Barter Exchange with Shared Item Valuations

Anonymous Author(s)

Abstract

In barter exchanges agents enter seeking to swap their items for other items on their wishlist. We consider a centralized barter exchange with a set of agents and items where each item has a positive value. The goal is to compute a (re)allocation of items maximizing the agents' collective utility subject to each agent's total received value being comparable to their total given value. Many such centralized barter exchanges exist and serve crucial roles; e.g., kidney exchange programs, which are often formulated as variants of directed cycle packing. We show finding a reallocation where each agent's total given and total received values are equal is NP-hard. On the other hand, we develop a randomized algorithm that achieves optimal utility in expectation and where, i) for any agent, with probability 1 their received value is at least their given value minus v^{*} where v^{*} is said agent's most valuable owned and wished-for item, and ii) each agent's given and received values are equal in expectation. Our algorithm builds on the dependent rounding techniques from Gandhi et al. [16].

KEYWORDS

Barter-Exchanges, Centralized exchanges, Community Markets
ACM Reference Format:
Anonymous Author(s). 2023. Barter Exchange with Shared Item Valuations. In Proceedings of ACM Conference (Conference'17). ACM, New York, NY, USA, 13 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

Social media platforms have recently emerged into small scale business websites. For example, platforms like Facebook, Instagram, etc. allow its users to buy and sell goods via verified business accounts. With the proliferation of such community marketplaces, there are growing communities for buying, selling and exchanging (swapping) goods amongst its users. We consider applications, viewed as Barter Exchanges, which allow users to exchange board games, digital goods, or any physical items amongst themselves. For instance, the subreddit GAMESWAP ${ }^{1}$ (61,000 members) and Facebook group BoARDGAMEEXCHANGE ${ }^{2}$ (51,000 members) are communities where users enter with a list of owned video games and board games. The existence of this community is testament to the fact that although users could simply liquidate their goods and subsequently purchase

[^0]the desired goods, it is often preferable to directly swap for desired items. Additionally, some online video games have fleshed out economies allowing for the trade of in-game items between players while selling items for real-world money is explicitly illegal e.g., Runescape ${ }^{3}$. In these applications, a centralized exchange would achieve greater utility, in collective exchanged value and convenience, as well as overcome legality obstacles.

A centralized barter exchange market provides a platform where agents can exchange items directly, without money/payments. Beyond the aforementioned applications, there exist a myriad of other markets facilitating the exchange of a wide variety of items, including books, children's items, cryptocurrency, and human organs such as kidneys. There are both centralized and decentralized exchange markets for various items. HomeExchange ${ }^{4}$ and ReadItSwapIt ${ }^{5}$ are decentralized marketplaces that facilitate pairwise exchanges by mutual agreement of vacation homes and books, respectively. Atomic cross chain swaps allow users to exchange currencies within or across various cryptocurrencies [e.g., 18, 24]. Kidney exchange markets [see, e.g., 2, 4] and children's items markets (e.g., Swap ${ }^{6}$) are examples of centralized exchanges facilitating swaps amongst incompatible patient-donor pairs and children items or services amongst parents. Finding optimal allocations is often NP-hard. As a result heuristic solutions have been explored extensively [17, 23].

Currently, the aforementioned communities GAMESWAP and BoARDGAMEEXCHANGE make swaps in a decentralized manner between pairs of agents, but finding such pairwise swaps is often inefficient and ineffective due to demanding a "double coincidence of wants" [19]. However, centralized multi-agent exchanges can help overcome such challenges by allowing each user to give and receive items from possibly different users. Moreover, the user's goal is to swap a subset a subset of their owned games for a subset of their desired games with comparable (or greater) value. Although an item's value is subjective, a natural proxy is its re-sale price, which is easily obtained from marketplaces such as Ebay.

We consider a centralized exchange problem where each agent has a have-list and a wishlist of distinct (indivisible) items (e.g., physical games) and, more generally, each item has a value agreed upon by the participating agents (e.g., members of the GAMESwAP community). The goal is to find an allocation/exchange that (i) maximizes the collective utility of the allocation such that (ii) the total value of each agent's items before and after the exchange is equal. ${ }^{7}$ We call this problem barter with shared valuations, BarterSV, and it is our subject of study. Notice that bipartite perfect matching is a special case of BarterSV where each agent has a single item in both its have-list and wishlist each and where all the items are have the same value. On the other hand, we show BarterSV is NP-Hard (Theorem 2).

[^1]In the following sections we formulate BarterSV as bipartite graph-matching problem with additional barter constraints. Our algorithm BARTERDR is based on rounding the fractional allocation of the natural LP relaxation to get a feasible integral allocation. A direct application of existing rounding algorithms (like [15]) to BarterSV results in a worst-case where agents give away all their items and receive none in exchange. This is wholly unacceptable for any deployed centralized exchange. In contrast, our main result ensures BARTERDR allocations have reasonable net value for all agents; more precisely each agent gives and receives the same value in expectation and the absolute difference between given and received values is at most the value of their most valuable item (Theorem 1).

1.1 Problem formulation: BarterSV

Suppose we are given a ground set of items I to be swapped, item values $\left\{v_{j} \in \mathbb{R}^{+}: j \in \mathcal{I}\right\}$ where \mathbb{R}^{+}denotes the non-negative real numbers, and a community of agents $i \in[n]$ where $[n]$ denotes $\{1,2, \ldots, n\}$. Each agent i possesses items $H_{i} \subseteq I$ and has wishlist $W_{i} \subseteq I$. Further, each agent i also has a "capacity" function η_{i} : $H_{i} \rightarrow \mathbb{N}$ denoting the number of copies agent i has of each item; similarly, $\omega_{i}: W_{i} \rightarrow \mathbb{N}$ denotes a cap on the number of copies agent i desires of each item. We allow agents to swap an arbitrary number of copies of the same item as a natural generalization of the original problem.

A valid allocation of these items involves agents swapping their items with other agents that desire said item while ensuring no agent neither gives more copies of an item than they own nor receives more copies than desired. The goal of BarterSV is to find a valid allocation of maximum utility subject to no agent giving away more value than they received. The following lemmas in this section greatly simplify the problem's presentation; their full justification is deferred to the appendix. Let $\eta=\max _{i \in[n], j \in H_{i}} \eta_{i}(j)$ and similarly $\omega=\max _{i \in[n], j \in H_{i}} \omega_{i}(j)$.

Lemma 1. Any instance of BarterSV with arbitrary item capacity functions η_{i} and ω_{i}, for each agent $i \in[n]$, can be reduced to a corresponding BarterSV instance with unit capacities (i.e., for all valid i and $\left.j, \eta_{i}(j), \omega_{i}(j)=1\right)$ in time poly $(|\mathcal{I}|, n, \log \eta, \log \omega)$.

Definition 1. Value-balanced Matching (VBM) Suppose there is bipartite graph $G=(L, R, E)$ with vertex values $v_{a}>0 \forall a \in L \cup R$. Let each edge $e \in E$ have weight $w_{e} \in \mathbb{R}, L=\dot{U}_{i} L_{i}$, and $R=\dot{U}_{i} R_{i}$. For a given matching $M \subseteq E$, let $V_{i}{ }^{(L)}=\sum_{\ell:(\ell, r) \in M, \ell \in L_{i}} v_{\ell}$ and $V_{i}^{(R)}=\sum_{r:(\ell, r) \in M, r \in R_{i}} v_{r}$, where $\dot{\cup}$ denotes disjoint union. The goal of VBM is to find M of maximum weight subject to, for each i, the value of items matched in L_{i} and R_{i} are equal i.e., $V_{i}{ }^{(R)}=V_{i}{ }^{(L)}$.

Lemma 2. BarterSV is equivalent to VBM.
Given a BarterSV instance we reduce it to a corresponding instance BarterSV with unit capacities (as Lemma 1 would suggest), and then reduce once more to a corresponding VBM instance via the construction of an appropriate bipartite graph and valuation function. Thus VBM is the technical lens through which we view BarterSV in the remainder of the paper. The construction is as follows. For each agent $i \in[n]$, build the vertex sets $L_{i}:=\left\{\ell_{i j}: j \in H_{i}\right\}$ and $R_{i}:=\left\{r_{i j}: j \in W_{i}\right\}$. Then the bipartite graph of interest has
vertex sets $U=\dot{U}_{i \in[n]} L_{i}$ and $V=\dot{U}_{i \in[n]} R_{i}$, as well as edge set $E:=\left\{\left(\ell_{i j}, r_{i^{\prime} j}\right): j \in H_{i} \cap W_{i^{\prime}}\right\}$, Thus, for each item $j \in \mathcal{I}$, we draw an edge between all left and right vertices corresponding to j. Each vertex $\ell_{i j}$ and $r_{i j}$ has value v_{j}; so $v\left(\ell_{i j}\right)=v_{j}$ and so on. Crucially, E has edges only between vertices of equal value. Then a valid allocation corresponds to a VBM M in (U, V, E) such that for each $e \in E, y_{e}=1$ if $e \in M$ and $y_{e}=0$ otherwise is feasible in the following Integer Program (IP);

$$
\begin{array}{rlr}
\max & \sum_{e \in E} w_{e} y_{e} & \\
\text { subj. to } & y\left(\ell_{i j}\right) \leq 1, & i \in[n], \ell_{i j} \in L_{i} \\
& y\left(r_{i j}\right) \leq 1, & i \in[n], r_{i j} \in R_{i} \\
& \sum_{a \in L_{i}} y(a) v_{a}=\sum_{b \in R_{i}} y(b) v_{b}, & i \in[n] \\
& y_{e} \in\{0,1\}, & e=\left(\ell_{i j}, r_{i^{\prime} j}\right) \in E .
\end{array}
$$

The weights $w_{e} \in \mathbb{R}$ can be set arbitrarily; this detail will be elaborated upon shortly. For $a \in U \cup V$, we denote $y(a):=\sum_{e \in N(a)} y_{e}$ where $N(a)$ denotes the open neighborhood of a i.e., $N(a):=$ $\{(a, b) \in E: b \in U \cup V\}$, and \mathbb{Z}^{+}denotes the non-negative integers. Thus $e=\left(\ell_{i j}, r_{i^{\prime} j}\right) \in M$ says agent i gives item j to agent i^{\prime}. With this in mind, (1b) ensures each agent i gives item j away at most once, (1c) ensures each agent i receives at most one copy of item j, and (1d) ensures, for each agent i, the value received $\sum_{b \in R_{i}} y(b) v_{b}$ equals the value given $\sum_{a \in L_{i}} y(a) v_{a}$ (i.e., M is a VBM with $\left.V_{i}^{(R)}=V_{i}^{(R)}\right)$. It follows that an allocation is a valid allocation if and only if the corresponding $\left\{y_{e}\right\}$ is a feasible point of (1); i.e., Lemma 2. For each $e \in E$ we may set $w_{e}=v_{j}$ and recover the objective of maximizing the collective value received by all agents. Nevertheless, our results hold even if w_{e} is set arbitrarily. For example, the algorithm designer could place greater value on certain item allocations, or they may maximize the sheer number of items received by uniformly setting $w_{e}=1$. Henceforth $\sum_{e \in E} w_{e} y_{e}$ is the allocation's utility. By relaxing (1e) to $y_{e} \geq 0$ for $e \in E$ we arrive at the natural LP relaxation of BarterSV, namely BarterSV-LP. The following lemma means BarterSV guarantees will follow from carefully rounding the related BarterSV-LP solution.

Lemma 3. IP (1) is equivalent to BarterSV. Moreover, the objective of BarterSV-LP is an upper bound on the objective of IP (1).

2 PRELIMINARIES: GKPS DEPENDENT ROUNDING

Our results build on the dependent rounding algorithm due to [15], henceforth referred to as GKPS-DR. GKPS-DR is an algorithm that takes $\left\{x_{e}\right\} \in[0,1]^{|E|}$ defined over the edge set E of a biparite graph (L, R, E) and outputs $\left\{X_{e}\right\} \in\{0,1\}^{|E|}$. In each iteration GKPS-DR considers the graph of floating edges (those edges e with $0<x_{e}<1$) and selects a maximal path or cycle $P \subseteq E$ on floating edges. The edges of P are decomposed into alternate matchings M_{1} and M_{2} and rounded in the following way. Fix $\alpha^{\mathrm{GKPS}}=\min \left\{\gamma>0:\left(\bigvee_{e \in M_{1}} x_{e}+\gamma=1\right) \vee\left(\bigvee_{e \in M_{2}} x_{e}-\gamma=0\right)\right\}$, and $\beta^{\mathrm{GKPS}}=\min \left\{\gamma>0:\left(\bigvee_{e \in M_{2}} x_{e}+\gamma=1\right) \vee\left(\bigvee_{e \in M_{1}} x_{e}-\gamma=0\right)\right\}$. Thus, each x_{e} is updated to x_{e}^{\prime} according to one of the following
disjoint events: with probability $\frac{\beta^{\mathrm{GKPS}}}{\alpha^{\mathrm{GKPS}}+\beta^{\mathrm{GKPS}}}$

$$
x_{e}^{\prime}=\left\{\begin{array}{ll}
x_{e}+\alpha, & e \in M_{1} \\
x_{e}-\alpha, & e \in M_{2}
\end{array} ; \quad \text { else, } \quad x_{e}^{\prime}= \begin{cases}x_{e}-\beta, & e \in M_{1} \\
x_{e}+\beta, & e \in M_{2}\end{cases}\right.
$$

The selection of α and β ensures at least one edge is rounded to 0 or 1 in every iteration. GKPS-DR guarantees (P1) marginal, (P2) degree preservation, and (P3) negative correlation properties:

$$
\begin{aligned}
& \text { (P1) } \forall e \in E, \operatorname{Pr}\left(X_{e}=1\right)=x_{e} . \\
& \text { (P2) } \forall a \in L \cup R \text { and with probability } 1, X(a) \in\{\lfloor x(a)\rfloor,\lceil x(a)\rceil\} . \\
& \text { (P3) } \forall a \in L \cup R, \forall S \subseteq N(a), \forall c \in\{0,1\}, \operatorname{Pr}\left(\bigwedge_{s \in S} X_{s}=c\right) \leq \\
& \\
& \prod_{s \in S} \operatorname{Pr}\left(X_{s}=c\right) .
\end{aligned}
$$

Remark 1. When GKPS-DR rounds a path between vertices a and b, the signs of the changes to $x(a)$ and $x(b)$ are equal if and only if a and b belong to different graph sides.

3 RELATED WORK

Centralized barter exchanges have been studied by several others in the context of kidney-exchanges [2-4]. BarterSV generalizes a well-studied kidney-exchange problem in the following way. The Kidney Exchange Problem (KEP) is often formulated as directed cycle packing in compatibility patient-donor graphs [2] where each node in the graph corresponds to a patient-donor pair and directed edges between nodes indicate compatibility. Abraham et al. [2], Biró et al. [5] observed this problem reduces to bipartite perfect matching, which is solvable in polynomial-time. We show BarterSV is NP-Hard and thus resort to providing a randomized algorithm with approximate guarantees on the agents' net values via LP relaxation followed by dependent rounding.

There has been extensive work on developing dependent rounding techniques, that round the fractional solution in some correlated way to satisfy both the hard constraints and ensure some negative dependence amongst rounded variables that can result in concentration inequalities. For instance, the hard constraints might arise from an underlying combinatorial object such as a packing [6], spanning tree [8], or matching [15] that needs to be produced. In our case, the rounded variables must satisfy both matching (1b), (1c), and barter constraints (1d) (i.e., each agent gives the items of same total value as it received). Gandhi et al. [15] developed a rounding scheme where the rounded variables satisfy the matching constraints along with other useful properties. Therefore, we adapt their rounding scheme (to satisfy matching constraints) followed by a careful rounding scheme that results in rounded variables satisfying the barter constraints.

Centralized barter exchanges are well-studied under various barter settings. For instance, Abraham et al. [2] showed that the bounded length edge-weighted directed cycle packing is NP-Hard which led to several heuristic based methods to solve these hard problems, e.g., by using techniques of operations research [7, 9, 17, 23], AI/ML modeling [21, 22]. Recently several works focused on the fairness in barter exchange problems [1, 13, 14, 20]. Our work adds to the growing body of research in theory and heuristics surrounding ubiquitous barter exchange markets.

4 OUTLINE OF OUR CONTRIBUTIONS AND THE PAPER

Firstly, we introduce the BarterSV problem, a natural generalization of edge-weighted directed cycle packing and show that it is NP-Hard to solve the problem exactly. Our main contribution is a randomized dependent rounding algorithm BARTERDR with provable guarantees on the quality of the allocation. The following definitions help present our results. Suppose we are given an integral allocation $\left\{X_{e}\right\} \in\{0,1\}^{|E|}$, we define the net value loss of each agent i (i.e., the violation in the barter constraint (1d)):

$$
\begin{equation*}
D_{i}:=\sum_{b \in L_{i}} v_{b} X(b)-\sum_{a \in R_{i}} v_{a} X(a) \tag{2}
\end{equation*}
$$

Our main contribution is a rounding algorithm BARTERDR that satisfies both matching (1b), (1c) and barter constraints (1d) as desired in multi-agent exchanges. Recollect that existing rounding algorithm such as GKPS-DR (indeed a pre-processing step of our BARTERDR) rounds the fractional matching to an integral solution enjoying the properties mentioned in Section 2. The main challenge in our problem is satisfying the barter constraint. Here, a direct application of GKPS-DR alone can result in a worst case violation of $\sum_{a \in L_{i}} v_{a}$ on D_{i}, corresponding to the agent losing all their items and gaining none (see the example in the Appendix). However, our algorithm BARTERDR rounds much more carefully to ensure, for each agent i, D_{i} is at most $v_{i}^{*}:=\max _{a \in L_{i} \cup R_{i}} v_{a}$, i.e., the most valuable item in $H_{i} \cup W_{i}$. The two following theorems provide lower and upper bounds on tractable D_{i} (i.e., (2)) guarantees for BarterSV. BARTERDR on a bipartite graph (L, R, E) is worst-case time $O((|L|+|R|)(|L|+|R|+|E|))$ where $L, R=O(|\mathcal{I}| n)$. We view Theorem 1 as our main result.

Theorem 1. Given a BarterSV instance, BarterDR is an efficient randomized algorithm achieving an allocation with optimal utility in expectation and where, for all agents $i, D_{i}<v_{i}^{*}$ with probability 1 and $\mathbb{E}\left[D_{i}\right]=0$.

Theorem 2. Deciding whether a BarterSV instance has a nonempty valid allocation with $D_{i}=0$ for all agents i is NP-hard, even if all item values are integers.

Owing to its similarities to GKPS-DR, BARTERDR enjoys similar useful properties:

Theorem 3. BarterDR rounds $\left\{x_{e}\right\} \in[0,1]^{|E|}$ in the feasible region of BarterSV-LP into $\left\{X_{e}\right\} \in\{0,1\}^{|E|}$ while satisfying (P1), (P2), and (P3).

Outline of the paper. In Section 5 we describe BARTERDR (Algorithm 1), our randomized algorithm for BarterSV, and its subroutines FindCCC and CCWalk in detail. Next, we give proofs and proof sketches for Theorems 1 and 3.

5 BARTERDR: DEPENDENT ROUNDING ALGORITHM FOR BarterSV

Notation. BARTERDR is a rounding algorithm that proceeds in multiple iterations, therefore we use a superscript r to denote the value of a variable at the beginning of iteration r. An edge $e \in E$ is said to be floating if $x_{e}^{r} \in(0,1)$. Analogously, let $E^{r}:=\left\{e \in E: x_{e}^{r} \in\right.$ $(0,1)\}$, a vertex $a \in L \cup R$ is said to be floating if $x^{r}(a):=\sum_{e \in E} x_{e}^{r} \notin$
\mathbb{Z} and the sets of floating vertices are $L^{r}:=\left\{a \in L: x^{r}(a) \notin \mathbb{Z}\right\}$ and $R^{r}:=\left\{a \in R: x^{r}(a) \notin \mathbb{Z}\right\}$. Define $C(i):=\left\{a: a \in L_{i} \cup R_{i}\right\}$, for each $i \in[n]$, to be the set of participating vertices in each barter constraint. We say two vertices $a, b \in L \cup R$ are partners if there exists $i \in[n]$ such that $a, b \in C(i)$ and $a \neq b$. Note if a and b are partners, then they are distinct vertices corresponding to items (owned or desired) by the same agent i. In iteration r, a vertex $a \in C(i)$ is said to be partnerless if $C(i) \cap\left(L^{r} \cup R^{r}\right)=\{a\}$; i.e., a is the only floating vertex in $C(i)$. We use the shorthand $a \sim b$ to denote a and b are partners. Edges and vertices not floating are said to be settled. For vertices a and $b, a \leadsto b$ denotes a simple path from a to b. Define D_{i}^{r} to be D_{i}, as defined in (2), but with variables $\left\{x_{e}^{r}\right\}$ instead of $\left\{X_{e}\right\}$. The fractional degree of $a \in L \cup R$ refers to $x^{r}(a)$.

Once an edge is settled, its value does not change. In the each iteration BARTERDR looks exclusively at the floating edges E^{r} and the graph induced by them. Namely, $G^{r}:=\left(L\left(E^{r}\right), R\left(E^{r}\right), E^{r}\right)$ where $L\left(E^{r}\right):=\left\{a \in L: \exists e \in E^{r}, \quad e \in N(a)\right\}$ and $R\left(E^{r}\right)$ is defined analogously. In each iteration, at least one edge or vertex becomes settled, i.e., $\left|E^{r}\right|+\left|L^{r}\right|+\left|R^{r}\right|>\left|E^{r+1}\right|+\left|L^{r+1}\right|+\left|R^{r+1}\right|$. Therefore BarterDR terminates in iteration T where $\left|E^{T}\right|=0$ and $T \leq$ $|L|+|R|+|E|$.

Algorithm and analysis outline. BarterDR begins by making G acyclic via the pre-processing step in Section 5.1. Next, BarterDR proceeds as follows. While there are floating edges find an appropriate sequence of paths \mathcal{P} constituting a CCC or CCW (defined in Section 5.2). The strategy for judiciously rounding \mathcal{P} is fleshed out in Section 5.3. Finally, Section 5.4 concludes with proof sketches for Theorems 1 and 3.

5.1 Pre-processing: remove cycles in G

The pre-processing step consists of finding a cycle C via depth-first search in the graph of floating edges and rounding C via GKPS-DR until there are no more cycles. Let $\left\{x_{e}^{0}\right\}_{e \in E}$ denote the LP solution and $\left\{x_{e}^{1}\right\}_{e \in E}$ denote the output of the pre-processing step. BARTERDR begins on $\left\{x_{e}^{1}\right\}_{e \in E}$.

GKPS-DR on cycles never changes fractional degrees, i.e., $\forall a \in$ $L \cup R, x^{0}(a)=x^{1}(a)$. Lemma 5 is used to construct CCC's and CCW's, and it is the raison d'être for the pre-processing step.

Lemma 4. The pre-processing step is efficient and gives $D_{i}^{1}=0$ for all agents i with probability 1.

Lemma 5. Each connected component of G^{1} has at least 2 floating vertices.

5.2 Construction of CCC's and CCW's via FindCCC

This section introduces CCC's and CCW's. The definition of these structures facilitates rounding edges while respecting the barter constraints each iteration. The subroutines for constructing CCC's and CCW's, FindCCC and CCWAlk, are described in Algorithms 2 and 3. The correctness of these subroutines, and thus the existence of CCC's and CCW's, follows from Lemma 6.

Definition 2. A connected component cycle (CCC) is a sequence of $q \geq 1$ paths $\mathcal{P}=\left\langle s_{1} \leadsto t_{1}, \ldots, s_{q} \leadsto t_{q}\right\rangle$ such that, letting $V(\mathcal{P})=\bigcup_{i \in[q]}\left\{s_{i}, t_{i}\right\}$ be the paths' endpoint vertices,
(1) $\forall i \in[q], t_{i} \sim s_{i+1}\left(\right.$ taking $\left.s_{q+1} \equiv s_{1}\right)$,
(2) $\forall a \in V(\mathcal{P}),|V(\mathcal{P}) \cap C(a)|=2$,
(3) $\forall i \in[q], s_{i} \leadsto t_{i}$ belong to distinct connected components, and
(4) $\forall i \in[q], s_{i}$ and t_{i} are floating vertices.

Instead, we have a connected component walk (CCW) if criteria 3) and 4) are met but 1) and 2) are relaxed to: 1) $\forall i \in[q-1], t_{i} \sim s_{i+1}$ and s_{1} and t_{q} are partnerless; and 2) $\forall a \in V(\mathcal{P})-\left\{s_{1}, t_{q}\right\}, \mid V(\mathcal{P}) \cap$ $C(a) \mid=2$.

Recall that a rounding iteration r is fixed so whether a vertex is floating or partnerless is well-defined. When \mathcal{P} is rounded the set of vertices whose fractional degrees change is precisely $V(\mathcal{P})$. Requirements 1 and 2 of a CCC say t_{i} and s_{i+1} are partners and they do not have any other partner vertices in $V(\mathcal{P})$. Comparably, for CCW's these requirements imply the same for all vertices but the "first" and "last," which are partnerless. Therefore, for CCC's and CCW's the vertices in $V(\mathcal{P})$ respectively appear in q and $q+1$ distinct barter constraints. The requirements in the definitions of CCC and CCW come in handy during the analysis because: each path belongs to a different connected component hence they are vertex and edge disjoint; if a barter constraint has exactly two vertices in $V(\mathcal{P})$ then these vertices' fractional degree changes can be made to cancel each other out in the barter constraint; and floating vertices ensure paths can be rounded in a manner analogous to GKPS-DR. For comparison, GKPS-DR also needed paths with floating endpoints, but maximal paths always have such endpoints whereas the paths of \mathcal{P} need not be maximal. Consequently, the requirement that paths of \mathcal{P} have floating endpoints must be imposed.

```
Algorithm 1: BARTERDR
    Input: \(\left\{x_{e}^{1}\right\} \in\{0,1\}^{|E|}\), corresponding to
            \(G^{1}=\left(L\left(E^{1}\right), R\left(E^{1}\right), E^{1}\right)\); i.e., the output of the
            pre-processing described in Section 5.1
    \(r \leftarrow 1\)
    while \(E^{r} \neq \emptyset\) do
        \(\mathcal{P} \leftarrow\) CCC or CCW returned by FindCCC in \(G^{r}\)
        Round \(\mathcal{P}\) as described in Section 5.3 yielding \(G^{r+1}\) and
        \(\left\{x_{e}^{r+1}\right\} ; \quad r \leftarrow r+1\)
    end
    return \(\left\{x_{e}^{r}\right\} \in\{0,1\}^{|E|}\)
```

Uncrossing the half-CCWs. We show how to resolve "crossing" half-CCW's as mentioned in FindCCC Line 9. Using O_{1} and O_{2} build $\bar{V}:=\left\langle s_{q}^{\prime}, t_{q-1}^{\prime}, \ldots, s_{2}^{\prime}, t_{1}^{\prime}, t_{1}, s_{2}, \ldots, s_{q}\right\rangle . \bar{V}$ can be seen as the sequence of path endpoints (i.e., V in ССWАак) resulting from a run of $\operatorname{CCWALK}\left(s_{q}^{\prime}\right)$. By the half-CCW's "crossing" we mean that in some iteration of the while-loop of CCWALK either a connected component is revisited or t_{i} was partners with a vertex previously visited. But these cases are precisely Lines 9 and 14 from CCWALK where it is known a CCC can be resolved.

Lemma 6. If ${ }^{r}$ has no cycles, FindCCC efficiently returns a CCC or CCW.

```
Algorithm 2: FindCCC
    Input: \(G^{r}=\left(U\left(E^{r}\right), V\left(E^{r}\right), E^{r}\right)\)
    Output: CCC or CCW \(\left\langle s_{i} \leadsto t_{i}\right\rangle_{i \in[q]}\)
    \(s_{1}, t_{1} \leftarrow\) distinct floating vertices in some connected
    component \(C\) of \(G_{r}\)
    \(\left(O_{1}, \sigma_{1}\right) \leftarrow \operatorname{CCWALK}\left(t_{1}\right)\)
    if \(\sigma_{1}=\) " \(C C C\) " then
        return \(O_{1}\)
    \(\left(O_{2}, \sigma_{2}\right) \leftarrow \operatorname{CCWALK}\left(s_{1}\right)\)
    if \(\sigma_{2}=\) "CCC" then
        return \(O_{2}\)
    Let \(O_{1}=\left(t_{1}, s_{2}, t_{2}, \ldots, s_{q}, t_{q}\right)\) and \(O_{2}=\left(t_{1}^{\prime}, s_{2}^{\prime}, t_{2}^{\prime}, \ldots, s_{q^{\prime}}^{\prime}, t_{q^{\prime}}^{\prime}\right)\)
    If \(O_{1}\) and \(O_{2}\) "cross," resolve \(O_{1}\) and \(O_{2}\) into a CCC and
    return it; see Section 5.2
    return
    \(\left\langle t_{q^{\prime}}^{\prime} \leadsto s_{q^{\prime}}^{\prime}, t_{q^{\prime}-1}^{\prime}, s_{q^{\prime}-1}^{\prime}, \ldots, s_{2}^{\prime} \leadsto t_{2}^{\prime}, t_{1}^{\prime} \leadsto t_{1}, s_{2} \leadsto t_{2}, \ldots, s_{q} \leadsto t_{q}\right\rangle\)
```

```
Algorithm 3: \(\operatorname{CCWALK}(a)\)
    Input: \(G^{r}=\left(U\left(E^{r}\right), V\left(E^{r}\right), E^{r}\right)\), the walk's starting vertex \(a\)
    Output: A CCC or half of a CCW; a string indicating
            whether a CCC was returned
    \(1 V \leftarrow\left(t_{1}\right)\), letting \(t_{1}:=a \quad / /\) ordered list of path
        endpoints
    \({ }_{2} S \leftarrow\left\{C_{1}\right\}\) where \(C_{1}\) is the connected component containing
    \(a \quad / /\) seen CC's
    \(i \leftarrow 2\)
    while True do
        if \(t_{i-1}\) is partnerless then
            return ( \(V\), " \(C C W\) ")
        \(s_{i} \leftarrow\) partner of \(t_{i-1}\)
        \(C_{i} \leftarrow\) connected component containing \(s_{i}\)
        if \(C_{i} \in S\) then
            \(C_{i}=C_{k}\) for some \(k<i\) so let \(s_{k}^{\prime}:=s_{i}\)
            return \(\left(\left\langle s_{k}^{\prime} \leadsto t_{k}, \ldots, s_{i-1} \leadsto t_{i-1}\right\rangle, " C C C "\right)\)
        \(t_{i} \leftarrow\) floating vertex in \(C_{i}\) distinct from \(s_{i}\)
        \(V \leftarrow V \oplus\left(s_{i}\right)\), where \(\oplus\) denotes sequence concatenation
        if \(\exists b \in V, b \sim t_{i}\) then // \(t_{i}\) already has a
        partner in \(V\)
            It must be that \(b\) already had a partner \(c \in V\).
            WLOG, \(b=t_{k-1}\) and \(c=s_{k}\), some \(k \leq i\)
            return \(\left(\left\langle s_{k} \leadsto t_{k}, \ldots, s_{i} \leadsto t_{i}\right\rangle, " C C C "\right)\)
        \(V \leftarrow V \oplus\left(t_{i}\right)\)
        \(i \leftarrow i+1, \quad S \leftarrow S \cup\left\{C_{i}\right\}\)
    end
```


5.3 Rounding CCC's and CCW's

Now we shed light on what we mean by carefully rounding the paths of the CCC/CCW \mathcal{P}. But first we build some intuition. Focus on t_{p} and s_{p+1} for some fixed $1 \leq p \leq q$ in case of a CCC (or $p<q$ in the case of a CCW). Since $t_{p} \sim s_{p+1}$, whatever rounding
procedure we use, we want the relative signs of the changes to $x^{r}\left(t_{p}\right)$ and $x^{r}\left(s_{p+1}\right)$ to depend on whether t_{p} and s_{p+1} fall on the same or different sides of G (these sides being "left" and "right" corresponding to vertex sets L and R; equivalently, left and right of " $=$ " in (1d)). This way (1d) is preserved after rounding. Likewise, the magnitudes of fractional degree changes to t_{p} and s_{p+1} must be balanced depending on v_{p} and v_{p+1} so that (1d) is preserved for i corresponding to $t_{p}, s_{p+1} \in C(i)$. Intuitively, these two points are necessary to successfully round \mathcal{P}. To this end, we now define roundable colorings. If a and b are vertices belonging to different sides of the graph, we say $a \perp b$; otherwise we say $a \not \perp b$.

Definition 3 (Roundable coloring). The $\operatorname{CCC} \mathcal{P}=\left\langle s_{i} \leadsto t_{i}\right\rangle_{i \in[q]}$ has a roundable coloring if there exists $C: V(\mathcal{P}) \rightarrow\{-1,1\}$ such that i) for all $i \in[q], C\left(s_{i}\right)=C\left(t_{i}\right)$ if and only if $s_{i} \perp t_{i}$; and ii) for all $i \in[q], C\left(t_{i}\right)=C\left(s_{i+1}\right)$ if and only if $t_{i} \perp s_{i+1}$. A roundable coloring for a CCW is defined the same way except ii) becomes $\forall i \in[q-1], C\left(t_{i}\right)=C\left(s_{i+1}\right)$ if and only if $t_{i} \perp s_{i+1}$.
Lemma 7. Every CCC and CCW admits an efficiently computable roundable coloring C.

Property i) will ensure $a, b \in V(\mathcal{P})$ see same-sign fractional degree change if and only if $C(a)=C(b)$. Property ii) is equivalent to Remark 1 and verifies each $s_{i} \leadsto t_{i}$ is roundable in GKPS-DR manner.

Although the notation used next is cumbersome, the intuition is to fix $\alpha, \beta>0$ "small enough" that all edge variables stay in $[0,1]$ and vertex fractional degrees stay within their current ceilings and floors but "large enough" that at least one edge or vertex is settled. First, fix the roundable coloring C, which is possible per Lemma 7. Next, decompose each path $s_{i} \leadsto t_{i}$ into alternating matchings M_{-1}^{i} and M_{1}^{i} such that $\forall a \in\left\{s_{i}, t_{i}\right\}, \exists e \in M_{C(a)}^{i}$ such that $e \in N(a)$; property ii) of C guarantees this is possible. In other words, vertex $a \in\left\{s_{i}, t_{i}\right\}$ is present in $M_{C(a)}^{i}$. For readability drop the r superscripts briefly and let

$$
\begin{align*}
\Gamma_{-1}^{i}(\gamma) \equiv & \bigvee_{e \in M_{-1}^{i}}\left(x_{e}+\gamma=1\right) \vee \bigvee_{e \in M_{1}^{i}}\left(x_{e}-\gamma=0\right) \\
& \vee \bigvee_{a \in\left\{s_{i}, t_{i}\right\}}(C(a)=-1 \Longrightarrow x(a)+\gamma=\lceil x(a)\rceil) \\
& \vee \bigvee_{a \in\left\{s_{\mathrm{c}, t,\}}\right.}(C(a)=1 \Longrightarrow x(a)-\gamma=\lfloor x(a)\rfloor),
\end{align*}
$$

and, symmetrically,

$$
\begin{align*}
\Gamma_{1}^{i}(\gamma) \equiv & \bigvee_{e \in M_{1}^{i}}\left(x_{e}+\gamma=1\right) \vee \bigvee_{e \in M_{-1}^{i}}\left(x_{e}-\gamma=0\right) \\
& \vee \bigvee_{a \in\left\{s_{i}, t_{i}\right\}}(C(a)=1 \Longrightarrow x(a)+\gamma=\lceil x(a)\rceil) \\
& \vee \bigvee_{a \in\left\{s_{i}, t_{i}\right\}}(C(a)=-1 \Longrightarrow x(a)-\gamma=\lfloor x(a)\rfloor) \tag{4}
\end{align*}
$$

Finally, the magnitudes fixed (in analogy to Section 2) are

$$
\begin{equation*}
\alpha:=\min \left\{\gamma>0: \bigvee_{i \in[q]} \Gamma_{-1}^{i}\left(\frac{1}{v_{i}} \gamma\right)\right\}, \beta:=\min \left\{\gamma>0: \bigvee_{i \in[q]} \Gamma_{1}^{i}\left(\frac{1}{v_{i}} \gamma\right)\right\} \tag{5}
\end{equation*}
$$

Both α and β are well defined as they are the minima of non-empty finite sets. The update proceeds probabilistically as follows: $\forall i \in$ $[q], \forall e \in s_{i} \leadsto t_{i}$,

$$
\begin{align*}
& \text { w.p. } \frac{\beta}{\alpha+\beta}, x_{e}^{r+1}= \begin{cases}x_{e}^{r}+\frac{1}{v_{i}} \alpha, & e \in M_{-1}^{i} \\
x_{e}^{r}-\frac{1}{v_{i}} \alpha, & e \in M_{1}^{i}\end{cases} \tag{6}\\
& \text { else, w.p. } \frac{\alpha}{\alpha+\beta}, \quad x_{e}^{r+1}= \begin{cases}x_{e}^{r}-\frac{1}{v_{i}} \beta, & e \in M_{-1}^{i} \\
x_{e}^{r}+\frac{1}{v_{i}} \beta, & e \in M_{1}^{i}\end{cases} \tag{7}
\end{align*}
$$

5.4 Algorithm analysis

Proof sketch of Theorem 3. The proof proceeds via the following invariants maintained at each iteration r of BARTERDR. Except for (J2), the proofs for the invariants are almost identical to those in [15]. This is because BarterDR is crafted so as to be similar to GKPS-DR in the ways necessary for this analysis to carry over.
(J1) $\forall e \in E, \mathbb{E}\left[x_{e}^{r}\right]=x_{e}^{0}$.
(J2) $\forall a \in L \cup R$ and with probability $1,\left\lfloor x^{0}(a)\right\rfloor \leq x^{r}(a) \leq$ $\left\lceil x^{0}(a)\right\rceil$.
(J3) $\forall a \in L \cup R, \forall S \subseteq N(a), \forall c \in\{0,1\}, \mathbb{E}\left[\prod_{e \in S} x_{e}^{r+1}\right] \leq$ $\mathbb{E}\left[\prod_{e \in S} x_{e}^{r}\right]$.

Though BarterDR chooses α and β differently, the main difference is there may not be a rounded edge in every path of the $\mathrm{CCC} / \mathrm{CCW}$, which is okay.

Lemma 8. BarterDR achieves optimal objective in expectation and $\forall i \in[n], \mathbb{E}\left[D_{i}\right]=0$.

Lemma 9. If $D_{i}^{r}=0$ and there exists distinct floating $a, b \in \mathcal{C}(i)$, then $D_{i}^{r+1}=0$.

Proof of Theorem 1. It is straightforward to check that after solving BarterSV-LP-Caps there are at most $|E|$ floating edges. Each iteration of the pre-processing step finds a cycle, say using depth-first-search, and rounds said cycle in time $O(|L|+|R|)$ with at least one edge being settled every time a cycle is rounded. Therefore, the pre-processing step takes time at most $O(|E| \cdot(|L|+|R|))$. Similarly, FindCCC takes time $O(|L|+|R|)$ to find and round a CCC or CCW. Each iteration a CCC/CCW is rounded either one edge or vertex becomes settled. Therefore Barterdr runs in time $O((|L|+|R|)$. $(|L|+|R|+|E|)$).

Let D_{i}^{r} be D_{i} like in (2) but with variables x_{e}^{r} instead of X_{e}. Then Lemma 9 guarantees that for each agent $i, D_{i}^{r}=0$ implies $D_{i}^{r+1}=0$ until $L_{i} \cup R_{i}$ has exactly one floating vertex (if this happens at all). This means if in some iteration the number of floating vertices in $L_{i} \cup R_{i}$ went from at least 2 to 0 , then $D_{i}=0$ by the degree preservation invariant (J2), proved in the proof of Theorem 3, and we are done. Therefore, the only case we must consider is when there is a solitary floating vertex $d \in L_{i} \cup R_{i}$. Let t^{\prime} be the first iteration that started with $L_{i} \cup R_{i}$ having a sole vertex d with $x^{t^{\prime}}(d) \notin$

$$
\begin{align*}
& \mathbb{Z}_{i} \text {. Then by expanding } \\
& \begin{aligned}
D^{\prime} & \left|\sum_{a \in L_{i}} v_{a} X(a)-\sum_{b \in R_{i}} v_{b} X(b)\right| \\
& =\left|\sum_{a \in L_{i}} v_{a} X(a)-\sum_{a \in L_{i}} v_{a} x^{t^{\prime}}(a)+\sum_{b \in R_{i}} v_{b} x^{t^{\prime}}(b)-\sum_{b \in R_{i}} v_{b} X(b)\right| \\
& =\left|\sum_{a \in L_{i}} v_{a}\left(X(a)-x t^{t^{\prime}}(a)\right)+\sum_{b \in R_{i}} v_{b}\left(x^{t^{\prime}}(b)-X(b)\right)\right| \\
& \leq \sum_{a \in\left(L_{i} \cup R_{i}\right)-\{d\}} v_{a}\left|X(a)-x^{t^{\prime}}(a)\right|+v_{d}\left|x^{t^{\prime}}(d)-X(d)\right| \\
& <v_{d} \leq v_{i}^{*},
\end{aligned}
\end{align*}
$$

which is our desired D_{i} bound for Theorem 1. Equation (9) follows because we assume $D_{i}^{1}=0$ (as D_{i}^{0} corresponds to the LP solution and the pre-processing step thus guarantees $D_{i}^{1}=0$) and t^{\prime} is the first iteration where $L_{i} \cup R_{i}$ contains exactly one floating vertex; therefore, by induction and Lemma 9, $D_{i}^{t^{\prime}}=0$. Inequality (11) follows from the triangle inequality. The strict inequality in (12) follows because d was the sole floating vertex of $L_{i} \cup R_{i}$ in iteration t^{\prime}; hence by Lemma E.2, $\forall a \in\left(L_{i} \cup R_{i}\right)-\{d\}, X(a)-x^{t^{\prime}}(a)=0$ and $\left|x^{t^{\prime}}(d)-X(d)\right|<1$.

By assumption, $D_{i}^{1}=0$ for all i since $\left\{x_{e}^{0}\right\}_{e \in E}$ is an optimal solution to the corresponding BarterSV-LP and the pre-processing step ensures $D_{i}^{0}=0 \Longrightarrow D_{i}^{1}=0$. Then, by Lemma 9 , the only D_{i} 's that are not necessarily preserved are those where $L_{i} \cup R_{i}$ ends up with exactly one floating vertex in some algorithm iteration t^{\prime}. As argued above, this case leads to $D_{i}<v_{i}^{*}$. Together with Lemma 8 this completes the proof.

Consequently from Theorems 1 and 3:
Corollary 1. BarterSV-LP with all items having equal values is integral.

6 FAIRNESS

Fairness is an important consideration when resource allocation algorithms are deployed in the real-world. Theorem 3 allows for adding fairness constraints to BarterSV-LP. Previous works such as [10-12] studied various group fairness notions, and formulated the fair variants of problems like Clustering, Set Packing, etc., by adding fairness constraints to the Linear Programs of the respective optimization problems.

Consider a toy example of such an approach where we are given ℓ communities $G_{1}, \ldots, G_{\ell} \subseteq[n]$ of agents coming together to thicken the market. In order to incentivize said communities to join the centralized exchange, the algorithm designer may promise that each community G_{p} will receive at least μ_{p} units of value on average. By adding the constraints

$$
\begin{equation*}
\sum_{i \in G_{p}} x\left(r_{i j}\right) v_{j} \geq \mu_{p}, \quad p \in[\ell] \tag{13}
\end{equation*}
$$

to the BarterSV-LP, the algorithm designer ensures that the expected utility of each group G_{p} is at least μ_{p}. More precisely, (P1)
and the linearity of expectation ensures

$$
\begin{aligned}
\mathbb{E}\left[\sum_{i \in G_{p}} X\left(r_{i j}\right) v_{j}\right] & =\sum_{i \in G_{p}} \mathbb{E}\left[X\left(r_{i j}\right)\right] v_{j} \\
& =\sum_{i \in G_{p}} x\left(r_{i j}\right) v_{j} \geq \mu_{p} .
\end{aligned}
$$

The same rationale can be extended to provide individual guarantees (in expectation) by adding analogous constraints for each agent. We conclude this brief discussion by highlighting the versatility of LPs and subsequently of BarterDR.

7 CONCLUSION

We introduce and study BarterSV, a centralized barter exchange problem where each item has a value agreed upon by the participating agents. The goal is to find an allocation/exchange that (i) maximizes the collective utility of the allocation such that (ii) the total value of each agent's items before and after the exchange is equal. Though it is NP-hard to solve BarterSV exactly, we can efficiently compute allocations with optimal expected utility where each agent's net value loss is at most a single item's value. Our problem is motivated by the proliferation of large scale web markets on social media websites with $50,000-60,000$ active users eager to swap items with one another. We formulate and study this novel problem with several real-world exchanges of video games, board games, digital goods and more. These exchanges have large communities, but their decentralized nature leaves much to be desired in terms of efficiency. Future directions of this work include accounting for arbitrary item valuations i.e., different agents may value items differently.

REFERENCES

[1] Zeinab Abbassi, Laks V. S. Lakshmanan, and Min Xie. 2013. Fair Recommendations for Online Barter Exchange Networks. In International Workshop on the Web and Databases.
[2] David J. Abraham, Avrim Blum, and Tuomas Sandholm. 2007. Clearing Algorithms for Barter Exchange Markets: Enabling Nationwide Kidney Exchanges. In Proceedings of the 8th ACM Conference on Electronic Commerce (EC '07). Association for Computing Machinery, New York, NY, USA, 295-304. https: //doi.org/10.1145/1250910.1250954
[3] Itai Ashlagi, Adam Bingaman, Maximilien Burq, Vahideh Manshadi, David Gamarnik, Cathi Murphey, Alvin E. Roth, Marc L. Melcher, and Michael A. Rees. 2018. Effect of Match-Run Frequencies on the Number of Transplants and Waiting Times in Kidney Exchange. American Journal of Transplantation 18, 5 (2018), 1177-1186. https://doi.org/10.1111/ajt. 14566
[4] Haris Aziz, Ioannis Caragiannis, Ayumi Igarashi, and Toby Walsh. 2021. Fair Allocation of Indivisible Goods and Chores. Auton Agent Multi-Agent Syst 36, 1 (Nov. 2021), 3. https://doi.org/10.1007/s10458-021-09532-8
[5] Péter Biró, David F. Manlove, and Romeo Rizzi. 2009. Maximum Weight Cycle Packing in Directed Graphs, with Application to Kidney Exchange Programs. Discrete Math. Algorithm. Appl. 01, 04 (Dec. 2009), 499-517. https://doi.org/10. 1142/S1793830909000373
[6] Brian Brubach, Karthik Abinav Sankararaman, Aravind Srinivasan, and Pan Xu. 2017. Algorithms to Approximate Column-sparse Packing Problems. ACM Transactions on Algorithms (TALG) 16 (2017), 1-32.
[7] Margarida Carvalho, Xenia Klimentova, Kristiaan Glorie, Ana Viana, and Miguel Constantino. 2021. Robust models for the kidney exchange problem. INFORMS Journal on Computing 33, 3 (2021), 861-881.
[8] Chandra Chekuri, Jan Vondrák, and Rico Zenklusen. 2010. Dependent randomized rounding via exchange properties of combinatorial structures. In 2010 IEEE 51st Annual Symposium on Foundations of Computer Science. IEEE, 575-584.
[9] Miguel Constantino, Xenia Klimentova, Ana Viana, and Abdur Rais. 2013. New insights on integer-programming models for the kidney exchange problem. European fournal of Operational Research 231, 1 (2013), 57-68.
[10] Sharmila Duppala, Juan Luque, John Dickerson, and Aravind Srinivasan. 2023. Group Fairness in Set Packing Problems. In Proceedings of the Thirty-Second

International foint Conference on Artificial Intelligence, IFCAI-23, Edith Elkind (Ed.). International Joint Conferences on Artificial Intelligence Organization, 391-399. https://doi.org/10.24963/ijcai.2023/44 Main Track.
[11] Seyed Esmaeili, Sharmila Duppala, Davidson Cheng, Vedant Nanda, Aravind Srinivasan, and John P Dickerson. 2023. Rawlsian fairness in online bipartite matching: Two-sided, group, and individual. In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 37. 5624-5632.
[12] Seyed A. Esmaeili, Sharmila Duppala, John P. Dickerson, and Brian Brubach. 2022. Fair Labeled Clustering. https://doi.org/10.48550/arXiv.2205.14358 arXiv:2205.14358 [cs]
[13] Wenyi Fang, Aris Filos-Ratsikas, Søren Kristoffer Stiil Frederiksen, Pingzhong Tang, and Song Zuo. 2015. Randomized assignments for barter exchanges: Fairness vs. efficiency. In Algorithmic Decision Theory: 4th International Conference, ADT 2015, Lexington, KY, USA, September 27-30, 2015, Proceedings. Springer, 537-552.
[14] Golnoosh Farnadi, William St-Arnaud, Behrouz Babaki, and Margarida Carvalho. 2021. Individual Fairness in Kidney Exchange Programs. Proceedings of the AAAI Conference on Artificial Intelligence 35, 13 (May 2021), 11496-11505.
[15] Rajiv Gandhi, Samir Khuller, Srinivasan Parthasarathy, and Aravind Srinivasan. 2006. Dependent Rounding and Its Applications to Approximation Algorithms. 7. ACM 53, 3 (May 2006), 324-360. https://doi.org/10.1145/1147954.1147956
[16] Rajiv Gandhi, Samir Khuller, and Aravind Srinivasan. 2004. Approximation Algorithms for Partial Covering Problems. Journal of Algorithms 53, 1 (Oct. 2004), 55-84. https://doi.org/10.1016/j.jalgor.2004.04.002
[17] Kristiaan M Glorie, J Joris van de Klundert, and Albert PM Wagelmans. 2014. Kidney exchange with long chains: An efficient pricing algorithm for clearing barter exchanges with branch-and-price. Manufacturing \& Service Operations Management 16, 4 (2014), 498-512.
[18] Maurice Herlihy. 2018. Atomic cross-chain swaps. In ACM Symposium on Principles of Distributed Computing (PODC). 245-254.
[19] William Stanley Jevons. 1879. The Theory of Political Economy. Macmillan and Company.
[20] Xenia Klimentova, Ana Viana, João Pedro Pedroso, and Nicolau Santos. 2021. Fairness models for multi-agent kidney exchange programmes. Omega 102 (2021), 102333.
[21] Duncan McElfresh, Michael Curry, Tuomas Sandholm, and John Dickerson. 2020. Improving Policy-Constrained Kidney Exchange via Pre-Screening. In Advances in Neural Information Processing Systems, Vol. 33. 2674-2685.
[22] Ritesh Noothigattu, Dominik Peters, and Ariel D Procaccia. 2020. Axioms for learning from pairwise comparisons. Advances in Neural Information Processing Systems 33 (2020), 17745-17754.
[23] Benjamin Plaut, John Dickerson, and Tuomas Sandholm. 2016. Fast optimal clearing of capped-chain barter exchanges. In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 30.
[24] Sri AravindaKrishnan Thyagarajan, Giulio Malavolta, and Pedro MorenoSanchez. 2022. Universal atomic swaps: Secure exchange of coins across all blockchains. In IEEE Symposium on Security and Privacy (S\&P). IEEE, 1299-1316.

A DIRECT APPLICATION OF GKPS-DR FAILS

Example 1 is a worst case instance where a direct application of GKPS-DR to the fractional optimal solution of BarterSV results in a net loss of $\sum_{j \in L_{i}} v_{j}$ for some agent i; i.e., agent i gives away all their items and does not receive any item from its wishlist.

Example 1. Consider an instance of BarterSV with two agents where $W_{1}=\{1,2\}, W_{2}=\{3,4\}$ and $H_{1}=\{3,4\}, H_{2}=\{1,2\}$. Let the values of the items be $v(1)=v(2)=10$ and $v(3)=v(4)=20$.

Figure 1 shows the bipartite graph of the BarterSV instance from Example 1. The edges are unweighted and the optimal LP solution is $x=[0.5,0.5,1,1]$. The first two coordinates of x correspond to items given by agent 1 . GKPS-DR will round both of these coordinates to 0 with positive probability thus resulting in agent 2 incurring a net loss of $\sum_{a \in L_{2}} v_{a}=20$ units of value.

Figure 1: The bipartite graph corresponding to the BarterSV instance in Example 1. Blue and orange vertices correspond to agents 1 and 2, respectively. The optimal LP solution is $x=[0.5,0.5,1,1]$.

Observation 1. GKPS-DR rounding x results in the vector $X=$ [$0,0,1,1$] with positive probability; this is the worst case for agent 2 where their net loss is $\sum_{a \in L_{2}} v_{a}=20$ units of value.

The above example can be easily generalized to instances with larger item-lists and more agents where some agent i achieves net value loss $\sum_{a \in L_{i}} v_{a}$ with positive probability.

B REDUCING TO BarterSV WITH SINGLE ITEM COPIES

BarterSV with arbitrary item capacities can be modeled with the following integer program. Parallel edges (values of $y_{e}>1$) model the fact that i may give i^{\prime} up to $\min \left\{\eta_{i}(j), \omega_{i^{\prime}}(j)\right\}$ copies of j. Each vertex $\ell_{i j}$ and $r_{i j}$ has value v_{j}; so $v_{\ell_{i j}}=v_{j}$ and so on. Crucially, E has edges only between vertices of equal value. Let \mathbb{Z}^{+}denote the non-negative integers. Then a valid allocation corresponds to a vector y such that for $e \in E, y_{e} \in \mathbb{Z}^{+}$is feasible in the following Integer Program (IP);

$$
\begin{array}{rlr}
\max & \sum_{e \in E} w_{e} y_{e} & \\
\text { subj. to } & y\left(\ell_{i j}\right) \leq \eta_{i}(j), & i \in[n], \ell_{i j} \in L_{i} \\
& y\left(r_{i j}\right) \leq \omega_{i}(j), & i \in[n], r_{i j} \in R_{i} \\
& \sum_{a \in L_{i}} y(a) v_{a}=\sum_{b \in R_{i}} y(b) v_{b}, & i \in[n] \\
& y_{e} \in \mathbb{Z}^{+}, & e=\left(\ell_{i j}, r_{i^{\prime} j}\right) \in E .
\end{array}
$$

The weights $w_{e} \in \mathbb{R}$ can be set arbitrarily; we will come back to this. For $a \in L \cup R$, we denote $y(a):=\sum_{e \in N(a)} y_{e}$ where $N(a)$ denotes
the open neighborhood of a i.e., $N(a):=\{(a, b) \in E: b \in U \cup V\}$. Thus for $e=\left(\ell_{i j}, r_{i^{\prime} j}\right) \in E, y_{e}=k$ says agent i gives k copies of j to agent i^{\prime}. With this in mind, (1b) ensures each agent i gives away at most $\eta_{i}(j)$ copies of item j, (1c) ensures each agent i receives at most $\omega_{i}(j)$ copies of item j, and (1d) ensures, for each agent i, the value received $\sum_{b \in R_{i}} y(b) v_{b}$ equals the value given $\sum_{a \in L_{i}} y(a) v_{a}$. It follows that an allocation is valid allocation if and only if the corresponding $\left\{y_{e}\right\}_{e \in E}$ is a feasible point of (1). For each $e \in E$ we may set $w_{e}=v_{j}$ and recover the objective of maximizing the collective value received by all agents. Nevertheless, our results hold even if w_{e} is set arbitrarily. For example, the algorithm designer could place greater value on certain item transactions, or they may maximize the sheer number of items received by uniformly setting $w_{e}=1$. Henceforth $\sum_{e \in E} w_{e} y_{e}$ is the allocation's utility. Therefore, IP (1) is equivalent to BarterSV.
By relaxing (1e) to $y_{e} \geq 0$ for $e \in E$ we arrive at the natural LP relaxation of BarterSV, namely BarterSV-LP-Caps. This can be reduced to an instance of BarterSV-LP (that is, with unit capacities) as follows.

Proof of Lemma 1. The instance with unit copies of each item proceeds as follows. Note that this instance will be large but it is only a thought experiment; we do not directly solve the corresponding LP, write the full graph down, etc.. Fix an agent i and an item j in H_{i}. Make $\eta_{i}(j)$ copies of this vertex each with unit capacity, say $\ell_{i j 1}, \ell_{i j 2}, \ldots, \ell_{i j \eta_{i}(j)}$. Similarly, for an item $j^{\prime} \in W_{i}$, make $\omega_{i}\left(j^{\prime}\right)$ copies $r_{i j^{\prime} 1}, r_{i j^{\prime}} 2, \ldots, r_{i j^{\prime} \omega_{i}\left(j^{\prime}\right)}$. Like before add edges between all vertices corresponding to the same items. Keep all edge weights the same and use the same corresponding weights for edges between copies i.e., if $e=\left(\ell_{i j k_{1}}, r_{i^{\prime} j k_{2}}\right)$ and $f=\left(\ell_{i j}, \ell_{i^{\prime} j}\right)$ then $w_{e}=w_{f}$. Call this new set of edges over vertex copies E^{\prime}.

To see the two formulations are equivalent, we show $y, \forall e \in$ $E, y_{e} \geq 0$ is feasible to BarterSV-LP-Caps if and only if z, $\forall e \in$ $E^{\prime}, z_{e} \in[0,1]$ is feasible to BarterSV-LP. Moreover, y and z have the same objective value. Let $e=\left(\ell_{i j}, r_{i^{\prime} j}\right)$ then $y_{e}=k+r$ for $k \in \mathbb{Z}^{+}$and $0 \leq r<1$. Correspondingly let $e_{p}=\left(\ell_{i j p}, r_{i^{\prime} j p}\right) \in$ E^{\prime} and set $z_{e_{1}}, z_{e_{2}}, \ldots, z_{e_{k}}$ all equal to 1 and $z_{e_{k+1}}=r . k+r \leq$ $\min \left\{\eta_{i}(j), \omega_{i}(j)\right\}$ if and only if y and z are feasible. Moreover, both y_{e} and $\left(z_{e_{1}}, \ldots, z_{e_{k+1}}\right)$ each contribute $(k+r) w_{e}$ to the objective and $(k+r) v_{j}$ value given by agent i and received by agent i^{\prime}.

Therefore we always write and solve BarterSV-LP-Caps and use BarterSV-LP only as a thought experiment to facilitate the presentation of the problem. It is easy to check that the size of BarterSV-LP-Caps is polynomial in $|I|, n, \log \eta$, and $\log \omega$.

Following from the proof above we also have (where E^{\prime} corresponds to the graph with vertex copies as outlined in the proof of Lemma 1)

Lemma B.1. A solution $\left\{x_{e}\right\}_{e \in E^{\prime}}$ to BarterSV-LP has at most $|E|$ floating variables.

Proof of Lemma B.1. Like in the proof of Lemma 1, corresponding to each group of $z_{e_{1}}, z_{e_{2}}, \ldots$ there is at most one $z_{e_{p}}=r$ for $0 \leq r<1$. Therefore, the number of floating edges is at most $|E|$.

Proof of Lemma 2. The reduction in the proof of Lemma 1 is an instance of VBM shown to be equivalent to BarterSV.

Proof of Lemma 3. The IP is equivalent as argued above. Since the feasible region BarterSV-LP is larger than that of the corresponding IP, it follows the objective of BarterSV-LP is an upper bound on the objective of (1).

C PRE-PROCESSING

Proof of Lemma 9. When rounding a cycle each vertex appearing in the cycle has two edges with changes equal-in-magnitude and opposite-in-sign. Therefore, all vertex fractional degrees, and thus D_{i} values, are preserved.

Lemma C.1. Let $\left\{x_{e}\right\} \in(0,1)^{|E|}$ be a vector of floating edges over a connected bipartite graph (U, V, E). Then the number of floating vertices in (U, V, E) is not 1 .

Proof of Lemma C.1. Let u be the sole floating vertex, i.e., $x(u) \notin$ \mathbb{Z}, and, without loss of generality, let $u \in U$. For $S \subseteq U \cup V$, let $d(S):=\sum_{s \in S} x_{s}$. Then $d(U-\{u\})+x_{u}=d(U)=\sum_{e \in E} x_{e}=d(V)$. But u being the only floating vertex implies $d(U-\{u\})+x(u) \notin \mathbb{Z}$ and $d(V) \in \mathbb{Z}$.

Proof of Lemma 5. If there are 0 floating vertices in a connected component, then each vertex has degree at least two because $\forall e \in E^{r}, x_{e}^{r} \in(0,1)$. Hence there must be a cycle. Since the pre-processing step has eliminated all cycles then no connected component has 0 floating vertices. The result then follows from applying Lemma C. 1 to each connected component of G^{1}.

D CORRECTNESS OF FINDCCC

Proof of Lemma 7. Consider $\mathcal{P}=\left\langle s_{i} \leadsto t_{i}\right\rangle_{i \in[q]}$. Assign an arbitrary color to s_{1}, say $C\left(s_{1}\right)=1$. Note here s_{1} and t_{q} are the two partnerless vertices. Because C only has two colors, this immediately determines the color of t_{1}, which depends on whether s_{1} and t_{1} are same-side vertices. Again, this immediately determines the color of s_{2}, which in turn determines the color of t_{2}, and so on. Since s_{1} and t_{q} are partnerless, their colors can be whatever they need to be to satisfy the first property. The vertices are colored in the order $s_{1}, t_{1}, s_{2}, t_{2}, \ldots, s_{q}, t_{q}$. Thus, if \mathcal{P} is a CCW this greedy scheme efficiently finds a roundable coloring in time $O(|L|+|R|)$.

Instead suppose \mathcal{P} is a CCC. Once more, the same greedy scheme starting by coloring s_{1} will satisfy all roundable coloring properties, except maybe for $C\left(t_{q}\right)=C\left(s_{1}\right)$. We now verify this. Observe that the greedy algorithm ensures

$$
\forall i \in[q], C\left(t_{i}\right)=C\left(s_{i}\right) \cdot(-1)^{\mathbb{1}\left(t_{i} \perp s_{i}\right)}
$$

and

$$
\forall i \in[q-1], C\left(s_{i+1}\right)=C\left(t_{i}\right) \cdot(-1)^{\mathbb{1}\left(t_{i} \not \perp s_{i+1}\right)}
$$

where $\mathbb{1}(\cdot)$ equals 1 if "." is true and 0 otherwise; this is a slight abuse of notation since \perp is a relation but we are treating it as a boolean function. Expanding by repeated application of the above observations, we have

$$
\begin{aligned}
C\left(t_{q}\right) & =C\left(s_{1}\right) \cdot(-1)^{\sum_{i \in[q]} \mathbb{1}\left(t_{1} \not \perp s_{i}\right)+\sum_{i \in[q-1]} \mathbb{1}\left(t_{i} \not s_{i+1}\right)} \\
& =C\left(s_{1}\right) \cdot(-1)^{p+s_{q-1}}
\end{aligned}
$$

where p is the number of same-side paths and s_{q-1} is the number of same-side partners not counting the pair t_{q} and s_{1}. Then ensuring we have a roundable coloring reduces to ensuring that $t_{q} \perp s_{1} \Longrightarrow$
$p+s_{q-1}$ is even and $t_{q} \not \perp s_{1} \Longrightarrow p+s_{q-1}$ is odd. Letting s be the total number of same-side partners, the above is equivalent to asking $p+s$ be even, which we now prove.

Let d be the number of different-side paths, and let $c_{L}, c_{R}, c_{L R}$ respectively be the number of left-left, right-right, and left-right partner pairs. So,

$$
\begin{equation*}
p+d=q=s+c_{L R} \tag{15}
\end{equation*}
$$

Let n_{L} be the number of left vertices in the CCC. Clearly, $n_{L}=$ $2 c_{L}+c_{L R}$. Look at $n_{L}-d$, this is the number of left vertices remaining after removing the different-side paths in $\left\langle s_{i} \leadsto t_{i}\right\rangle_{i \in[q]}$. Since these vertices must be covered by same side paths we must have $n_{L}-d$ even. Then, with all congruences taken modulo 2 ,

$$
0 \equiv n_{L}-d \equiv 2 c_{L}+c_{L R}-d \equiv c_{L R}-d
$$

Plugging the above into (15) gives $p=s+c_{L R}-d \equiv s$. Therefore, $s+p \equiv s+s \equiv 0$.

Proof of Lemma 6. For a vertex $b \in L\left(E^{r}\right) \cup R\left(E^{r}\right)$, let $K(b)$ be the set of vertices in the connected component of G^{r} containing b. Let V_{r} be the sequence of vertices V at the beginning of iteration r (i.e., corresponding to Ψ in CCWALк). For a vertex b We use $V_{r}-b$ to denote V_{r} without vertex b. Like in CCWALK, " \oplus " denotes sequence concatenation. Let a_{r} and z_{r} be the first and last vertices of V_{r}; note a_{r} does not change over iterations. We prove the correctness of CCWALK with the aid of the following loop invariants maintained at the beginning of each iteration r of the while-loop.
(I1) z_{r} has no partners in V_{r}.
(I2) $\forall b \in V_{r}-z_{r}, b$ has exactly one partner in V_{r}.
(I3) a_{r} is the only vertex from V_{r} in $K\left(a_{r}\right)$.
(I4) $\forall b \in V_{r}-a_{r}$, there are exactly two vertices from V_{r} contained in $K(b)$.
Proceed by induction. When $r=1, V_{r}=\langle a\rangle$ so $a_{r}=a=z_{r}$ so all invariants are (vacuously) true. Let $P(k)$ be the predicate saying all invariants hold at the beginning of iteration $k \geq 1$. We assume $P(k)$ and show $P(k+1)$.

If there is an iteration $k+1$, then CCWALK did not return during iteration k and must have added $\left\langle s_{k}, t_{k}\right\rangle$ to $V_{k}=\left\langle t_{1}, s_{2}, t_{2}, \ldots, s_{k-1}, t_{k-1}\right\rangle$. If $z_{k+1}=t_{k}$ had a partner in $V_{k} \oplus\left\langle s_{k}\right\rangle$ then iteration k would have been the last as a CCC would have been returned. Therefore (I1) holds at the beginning of iteration $k+1$.

By $P(k), \forall b \in V_{k}-t_{k-1}, b$ has exactly one partner in V_{k} and t_{k-1} has zero partners in V_{k}. By construction s_{k} is selected to be the partner of t_{k-1} so now t_{k-1} and s_{k} have exactly one partner each in V_{k+1}. Therefore (I2) holds at the beginning of iteration $k+1$.

If V_{k+1} were to not meet (I3) then it must mean that either $s_{k} \in K\left(a_{k}\right)$ or $t_{k} \in K\left(a_{k}\right)$. But in this case the connected component $K\left(a_{k}\right)$ was revisited during iteration k and a CCC was returned.

By construction $K\left(s_{k}\right)=K\left(t_{k}\right)$. Moreover, $\forall b \in V_{k}, K\left(s_{k}\right) \neq$ $K(b)$ otherwise $K(b)$ was revisited and iteration k would have been the last. Therefore, ($\mathbf{I} 4)$ continues to hold.

Moreover note the while-loop runs at most $O(|L|+|R|)$ many times since revisiting a connected component of G_{r} causes the function to return.

Next we leverage the loop invariants to prove CCWALK returns valid CCC's. First observe that by construction of V, Properties 1) and 4) of a CCC are always immediate. CCWALK returns CCC's
when a connected component is revisited or when the added t_{i} already has partners present in V. Fix some iteration $r \geq 1$.

Suppose a connected component $C_{k}, k<r$ is revisited. Then $\left\langle s_{k}^{\prime} \leadsto t_{k}, \ldots, s_{r-1} \leadsto t_{r-1}\right\rangle$ is returned. By (I1), t_{r-1} and s_{k}^{\prime} are each others only partners. Recall by construction $t_{k} \sim s_{k+1}, t_{k+1} \sim$ $s_{k+1}, \ldots, s_{r-1} \sim t_{r-1}$, so by (I2) it follows that each of
$t_{k}, s_{k+1}, t_{k+1}, \ldots, s_{r-1}, t_{r-1}$ has at exactly one partner amongst themselves. Therefore, Property 2) of CCC's holds. It remains to check Property 3). By (I4) and the fact that there are paths $s_{p} \leadsto t_{p}$, for $k<p<r$, each $s_{p} \leadsto t_{p}$ belongs to a distinct connected component. $s_{k}^{\prime} \leadsto t_{k}$ must belong to a unique connected component different from each $s_{p} \leadsto t_{p}$; otherwise there was a connected component containing s_{p}, t_{p}, and s_{k} contradicting one of (I3) and (I4) (depending on whether $k=1$ or $k>1$).

Instead suppose a CCC is returned because t_{r} had a partner $b \in V_{r} \oplus\left(s_{r}\right)$. Let b be the last vertex in $V_{r} \oplus\left(s_{r}\right)$ such that $b \sim t_{r}$. If $b=s_{r}$ then $\left\langle s_{r} \leadsto t_{r}\right\rangle$ is clearly a CCC. So suppose $b \in V_{r}$. It must be that $b=s_{p}$ for some $p<r$; otherwise b is not the last such vertex. So focus on proving $\left\langle s_{p} \leadsto t_{p}, \ldots, s_{r} \leadsto t_{r}\right\rangle$ is a CCC. Property 2) follows because t_{r-1} and s_{r} are each other's only partners by (I1); t_{r} and s_{p} are each other's only partners because by (I2) s_{p} previously had only partner t_{p-1} but we have cut it out from the CCC; and the rest of the pairs have unique partners by (I2). Lastly, Property 3) holds because $K\left(s_{r}\right)$ was not a revisited CC so s_{r} and t_{r} belong to a distinct CC, and the rest of the path endpoints belong to distinct CC's by (I4).

The last remaining case is that where the two half-CCW's overlap. This can be resolved into a CCC in the manner already described in the main text under the paragraph Uncrossing the half-CCW's of Section 5.2.

Runtime of FINDCCC.. We conclude with comments about the runtime of FindCCC. We can build a hash-map mapping vertices to a set of all their floating partners. This hash-map can be constructed in time $O(|L|+|R|)$. Similarly, we can build a set to keep track of visited connected components. Finding the partner s_{i} of t_{i-1} can be done in $O(1)$ time by checking the hash-map, and finding the vertex t_{i} in $K\left(s_{i}\right)$ can be done by starting a depth first search from t_{i} until a floating vertex is reached. After rounding a the $\mathrm{CCC} / \mathrm{CCW}$ remove vertices that became settled from their respective sets of floating partners. The depth first searches starting from each t_{i} altogether visit each vertex and edge at most $O(1)$ times before returning and each vertex is removed from the hash-map's set of floating partners at most once. Therefore, CCWalk runs in time $O(|L|+|R|)$. FindCCC calls CCWalk $O(1)$ times and resolving the two-half CCW's can be thought of as another run of CCWALK, as argued above. Therefore, FindCCC finishes in time $O(|L|+|R|)$.

E PROOF OF THEOREM 3

Lemma E.1. BarterDR satisfies (J1).

Proof. The property holds trivially for $r=0$. Recall $r=1$ corresponds to the output of the pre-processing step. This fact is proved in [15]. Therefore, focus on some fixed $r>1$ and proceed by induction. Fix $e \in E$ and the CCC/CCW to be rounded $\mathscr{P}=\left\langle s_{i} \leadsto\right.$ $\left.t_{i}\right\rangle_{i \in[q]}$. Proceed by considering the following two events.

Event A : e does not appear in \mathcal{P} so e does not change this iteration. Thus by the induction hypothesis $\mathbb{E}\left[x_{e}^{r+1} \mid\left(x_{e}^{r}=z\right) \wedge A\right]=z$.
Event $B: e$ appears in \mathcal{P}, say, in path $s_{i} \leadsto t_{i}$ for a fixed i. Recall values α and β from (5) are fixed and x_{e}^{r} is modified according to (6). Assuming $e \in M_{-1}^{i}$ then

$$
\mathbb{E}\left[x_{e}^{r+1} \mid\left(x_{e}^{r}=z\right) \wedge B\right]=z+\frac{\alpha}{v_{i}}\left(\frac{\beta}{\alpha+\beta}\right)-\frac{\beta}{v_{i}}\left(\frac{\alpha}{\alpha+\beta}\right)=z .
$$

The same holds if instead $e \in M_{1}^{i}$. Hence

$$
\begin{aligned}
\mathbb{E}\left[x_{e}^{r+1} \mid\left(x_{e}^{r}=z\right)\right]= & \mathbb{E}\left[x_{e}^{r+1} \mid\left(x_{e}^{r}=z\right) \wedge B\right] \cdot \operatorname{Pr}(B) \\
& +\mathbb{E}\left[x_{e}^{r+1} \mid\left(x_{e}^{r}=z\right) \wedge A\right] \cdot \operatorname{Pr}(A) \\
= & z(\operatorname{Pr}(A)+\operatorname{Pr}(B))=z
\end{aligned}
$$

Let Z be the set of possible values for x_{e}^{r}.

$$
\begin{aligned}
\mathbb{E}\left[x_{e}^{r+1}\right] & =\sum_{z \in Z} \mathbb{E}\left[x_{e}^{r+1} \mid\left(x_{e}^{r}=z\right)\right] \cdot \operatorname{Pr}\left(x_{e}^{r}=z\right) \\
& =\sum_{z \in Z} z \cdot \operatorname{Pr}\left(x_{e}^{r}=z\right)=\mathbb{E}\left[x_{e}^{r}\right] .
\end{aligned}
$$

By the IH , then $\mathbb{E}\left[x_{e}^{r+1}\right]=x_{e}^{0}$.
Lemma E.2. BarterDR satisfies (J2).
Proof. The property holds trivially for $r=0$. Recall $r=1$ corresponds to the output of the pre-processing step. This fact is proved in [15]. Therefore, focus on some fixed $r>1$ and proceed by induction. Fix $a \in L \cup R$ and the CCC/CCW to be rounded $\mathcal{P}=\left\langle s_{i} \leadsto t_{i}\right\rangle_{i \in[q]}$. Recall $V(\mathcal{P})$ denotes the endpoints of the paths of \mathcal{P}. Proceed by cases.

Case A: $a \notin V(\mathcal{P})$. Then either a does not appear in \mathcal{P} or a appears in \mathcal{P} but with two edges incident on it. In the former case clearly $x_{a}^{r+1}=x_{a}^{r}$. In the latter case, the change of each incident edge is equal in magnitude and opposite in sign (since one edge belongs to M_{-1}^{i} and the other to M_{1}^{i}) therefore $x_{a}^{r+1}=x_{a}^{r}$ as well. Thus by the $\mathrm{IH}\left\lfloor x^{0}(a)\right\rfloor \leq x^{r+1}(a) \leq\left\lceil x^{0}(a)\right\rceil$.

Case B: $a \in V(\mathcal{P})$. There is a single incident edge $e \in N(a)$. Without loss of generality, said edge belongs path $s_{i} \leadsto t_{i}$ and thus to M_{-1}^{i} (the proof for M_{1}^{i} is identical). Then either $x^{r+1}(a)=x^{r}(a)+$ α / v_{i} or $x^{r+1}(a)=x^{r}(a)-\beta / v_{i}$. In either case, by definition of α and β (i.e., (5)), α and β are small enough that $\left\lfloor x^{r}(a)\right\rfloor \leq x^{r+1}(a) \leq$ $\left\lceil x^{r}(a)\right\rceil$. Observe $\left\lfloor x^{0}(a)\right\rfloor=\left\lfloor x^{r}(a)\right\rfloor$ and $\left\lceil x^{0}(a)\right\rceil=\left\lceil x^{r}(a)\right\rceil$.

Having handled exhaustive cases, the proof is complete.

Lemma E.3. BarterDR satisfies (J3).

Proof. The property holds trivially for $r=0$. Recall $r=1$ corresponds to the output of the pre-processing step. This fact is proved in [15]. Therefore, focus on some fixed $r>1$ and proceed by induction. Fix a vertex a and a subset of edges S incident on a like in (J3). Also fix the CCC/CCW to be rounded $\mathcal{P}=\left\langle s_{i} \leadsto t_{i}\right\rangle_{i \in[q]}$. Proceed based on the following events.

Event A : no edge in S has its value modified. Then $\mathbb{E}\left[\prod_{e \in S} x_{e}^{r+1} \mid\right.$ $A]=\mathbb{E}\left[\prod_{e \in S} x_{e}^{r} \mid A\right]$.

Event B: two edges $e_{1}, e_{2} \in S$ have their values modified. Said edges must both belong to $s_{i} \leadsto t_{i}$, for some fixed i, with one
belonging to M_{-1}^{i} and the other to M_{1}^{i}; say $e_{1} \in M_{1}^{i}$ and $e_{2} \in M_{-1}^{i}$. Then

$$
\left(x_{e_{1}}^{r+1}, x_{e_{2}}^{r+1}\right)=\left\{\begin{array}{l}
\left(x_{e_{1}}^{r}+\alpha / v_{i}, x_{e_{2}}^{r}-\alpha / v_{i}\right) \text { with probability } \beta /(\alpha+\beta) \\
\left(x_{e_{1}}^{r}-\beta / v_{i}, x_{e_{2}}^{r}+\beta / v_{i}\right) \text { with probability } \alpha /(\alpha+\beta)
\end{array}\right.
$$

where α and β are fixed per (5). Let $S_{1}=S-\left\{e_{1}, e_{2}\right\}$. Then

$$
\begin{aligned}
\mathbb{E}\left[\prod_{e \in S} x_{e}^{r+1} \mid(\forall e\right. & \left.\left.\in S, x_{e}^{r}=z_{e}\right) \wedge B\right] \\
& =\mathbb{E}\left[x_{e_{1}}^{r} \cdot x_{e_{2}}^{r} \mid\left(\forall e \in S, x_{e}^{r}=z_{e}\right) \wedge B\right] \prod_{e \in S_{1}} z_{e}
\end{aligned}
$$

The above expectation can be written as $(\Psi+\Phi) \prod_{e \in S_{1}} z_{e}$, where

$$
\begin{aligned}
& \Psi=(\beta /(\alpha+\beta)) \cdot\left(z_{e_{1}}+\alpha\right) \cdot\left(z_{e_{2}}-\alpha\right) \text { and } \\
& \Phi=(\alpha /(\alpha+\beta)) \cdot\left(z_{e_{1}}-\beta\right) \cdot\left(z_{e_{2}}+\beta\right) .
\end{aligned}
$$

It is easy to s how $\Psi+\Phi \leq z_{e_{1}} z_{e_{2}}$. Thus, for any fixed $\left\{e_{1}, e_{2}\right\} \subseteq S$ and for any fixed (α, β), and for fixed values of z_{e}, the following holds:

$$
\mathbb{E}\left[\prod_{e \in S} x_{e}^{r+1} \mid\left(\forall e \in S, x_{e}^{r}=z_{e}\right) \wedge B\right] \leq \prod_{e \in S} z_{e}
$$

Hence, $\mathbb{E}\left[\prod_{e \in S} x_{e}^{r+1} \mid B\right] \leq \mathbb{E}\left[\prod_{e \in S} x_{e}^{r} \mid B\right]$.
Event C : exactly one edge in the set S has its value modified. Let C denote the event that edge $e_{1} \in S$ has its value changed in the following probabilistic way

$$
x_{e_{1}}^{r+1}=\left\{\begin{array}{l}
x_{e_{1}}^{r}+\alpha \text { with probability } \beta /(\alpha+\beta) \\
x_{e_{1}}^{r}-\beta \text { with probability } \alpha /(\alpha+\beta) .
\end{array}\right.
$$

Thus, $\mathbb{E}\left[x_{e_{1}}^{r+1} \mid\left(\forall e \in S, x_{e}^{r}=z_{e}\right) \wedge C\right]=z_{e_{1}}$. Letting $S_{1}=S-\left\{e_{1}\right\}$, we get that $\mathbb{E}\left[\prod_{e \in S} x_{e}^{r+1} \mid\left(\forall e \in S, x_{e}^{r}=z_{f}\right) \wedge C\right]$ equals

$$
E\left[x_{e_{1}}^{r+1} \mid\left(\forall e \in S, x_{e}^{r}=z_{f}\right) \wedge C\right] \prod_{e \in S_{1}} z_{e}=\prod_{e \in S} z_{e} .
$$

Since the equation holds for any $e_{1} \in S$, for any values of z_{e}, and for any (α, β), we have $\mathbb{E}\left[\prod_{e \in S} x_{e}^{r+1} \mid C\right]=\mathbb{E}\left[\prod_{e \in S} x_{e}^{r}\right]$.

Proof of Theorem 3. By Lemmas E. 1 and E. 2 BarterDR satisfies (P1) and (P2). Let T be the last iteration of BarterDR. From Lemma E. 3 we have
$\operatorname{Pr}\left(\bigwedge_{e \in S}\left(X_{e}=1\right)\right)=\mathbb{E}\left[\prod_{e \in S} x_{e}^{T+1}\right] \leq \mathbb{E}\left[\prod_{e \in S} x_{e}^{1}\right]=\prod_{e \in S} x_{e}^{0}=\prod_{e \in S} \operatorname{Pr}\left(X_{e}=1\right)$.
The proof for $c=0$ (i.e., $\left.\operatorname{Pr}\left(X_{e}=0\right)\right)$ is identical. Therefore, BARTERDR satisfies (P3).

F PROOF OF THEOREM 1

Proof of Lemma 8. Given a BarterSV instance, let OPT O_{IP} and $\mathrm{OPT}_{\mathrm{LP}}$ be the optimal objectives of the corresponding IP (1) and the corresponding BarterSV-LP. Let $\left\{X_{e}^{*}\right\}_{e \in E}$ and $\left\{x_{e}^{*}\right\}_{e \in E}$ be optimal solutions to the IP and LP, respectively. Then $\mathrm{OPT}_{\mathrm{IP}}=\sum_{e \in E} w_{e} X_{e}^{*} \leq$ $\sum_{e \in E} w_{e} x_{e}^{*}=\mathrm{OPT}_{\mathrm{LP}}$. Per Theorem 3, BarterDr satisfies (P1) when rounding $\left\{x_{e}^{*}\right\}_{e \in E}$ to $\left\{X_{e}\right\} \in\{0,1\}^{|E|}$. Therefore, $\mathbb{E}\left[\sum_{e \in E} w_{e} X_{e}\right]=$ $\sum_{e \in E} w_{e} \mathbb{E}\left[X_{e}\right]=\sum_{e \in E} w_{e} x_{e}^{*}=\mathrm{OPT}_{\mathrm{LP}}$.

By the linearity of expectation and (P1),

$$
\begin{aligned}
\mathbb{E}\left[D_{i}\right] & =\mathbb{E}\left[\sum_{a \in L_{i}} X(a) v_{a}-\sum_{b \in R_{i}} X(b) v_{b}\right] \\
& =\sum_{b \in L_{i}} \mathbb{E}[X(b)] v_{b}-\sum_{a \in R_{i}} \mathbb{E}[X(a)] v_{a} \\
& =\sum_{b \in L_{i}} x^{*}(b) v_{b}-\sum_{a \in R_{i}} x^{*}(a) v_{a}=D_{i}^{0}=0 .
\end{aligned}
$$

The last equation follows because $\left\{x_{e}^{*}\right\}_{e \in E}$ satisfies (1d) per Lemma E.1.

Proof of Lemma 9. If no vertex from $L_{i} \cup R_{i}$ appears in the CCC/CCW's endpoints $V(\mathcal{P}):=\bigcup_{i \in[q]}\left\{s_{i}, t_{i}\right\}$ then we are done. So suppose $a \in L_{i} \cup R_{i}$ and $a \in V(\mathcal{P})$ on this r-th rounding iteration. By assumption there exists another floating $b^{\prime} \in L_{i} \cup R_{i}$ in iteration r when $\left\langle s_{i} \leadsto t_{i}\right\rangle_{i \in[q]}$ was constructed. Therefore, a is not partnerless hence it cannot be the endpoint of a CCW so there exists $b \in$ $V(\mathcal{P})$ such that $a \sim b$. Moreover, by property 2 of the definition of a CCC/CCW, said b is unique. Therefore, a and b are the only vertices in $V(\mathcal{P})$ affecting D_{i} this iteration r; i.e., $\forall d \in\left(L_{i} \cup R_{i}\right)$ $\{a, b\}, x^{r}(d)=x^{r+1}(d)$. Since $a \sim b$, we may assume without loss of generality that $a=t_{k}$ and $b=s_{k+1}$ for some $k \in[q]$ (or $k \in[q-1]$ for a CCW); recall $s_{q+1} \equiv s_{1}$. We know $\mathcal{C}(a)=C(b)$ if and only if a and b belong to opposite graph sides where C is the valid coloring function corresponding to \mathcal{P}, which can be fixed efficiently per Lemma 7.

Consider the two possible rounding events, described in (6). Call these events θ_{1} and θ_{2}. Suppose a and b are opposite-side vertices, hence $C(a)=C(b)$. Focus on event θ_{1} (the proof for θ_{2} is exactly the same but replacing α with $-\beta$). Under event θ_{1} we have
$x^{r+1}(a)=x^{r}(a)-C(a) \frac{1}{v_{a}} \alpha \quad$ and $\quad x^{r+1}(b)=x^{r}(b)-C(b) \frac{1}{v_{b}} \alpha$.
Note the factor of " $-\mathcal{C}(a)$ " appears because a belongs to $M_{C(a)}^{i}$ for some i. Conveniently, this leaves us with

$$
\begin{align*}
& x^{r+1}(a) v_{a}-C(a) C(b) x^{r+1}(b) v_{b} \\
& =x^{r}(a) v_{a}-\mathcal{C}(a) \mathcal{C}(b) x^{r}(b) v_{b}-\mathcal{C}(a) \alpha+\mathcal{C}(a) \alpha \tag{16}\\
& =x^{r}(a) v_{a}-\mathcal{C}(a) \mathcal{C}(b) x^{r}(b) v_{b}, \tag{17}
\end{align*}
$$

using the fact $\mathcal{C}(b) \cdot C(b)=1$. Without loss of generality let $a \in L_{i}$. Therefore, expanding D_{i}^{r+1} :

$$
\begin{equation*}
D_{i}^{r+1}=\sum_{s \in L_{i}} x^{r+1}(s) v_{t}-\sum_{t \in R_{i}} x^{r+1}(t) v_{t} . \tag{18}
\end{equation*}
$$

Having fixed $a \in L_{i}$, we know $C(a) C(b)=1$ if and only if $b \in R_{i}$. Thus, take out $x^{r+1}(a)$ and $x^{r+1}(b)$ from the sums and substitute (17) to have
$\sum_{s \in L_{i}-\{a, b\}} x^{r+1}(s) v_{t}-\sum_{t \in R_{i}-\{b\}} x^{r+1}(t) v_{t}+x^{r}(a) v_{a}-C(a) C(b) x^{r}(b) v_{b}$.
Now observe that $x^{r+1}(p)=x^{r}(p)$ for all $p \in\left(L_{i} \cup R_{i}\right)-\{a, b\}$. Moreover, $b \in R_{i}$ if and only if $C(a) C(b)=1$, so we can reabsorb the terms " $x^{r}(a) v_{a}$ " and " $x^{r}(b) v_{b}$ " into their respective summations; thus yielding $\sum_{s \in L_{i}} x^{r}(s) v_{t}-\sum_{t \in R_{i}} x^{r}(t) v_{t}$. But this is precisely D_{i}^{r}, which we've assumed to be 0 .

G HARDNESS OF BarterSV

We first prove Theorem 2: it is NP-Hard to find any non-empty allocation satisfying $D_{k}=0$ for all agents k. By non-empty we mean the corresponding LP solution $x \neq 0$, i.e., at least one agent gives away an item. The proof proceeds by reducing from the NP-hard problem of Partition.

Definition 4 (Partition). A Partition instance takes a set $S=$ $\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ of n positive integers summing to an integer $2 T$. The goal of Partition is to determine if S can be partitioned into disjoint subsets S_{1} and S_{2} such that each subset sums exactly to an integer T.

Lemma G.1. Given a Partition instance, it can be reduced in polynomial time to a corresponding BarterSV instance with two agents.

Proof. Consider an instance $I=(S, 2 T)$ of partition problem where $S=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ such that $\sum_{i \in[n]} a_{i}=2 T$ and a_{i} is an integer, for all $i \in[n]$. Given an instance I of Partition, the BarterSV instance constructed is as follows.

Let the set of items $I=\left\{i_{1}, i_{2}, \ldots, i_{n}, i_{n+1}\right\}$ with item values $v_{j}:=a_{j}$ for each item $i_{j}, j \in[n]$ and $v_{n+1}:=T$ for item i_{n+1}. There are two agents $A=\{1,2\}$, where agent 1 has item lists $H_{1}:=\left\{i_{1}, \ldots, i_{n}\right\}$ and $W_{1}:=\left\{i_{n+1}\right\}$. Symmetrically, agent 2 has item lists $W_{2}:=\left\{i_{j}: j \in[n]\right\}$ and $H_{2}:=\left\{i_{n+1}\right\}$. The particular weights of allocating items (i.e., w_{e} in the bipartite graph) do not matter as we only care about whether some non-empty allocation exists.

Recall the goal is to show there exists a non-empty allocation such that for each agent $k \in[2], D_{k}=0$ if and only if the corresponding Partition instance has a solution.

Lemma G.2. There exists a polynomial time algorithm to find a non-empty allocation of items with $D_{k}=0$ for each agent k in the BarterSV instance if and only if there exists a polynomial time algorithm to the corresponding Partition instance.

Proof. Forward direction (Partition \Longrightarrow BarterSV). Given a solution (S_{1}, S_{2}) to the Partition instance, the corresponding BarterSV instance has a solution in the following manner. Allocate the items $\left\{i_{j}: j \in S_{1}\right\}$ in the have-list of agent 1 to agent 2 and allocate the item i_{n+1} to agent 1 . Thus, the value of the items received and given by both the agents is exactly T resulting in a non-empty allocation with $D_{1}=D_{2}=0$.

Backward Direction (BarterSV \Longrightarrow Partition). Take a nonempty allocation of items I to each agent $k \in[2]$ with $D_{k}=0$. Such a non-empty allocation must have agent 1 giving away their only item, which has value T. Therefore $D_{1}=0$ implies agent 1 received T units of value. Let the items agent 1 received be $i_{j_{1}}, i_{j_{2}}, \ldots, i_{j_{\ell}}$, letting $J=\left\{j_{1}, \ldots, j_{\ell}\right\}$. Thus, $\sum_{p \in J} v_{p}=T$. Therefore, the corresponding partition instance has solution $S_{1}=\left\{a_{p}: p \in J\right\}$ and $S_{2}=\left\{a_{p}: p \notin J\right\}$.

Thus, Lemmas G. 1 and G. 2 show that it is NP-hard to find a non-empty allocation of items with $D_{k}=0$ for any agent k. That is, Theorem 2.

G. 1 Additional hardness results

The prior hardness result showed that finding any non-empty allocation is NP-hard but not necessarily strongly NP-hard since PARtition is weakly NP-hard. We can additionally show the decision version of BarterSV (i.e., does there exist a non-empty allocation with utility $\geq K$) is strongly NP-hard.

Theorem 4. The decision version of BarterSV is strongly NP-Hard.
Definition 5 (3-Partition). Given a set $S=\left\{a_{1}, a_{2}, \ldots, a_{3 m}\right\}$ of $3 m$ positive integers summing to an integer $m T$ and $a_{i} \in(T / 4, T / 2)$. The goal of 3-Partition is to determine if S can be partitioned into m disjoint subsets $S_{1}, S_{2}, \ldots, S_{m}$, such that each subset sums exactly to an integer T.

Note that each subset $S_{i}, i \in[\mathrm{~m}]$ in the partition can have exactly 3 integers each.

Lemma G.3. Given any 3-Partition instance, it can be reduced to a corresponding BarterSV instance with $m+1$ agents in polynomial time.

Proof. Consider an instance $I=(S, T)$ of 3-Partition where $S=\left\{a_{1}, a_{2}, \ldots, a_{3 m}\right\}$ such that $\sum_{i \in[3 m]} a_{i}=m T$ and a_{i} is an integer, for all $i \in[3 m]$. Given an instance I of 3-Partition we construct an instance of BarterSV as follows:
Suppose that the set of items $\mathcal{I}=\left\{i_{1}, i_{2}, \ldots, i_{3 m}, i_{3 m+1}, \ldots, i_{4 m}\right\}$ where the values are $v_{j}:=a_{j}$ for each item $i_{j}, j \in[3 m]$ and $v_{3 m+k}:=T$ for each item $i_{3 m+k}, k \in[m]$. There are a set of $m+1$ agents $A=\{1,2, \ldots, m+1\}$, where each agent $k \in[m]$ consists of the items $\left\{i_{3 m+k}\right\}$ and $\left\{i_{1}, i_{2}, \ldots, i_{3 m}\right\}$ in its have-list and wish-list respectively. The agent $m+1$ has m items in its wishlist $\left\{i_{3 m+k}: k \in[m]\right\}$ and $\left\{i_{1}, i_{2}, \ldots, i_{3 m}\right\}$ in its have-list. Let the weight of allocating item i_{j} from agent a to any valid agent b is given by v_{j}. Therefore, the goal of the decision version of BarterSV problem is to determine if there exists a re-allocation of items such that for each agent $k \in[m+1], D_{k}=0$ and the total allocation utility is $(2 m) T$.

The following lemma is crucial in establishing the hardness of BarterSV.

Lemma G.4. There exists a polynomial time solution to BarterSV problem instance iff there exists a polynomial time solution to the corresponding instance of the 3-PARTITION.

Proof. Forward Direction (3-Partition \Longrightarrow BarterSV) Given a solution $S_{1}, S_{2}, \ldots, S_{m}$ to 3-Partition, we can find a solution to the corresponding instance of BarterSV in the following manner. We allocate, the items $\left\{i_{j}: j \in S_{k}\right\}$ in the have-list of agent $m+1$ to agent k for each $k \in[m]$ and allocate all the items $\left\{i_{3 m+k}: k \in[m]\right\}$ to agent $m+1$. Thus, the value of the items received and given by agent $m+1$ is exactly $m T$ resulting in $D_{m+1}=0$. Further the value of items assigned to each agent $k \in[m]$ is exactly T which is equal to the value of item given. Observe that for each agent $k \in[m]$, the total value of items received and given are exactly T, therefore $D_{k}=0$. Therefore, the utility of the allocation is exactly $m T+m T=2 m T$ and $D_{k}=0$ for each agent $k \in[m+1]$.

Backward Direction (BarterSV \Longrightarrow 3-Partition) Given a non-empty allocation of items \mathcal{I} to each agent $k \in[m+1]$
with $D_{k}=0$ such that the total value of items reallocated is $2 m T$. Then each agent $k \in[m]$ has respectively received items from the partition $H_{m+1,1}, H_{m+1,2}, \ldots, H_{m+1, m}$ of the have-list of agent $m+1$ such that $\sum_{j \in H_{m+1, k}} v_{j}=T$ for each $k \in[m]$. Recall that the items $H_{m+1}=\left\{i_{1}, i_{2}, \ldots, i_{3 m}\right\}=\dot{U}_{k \in[m]} H_{m+1, k}$. Therefore, we can create a solution to the corresponding 3-Partition instance
by choosing $S_{k}=\left\{a_{j}: j \in H_{m+1, k}\right\}$ for each $k \in[m]$. Notice that $\sum_{k \in[m]}\left|S_{k}\right|=3 m, a_{j} \in(T / 4, T / 2)$ implies $\left|S_{k}\right|=3$ for all k, and for all $k \in[m], \sum_{j \in S_{k}} a_{j}=T$. Therefore, $S_{1}, S_{2}, \ldots, S_{m}$ is both a partition of S and a valid solution to the problem.

Thus Lemma G. 4 shows the decision version of the BarterSV is NP-hard. Therefore, Theorem 4 follows.

[^0]: ${ }^{1}$ www.reddit.com/r/Gameswap
 ${ }^{2}$ https://www.facebook.com/groups/boardgameexchange

 Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.
 Conference'17, July 2017, Washington, DC, USA
 © 2023 Association for Computing Machinery.
 ACM ISBN 978-x-xxxx-xxxx-x/YY/MM... $\$ 15.00$
 https://doi.org/10.1145/nnnnnnn.nnnnnnn

[^1]: ${ }^{3}$ www.jagex.com/en-GB/terms/rules-of-runescape
 ${ }^{4}$ www.homeexchange.com
 ${ }^{5}$ www.readitswapit.co.uk
 ${ }^{6}$ www.swap.com
 ${ }^{7}$ Equivalently, the total value of the items given is equal to the total value of the items received.

