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ABSTRACT

It is well known that semantic and structural features of the generated images
emerge at different times during the reverse dynamics of diffusion, a phenomenon
that has been connected to physical phase transitions in magnets and other ma-
terials. In this paper, we introduce a general information-theoretic approach to
measure when these class-semantic ’decisions” are made during the generative
process. By using an online formula for the optimal Bayesian classifier, we esti-
mate the conditional entropy of the class label given the noisy state. We then deter-
mine the time intervals corresponding to the highest information transfer between
noisy states and class labels using the time derivative of the conditional entropy.
We demonstrate our method on one-dimensional Gaussian mixture models and on
DDPM models trained on the CIFAR10 dataset. As expected, we find that the se-
mantic information transfer is highest in the intermediate stages of diffusion while
vanishing during the final stages. However, we found sizable differences between
the entropy rate profiles of different classes, suggesting that different ’semantic
decisions” are located at different intermediate times.

1 INTRODUCTION

Generative diffusion models (Sohl-Dickstein et al.l 2015) operate through two complementary pro-
cesses: a predefined forward stochastic process, which gradually adds noise to data, and its corre-
spondingly learned reverse process, which can be interpreted as a form of dynamic denoising. In
the continuous limit, both processes can be described in terms of differential equations (Song et al.,
2021), i.e., diffusion processes. The reverse dynamics of this generative process has been studied ex-
tensively in recent years, revealing profound theoretical connections to key concepts in the statistical
physics of phase transitions. Specifically, Raya & Ambrogioni (2023) and |/Ambrogioni| (2024) have
provided theoretical and empirical evidence for the existence of spontaneous symmetry-breaking
phase transitions during generation, which correspond to temporally localized “decision windows”
that align with bifurcations in the generative process. In line with their findings, Biroli et al.| (2024)
have characterized a speciation phase during which a sample’s general features are determined,
which is consistent with the observation that class-specific characteristics emerge at different times
during generation (Sclocchi et al.| 2024)). This phenomenon was further studied mathematically by
L1 & Chen| (2024), who have provided a theoretical framework by which the bounds of this critical
window can be predicted, yet for a restricted set of initial distributions. From a more applied side,
Kynkiainniemi et al.| (2024) have demonstrated that restricting classifier-free guidance to an interme-
diate range of noise levels is essential in preserving both sample diversity and quality, emphasizing
the practical importance of a critical interval in conditional generation.

In spite of this growing body of theoretical literature, a practical and scalable method to localize
these decision windows in models trained on complex datasets with unknown distributions is still
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missing. In this paper, using ideas from information theory, we introduce a distribution-agnostic
method to localize the temporal windows corresponding to class-semantic structure generation in
trained diffusion models.
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Figure 1: Generative information transfer in 1D Gaussian-mixture diffusion.
Left) Diffusion of a one-dimensional equally weighted Gaussian-mixture with four data points
(classes) at (-8,-4, 6, 8) along with H (z|x¢) for different decision problems. Right) Posterior evolu-
tions of classes 3 (top left), 2 (top right), 1 (bottom left), O (bottom right). The time axes represent
the normalized number of noise additions according to a linear noising schedule.

The main idea is to measure the generative information production relative to a defined decision
problem by computing the conditional entropy of the accordingly partitioned classes given the noisy
states. The importance of a given time point for the generation of a given class can then be as-
sessed through the corresponding entropy production (i.e., the temporal derivative of the conditional
entropy) which quantifies how many bits of information have been transferred by the denoising
process relative to the defined partition. w

2 GENERATIVE DIFFUSION FROM AN INFORMATION THEORETICAL
PERSPECTIVE

The amount of information retained in a data source can be quantified by the entropy and is typically
measured in bits (Shannon|, |1948)):

=- ZP(yj) log, P(y;)

where y; are the values of a random variable y defined on vocabulary X’ with n elements and P(y)
is its probability mass function. In generative diffusion, the marginal entropy H (x;) can be used for
addressing temporal questions, such as the generative information potential of a model at a specific
point in time. However, it does not quantify the semantic content of the information that is restored.
By shifting the focus to the class label random variable c, conditional to the state random variable
X¢, we can derive a formulation that quantifies semantic information.

Source Zo, € Transmitter Ty Receiver c Destination
p(z0,¢) (|0, €) P(c|zy) P(c)

Figure 2: Transmitting class-semantic information in generative diffusion.

Information transmission in generative diffusion from the perspective of the class random variable
c. In contrast to the conventional description, the receiver p(zg|x;) is exchanged with a classifier
P(c|zy), and the destination p(xg) is replaced by P(c).

As illustrated in Figure 2, the class generation process can be conceptualized as a form of infor-
mation transfer through a noisy channel given by the forward process. An image x is sampled
from the dataset and then transmitted through a noisy channel zy — zr determined by the forward
process, where a decoder recovers information concerning its class label. The optimal probabilistic
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decoder can be obtained using Bayes rule P(cy|x:) = %. The uncertainty in the
j=1 t1Cj J

class label random variable c given a noisy state random variable x; may then be quantified through
the conditional entropy

K
Hclxy) = — /p(xt) Z P(ck|xe) logy P(ck|zt) dxy (1)
k=1
We can thus express the total amount of information transmitted up to time ¢t as T; = H (c)—H (c|x;).
This information transfer captures the amount of information that has been gained by measuring
the noisy state up to time ¢. Note that this information is fully contained in the current state x;
since in a Markov forward process we have P(c|xy.7) = P(c|z;). The specific contribution of the
(infinitesimal) noise added at time ¢ can be quantified by the entropy rate H (c|x¢), which is the
temporal derivative of the conditional entropy.

3 THE CONDITIONAL ENTROPY

The conditional entropy, as defined in Eq. [I| encompasses the entire set of possible classes. We
introduce a binary variable z € {2, 21 } to partition this set leading to the following definition.

H(z|x;) = f/pz(xt) ZP(z|xt) log, P(z|x:)dxy (2)

Here, p,(x;) denotes the mixture distribution under the partition induced by z. The prior P(z) can
be computed from the corresponding class-specific priors. When equal to 0.5, Eq. [2] becomes pro-
portional to the negative Jensen-Shannon Divergence between the mixture components p,, and p,,
(Appendix [A). Eq. [2] measures the uncertainty left in the decision defined by z given x;. When
defining zp to represent one specific class and z; to represent everything else, we can measure
class-specific generative information transfer. Figure [I|shows the temporal derivative of Eq. [2| for
different decision problems. We can see that the maxima of the temporal derivatives align with the
bifurcations in the diffusion process of the branches that are involved in the respective decisions.
For Gaussian-mixture models, the conditional entropy can be approximated readily as the joint dis-
tributions p(y, ¢) are Gaussian, with diffused class-specific mean and variance fx¢, 07,, weighted
by a class-specific prior 7, (Appendix [B].

3.1 ESTIMATING THE ENTROPY IN TRAINED MODELS

To estimate the entropy in trained models, we use the algorithm proposed by |[Koulischer et al.|(2025)
which estimates the class-specific posterior P(c|z;) by tracking the Markov chain of the forward
process backward in time, i.e., p(z7.t) = p(z7) tTJ;lT p(zr—1|z;). Using the data processing
inequality which directly follows from the Markovian structure of the forward process, they show
that the likelihood of a specific class depends only on the least noisy state, i.e. P(c|zr.:) = P(c|z¢).
Thus, the posterior can be estimated iteratively for the current denoising trajectory:

log P(clz;) = log P(clzii1) + (log p(¢]ass1, ¢) — log p(¢]s41))
(3)

= log P(c|z41) — (||$t - lte(ﬂftJrl;C)H2 — |zt — M0($t+1)||2)

207
The means, pig(z¢y1;¢) and pg(x441) can be obtained from a model’s conditional and unconditional
noise predictions respectively. In its present form, Eq. [3] approximates the posterior ratio between
a specific class and “everything” which is encoded by the unconditional model, also referred to as
null-model py(z;|0) in classifier-free guidance literature (Ho & Salimans, 2022). We redefine Eq.
[3]in terms of the binary variable z. When partitioning the set of classes into a specific class versus
everything else, Eq. [3] yields both, P(z|z;) and P(z|z;) = 1 — P(2o|z;). We sample from the
mixture distribution p,(z;) by splitting the expectation in Eq. [2|into its mixture components and then
using the learned scores, V., log pe(x+|20) and V,, pp(x¢|21)). When comparing one class with its
complement, we choose to approximate V log p(z;|—c) by the null-model, i.e., V, log pg(x+|0) as
it allows us to estimate Eq. [2| using two forward passes through a trained model for every sample
x;. The larger the set of classes, the better this approximation becomes. By exchanging the null-
model with a second class-specific model, we can directly compare two classes. A more detailed
description can be found in Appendix
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4 GENERATIVE INFORMATION TRANSFER IN CIFAR10

Figure 3 shows the estimated temporal derivatives of the conditional entropy for the decision prob-
lems just described for a model trained on CIFAR10 (Appendix [C.3). Here, we use “deer” as the

target class (zg) and “airplane”, “bird”, “cat”, car”, and "not deer” as the counterparts (z;) respec-
tively.
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Figure 3: Generative information transfer in CIFAR10.

Left) Expected noiseless images throughout the generative process for the five example classes
“deer”, "airplane”, bird”, ’cat”, ’car”, and the "null” class which we use to approximate “not deer”.
Right) Approximated temporal derivatives for the binary decisions between “deer” and “airplane”,

”bird”, “cat”, “car”, and “not deer”, respectively.

The temporal derivatives of the conditional entropy of decision problems involving contrasting
classes, e.g., “deer” versus “car,” which supposedly share minimal structural information, peak at
an earlier stage in the generative process, suggesting a preliminary divergence of the respective dif-
fusion branches, similar to the bifurcations illustrated in Figure 1. However, we also observe that
across experiments, including those in Appendix [C| most of the information transfer occurs within a
central interval that is preceded by a data-mean convergence, emphasizing the existence of different
diffusion regimes and a critical window (Raya & Ambrogioni, 2023; Ambrogioni, 2024; Li & Chen),
2024 [Biroli et al., 2024).

5 CONCLUSION & BROADER IMPACT

Although we have outlined a comprehensive method for measuring class-semantic information
transfer in generative diffusion models, it still remains to be extensively validated on models trained
on more complex class-conditional datasets, such as ImageNet, and those trained on datasets with
compositional class hierarchies, such as LAION. In addition, we will attempt to derive an analyt-
ical connection between the conditional entropy and the critical decision points corresponding to
the first-order phase transitions described by Raya & Ambrogioni| (2023). Nevertheless, even in its
current form, our approach provides an alternative view of generative diffusion that facilitates our
theoretical understanding of the topic. Additionally, it offers a theoretically sound method for per-
forming guided conditional generation in a semi-dynamic fashion that could be the starting point to
extend the ideas from |[Kynkéianniemi et al.|(2024) and improve their practical applicability.
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A JENSEN-SHANNON DIVERGENCE AND CONDITIONAL ENTROPY

The Jensen-Shannon Divergence (JSD) can be defined using Kullback-Leibler Divergences be-
tween two distributions p, ¢ and their mixture m = 254, With p = p(z|20) and ¢ = p(¢|z1) JSD

can accordingly be written as:
1
TSD(p(xi]20)||p(2:]21)) = 5 (Dicr (plxie]20)[Im) + Dicr (p(e]21)[Im))

1/ (2e]20)1 < 2 - p(z¢]20) )
== x¢|20) lo
2 Plitizo) 08 (w¢]20) + p(2¢|21)

2 - p(w|21)
1
+p(zt‘zl) Og( (xt‘zo +p .’L‘t|21

1/ (4] 20) o ( p(i]20) )
2 plitizo) 08 (xt|20 +p $t|z1

p(xe|z
—I—p(a:tzl)log( 1)

diI?t

dzs +log 2
(xt\zo + p(4]21) ! s

Now, log(%) can be written in terms of the posterior and prior:

og ( (4]2) ) g ( (zol0)/ P(z0) )
p(xel20) + p(w4]21) P(zolze)/P(20) + P(z1]a:)/ P(21)
which we will denote as log p for convenience from now on as well as log 2 := ¢:
1

JSD(p(at|z0)||p(e]21)) = 3 /p(xt|z0) -logp + p(at|z1) - log(1l — p) dzy + ¢

= 1/(’20;(62))() logp + p(z¢]21) - log(1 — p) dzy + ¢

_ /P (20| /P (20) + P(z1|m)/P(21)
P(z0lzt)/ P(z20)

+ Plarfa) /P(e1) - T p(ar) - logp

+ p(we]21) - log(1 — p) dxy + ¢

_1 P(zolze)p(ws) | P(z1]oe)p(at)
=3 / Plz) | P(z)

+ p(zt|z1) - log(1 — p) dxt + ¢

1
-5/ {p<xt|zO> +p<mt|zl>} plogp + plail=1) - log(1 — p) dey + ¢

} -plogp

2

Likewise, one can transform the right summand:

plze]z) - log(1 — p) = [p<xt|zO> +p<xt|z1>} (1 p)log(1 — p)

The final result then yields:

I8 Dadia)loerlon) = 5 [ [palin) + piaifa)| - pioes

. {p<xt|zO> +p<mt|zl>} (1= p)log(1 — p) day + ¢

1

— 5 [ ko) [plogp-+ (1~ p)tog(a — )]

2

/P($t|zo) + p(x¢]21)
2

41 /p(a:t\zl) - [plongr (1 —p)log(l —p)] dey +c

. [plogp—l— (1-p)log(1 —p)} dz, +c
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B GAUSSIAN MIXTURE DIFFUSION

B.1 DERIVING THE MARGINALS, LIKELIHOODS, AND POSTERIORS

When diffusing a Gaussian-mixture model (GMM) the intermediate distributions are available in
closed-form. We will derive them in the following. Starting from the definition of a GMM

K
p(xo) = > mN (wolpx, 7))
k

and applying a variance-preserving noise addition with known f;, the diffusion kernel is defined as:

t

p(ze|mo) = N (x| /agwo, 1 — o) with i = H(l - B)

T=1

Accordingly, the marginals are given by:

K
o) = me [ Nilvaan, 1 - ai) - Naolw, o) doo
k
The integral resolves to another Gaussian:
1= [ Nl Varo, 1 = a0) - Naolin o) dzo = N ot )

With y; and o2, derived in the following:

1 1
1= exp | E |dx
V2mo? \/27r(1—04t)/ p() ’
1

1
E=——(20— pu)? — ——— (s — \/ouxo)?
20_]% (1‘0 /’Lk) 2(1 - at) (l‘t oztxo)
:7x7(2) xo“k,ﬁ, mf w/oztxoi atmg
208 of 207 2(l-a) l-oap 2(1—o)
171 o 2 Bk Tiy/on 0 x7
- 2<ag+1—at>x0+(a§+1—at 0T 902 T 21— )
A B, B?
2
== B = (e — 2V
x5+ Bxg +C 2(x0 A)+2A+C
=

1 1 B2 A B
I = exp| — +C /ex (xQ)dx
N AN T <2A ) P —glwo—7) )do
1 1 <B2 ) Vor
exp

- Z4C
V2mo? \/2m(1 — ay) 2A
1

B2
= e —+C
2702(L — ar)A Xp<2A )

We can directly read off o7,

VA

O']%t = 0']%(1 — Oét)A = OétO']% + (1 — at)

Likewise, we recognize that

B? 1 it 1

e 2 _ Rt

A + 20% Tt Jit e+ QU]%tc
Pt 2(py/ar) /(03 (1 — o)) VT
v — t — t
Oiy 2((1 — o) + o) /(03 (1 — au)) Oiy
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Again, we can read off puz:

Pkt = \/ Qb

The likelihood, p(z¢|c) is then simply given by N (z¢|uxt, 07,). The only term left is the posterior
P(c|x¢) that can be derived from the previous definitions and Bayes’ formula:

P(Ck|.%‘t) _ p(xtlck)P(ck) _ Wk-/\/-(x”/ftktaglzgt)

p(xt) > N (@elge, 03,)

B.2 ESTIMATING THE CONDITIONAL ENTROPY

Recall the definition of the conditional entropy defined under the binary decision z:
H(z|x;) = — /pz(:rt) Z P(z|zt)log P(z|x:)dxs

Consider the decision between two specific classes, zg — c;, and z; — co that are part of a larger
set ¢ = {c1, c2, 3, ¢4 }. We can then write p, ()

Po(1) = p(t|20) P(20) + p(4]21) P(21)

where the priors are defined relative to the decision problem, i.e., P(z9) = P(c1)/(P(c1) + P(c2))
and P(z1) = P(c2)/(P(c1) + P(c2)). Similarly, the posteriors are defined as:

Plelrt)
c1|ze) + P(ca|zt)
P(ca|xy)

c1)ze) + P(ea|xt)

P(aofr) = 5y

P(afr) =

The likelihoods are given by p(z:|20) = p(a¢|c1) and p(x¢|z1) = p(x¢|ce). Thus the conditional
entropy for the given decision problem becomes:

_ P(cy) Ples)
el = = [ |pColed 5 ey P By

~ Pl Plcjl)
2 Flarfon) + Plafe) (P Pl )

o~ P(e) s, P(cj|z;) . P(c;|zy) i
- XZ: P(c1) + P(e2) /p( ! z)Zj:P(Cl|3«”t)+P(C2|ﬂct)1 g<P(Cl|$t)+P(Cz|$t)>d '

The likelihoods p(x|c;) and the posteriors P(c;|x;) were derived in the previous section and are
given by:

p(ailc;) = N($t|lh‘ta UiQt)
7TjN<37t|th7 sz't)

P(cjlzy) =
(]| t) 7T1N($t|/l1t,0%t)+7T2N($t|/$2t70%t)

T
T1+T2

The priors are simply P(c¢;) = . We estimate the integral using a discretization for x; and

then taking the Riemann sum.

B.3 ADDITIONAL EXAMPLES: DIFFUSION AND FIXED-POINT DYNAMICS

Additional setups for symmetric and asymmetric GMMs, equally weighted as well as differently
weighted. Additionally, we show the corresponding fixed point dynamics that were derived by opti-
mizing —V, log p(x:)+0.5z; using Powell’s hybrid method (Newton-Raphson + steepest descent).
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Figure 4: GMM with mixture weights (7, 71) = (0.5,0.5) and deltas at (ug, 1) = (=1, 1).
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Figure 5: GMM with mixture weights (o, 71) = (1/3,2/3) and deltas at (uo, 1) = (—1,1).
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Figure 6: GMM with mixture weights (m, 71, 7m2) = (1/3,1/3,1/3) and deltas at (uo, p1, pio) =
(—2,0,2).
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Figure 7: GMM with mixture weights (g, 71, 72) = (0.25,0.25,0.5) and deltas at (ug, i1, p2) =
(—2,0,2).



Published as a DeL'Ta Workshop Paper at ICLR 2025

* Decision Moments th — Owvs. 1,2,3 Owvs. 1 0vs. 2

Nk

| e
0.2 0.4 0.6 0.8 . 0.0 0.2 0.4 0.6 0.8 1.0
Normalized Diffusion Time ¢/T Normalized Diffusion Time ¢/T

Figure 8: GMM with mixture weights (7o, 71, 7m2) = (1/3,1/3,1/3) and deltas at (uo, p1, po) =
(—2,1,2).

Figure 9: GMM with mixture weights (mo, 1,72, m3) = (0.25,0.25,0.25,0.25) and deltas at
(NOa M1, H2, ,U'3) = (_8’ —4,4, 8)

C DIFFUSION ON CIFAR10

C.1 ESTIMATING THE CONDITIONAL ENTROPY

To estimate Eq. [2| we need to approximate the sampler, p,(x;) and the posterior, P(zq|z;). We split
the integral in Eq. [2]into two parts:

,ZP(z)/p(xth) [P(zo|xt)logP(zo|xt)+P(zl|xt)logP(zl|xt) dxy

We obtain N,; = N,, = 1000 samples for the individual expectations using ancestral sampling
(T=1000 inference steps)

z _ 1 z _ /Bt
KV e N

eg(we;2)) + /Bre

where €p(z;2) = —v1— Vg, logp(ae|z). For ¢ vs.oe, we use Vg, logp(z—c) =~
V., log p(z¢|0). We estimate the posteriors P(zo|z:) = 1 — P(21]x¢) using the iterative proce-
dure from |[Koulischer et al.| (2025):

P(zo|lzi-1) = P(z0lz:) eXP( (||3?t71 — po (s 20) [P — [z — ue(xt;zl)||2))

1
1 =B

The individual expectations are weighed by their respective priors, P(z): (0.5,0.5) for ¢; vs. ¢o and
(0.1,0.9) for ¢ vs. —c. Here is the procedure outlined in more detail:

10
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Algorithm 1 Estimate Conditional Entropy

1: Input: N, N,,, T, P(z)

20 23,z ~N(0,1)

3: P(ZQ|ZL‘T) = P(Zo)

4: Hp = —(P(20)log P(z0) + (1 — P(20))log(1 — P(z)))
5. fortinT :1do

6 for z € {z9,21} do
7: T =]
8 po(we; 20) = s (w0 — o=co(w1, 20))
9: po(we; 1) = o (w0 — —P—co(wt, 21))
10: if ¢t > 1 then
11: e~N(0,1)-v/Bi
12: else
13: e=0
14: end if
15: i1 = po(Te;20) + €
16: P(zolxi-1) = P(zolae) exp (— 125 (|lwe—1 — po (45 20)||* = [[we—1 — po(we; 21)|?))
17: P(z1|xt_1) =1- P(Zo|$t_1)
18: TP =2
19: Hf | = i >u,_, Pl2olzi-1)log P(20]wi—1) + P(21|z1-1) log P(21|z¢-1)
20: end for
21: H, 1= —(P(zO)Hf0 +(1- P(zo))HtZl)
22: end for
23: output: Hr.g
C.2 ADDITIONAL EXAMPLES
f ",[’H cat Vs. car vs. bird
VS. ;1i1'1)];|11(\ vs. deer vs. —cat
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Figure 10: Experiments using the target class “cat”.
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d T,
H airplane
vs. cat vs. deer
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i
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Figure 11: Experiments using the target class “airplane”.
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Figure 12: Experiments using the target class “car”.
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(‘II{H bird Vs, car vs. cat
vs. airplane vs. deer vs. —bird
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Figure 13: Experiments using the target class “bird”.

C.3 IMPLEMENTATION DETAILS

Datasets: All experiments were conducted using the CIFAR-10 Krizhevsky et al.| (2009) dataset,
which consists of 50,000 training and 10,000 test images, each image is a 32 x 32 RGB image. The
dataset contains 10 classes: airplane, car, bird, cat, deer, dog, frog, horse, ship and truck, with 6,000
images per class. We trained two types of models: (1) an unconditional model utilizing the full
dataset, and (2) class-specific models for the classes airplane, car, bird, cat, and deer, where each
model used 6,000 training images for training.

Network architecture: All models were trained using the U-Net architecture from Denoising Diffu-
sion Probabilistic Models (DDPM) [Ho et al.| (2020), where the noise prediction model is a modified
PixelCNN++ based Unet|Van den Oord et al.|(2016); [Salimans et al.| (2017).

Training: Training was performed using the Adam optimizer with a batch size of 128, distributed
across three Tesla V100 GPUs on an NVIDIA DGX-1 machine. The models were trained for 800
epochs using PyTorch 1.10.2+cul102, CUDA 10.2, and CuDNN 7605, with a learning rate of 0.0002,
employing random horizontal flips as data augmentation.
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