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Abstract. Therapy, interviews, and emergency services assisted
by artificial intelligence (AI) are applications where speech emotion
recognition (SER) plays an essential role, for which performance and
robustness are subject to improvement. Deep learning approaches
have proven effective in SER; nevertheless, they can underperform
when exposed to adversarial attacks. In this paper, we explore and
enhance architectures, such as convolutional neural networks with
long short-term memory (CNN-LSTM), AlexNet, VGG16, Convo-
lutional Vision Transformer (CvT), Vision Transformer (ViT), and
LeViT, by finding the suitable setup for SER models regarding
speech processing, network hyperparameters, spectrogram augmen-
tations, and adversarial examples. We apply our methodology to Ro-
manian and German SER datasets and achieve state-of-the-art re-
sults, with 89.81% validation weighted accuracy and 98.09% average
weighted accuracy on the trained models. Our highly robust mod-
els reach complete adversarial defense and up to 5.56% weighted
accuracy improvement when attacked. We also show how adversar-
ial attacks influence model behavior in SER through explainable AI
techniques.

1 Introduction

Speech represents the most effective way for humans to communi-
cate and express themselves. As technology evolved, the necessity
of interacting with computers grew significantly. Various interfaces
have been developed for human-machine interaction, considering
tangible (e.g., keyboards and mice) and non-tangible (e.g., gesture
and vision-based interfaces) [29]. Intensively explored over the past
decades, human-machine interaction via speech is highly regarded as
one of the most efficient interaction methods [14]. Such systems in-
clude automatic speech recognition [37], which recently has seen sig-
nificant improvements [40]. Automatic speech recognition systems
extract information from spoken utterances and convert them into se-
quences of words. Speech emotion recognition (SER) has been used
to extract the speaker’s emotional state to make the human-machine
interaction more natural [38]. Automatic SER systems cover appli-
cations such as tools for therapists providing aid for diagnosing pa-
tients, AI-assisted emergency systems [43, 45], content-streaming,
and interview platforms. The application of SER is also generally
perceived as a means by which the user’s voice adapts a system’s
behavior [14].
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Speech processing has been explored for 1-dimensional audio
waveforms [52] using deep neural network architectures such as 1D
convolutional neural networks (CNN) or 1D CNNs together with re-
current neural networks (RNNs) [39], such as long short-term mem-
ory (LSTM) [17]. However, to take full advantage of the information
provided, a 2D feature representation of the speech signal passed to
2D networks showed better performance [1, 52]. Speech processing
can be seen from a computer vision standpoint by transforming the
speech waveform to a visual representation using speech features de-
noting the acoustic strength of the signal over the time and frequency
domains. They are obtained by computing the short-time Fourier
transform that determines discrete Fourier transforms over a speci-
fied number of overlapping windows [23]. The most common types
of 2D speech representations are linear, log, and mel-scaled spectro-
grams [31, 41].

Szegedy et al. [44] discovered that deep neural networks (DNNs)
are susceptible to small, humanly imperceptible perturbations in the
input data, causing wrong class assignations. This negative effect of
small data changes on classifiers is known as an adversarial attack.
Despite many adversarial defense algorithms in the literature [49],
they are proven to have only local applicability. Therefore, the resis-
tance of DNNs to malicious attacks is still an open subject. One such
attack is based on adversarial examples introduced by Goodfellow et
al. [15], augmentations generated by applying crafted perturbations
to input samples. Adversarial attacks are split into three knowledge
classes [34, 50]: white-box, grey-box, and black-box attacks. White-
box attacks know the target of the attack and have access to the entire
model. Black-box attacks are crafted using only the model’s output
or involving no model information. The grey-box attacks only access
the target and generate examples by training a generative model [50].
Given the limited resources, these attacks are breaking the security
of well-defended models [51].

Our paper introduces robust networks for SER in a Romanian
corpus of emotional utterances, namely Emo-IIT [32]. Additionally,
the German Berlin Database of Emotional Speech (Emo-DB) [7]
is used in our base experiments to ensure task objectivity in our
setup. Our investigations cover training on inputs represented in four
different types of spectrograms: short-time Fourier transform (lin-
ear), mel-scaled (mel), constant-Q transform (CQT) [6], and mel-
frequency cepstral coefficients (MFCC). We evaluate common archi-
tectures based on CNN and RNN [52], AlexNet [21], VGG16 [42],
Vision Transformer (ViT) [13], Convolutional Vision Transformer
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(CvT) [48], and faster inference Vision Transformer (LeViT) [16].
We assess the susceptibility of the obtained models to adversaries
using a set of white-box adversarial algorithms, namely fast gradi-
ent sign method (FGSM) [15], FGSM with momentum (MI-FGSM)
[12], basic iterative method (BIM) [22], projected gradient descent
(PDG) [28], and expectation over transformation projected gradient
descent (EOT+PGD) [3, 27], and two black-box adversarial algo-
rithms, namely Pixle [36] and Square Attack [2]. The adversarial
defense capability is also performed by training with the white-box
algorithms and testing the white-box and black-box algorithms. Fi-
nally, we assess the ε-sensitivity for the adversarial algorithms.

In this work, we bring the following main contributions:

• We thoroughly experiment with various spectrogram features used
in diverse network architectures, also depicting the classification
using t-SNE plots [46].

• We investigate the susceptibility of adversarial examples for the
introduced networks through their adversarial testing performance
metrics.

• We make a significant step into explaining the behavior of the
DNNs on adversarial attacks and defenses.

• We obtain robust networks for white-box adversarial algorithms.
• We assess the black-box attack success rate for white-box de-

fended models.

2 Related Work

2.1 Speech Processing

Badshah et al. [4] used linear spectrogram features for SER on
the Emo-DB dataset, on which they trained a CNN architecture
from scratch and fine-tuned AlexNet. Zhao et al. [52] introduced
two local and global hierarchical architectures feature learning: a 1-
dimensional CNN-LSTM model on raw audio clip features and a
2-dimensional CNN-LSTM on the spectrogram representation. They
showed that introducing log-mel spectrograms in the CNN-LSTM
setups for speech emotion recognition outperformed raw audio data
by 15% validation accuracy in speaker-dependent experiments and
25% validation accuracy in speaker-independent experiments.

Muller et al. [33] performed spoof detection with constant-Q trans-
form, log-scaled, and mel-scaled 513-dimensional spectrogram fea-
tures created with the librosa library [30]. They evaluated twelve
different models in fixed 4-second and variable input configura-
tions. In addition, they experimented with models on raw wave-
forms, which outperformed the feature-based models due to the finer
feature-extraction resolution for the raw inputs. They observed that
mel-scaled spectrograms were underperforming compared to log-
scaled and CQT spectrograms while replacing the mel spectrograms
with CQT attained a 37% performance improvement. Chen et al. [9]
introduced SpeechFormer in a setup consisting of linear and log-
mel spectrograms and wav2vec [40] acoustic features. Their vanilla
transformer-based [47] framework consisted of four sets of Speech-
Former blocks representing four stages interleaved by three merg-
ing blocks. The modeling process involved converting from frame
to phoneme, word, and utterance. The test results on four datasets
show state-of-the-art results with an improvement of 0.5-3.5% for
weighted accuracy and 4-11% for unweighted accuracy.

In the Romanian language, Ungureanu et al. [45] introduced an
emergency system architecture featuring an automatic speech recog-
nition model using MFCC features extracted from 25 ms frames with
a 10 ms stride as input. They involved a deep neural network consist-
ing of 12 Time Delay Neural Network Factorization recurrent layers,

which was trained on 394 hours and then evaluated on 62 hours of au-
dio. While testing on four subsets, they achieved a 2.99 to 5.94 word
error rate (WER). A SER model is defined in the emergency system
using log-scaled spectrograms from 1-second audio segments cre-
ated by splitting speech files from the Emo-IIT dataset [32] with a 10
ms stride. A dynamic range normalization within [−90,−7] decibels
is applied to the features, transforming them into 3-channel images.
These resulting spectrograms were passed to a pre-trained VGG16
model. Speech emotion recognition results improved the baseline
performance on weighted accuracy by 5-7%.

2.2 Adversarial Attack and Defense

White-box adversarial attacks have gained popularity since Goodfel-
low et al. [15] introduced a family of fast methods for generating
adversarial examples, including the well-known FGSM. Their ob-
servations showed that malicious samples improved model general-
ization and feature regularization better than dropout. Kurakin et al.
[22] showed that adversarial attacks are possible in the real world,
on camera-taken images, by extending the fast method when intro-
ducing the BIM, attaining better attack success rate than FGSM on
various perturbation values. Madry et al. [28] assessed the success
of the PGD in obtaining robust networks. The results showed bet-
ter attacks with PGD; however, when training using PGD adversarial
examples on the MNIST dataset [25], the model was more resistant
to PGD attacks but significantly decreased the accuracy on standard
and FGSM test data. Ilyas et al. [18] introduced a set of black-box
adversarial attacks to improve the success rate by a limited number
of queries. The algorithms were based on three different settings:
a query-efficient setup proving 2-3 times fewer queries for targeted
adversarial attacks; a partial-information configuration, denoting the
access to probabilities in top-k classes; and a label-only setup, rep-
resenting an ordered list of predicted probabilities. The algorithms
introduced showed successful attacks on real-world systems.

In the monolingual, multilingual, and cross-lingual speaker recog-
nition settings, Liao et al. [26] employed FGSM and PGD attacks
on ResNet-18, ViT, and CvT architectures, revealing the susceptibil-
ity of DNNs to attacks in speaker recognition tasks. They noticed
that most models exhibited attack weaknesses, but the MFCC fea-
tures were the most vulnerable to perturbations; however, no defense
strategy, such as adversarial training, was applied to test the defense
capability of their models.

3 Methodology

3.1 Dataset

In this paper, we rely on two speech emotion recognition datasets: the
Romanian Emo-IIT dataset [32], which covers 522 audio files repre-
senting utterances denoting different mental states, and the German
Emo-DB dataset [7], which covers 535 audio files. Both share the
same classes (i.e., anger, boredom, disgust, fear, happiness, neutral
state, and sadness).

Emo-IIT. Firstly introduced by Monica et al. [32], Emo-IIT is a
Romanian resource of speech processing representing sentences of
20-22-year-old students, recorded at a 16KHz sample frequency. The
total number of recordings was initially over 12,000. The validation
was performed by 20 non-professional persons, resulting in two col-
lections: one containing 2,994 files for which the emotion was recog-
nized by more than 50% of people and another containing 2,502 files
for 75% emotion recognition. However, the number of files made
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Figure 1: The speech processing pipeline considers an audio file of length L. B is the resulting number of files trimmed to 1-second audio files
after applying an audio cut with stride Nstride in milliseconds (see Equation 1, SR = 16KHz). After applying the spectrogram algorithm and
converting it to a jet colormap, we use adversarial augmentation strategies and feed the resulting image into the neural network. The output of
the network is the emotion identified in the speech.

available was 522, for only 3 out of 6 sentences; thus, we use this
reduced dataset in our experiments.

Emo-DB. Recorded in 1997 and 1999 and presented by Burkhardt
et al. [7], the Emo-DB is a collection of around 800 utterances of
five female and five male voices, recorded in an anechoic chamber
at the 48KHz sample rate, which was downsampled to 16KHz. The
evaluation, done between 1997 and 2005, used sentiment and natural
tone identification to reduce the database to 535 audio files.

3.2 Speech Processing

We illustrate the processing pipeline in Figure 1. First, we split the
datasets of 522 and 535 files, respectively, into 1-second samples.
Similar to the work of Lech et al. [24], the resulting number of audio
splits B is determined by Nstride, as shown in Equation 1.

B = ceil

⎛
⎝

(
max(L,SR+1)

SR[Hz]
− 1[s]

)
∗ 1000

Nstride[ms]

⎞
⎠ (1)

If the audio length L exceeds the sample rate SR = 16, 000, the re-
sulting 1-second file audio is padded with 0s to the right. Next, we
pass the resulting files to four types of spectrogram algorithms us-
ing the librosa library [30]: linear, mel, CQT, and MFCC with 70
samples between successive frames, and a window size of 256, cho-
sen such that the output is closer to the desired model input. The
result is transformed in decibels and normalized based on the aver-
age minimum and maximum decibels over the entire dataset. Once
the files are normalized, they are resized from B× 1× 229× 224 to
B × 1× 224× 224, then passed to the jet colormap converter to de-
termine the 3-channel images of shape B×3×224×224. Figure 2a
depicts an example of the resulting spectrograms.

As a regularization technique, we perform an augmentation
method similar to SpecAugment [35]. Therefore, our augmentation
stretches the jet colormap image by a factor of 0.9 and applies two-
time masks of 16 and a frequency mask of 16. Figure 2b shows an
example for each type of spectrogram used.

(a) Spectrograms without augmentations

(b) Spectrograms with augmentations

Figure 2: Linear, mel, CQT, and MFCC spectrogram examples for the
Emo-IIT file “B303fJa.wav".

3.3 Adversarial Algorithms

To assess and improve the robustness of our networks, we employ a
set of white-box and black-box adversarial algorithms using Kim’s
adversarial toolbox, namely torchattacks [19]. Thus, we utilize five
gradient-based white-box algorithms [5]: FGSM, MI-FGSM, BIM,
PGD, and EOT+PGD. They feature several hyperparameters, includ-
ing a perturbation factor ε for the weight of noise that is applied,
which is subject to variations for the attack impact assessment of the
algorithms. We denote x′

0 the initial adversarial example, x′
t the ad-

versarial example after t-steps, L the loss function, Nsteps the num-
ber of algorithm steps, α the step size, and ε the maximum perturba-
tion.

FGSM. A simple yet effective approach is to find adversarial ex-
amples that maximize the loss function. These examples are gener-
ated in a gradient ascend-like manner by adding a small perturbation
proportional to the sign of the gradient of the loss function [15]:

x′ = x+ ε · sgn (∇xL(f(x), y)) (2)

The perturbation is subject to an �∞ constraint such that
||x′ − x||∞ < ε, resulting in adversarial examples x′ close to the
input points x.

PGD. An extension to the fast gradient method is to apply an itera-
tive process in which we use a small perturbation to the input x, every
step [28]. Because the step-by-step process accumulates the pertur-
bation factor, resulting in significant changes in the input space, a
projection operator ΠB(x,ε) is applied to the ε-ball B(x, ε). The ad-
versarial sample generation process is formalized below:

x′
0 = x+ U(−ε, ε)

x′
t+1 = ΠB(x,ε)

{
x′
t + α · sgn

(
∇x′

t
L
(
f
(
x′
t

)
, y
))}, (3)

where U is the uniform distribution.
MI-FGSM. Because the iterative process may lead to poor local

maxima, momentum-based iterative methods have been proposed to
boost performance by accumulating gradients at each iteration, with
a decay factor μ [12]. The recurrence is defined as follows:

gt+1 = μ · gt +
∇x′

t
L (f (x′

t) , y)∥∥∥∇x′
t
L (f (x′

t) , y)
∥∥∥
1

x′
t+1 = ΠB(x,ε)

{
x′
t + α · sgn (gt+1)

}
, (4)

where ΠB(x,ε) is the projection to ε-ball B(x, ε) to keep the pertur-
bation small enough while still fooling the network.

BIM. Another way to maintain small perturbations in the itera-
tive methods is by clipping between −ε and ε [22]. Therefore, the

S.-V. Echim et al. / Benchmarking Adversarial Robustness in Speech Emotion Recognition2470



iterative FGSM with ε-neighborhood constraints is:

x′
t+1 = clip(x,ε)

{
x′
t + α · sgn

(
∇x′

t
L
(
f
(
x′
t

)
, y
))}

, (5)

where clip(x,ε) {x′} = min (max (x′, x− ε, 0) , x+ ε, 255) as-
sures the values are in the �∞ ε-neighborhood of the original image
and between 0 and 255.

EOT+PGD. Adversarial examples constructed with the previous
techniques may lose their property when transformations are applied
to the input [53]. For example, 2D/3D pose transformations such as
translation, rotation, and scale applied to an adversarial image may
yield the correct class. Therefore, to address this issue, we can in-
troduce a distribution of such transformations for which the attack is
invariant, and then we try to generate perturbations that produce valid
adversarial examples based on expectation over transformations [53]:

x′
t+1 = ΠB(x,ε)

{
x′
t + α · sgn

(
E

[
∇x′

t
L
(
f
(
x′
t

)
, y
)])}

, (6)

where f is a randomized model generating a different output for
each forward regardless of the identity of the input. The implemen-
tation in Zimmermann [53] uses 1

m

∑m
i ∇x′

t
L (f (x′

t) , y) as an

approximation of E
[
∇x′

t
L (f (x′

t) , y)
]
.

Pixle and Square Attack. Independent of the gradient infor-
mation, Pixle [36] is based on randomly sampling parameterized
patches of pixels and rearranging them in other positions. The Square
Attack algorithm [2] provides �2 and �∞-score-based attacks. Given
a square size, the elements of patches are modified based on proba-
bility.

3.4 Models

We introduce six different architectures in our experiments with a
diverse range of parameters and different input processing methods.
The CNN-LSTM network [52] is trained on our chosen datasets from
scratch. This network was set up in our experiments with feature ex-
traction submodules composed of a 2D convolution, a batch normal-
ization layer, an ELU activation function [10], and a 2D max pooling
layer. Moreover, AlexNet [21], VGG16 [42], CvT [48], ViT [13], and
LeViT [16] networks are pre-trained on ImageNet-1k [11] and used
for fine-tuning.

4 Experimental Setup

4.1 Model Hyperparameters

For the CNN-LSTM model, as 3-channel images represent our spec-
trograms, we build the five feature extraction submodules with the
input and output convolutional pairs of [(3, 32), (32, 64), (64, 128),
(128, 128)], a kernel size of 2 and stride of 1 for the convolutional
layers, a kernel size of 2 and a stride of 2 for the max-pooling layers,
a LSTM input size of 169, and a LSTM hidden dimension of 256.
The output of CNN-LSTM layers is passed through two fully con-
nected layers from 32,768 to 1,000, then reduced to the number of
classes (7), and a dropout of 0.4 is applied to the first layer. Since
the other models are pre-trained on ImageNet-1k, we include a clas-
sification head represented by a fully connected layer from 1,000 to
7. The number of parameters for each model is 33.32M for CNN-
LSTM, 61.11M for AlexNet, 138.36M for VGG16, 31.63M for CvT,
86.57M for ViT, and 18.90M LeViT.

4.2 Adversarial Hyperparameters

All adversarial algorithms are set up with ε = 32/255. BIM, MI-
FGSM, PGD, and EOT+PGD are defined with a step size α = 4/255
and a number of steps Nsteps = 2. MI-FGSM is also initialized with
the gradient decay μ = 0.9. EOT+PGD is configured with two EOT
iterations. For the black-box attack algorithms, Pixle is set up with
patch bounds of (20, 50) on both the X and Y axis, a maximum of
one restart, and one iteration per restart. Square Attack is initialized
with a maximum of 200 queries and one restart. For the experiments
involving the variation of attack intensity, we choose in our tests ε ∈
{8, 16, 32, 64, 128, 196} /255.

4.3 Evaluation and Training Hyperparameters

We quantitatively evaluate the performance of our models on met-
rics such as weighted precision, recall, validation accuracy, average
accuracy (merged train and test classification accuracy, matching the
baseline [45, 52] metrics), and confusion matrix. We compute the
success rate for adversarial attacks, representing the percentage of
accuracy reduction between testing with regular and adversarial ex-
amples. We also perform a qualitative analysis using t-SNE embed-
ding plots [46] to visually explain the performance of the models and
adversarial attacks along with Grad-CAM++ [8]. The optimizer is
Adam [20], and the loss function is cross-entropy. We set the learn-
ing rate to 1e − 4 with a weight decay of 1e − 3 and train for 15
epochs. The batch size is 32, and the train/test split is 80%/20% ran-
dom split.

5 Results

5.1 Preliminary Results

Dataset Comparison. Table 1 reveals the preliminary results on
Emo-DB and Emo-IIT datasets. The overall performance on both
datasets is similar. The best-performing model (i.e., CvT) achieves
the highest accuracy on the Emo-IIT dataset when employing linear
spectrogram inputs. In contrast, the same model architecture achieves
the highest scores on the Emo-DB dataset when utilizing mel spec-
trogram inputs.

Despite having longer samples, training on the Emo-DB dataset
does not yield better results when using the exact input representa-
tion. The total length is 1,487 seconds for the Emo-DB dataset, as
well as 649 seconds for the Emo-IIT, which is less than half of Emo-
DB. Moreover, considering the file number is similar between the
datasets, we expect better performance for more speech data. CvT
obtained the best validation weighted accuracy of 86.82% and an av-
erage weighted accuracy of 97.38% with mel spectrogram inputs on
Emo-DB, as well as 88.12% validation accuracy and 97.75% average
accuracy on Emo-IIT when employing linear spectrograms. Overall,
performance is not different between the selected datasets, with a p-
value < 1% using the paired t-test statistic.

Model Comparison. Regarding the input type, the best perfor-
mance on Emo-DB is achieved using mel-scaled spectrograms with
a 1.40% validation accuracy and 0.3% average accuracy over the
second-performing spectrogram type, CQT. Meanwhile, Emo-IIT
testing is better with linear spectrograms, with an added value of
0.6% for validation accuracy, compared to the CQT spectrogram and
an improvement of 0.11% over linear spectrogram type. CQT con-
sistently achieves the highest scores on both datasets, with validation
accuracy of 79.86% and 82.16% on Emo-DB and Emo-IIT, respec-
tively, and a mean of 95.30% and 96.56% on average accuracy.
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Table 1: Baseline validation and average weighted accuracy results on
datasets, spectrogram types, and deep neural network architectures.
Higher values (↑) represent better performance, indicated in bold.

Spectrogram Model
Valid. Acc. (%) ↑ Avg. Acc. (%) ↑

Emo-DB Emo-IIT Emo-DB Emo-IIT

LINEAR

CNN-LSTM 78.52 77.24 95.76 95.75
AlexNet 78.72 84.35 95.74 97.05
VGG16 79.85 81.09 96.11 96.49
CvT 84.79 88.12 96.99 97.75

ViT 75.22 77.41 90.55 94.88
LeViT 71.65 81.88 93.26 96.60

MEL

CNN-LSTM 79.59 81.54 95.98 96.55
AlexNet 78.32 87.44 95.71 97.64

VGG16 81.95 83.06 96.50 96.85
CvT 86.82 82.18 97.38 96.57
ViT 75.55 73.22 93.72 91.13
LeViT 70.44 74.58 91.80 94.53

CQT

CNN-LSTM 79.65 80.97 95.96 96.44
AlexNet 83.54 86.60 96.72 97.47
VGG16 81.17 83.23 96.26 96.86
CvT 85.42 87.52 97.08 97.63

ViT 76.83 73.24 93.89 94.94
LeViT 72.56 81.41 91.88 96.02

MFCC

CNN-LSTM 70.57 76.07 94.17 95.51
AlexNet 76.27 83.38 95.33 96.87

VGG16 77.45 80.17 95.52 96.31
CvT 80.52 81.05 96.18 96.43
ViT 68.85 70.38 85.93 94.06
LeViT 73.34 75.36 92.65 95.15

MEL + CNN-LSTM [52] 82.42 - 95.89 -
LOG + VGG16 [45] - - 94.46 94.98

The comparison of different architectures shows better overall per-
formance with AlexNet and CvT. For the linear and CQT spectro-
gram types, CvT is the best architecture, with top scores. For the mel-
scaled and MFCC types, on Emo-IIT validation accuracy, AlexNet
has an added value of 4.38% over the second best-performing score
for the mel-scaled spectrogram and 2.33% for MFCC spectrogram
in terms of validation accuracy, whereas, for the average accuracy,
we obtain an increase of 0.79% and 0.44%, respectively, compared
to the following best results.

CNN-LSTM AlexNet VGG16 CvT ViT LeViT

E
m

o-
II

T
E

m
o-

D
B

Figure 3: t-SNE plots for network architectures with a linear spec-
trogram on Emo-IIT and Emo-DB datasets. The blue color is anger,
orange is boredom, green is disgust, red is fear, purple is happiness,
brown is neutral, and pink is sadness. The higher density on Emo-DB
is due to a more extensive test dataset, 1487s vs. 649s.

5.2 Adversarial Results

Adversarial Attack. Before improving the robustness of our net-
works, we assess their default resistance performance to adversarial
attacks. Table 2a shows that for all models, except ViT and LeViT, the
EOT+PGD algorithm is the most effective in adversarial attacks, with
a minimum attack average success rate of 82.03% and a maximum
of 99.62%. The LeViT network is most vulnerable to the MI-FGSM
algorithm, with a 99.97% success rate and a 99.51% average success
rate. Also, it is the least resistant to attacks overall, with a minimum
adversarial success rate of 90.88%. The other models are most re-
sistant to MI-FGSM attacks, with 76.64% attack average success for
CNN-LSTM, 80.83% for AlexNet, 75.54% for VGG16, 79.37% for

CvT, and 63.36% for ViT. The most invulnerable network without
prior adversarial training is CNN-LSTM.

Adversarial Defense. Adversarial examples used as data augmen-
tations (see No Atk. in Table 2a) determine an average accuracy im-
provement over undefended approaches of 0.65% for CNN-LSTM,
1.29% for VGG16, 0.34% for CvT, and 1.19% for ViT. On the
other hand, the augmentations decrease the performance of AlexNet
and LeVit by 0.38% and 2.22%. We obtained our best-performing
model on the Emo-IIT dataset with CvT architecture, scoring 89.81%
validation weighted accuracy and 98.09% average weighted accu-
racy, followed by VGG16 with 88.02% validation weighted accu-
racy and 97.78% average weighted accuracy. We find that CNN-
LSTM architecture works better with BIM augmentations, VGG16
with EOT+PGD, CvT with PGD, and ViT with MI-FGSM.

For the defended adversarial attacks, Table 2a reveals consistent
success rates for network architectures and adversarial algorithms.
EOT+PGD is the most effective algorithm on AlexNet, VGG16, CvT,
and LeViT, while FGSM takes the lead when attacking the CNN-
LSTM and ViT architectures. Quantitatively, the VGG16 architec-
ture is the most resistant to attacks. Comparing the defense capa-
bility, we obtain 31.73% average defense improvement for CNN-
LSTM, 90.13% for AlexNet, 90.93% for VGG16, 13.26% for CvT,
30.88% for ViT, 4.66% for LeViT. We find convolution-based net-
works are better defended when adversarial training is performed,
compared to transformer-based architectures, which achieve a maxi-
mum of 30.88% defense capability.

Adversarial Perturbation Factor Variation. Table 2b shows the
best white-box attacks against AlexNet of 71.99% attack success
for EOT+PGD with ε = 196/255, followed by the BIM algorithm
resulting in 11.10% attack success, and 10.96% for FGSM, both
with ε = 8/255. The weakest attacks are PGD with 10.86% for
ε = 32/255 and MI-FGSM with 10.84% for ε = 128/255.

The ε hyperparameter variation of black-box attacks with the Pixle
algorithm results in improvements of average weighted accuracy
overall, with the highest attack success of 1.22% for FGSM-defended
models and 0.18% for MI-FGSM models. The other algorithms used
in adversarial training prove better resistance, showing top improve-
ments of 0.80%, 0.60%, and 0.96% for BIM, PGD, and EOT+PGD.
However, we saw improvements for FGSM and MI-FGSM of 0.38%
and 0.23% as well. An ε > 0.5 determines almost 100% attack
success rate (all algorithms except BIM with 99.99%). We obtain
the lowest numbers with ε = 8/255 for FGSM models (2.72% at-
tack success), MI-FGSM (2.39%), BIM (1.66%), PGD (1.90%), and
EOT+PGD (1.68%). Moreover, an ε > 0.25 determines attack re-
sults bigger than 95%, except EOT+PGD with 94.77%. The attack
success correlation with the increase of ε is justified for the Square
algorithm by the large-patch attacks.

5.3 Discussions

Saliency Maps. We use the visual representations of the deep neural
network’s focus in classifying the sentence “Merg la munte" (eng. “I
am going to the mountain") from the Emo-IIT dataset on all emo-
tions. Based on Figure 4, we identify consistent results for AlexNet
trained with different augmentations. The focus regions on various
test examples for these models are similar, and all the spectrograms
are correctly classified. In contrast, the CvT models show no saliency
map consistency for the same spectrograms. We find that there are
classes featuring regions with more emphasis on the frequency lev-
els, such as anger and boredom, with greater coverage of the low
frequencies for the entire sentence. Moreover, other classes, such as

S.-V. Echim et al. / Benchmarking Adversarial Robustness in Speech Emotion Recognition2472



Table 2: Adversarial attack and defense results. Attack success (succ.) rates are computed based on average weighted accuracy. A negative
attack success rate represents an accuracy gain on the Emo-IIT test data obtained by applying adversarial noise over the unattacked test data.
The adversarial intensity ε varies for adversarial data augmentation and white-box, Pixle, and Square attacks. Higher values (↑) represent better
performance. Lower numbers (↓) represent better model defense against adversarial attacks. Bold highlights the highest value.

(a) Adversarial attacks on regular and defended models.

Model Attack

Undefended (%) Defended (%)

Valid. Acc. ↑ Avg. Acc. ↑ Succ. ↓ Avg. Succ. ↓ Valid. Acc. ↑ Avg. Acc. ↑
Succ. ↓ Avg. Succ. ↓

No Atk. Atk. No Atk. Atk.

CNN-LSTM

- 77.24 95.75 - - - - - - - -
FGSM 25.07 19.04 67.55 80.12 77.69 9.23 95.64 47.53 88.11 50.30

MI-FGSM 24.47 22.37 68.32 76.64 78.62 48.25 96.02 90.34 38.62 5.91
BIM 21.64 19.14 71.98 80.02 80.60 44.01 96.40 89.54 45.40 7.11
PGD 21.51 19.23 72.16 79.91 78.75 45.44 96.05 89.70 42.29 6.61
EOT+PGD 19.45 17.20 74.82 82.03 78.70 45.91 96.04 89.64 41.66 6.67

AlexNet

- 84.35 97.05 - - - - - - - -
FGSM 0.39 3.50 99.53 96.39 81.50 79.33 96.54 96.07 2.66 0.49
MI-FGSM 0.66 18.61 99.22 80.83 81.85 40.40 96.63 88.91 50.64 7.99
BIM 0.03 1.91 99.96 98.03 81.47 33.08 96.54 87.61 59.39 9.25
PGD 0.03 1.91 99.96 98.03 81.01 34.11 96.46 87.78 57.90 9.00
EOT+PGD 0.00 0.37 100.00 99.62 82.19 32.47 96.67 87.49 60.49 9.49

VGG16

- 81.09 96.49 - - - - - - - -
FGSM 2.00 11.87 97.54 87.70 79.23 71.33 96.11 90.77 9.97 5.55
MI-FGSM 1.12 23.60 98.61 75.54 83.29 59.61 94.58 97.24 28.44 -2.82
BIM 0.10 4.90 99.87 94.92 88.02 50.37 96.89 90.40 42.78 6.69
PGD 0.10 4.90 99.87 94.92 85.21 48.25 92.45 97.59 43.38 -5.56
EOT+PGD 0.00 1.34 100.00 98.61 87.20 47.96 97.78 90.27 45.00 7.68

CvT

- 88.12 97.75 - - - - - - - -
FGSM 0.50 10.22 99.43 89.54 80.56 5.58 96.34 26.55 93.08 72.44
MI-FGSM 0.78 20.17 99.12 79.37 87.08 52.62 97.57 91.01 39.58 6.72
BIM 0.14 5.17 99.84 94.71 89.51 24.72 98.04 66.15 72.38 32.53
PGD 0.14 5.17 99.84 94.71 89.81 26.17 98.09 74.29 70.86 24.26
EOT+PGD 0.00 1.41 100.00 98.55 88.37 2.69 97.85 14.39 96.96 85.29

ViT

- 77.41 94.88 - - - - - - - -
FGSM 1.74 2.33 97.75 97.54 73.64 15.24 92.02 30.68 79.31 66.66

MI-FGSM 14.62 34.77 81.12 63.36 79.33 34.43 96.07 77.48 56.60 19.35
BIM 3.02 4.91 96.10 94.83 77.22 28.03 93.73 56.56 63.70 39.65
PGD 3.02 4.91 96.10 94.83 80.81 25.27 95.85 57.39 68.72 40.13
EOT+PGD 2.40 3.40 96.89 96.42 77.66 28.90 95.26 63.13 62.79 33.73

LeViT

- 81.88 96.60 - - - - - - - -
FGSM 5.52 8.81 93.26 90.88 56.13 32.77 82.16 50.18 41.62 38.92
MI-FGSM 0.03 0.47 99.97 99.51 64.25 4.44 80.72 7.25 93.10 91.01
BIM 0.24 0.62 99.70 99.36 69.62 3.21 88.34 4.48 95.38 94.93
PGD 0.24 0.62 99.70 99.36 73.72 2.54 92.66 11.88 96.55 87.18
EOT+PGD 1.39 2.27 98.30 97.65 61.07 1.54 86.85 4.47 97.48 94.85

(b) Adversarial intensity ε variation for AlexNet.

Algorithm ε/255
Aug. Acc. Attk. Success (%) ↓

(%) ↑ White-box Pixle Square

FGSM

8 96.96 10.96 0.96 2.72
16 95.82 9.05 -0.38 5.43
32 97.20 5.39 1.05 41.74
64 97.03 4.45 1.16 98.59

128 97.31 3.82 1.22 100.00

196 97.06 3.85 1.11 100.00

MI-FGSM

8 97.54 10.08 0.07 2.39
16 97.25 10.38 -0.21 5.10
32 97.30 10.54 -0.16 14.98
64 97.27 10.65 -0.23 97.74

128 97.56 10.84 0.18 100.00

196 97.53 10.54 0.08 100.00

BIM

8 97.22 11.10 -0.08 1.66
16 97.01 11.04 -0.28 3.94
32 97.07 10.66 -0.27 10.78
64 96.91 10.78 -0.49 95.24

128 96.58 10.18 -0.80 99.99
196 96.92 10.71 -0.39 100.00

PGD

8 96.99 10.53 -0.19 1.90
16 96.62 10.56 -0.60 3.78
32 96.71 10.86 -0.44 10.41
64 96.65 10.65 -0.57 96.54

128 96.83 10.80 -0.37 100.00

196 97.07 11.26 -0.11 100.00

EOT+PGD

8 97.09 11.00 -0.05 1.68
16 96.69 10.23 -0.40 3.30
32 96.29 10.09 -0.86 10.59
64 96.64 10.62 -0.48 94.77

128 96.74 12.16 -0.33 100.00

196 96.22 71.99 -0.96 100.00

disgust, focus on specific time intervals and all frequency levels.
Confusion Matrices. We further investigate our data augmenta-

tion and defended adversarial attack results through the confusion
matrices depicted in Figure 5. The highest confusion for AlexNet
is in the classes {boredom, disgust, sadness}, with accuracy rang-
ing 92.96-96.42%, while the classes {anger, fear, happiness, neutral}
feature accuracy scores bigger than 97%. Similarly, the CvT’s most
significant confusion is for the {boredom, fear, sadness} classes, with
the lowest accuracy of 90.30% for boredom on FGSM, followed by
94.06% accuracy for the EOT+PGD model. Compared to AlexNet,
the classification is better with CvT, as shown in Tables 1, 2a.

In the offensive setup, the adversarial examples slightly affect
AlexNet performance with a 5-15% drop in accuracy for almost ev-
ery (class, defense algorithm) pair and with a few 2-3% performance
drops in (anger, FGSM) and (happiness, FGSM) pairs. Moreover,
some attacks have no success, resulting in accuracy improvements,
for example, in (boredom, FGSM) case with 0.56% gain. Conversely,
the CvT network presents significant attack vulnerabilities for FGSM
and EOT+PGD, with high confusion overall with over 55% accu-
racy drops. BIM and PGD follow, causing 20-30% drops. Finally,
the BIM-trained model well-defended the BIM attacks, resulting in
only 2-10% accuracy reductions for individual classes.

Insights. Our results show that the linear and mel-scaled spectro-
grams perform best with the AlexNet and CvT networks. Although
the convolutional transformers feature strong data augmentation per-
formance, they are still poor in the SER task when using adversarial
training as a defense mechanism. Furthermore, vision transformers
are more prone to adversarial attack success on SER, and white-box
attacks generally feature positive attack success rates. In contrast,
black-box attacks can determine accuracy improvements at the pixel-
level testing or complete adversarial attacks at the pixel patch level.

Limitations. Analyzing the experimental results, we notice that
the vision transformers provide varying saliency maps that limit the
conclusions on time, frequency, or decibels common focus regions.
Moreover, the statistical stability will be further assessed as all our
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Figure 4: Grad-CAM++ saliency maps for models trained with adver-
sarial examples. The speech files used are “B303f{A, B, D, F, J, N,
S}a.wav". The speaker and the sentence are the same for all files.
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Figure 5: Confusion matrices for the AlexNet and CvT networks trained with adversarial examples for data augmentation and defended attacks.
The horizontal axis represents predicted labels, and the vertical one shows true labels. The classes are anger (A), boredom (B), disgust (D),
fear (F), happiness (H), neutral (N), and sadness (S). Values depicted in the matrices are expressed in percentage (%).

experiments were performed for a limited number of iterations, i.e.,
average results on three experimental iterations. Finally, the best
training hyperparameters are subject to further fine-tuning for the
SER task in low-resource languages such as Romanian.

6 Conclusions

This paper explores four types of spectrograms to feed six networks
of different architectural complexity and approaches to the speech
emotion recognition task. Our results show the relationship between
the dataset and types of preprocessing. The adversarial algorithms
employed as data augmentation techniques improve performance for
all network architectures except AlexNet and LeViT. For attack and
defense settings, we found that most architectures behave differently
when adversarial algorithms attack them. The most robust algorithm
that significantly breaks the model defense is EOT+PGD, with at-
tack average success rates up to 94.85% for LeViT and 85.29% for
CvT. Moreover, we notice a big difference in defense performance
between convolution-based and transformer-based architectures. The
latter provides poor accuracy even after employing adversarial train-
ing. Overall, the ε hyperparameter does not influence the perfor-
mance linearly, but it is subject to parameter tuning to achieve better
defense and attack performance.

Further work will comprise the adversarial attack robustness com-
parison between multiple low-resource languages, such as Persian

and Greek. Finally, a comprehensive assessment of ε variation on
various network architectures, as well as white and black-box adver-
sarial algorithms is the subject of further investigation.
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B. Marghescu, T. Balan, M. Dascalu, I. Bica, and F. Pop. Odin112–ai-
assisted emergency services in romania. Applied Sciences, 13(1), 2023.

[46] L. van der Maaten and G. Hinton. Visualizing data using t-SNE. Journal
of Machine Learning Research, 9:2579–2605, 2008.

[47] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, L. Kaiser, and I. Polosukhin. Attention is all you need. In
NeurIPS 2017, pages 5998–6008, 2017.

[48] H. Wu, B. Xiao, N. Codella, M. Liu, X. Dai, L. Yuan, and L. Zhang. Cvt:
Introducing convolutions to vision transformers. In 2021 IEEE/CVF707
ICCV, pages 22–31, 2021.

[49] H. Xu, Y. Ma, H. Liu, D. Deb, H. Liu, J. Tang, and A. K. Jain. Adver-
sarial attacks and defenses in images, graphs and text: A review. Int. J.
Autom. Comput., 17(2):151–178, 2020.

[50] Y. Xu, X. Zhong, A. Jimeno Yepes, and J. H. Lau. Grey-box adver-
sarial attack and defence for sentiment classification. In K. Toutanova,
A. Rumshisky, L. Zettlemoyer, D. Hakkani-Tur, I. Beltagy, S. Bethard,
R. Cotterell, T. Chakraborty, and Y. Zhou, editors, Proceedings of the
2021 Conference of the NAACL: Human Language Technologies, On-
line, 2021. Association for Computational Linguistics.

[51] Y. Zhang, Y. Song, J. Liang, K. Bai, and Q. Yang. Two sides of the
same coin: White-box and black-box attacks for transfer learning. In
Proceedings of the 26th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, KDD ’20, page 2989–2997, New
York, NY, USA, 2020. Association for Computing Machinery.

[52] J. Zhao, X. Mao, and L. Chen. Speech emotion recognition using deep
1d & 2d cnn lstm networks. Biomedical Signal Processing and Control,
47:312–323, 2019.

[53] R. S. Zimmermann. Comment on "Adv-BNN: Improved adversar-
ial defense through robust bayesian neural network". arXiv preprint
arXiv:1907.00895, 2019.

S.-V. Echim et al. / Benchmarking Adversarial Robustness in Speech Emotion Recognition 2475


	Introduction
	Related Work
	Speech Processing
	Adversarial Attack and Defense

	Methodology
	Dataset
	Speech Processing
	Adversarial Algorithms
	Models

	Experimental Setup
	Model Hyperparameters
	Adversarial Hyperparameters
	Evaluation and Training Hyperparameters

	Results
	Preliminary Results
	Adversarial Results
	Discussions

	Conclusions

