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Figure 10: Plot of the Gramian angular summation field (GASF) based on 1D signal data with added noise for the
classes 0 (top row), 5 (middle row) and 9 (botton row).

Models. We use the following models for classification. Our encoder for time-series classification consists of a 1D
convolutional layer (filter size 50, kernel 4), a max pooling layer (pool size 4), batch normalization, and a dropout
layer (20%). The image encoder consists of a layer normalization and 2D convolutional layer (filter size 200), and
batch normalization with ELU activation. It follows a 1D convolutional layer (filter size 200, kernel 4), max pooling
(pool size 2), batch normalization, and 20% dropout. For both models, it follows a common representation, i.e., an
LSTM with 10 units, a Dense layer with 20 units, a batch normalization layer, and a Dense layer of 10 units (for 10
sinusoidal classes). These layers are shared between both models.

A.3 Overview of Offline HWR Methods

In the following, we give a detailed overview of offline HWR methods to select a suitable lexicon and language model
free method. There is no recent paper summarizing the work for offline HWR. For an overview of offline and online
HWR datasets, see Plamondon & Srihari (2000); Hussain et al. (2015). Table 3 presents related work. Methods for
offline HWR range from hidden markov models (HMMs) to deep learning techniques that became predominant such
as convolutional neural networks (CNNs), temporal convolutional networks (TCNs) and recurrent neural networks
(RNNs). RNN techniques are well explored including long short-term memorys (LSTMs), bidirectional LSTMs (BiL-
STMs), and multidimensional RNNs (MDRNN, MDLSTM). Recent methods are generative adversarial networks
(GANs) and Transformers. We note the use of a language model (LM) and its size k, and the data level the method
works with, i.e., paragraph or full text level (P), line level (L) and word level (W). We present evaluation results for
the IAM-OffDB Liwicki & Bunke (2005) and RIMES Grosicki & El-Abed (2011) datasets including the word error
rate (WER) and character error rate (CER).

HMMs. Methods based on HMMs from last decades are Bertolami & Bunke (2018); Dreuw et al. (2011); Li et al.
(2014); Pastor-Pellicer et al. (2015). Recently, España-Boquera et al. (2011) proposed HMM+ANN, a HMM modeled with
Markov chains in combination with a multilayer perceptron (MLP) to estimate the emission probabilities. Kozielski
et al. (2013) presented Tandem GHMM that uses moment-based image normalization, writer adaptation and discrimi-
native feature extraction with an 3-gram open-vocabulary of size 50k with an LSTM for recognition. Doetsch et al.
(2014) proposed an LSTM unit that controls the shape of the squashing function in gating units decoded in a hybrid
HMM. This approach yields the best results based on HMMs.
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Table 3: Evaluation results (WER and CER in %) of different methods on the IAM-OffDB Liwicki & Bunke (2005)
and RIMES Grosicki & El-Abed (2011) datasets. We state information about the method and the size of the language
model (LM). LN = layer normalization. P = paragraph or full text level. L = line level. W = word level. The table is
sorted by year.

LM Level IAM-OffDB RIMES
Method Information size k P L W WER CER WER CER

HMM HMM+ANN España-Boquera et al. (2011) Markov chain with MLP w/ (5) 15.50 6.90 - -
Tandem GHMM Kozielski et al. (2013) GHMM and LSTM, writer adaptation w/ (50) × 13.30 5.10 13.70 4.60
LSTM-HMM Doetsch et al. (2014) Combination of LSTM with HMM w/ (50) × 12.20 4.70 12.90 4.30

Multi- 2DLSTM Graves & Schmidhuber (2008) Combined MDLSTM with CTC w/o 27.50 8.30 17.70 4.00
dim. MDLSTM-RNN Bluche (2016) 150 dpi w/o × 29.50 10.10 13.60 3.20

LSTM 150 dpi w/ (50) × 16.60 6.50 - -
300 dpi w/o × 24.60 7.90 12.60 2.90
300 dpi w/ (50) × 16.40 5.50 - -

Voigtlaender et al. (2016) GPU-based, diagonal MDLSTM 9.30 3.50 9.60 2.80
SepMDLSTM Chen et al. (2017) Multi-task approach w/o 34.55 11.15 30.54 8.29
Bluche et al. (2017) MDLSTM, attention w/o × - 16,20 - -

Line segmentation 150 dpi w/o × - 11.10 - -
Line segmentation 150 dpi w/o × - 7.50 - -

MDLSTM Castro et al. (2018) 10.50 3.60 - -
RNN BiLSTM Graves et al. (2009) w/ (20) 18.20 25.90 - -

HMM+RNN Menasri et al. (2012) Sliding win. Gaussian HMM, RNN × × - 4.75 -
Dropout Pham et al. (2014) LSTMs with dropout w/o 35.10 10.80 28.50 6.80
Voigtlaender et al. (2015) Maximum mutual information 12.70 4.80 12.10 4.40
Bluche (2015) 10.90 4.40 11.20 3.50

w/ (50) 13.60 5.10 12.30 3.30
GCRNN Bluche & Messina (2017) CNN+BiLSTM w/ (50) 10.50 3.20 7.90 1.90
CNN-1DLSTM-CTC Puigcerver (2017) CNN+BiLSTM+CTC (128 x W) w/o × 18.40 5.80 9.60 2.30

NN+BiLSTM+CTC w/ (50) × 12.20 4.40 9.00 2.50
End2End Krishnan et al. (2018) Without line level w/ 16.19 6.34 - -

Line level w/ × 32.89 9.78 - -
SFR Wigington et al. (2018) Text detection and segmentation w/o × 23.20 6.40 9.30 2.10
CNN-RNN Dutta et al. (2018) Unconstrained w/o 12.61 4.88 7.04 2.32

Full-Lexicon w/ 4.80 2.52 1.86 0.65Text-Lexicon w/ 4.07 2.17
Unconstrained w/o × 17.82 5.70 9.60 2.30

Chowdhury & Vig (2018) Seq2seq, w/o LN w/o 25.50 17.40 19.10 12.00
w/ LN w/o 22.90 13.10 15.80 9.70
w/ LN + Focal Loss w/o 21.10 11.40 13.50 7.30
w/ LN + Focal Loss + Beam Search w/o 16.70 8.10 9.60 3.50

Sueiras et al. (2018) LSTM encoder-decoder, attention 15.90 4.80 - -
Chung & Delteil (2019) ResNet+LSTM, segmentation w/ × - 8.50 - -
Ingle et al. (2019) BiLSTM × 30.70 12.80 - -

GRCL × 35.20 14.10 - -
Michael et al. (2019) Seq2seq CNN+BiLSTM (64 x W) × - 5.24 - -
FPN Carbonell et al. (2019) Feature Pyramid Network, 150 dpi × - 15.60 - -
AFDM Bhunia et al. (2019) AFD module w/ 8.87 5.94 6.31 3.17

CNN Poznanski & Wolf (2016) CNN + connected branches, CCA w/ 6.45 3.44 3.90 1.90
GTR Yousef et al. (2018) CNN+CTC (32 x W) w/o × - 4.90 - -
OrigamiNet Yousef & Bishop (2020) VGG (500x500) × × - 51.37 - -

VGG (500x500), w/o LN w/o × × - 34.55 - -
ResNet26 (500x500), w/o LN w/o × × - 10.03 - -
ResNet26 (500x500), w/ LN w/o × × - 7.24 - -
ResNet26 (500x500), w/o LN w/o × × - 8.93 - -
ResNet26 (500x500), w/ LN w/o × × - 6.37 - -
ResNet26 (500x500), w/o LN w/o × × - 76.90 - -
ResNet26 (500x500), w/ LN w/o × × - 6.13 - -
GTR-8 (500x500), w/o LN w/o × × - 72.40 - -
GTR-8 (500x500), w/ LN w/o × × - 5.64 - -
GTR-8 (750x750), w/ LN w/o × × - 5.50 - -
GTR-12 (750x750), w/ LN w/o × × - 4.70 - -

DAN Wang et al. (2020) Decoupled attention module w/o × 19.60 6.40 8.90 2.70
GAN ScrabbleGAN Fogel et al. (2020) Original data w/o 25.10 - 12.29 -

Augm. w/o 24.73 - 12.24 -
Augm + 100k synth. w/o 23.98 - 11.68 -
Augm + 100k synth. + Refine w/o 23.61 - 11.32 -

Trans- Kang et al. (2020) Self-attention for text/images w/o × 15.45 4.67 - -
former FPHR Singh & Karayev (2021) CNN encoder, Transformer decoder w/o × - 6.70 - -

With augmentation w/o × - 6.30 - -
Other FST Messina & Kermorvant (2014) Finite state transducer (lexicon) n-gram 19.10 - 13.30 -
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RNNs: MDLSTMs. The 2DLSTM approach by Graves & Schmidhuber (2008) combines multidimensional LSTMs
(MDLSTMs) with the CTC loss. The MDLSTM-RNN approach Bluche (2016) works at paragraph level by replacing the
collapse layer by a recurrent version. A neural network performs implicit line segmentation by computing attention
weights on the image representation. Voigtlaender et al. (2016) proposed an efficient GPU-based implementation of
MDLSTMs by processing the input in a diagonal-wise fashion. SepMDLSTM Chen et al. (2017) is a multi-task learning
method for script identification and HWR based on two classification modules by minimizing the CTC and negative
log likelihood losses. While the MDLSTM by Bluche et al. (2017) contains covert and overt attention without prior
segmentation, the Castro et al. (2018) integrated MDLSTMs within a hybrid HMM. However, these architectures
come with quite an expensive computational cost. Furthermore, they extract features visually similar to those of
convolutional layers Puigcerver (2017). End2End Krishnan et al. (2018) jointly learns text and image embeddings
based on LSTMs.

RNNs: LSTMs and BiLSTMs. RNNs for HWR marked an important milestone reaching impressive recognition
accuracies. Sequential architectures are perfect to fit text lines due to the probability distributions over sequences of
characters and due to the inherent temporal aspect of text Kang et al. (2020). Graves et al. (2009) introduced the
BiLSTM layer in combination with the CTC loss. Pham et al. (2014) showed that the performance of LSTMs can be
greatly improved using dropout. Voigtlaender et al. (2015) investigated sequence-discriminative training of LSTMs
using the maximum mutual information (MMI) criterion. While Bluche (2015) utilized a RNN with a HMM and a
language model, Menasri et al. (2012) combined a RNN with a sliding window Gaussian HMM. GCRNN Bluche &
Messina (2017) combines a convolutional encoder (aiming generic and multilingual features) and a BiLSTM decoder
predicting character sequences. Also, Puigcerver (2017) proposed a CNN+BiLSTM architecture (CNN-1DLSTM-CTC)
that uses the CTC loss. The start, follow, read (SFR)Wigington et al. (2018) model jointly learns text detection and
segmentation. Dutta et al. (2018) used synthetic data for pre-training and image normalization for slant correction. The
methods by Chowdhury & Vig (2018); Sueiras et al. (2018); Ingle et al. (2019); Michael et al. (2019) make also use
of BiLSTMs. While Carbonell et al. (2019) uses a feature pyramid network (FPN), the adversarial feature deformation
module (AFDM) Bhunia et al. (2019) learns ways to elastically warp extracted features in a scalable manner. Further
methods that combine CNNs with RNNs are Liang et al. (2017); Sudholt & Fink (2018); Xiao & Cho (2016), while
BiLSTMs are utilized in Carbune et al. (2020); Tian et al. (2019).

TCNs. TCNs uses dilated causal convolutions and have been applied to air-writing recognition by Bastas et al.
(2020). As RNNs are slow to train, Sharma et al. (2020) presented a faster system which is based on text line images
and TCNs with the CTC loss. This method achieves 9.6% CER on the IAM-OffDB dataset. Sharma & Jayagopi
(2021) combined 2D convolutions with 1D dilated non-causal convolutions that offers a high parallelism with a smaller
number of parameters. They analyzed re-scaling factors and data augmentation, and achieved comparable results for
the IAM-OffDB and RIMES datasets.

CNNs. Poznanski & Wolf (2016) utilized a CNN with multiple fully connected branches to estimate its n-gram
frequency profile (set of n-grams contained in the word). With canonical correlation analysis (CCA), the estimated
profile can be matched to the true profiles of all words in a large dictionary. As most attention methods suffer from an
alignment problem, Wang et al. (2020) proposed a decoupled attention network (DAN) that has a convolutional align-
ment module that decouples the alignment operation from using historical decoding results based on visual features.
The gated text recognizer (GTR) Yousef et al. (2018) aims to automate the feature extraction from raw input signal
with minimum required domain knowledge. The fully convolutional network without recurrent connections is trained
with the CTC loss. Thus, the GTR module can handle arbitrary input sizes and can recognize strings with arbitrary
length. This module has been used for OrigamiNet Yousef & Bishop (2020) that is a segmentation-free multi-line
or full page recognition system. OrigamiNet yields state-of-the-art results on the IAM-OffDB dataset, and shows
an improved performance of GTR over VGG and ResNet26. Hence, we use the GTR module as our visual feature
encoder for offline HWR (see Section A.4).

GANs. Handwriting text generation (HTG) is a relatively new field. The first approach by Graves (2014) was a
method to synthesize online data based on RNNs. The technique HWGAN by Ji & Chen (2020) extends this method
by adding a discriminator D. DeepWriting Aksan et al. (2016) is a GAN that is capable of disentangling style from
content and thus making digital ink editable. Haines et al. (2016) proposed a method to generate handwriting based
on a specific author with learned parameters for spacing, pressure and line thickness. Alonso et al. (2019) used a

17



Under review as submission to TMLR

In
p
u

t 
im

a
g
e
(𝐻

×
𝑊
)

C
o
n

v
2
D

(6
4
,1
×
1
)

C
o
n

v
2
D

(9
6
,1
×
1
)

C
o
n

v
2
D

(1
6
,1
×
1
)

M
a
x
P
o
o
l 

(3
×
3
)

C
o
n

v
2
D

(1
2
8
,3
×
3
)

C
o
n

v
2
D

(3
2
,5
×
5
)

C
o
n

v
2
D

(3
2
,1
×
1
)

C
o
n

c
a
te

n
a
te

C
o
n

v
2
D

(1
2
8
,1
×
1
)

C
o
n

v
2
D

(1
2
8
,1
×
1
)

C
o
n

v
2
D

(3
2
,1
×
1
)

M
a
x
P
o
o
l 

(3
×
3
)

C
o
n

v
2
D

(1
9
2
,3
×
3
)

C
o
n

v
2
D

(9
6
,5
×
5
)

C
o
n

v
2
D

(6
4
,1
×
1
)

C
o
n

c
a
te

n
a
te

C
o
n

v
2
D

(1
9
2
,1
×
1
)

C
o
n

v
2
D

(9
6
,1
×
1
)

C
o
n

v
2
D

(1
6
,1
×
1
)

M
a
x
P
o
o
l 

(3
×
3
)

C
o
n

v
2
D

(2
0
8
,3
×
3
)

C
o
n

v
2
D

(4
8
,5
×
5
)

C
o
n

v
2
D

(6
4
,1
×
1
)

C
o
n

c
a
te

n
a
te

C
o
n

v
1
D

 (
1
3
, 
1
0
)

L
a
te

n
t 

R
e
p
re

s
e
n

ta
ti

o
n

…

C
o
n

v
1
D

 (
6
4
, 
1
0
)

C
o
n

v
1
D

 (
2
5
6
, 
1
0
)

M
a
x
P
o
o
l 

(3
×
3
)

R
e
s
h

a
p
e

(-
1
, 
5
1
2
)

Figure 11: Offline HWR method based on Inception modules Szegedy et al. (2015).

BiLSTM to get an embedding of the word to be rendered, and added an auxiliary network as recognizer R. The
model is trained with a combination of an adversarial loss and the CTC loss. ScrabbleGAN by Fogel et al. (2020) is
a semi-supervised approach that can generate arbitrarily many images of words with arbitrary length from a generator
G to augment handwriting data and uses a discriminator D and recognizer R. The paper proposes results for original
data, with random affine augmentation, using synthetic images and refinement.

Transformers. RNNs prevent parallelization due to their sequential pipelines. Kang et al. (2020) introduced a non-
recurrent model by the use of Transformer models by using multi-head self-attention layers at the textual and visual
stages. Their method is unconstrained to any pre-defined vocabulary. For the feature encoder, they used modified
ResNet50 models. The full page HTR (FPHR) method by Singh & Karayev (2021) uses a CNN as encoder and a
Transformer as decoder with positional encoding.

A.4 Details on Architectures for Offline HWR

In this section, we give details about the integration of Inception Szegedy et al. (2015), ResNet He et al. (2016) and
GTR Yousef et al. (2018) modules into the offline HWR system. All three architectures are based on publicly available
implementations, but we changed or adapted the first layer for the image input and the last layer for a proper input for
our latent representation module.

Inception. Figure 11 gives an overview of the integration of the Inception module. The Inception module is part
of the well known GoogLeNet architecture. The main idea is to consider how an optimal local sparse structure can
be approximated by readily available dense components. As the merging of pooling layer outputs with convolutional
layer outputs would lead to an inevitable increase in the number of output and would lead to computational blow up,
we apply the Inception module with dimensionality reduction to our offline HWR approach Szegedy et al. (2015). The
input image is of size H × W . What follows is the Inception (3a), Inception (3b), a max pooling layer (3 × 3) and
Inception (4a). We add three 1D convolutional layers to get an output dimensionality of 400 × 200 as input for the
latent representation.

ResNet34. Figure 12 gives an overview of the integration of the ResNet34 architecture. Instead of learning unrefer-
enced functions, He et al. (2016) reformulated the layers as learning residual functions with reference to the layer in-
puts. This residual network is easier to optimize and can gain accuracy from considerably increased depth. The ResNet
block let the layers fit a residual mapping denoted as H(x) with identity x, and fits the mapping F(x) := H(x) − x.
The original mapping is recast into F(x) + x. We reshape the output of ResNet34, add a 1D convolutional layer, and
reshape the output for the latent representation.

GTR. Figure 13 gives an overview of the integration of the gated text recognizer (GTR) Yousef et al. (2018) module
that is a fully convolutional network that uses batch normalization (BN) and layer normalization (LN) to regularize the
training process and increase convergence speed. The module uses batch renormalization Ioffe (2017) on all BN layers.
Depthwise separable convolutions reduce the number of parameters at the same/better classification performance.
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Figure 12: Offline HWR method based on the ResNet34 architecture He et al. (2016).
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Figure 13: Offline HWR method based on the GTR architecture Yousef et al. (2018).

GTR uses spatial dropout instead of regular unstructured dropout for better regularization. After the input image of
size H × W that is normalized follows a convolutional layer with Softmax normlization, a 13 × 13 filter, and dropout
(40%). It follows a stack of 2, 4, 6 or 8 gate blocks that models the input sequence. Similar as Yousef et al. (2018), we
add a dropout of 20% after the last GTR block. Lastly, we add a 2D convolutional layer of 200, a BN layer and a LN
layer that is the input for our latent representation.

A.5 Detailed HWR Evaluation

Offline HWR Results. Table 4 shows offline HWR results on our generated OffHW-German dataset and on the
IAM-OffDB Liwicki & Bunke (2005) dataset. ScrabbleGAN Fogel et al. (2020) yields an WER of 23.61% on the
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Table 4: Evaluation results (WER and CER in %) for the generated dataset with ScrabbleGAN Fogel et al. (2020)
OffHW-German and the IAM-OffDB Liwicki & Bunke (2005) dataset. We propose writer-dependent (WD) and
writer-independent (WI) results.

OffHW-
German IAM-OffDB

Method WER CER WER CER
ScrabbleGAN - - 23.61 -
Fogel et al. (2020)
OrigamiNet (12×GTR) - - - 4.70
Yousef & Bishop (2020)
OrigamiNet (ours, 4×GTR) 1.50 0.11 90.40 15.67
Inception 12.54 1.17 - -
ResNet 13.05 1.24 - -
GTR (2 blocks), 1 conv. layer 4.34 0.39 - -
GTR (2 blocks), 2 conv. layer 5.02 0.44 - -
GTR (4 blocks), 1 conv. layer 3.35 0.34 89.37 15.60
GTR (4 blocks), 2 conv. layer 2.52 0.24 - -
GTR (6 blocks) 2.85 0.26 - -
GTR (8 blocks) 4.22 0.38 - -

Table 5: Evaluation results (WER and CER in %) for the generated OffHW-words500 and OffHW-wordsRandom
datasets for one and two convolutional layers (c). We propose writer-dependent (WD) and writer-independent (WI)
results.

OffHW-words500 OffHW-wordsRandom
Method WD WI WD WI

(4×GTR) WER CER WER CER WER CER WER CER
c = 1 2.94 0.76 0.95 0.23 1.98 0.35 2.05 0.37
c = 2 2.51 0.69 0.85 0.22 1.82 0.34 1.95 0.38

IAM dataset, while OrigamiNet Yousef & Bishop (2020) achieves an CER of 4.70% with 12 GTR modules. As the
training takes more than one day for one epoch on the large OffHW-German dataset, we train OrigamiNet with four
GTR modules, and achieve 0.11% CER on the generated dataset and 15.67% on the IAM dataset, which is higher
than the model with 12 GTR modules. While the paper did not propose WER results, OrigamiNet yields only an
WER of 90.40%. With our own implementation of four GTR modules and one convolutional layer for the common
representation, our model achieves similar results. While GTR modules yield slightly lower CERs on the OffHW-
German dataset than our architectures with Inception and ResNet modules, the WERs are significantly higher. Fine-
tuning the architecture with four GTR modules and one (c = 1) or two (c = 2) convolutional layers on the OffHW-
words500 and OffHW-wordsRandom datasets, yields better results for c = 2 than for c = 1 (see Table 5). While
results for OffHW-wordsRandom are similar for writer-dependent (WD) and writer-independent (WI), WI results of
the OffHW-words500 dataset are lower than WD results, as words with the same label appear in the training and test
dataset. We use the weights of the fine-tuning as initial weights of the image model for the common representation
learning.

Online HWR Results. Table 2 gives an overview of CRL results based on two convolutional layers (c = 2) for
the common representation. Our CNN+BiLSTM contains three additional convolutional layers and outperforms the
smaller CNN+BiLSTM by Ott et al. (2022) on the WD classification tasks. Without triplet loss, LPC yields the best
results on the OnHW-wordsRandom dataset. The triplet loss partly marginally decreases results and partly improves
results on the OnHW-words500 dataset. In conclusion, two convolutional layers for the common representation de-
creases results, while here the triplet loss does not have a positive impact.
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Table 6: Evaluation results (WER and CER in %, averaged over five splits) of the baseline MTS-only technique and
our cross-modal techniques for the inertial-based OnHW datasets Ott et al. (2022) with and without mutated vowels
(MV) for two convolutional layers c = 2. We propose writer-(in)dependent (WD/WI) results.

OnHW-words500 OnHW-wordsRandom
WD WI WD WI

Method WER CER WER CER WER CER WER CER
Small CNN+BiLSTM, LCTC, w/ MV 51.95 17.16 60.91 27.80 41.27 7.87 84.52 35.22
CNN+BiLSTM (ours), LCTC, w/ MV 42.81 13.04 60.47 28.30 37.13 6.75 83.28 35.90
CNN+BiLSTM (ours), LCTC, w/o MV 42.77 13.44 59.82 28.54 41.52 7.81 83.54 36.51
LMSE 39.79 12.14 60.35 28.48 39.98 7.79 83.50 36.92
LCS 43.40 13.70 59.31 27.99 40.31 7.68 83.68 36.30
LPC 38.90 11.60 60.77 28.45 39.93 7.60 83.19 35.83
LKL 37.25 11.29 65.10 31.26 41.81 8.22 84.40 38.93
Ltrpl,2(LMSE) 41.16 12.71 58.65 28.19 41.16 8.03 85.38 39.49
Ltrpl,2(LCS) 42.74 13.43 58.13 27.62 41.49 8.18 85.24 38.75
Ltrpl,2(LPC) 39.94 12.19 62.76 30.68 41.58 8.18 85.18 38.53
Ltrpl,2(LKL) 38.34 11.77 67.08 33.84 41.87 8.33 86.34 40.37

Table 7: Evaluation results (WER and CER in %, averaged over five splits) of the baseline MTS-only technique and
our cross-modal techniques for the inertial-based OnHW datasets Ott et al. (2022) with and without mutated vowels
(MV) for two convolutional layers c = 1. We propose writer-(in)dependent (WD/WI) results.

OnHW-words500-L OnHW-wordsRandom-L
WD WI WD WI

Method WER CER WER CER WER CER WER CER
InceptionTime, LCTC, w/ MV 49.70 14.02 100.00 96.06 48.10 8.63 100.00 95.93
CNN+BiLSTM, LCTC, w/ MV 14.20 3.30 94.40 71.41 30.20 4.86 100.00 83.51
CNN+BiLSTM, LCTC, w/o MV 12.94 3.33 89.07 62.07 30.89 5.26 100.00 81.15
LMSE 11.62 2.77 90.65 67.90 30.53 4.93 100.00 81.99
LCS 14.92 3.53 94.14 65.10 29.06 4.87 100.00 83.94
LPC 12.29 3.04 91.33 60.89 27.32 4.47 100.00 85.09
LKL 11.37 2.57 93.02 66.64 29.61 4.91 100.00 81.28
Ltrpl,2(LMSE) 11.97 2.83 84.34 57.84 27.19 4.79 99.87 82.60
Ltrpl,2(LCS) 11.65 2.63 94.70 67.69 28.39 4.62 100.00 83.44
Ltrpl,2(LPC) 13.02 2.94 89.86 60.26 30.22 4.81 100.00 84.29
Ltrpl,2(LKL) 13.55 3.22 97.86 76.54 28.14 4.71 100.00 80.81

Transfer Learning on Left-Handed Writers. To adapt the model to left-handed writers that are typically under-
represented in the real-world, we make use of the left-handed datasets OnHW-words500-L and OnHW-wordsRandom-
L proposed by Ott et al. (2022). These datasets contain recordings of two writers with 1,000 samples, respectively
996. As baseline we pre-train the MTS-only model on the right-handed datasets and post-train the left-handed datasets
for 500 epochs (see the first two rows of Table 7). As these datsets are rather small, the models can overfit on these
specific writers and achieve a very low CER of 3.33% on the OnHW-words500-L datasets and 5.26% CER on the
OnHW-wordsRandom-L dataset without mutated vowels (MV) for the writer-dependent (WD) tasks, but the models
can not generalize on the writer-independent (WI) tasks: 62.07% CER on the OnHW-words500-L dataset and 81.15%
CER on the OnHW-wordsRandom-L dataset. Hence, we focus on the WD tasks. For comparison, we use the state-of-
the-art time-series classification technique InceptionTime Fawaz et al. (2019) with depth = 11 and nf = 96 (without
pre-training). Our CNN+BiLSTM clearly outperforms InceptionTime. We use the weights of the pre-training with
the offline handwriting datasets and again post-train on the left-handed datasets with c = 1. Using the weights of the
cross-modal learning without the triplet loss, can decrease the error rates up to 2.57% CER with LKL, respectively
4.47% CER with LPC. Using the triplet loss Ltrpl,2(LCS), we can further decrease the CER to 2.63% for the OnHW-
words500-L dataset. In conclusion, due to the use of the weights of the cross-modal setup, the model can adapt faster
to new writers and generalize better to unseen words due to the triplet loss.
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