
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Barter Exchange with Shared Item Valuations
Anonymous Author(s)

ABSTRACT

In barter exchanges agents enter seeking to swap their items for
other items on their wishlist. We consider a centralized barter ex-
change with a set of agents and items where each item has a positive
value. The goal is to compute a (re)allocation of items maximizing
the agents’ collective utility subject to each agent’s total received
value being comparable to their total given value. Many such cen-
tralized barter exchanges exist and serve crucial roles; e.g., kidney
exchange programs, which are often formulated as variants of di-
rected cycle packing. We show finding a reallocation where each
agent’s total given and total received values are equal is NP-hard. On
the other hand, we develop a randomized algorithm that achieves
optimal utility in expectation and where, i) for any agent, with prob-
ability 1 their received value is at least their given value minus 𝑣∗
where 𝑣∗ is said agent’s most valuable owned and wished-for item,
and ii) each agent’s given and received values are equal in expecta-
tion. Our algorithm builds on the dependent rounding techniques
from Gandhi et al. [16].

KEYWORDS

Barter-Exchanges, Centralized exchanges, Community Markets

ACM Reference Format:

Anonymous Author(s). 2023. Barter Exchange with Shared Item Valuations.
In Proceedings of ACM Conference (Conference’17). ACM, New York, NY,
USA, 13 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

Social media platforms have recently emerged into small scale busi-
ness websites. For example, platforms like Facebook, Instagram, etc.
allow its users to buy and sell goods via verified business accounts.
With the proliferation of such community marketplaces, there are
growing communities for buying, selling and exchanging (swap-
ping) goods amongst its users. We consider applications, viewed as
Barter Exchanges, which allow users to exchange board games, dig-
ital goods, or any physical items amongst themselves. For instance,
the subreddit GameSwap1 (61,000 members) and Facebook group
BoardgameExchange2 (51,000 members) are communities where
users enter with a list of owned video games and board games. The
existence of this community is testament to the fact that although
users could simply liquidate their goods and subsequently purchase

1www.reddit.com/r/Gameswap
2https://www.facebook.com/groups/boardgameexchange

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA

© 2023 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

the desired goods, it is often preferable to directly swap for de-
sired items. Additionally, some online video games have fleshed
out economies allowing for the trade of in-game items between
players while selling items for real-world money is explicitly ille-
gal e.g., Runescape3. In these applications, a centralized exchange
would achieve greater utility, in collective exchanged value and
convenience, as well as overcome legality obstacles.

A centralized barter exchange market provides a platform where
agents can exchange items directly, without money/payments. Be-
yond the aforementioned applications, there exist a myriad of other
markets facilitating the exchange of a wide variety of items, includ-
ing books, children’s items, cryptocurrency, and human organs such
as kidneys. There are both centralized and decentralized exchange
markets for various items. HomeExchange4 and ReadItSwapIt5
are decentralized marketplaces that facilitate pairwise exchanges
by mutual agreement of vacation homes and books, respectively.
Atomic cross chain swaps allow users to exchange currencies within
or across various cryptocurrencies [e.g., 18, 24]. Kidney exchange
markets [see, e.g., 2, 4] and children’s items markets (e.g., Swap6)
are examples of centralized exchanges facilitating swaps amongst
incompatible patient-donor pairs and children items or services
amongst parents. Finding optimal allocations is often NP-hard. As
a result heuristic solutions have been explored extensively [17, 23].

Currently, the aforementioned communities GameSwap and
BoardGameExchange make swaps in a decentralized manner be-
tween pairs of agents, but finding such pairwise swaps is often
inefficient and ineffective due to demanding a “double coincidence
of wants” [19]. However, centralized multi-agent exchanges can
help overcome such challenges by allowing each user to give and
receive items from possibly different users. Moreover, the user’s
goal is to swap a subset a subset of their owned games for a subset
of their desired games with comparable (or greater) value. Although
an item’s value is subjective, a natural proxy is its re-sale price,
which is easily obtained from marketplaces such as Ebay.

We consider a centralized exchange problem where each agent
has a have-list and a wishlist of distinct (indivisible) items (e.g.,
physical games) and, more generally, each item has a value agreed
upon by the participating agents (e.g., members of the GameSwap
community). The goal is to find an allocation/exchange that (i)
maximizes the collective utility of the allocation such that (ii) the
total value of each agent’s items before and after the exchange is
equal.7 We call this problem barter with shared valuations, BarterSV,
and it is our subject of study. Notice that bipartite perfect matching
is a special case of BarterSV where each agent has a single item in
both its have-list and wishlist each and where all the items are have
the same value. On the other hand, we show BarterSV is NP-Hard
(Theorem 2).

3www.jagex.com/en-GB/terms/rules-of-runescape
4www.homeexchange.com
5www.readitswapit.co.uk
6www.swap.com
7Equivalently, the total value of the items given is equal to the total value of the items
received.

1

https://doi.org/10.1145/nnnnnnn.nnnnnnn
www.reddit.com/r/Gameswap
https://www.facebook.com/groups/boardgameexchange
https://doi.org/10.1145/nnnnnnn.nnnnnnn
www.homeexchange.com
www.readitswapit.co.uk
www.swap.com

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Conference’17, July 2017, Washington, DC, USA Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

In the following sections we formulate BarterSV as bipartite
graph-matching problem with additional barter constraints. Our
algorithm BarterDR is based on rounding the fractional allocation
of the natural LP relaxation to get a feasible integral allocation.
A direct application of existing rounding algorithms (like [15]) to
BarterSV results in a worst-case where agents give away all their
items and receive none in exchange. This is wholly unacceptable
for any deployed centralized exchange. In contrast, our main result
ensures BarterDR allocations have reasonable net value for all
agents; more precisely each agent gives and receives the same
value in expectation and the absolute difference between given and
received values is at most the value of their most valuable item
(Theorem 1).

1.1 Problem formulation: BarterSV
Suppose we are given a ground set of items I to be swapped, item
values {𝑣 𝑗 ∈ R+ : 𝑗 ∈ I} where R+ denotes the non-negative real
numbers, and a community of agents 𝑖 ∈ [𝑛] where [𝑛] denotes
{1, 2, . . . , 𝑛}. Each agent 𝑖 possesses items 𝐻𝑖 ⊆ I and has wishlist
𝑊𝑖 ⊆ I. Further, each agent 𝑖 also has a “capacity” function 𝜂𝑖 :
𝐻𝑖 → N denoting the number of copies agent 𝑖 has of each item;
similarly, 𝜔𝑖 : 𝑊𝑖 → N denotes a cap on the number of copies
agent 𝑖 desires of each item. We allow agents to swap an arbitrary
number of copies of the same item as a natural generalization of
the original problem.

A valid allocation of these items involves agents swapping their
items with other agents that desire said item while ensuring no
agent neither gives more copies of an item than they own nor
receives more copies than desired. The goal of BarterSV is to find a
valid allocation of maximum utility subject to no agent giving away
more value than they received. The following lemmas in this section
greatly simplify the problem’s presentation; their full justification is
deferred to the appendix. Let 𝜂 = max𝑖∈[𝑛], 𝑗∈𝐻𝑖

𝜂𝑖 (𝑗) and similarly
𝜔 = max𝑖∈[𝑛], 𝑗∈𝐻𝑖

𝜔𝑖 (𝑗).

Lemma 1. Any instance of BarterSV with arbitrary item capacity

functions 𝜂𝑖 and 𝜔𝑖 , for each agent 𝑖 ∈ [𝑛], can be reduced to a

corresponding BarterSV instance with unit capacities (i.e., for all

valid 𝑖 and 𝑗 , 𝜂𝑖 (𝑗), 𝜔𝑖 (𝑗) = 1) in time poly(|I|, 𝑛, log𝜂, log𝜔).

Definition 1. Value-balanced Matching (VBM) Suppose there is
bipartite graph 𝐺 = (𝐿, 𝑅, 𝐸) with vertex values 𝑣𝑎 > 0 ∀𝑎 ∈ 𝐿 ∪ 𝑅.
Let each edge 𝑒 ∈ 𝐸 have weight𝑤𝑒 ∈ R, 𝐿 = ¤⋃𝑖𝐿𝑖 , and 𝑅 = ¤⋃𝑖𝑅𝑖 .
For a given matching 𝑀 ⊆ 𝐸, let 𝑉𝑖 (𝐿) =

∑
ℓ :(ℓ,𝑟) ∈𝑀,ℓ∈𝐿𝑖 𝑣ℓ and

𝑉𝑖
(𝑅) =

∑
𝑟 :(ℓ,𝑟) ∈𝑀,𝑟 ∈𝑅𝑖 𝑣𝑟 , where ¤

⋃
denotes disjoint union. The

goal of VBM is to find𝑀 of maximum weight subject to, for each 𝑖 ,
the value of items matched in 𝐿𝑖 and 𝑅𝑖 are equal i.e.,𝑉𝑖 (𝑅) = 𝑉𝑖 (𝐿) .

Lemma 2. BarterSV is equivalent to VBM.

Given a BarterSV instance we reduce it to a corresponding in-
stance BarterSV with unit capacities (as Lemma 1 would suggest),
and then reduce once more to a corresponding VBM instance via
the construction of an appropriate bipartite graph and valuation
function. Thus VBM is the technical lens through which we view
BarterSV in the remainder of the paper. The construction is as fol-
lows. For each agent 𝑖 ∈ [𝑛], build the vertex sets𝐿𝑖 := {ℓ𝑖 𝑗 : 𝑗 ∈ 𝐻𝑖 }
and 𝑅𝑖 := {𝑟𝑖 𝑗 : 𝑗 ∈𝑊𝑖 }. Then the bipartite graph of interest has

vertex sets 𝑈 = ¤⋃𝑖∈[𝑛]𝐿𝑖 and 𝑉 = ¤⋃𝑖∈[𝑛]𝑅𝑖 , as well as edge set
𝐸 := {(ℓ𝑖 𝑗 , 𝑟𝑖′ 𝑗) : 𝑗 ∈ 𝐻𝑖 ∩𝑊𝑖′ }, Thus, for each item 𝑗 ∈ I, we
draw an edge between all left and right vertices corresponding to
𝑗 . Each vertex ℓ𝑖 𝑗 and 𝑟𝑖 𝑗 has value 𝑣 𝑗 ; so 𝑣 (ℓ𝑖 𝑗) = 𝑣 𝑗 and so on.
Crucially, 𝐸 has edges only between vertices of equal value. Then a
valid allocation corresponds to a VBM𝑀 in (𝑈 ,𝑉 , 𝐸) such that for
each 𝑒 ∈ 𝐸, 𝑦𝑒 = 1 if 𝑒 ∈ 𝑀 and 𝑦𝑒 = 0 otherwise is feasible in the
following Integer Program (IP);

max
∑︁
𝑒∈𝐸

𝑤𝑒𝑦𝑒 (1a)

subj. to 𝑦 (ℓ𝑖 𝑗) ≤ 1, 𝑖 ∈ [𝑛], ℓ𝑖 𝑗 ∈ 𝐿𝑖 (1b)
𝑦 (𝑟𝑖 𝑗) ≤ 1, 𝑖 ∈ [𝑛], 𝑟𝑖 𝑗 ∈ 𝑅𝑖 (1c)∑︁
𝑎∈𝐿𝑖

𝑦 (𝑎)𝑣𝑎 =
∑︁
𝑏∈𝑅𝑖

𝑦 (𝑏)𝑣𝑏 , 𝑖 ∈ [𝑛] (1d)

𝑦𝑒 ∈ {0, 1}, 𝑒 = (ℓ𝑖 𝑗 , 𝑟𝑖′ 𝑗) ∈ 𝐸. (1e)

The weights𝑤𝑒 ∈ R can be set arbitrarily; this detail will be elabo-
rated upon shortly. For 𝑎 ∈ 𝑈 ∪𝑉 , we denote 𝑦 (𝑎) :=

∑
𝑒∈𝑁 (𝑎) 𝑦𝑒

where 𝑁 (𝑎) denotes the open neighborhood of 𝑎 i.e., 𝑁 (𝑎) :=
{(𝑎, 𝑏) ∈ 𝐸 : 𝑏 ∈ 𝑈 ∪ 𝑉 }, and Z+ denotes the non-negative in-
tegers. Thus 𝑒 = (ℓ𝑖 𝑗 , 𝑟𝑖′ 𝑗) ∈ 𝑀 says agent 𝑖 gives item 𝑗 to agent
𝑖′. With this in mind, (1b) ensures each agent 𝑖 gives item 𝑗 away
at most once, (1c) ensures each agent 𝑖 receives at most one copy
of item 𝑗 , and (1d) ensures, for each agent 𝑖 , the value received∑
𝑏∈𝑅𝑖 𝑦 (𝑏)𝑣𝑏 equals the value given

∑
𝑎∈𝐿𝑖 𝑦 (𝑎)𝑣𝑎 (i.e.,𝑀 is a VBM

with𝑉 (𝑅)
𝑖

= 𝑉
(𝑅)
𝑖

). It follows that an allocation is a valid allocation
if and only if the corresponding {𝑦𝑒 } is a feasible point of (1); i.e.,
Lemma 2. For each 𝑒 ∈ 𝐸 we may set 𝑤𝑒 = 𝑣 𝑗 and recover the
objective of maximizing the collective value received by all agents.
Nevertheless, our results hold even if𝑤𝑒 is set arbitrarily. For ex-
ample, the algorithm designer could place greater value on certain
item allocations, or they may maximize the sheer number of items
received by uniformly setting 𝑤𝑒 = 1. Henceforth

∑
𝑒∈𝐸 𝑤𝑒𝑦𝑒 is

the allocation’s utility. By relaxing (1e) to 𝑦𝑒 ≥ 0 for 𝑒 ∈ 𝐸 we ar-
rive at the natural LP relaxation of BarterSV, namely BarterSV-LP.
The following lemma means BarterSV guarantees will follow from
carefully rounding the related BarterSV-LP solution.

Lemma 3. IP (1) is equivalent to BarterSV. Moreover, the objective

of BarterSV-LP is an upper bound on the objective of IP (1).

2 PRELIMINARIES: GKPS DEPENDENT

ROUNDING

Our results build on the dependent rounding algorithm due to
[15], henceforth referred to as GKPS-DR. GKPS-DR is an algo-
rithm that takes {𝑥𝑒 } ∈ [0, 1] |𝐸 | defined over the edge set 𝐸 of
a biparite graph (𝐿, 𝑅, 𝐸) and outputs {𝑋𝑒 } ∈ {0, 1} |𝐸 | . In each
iteration GKPS-DR considers the graph of floating edges (those
edges 𝑒 with 0 < 𝑥𝑒 < 1) and selects a maximal path or cycle
𝑃 ⊆ 𝐸 on floating edges. The edges of 𝑃 are decomposed into alter-
nate matchings𝑀1 and𝑀2 and rounded in the following way. Fix
𝛼GKPS = min

{
𝛾 > 0 :

(∨
𝑒∈𝑀1 𝑥𝑒 + 𝛾 = 1

)
∨
(∨

𝑒∈𝑀2 𝑥𝑒 − 𝛾 = 0
)}
,

and 𝛽GKPS = min
{
𝛾 > 0 :

(∨
𝑒∈𝑀2 𝑥𝑒 + 𝛾 = 1

)
∨
(∨

𝑒∈𝑀1 𝑥𝑒 − 𝛾 = 0
)}
.

Thus, each 𝑥𝑒 is updated to 𝑥 ′𝑒 according to one of the following
2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Barter Exchange with Shared Item Valuations Conference’17, July 2017, Washington, DC, USA

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

disjoint events: with probability 𝛽GKPS

𝛼GKPS+𝛽GKPS

𝑥 ′𝑒 =

{
𝑥𝑒 + 𝛼, 𝑒 ∈ 𝑀1
𝑥𝑒 − 𝛼, 𝑒 ∈ 𝑀2

; else, 𝑥 ′𝑒 =

{
𝑥𝑒 − 𝛽, 𝑒 ∈ 𝑀1
𝑥𝑒 + 𝛽, 𝑒 ∈ 𝑀2 .

The selection of 𝛼 and 𝛽 ensures at least one edge is rounded to 0
or 1 in every iteration. GKPS-DR guarantees (P1) marginal, (P2)
degree preservation, and (P3) negative correlation properties:

(P1) ∀𝑒 ∈ 𝐸, Pr(𝑋𝑒 = 1) = 𝑥𝑒 .
(P2) ∀𝑎 ∈ 𝐿∪𝑅 and with probability 1, 𝑋 (𝑎) ∈ {⌊𝑥 (𝑎)⌋, ⌈𝑥 (𝑎)⌉}.

(P3) ∀𝑎 ∈ 𝐿 ∪ 𝑅, ∀𝑆 ⊆ 𝑁 (𝑎), ∀𝑐 ∈ {0, 1}, Pr (∧𝑠∈𝑆 𝑋𝑠 = 𝑐) ≤∏
𝑠∈𝑆 Pr (𝑋𝑠 = 𝑐).

Remark 1. When GKPS-DR rounds a path between vertices 𝑎 and
𝑏, the signs of the changes to 𝑥 (𝑎) and 𝑥 (𝑏) are equal if and only if
𝑎 and 𝑏 belong to different graph sides.

3 RELATEDWORK

Centralized barter exchanges have been studied by several others
in the context of kidney-exchanges [2–4]. BarterSV generalizes a
well-studied kidney-exchange problem in the following way. The
Kidney Exchange Problem (KEP) is often formulated as directed
cycle packing in compatibility patient-donor graphs [2] where each
node in the graph corresponds to a patient-donor pair and directed
edges between nodes indicate compatibility. Abraham et al. [2], Biró
et al. [5] observed this problem reduces to bipartite perfect match-
ing, which is solvable in polynomial-time. We show BarterSV is
NP-Hard and thus resort to providing a randomized algorithm with
approximate guarantees on the agents’ net values via LP relaxation
followed by dependent rounding.

There has been extensive work on developing dependent round-
ing techniques, that round the fractional solution in some correlated
way to satisfy both the hard constraints and ensure some negative
dependence amongst rounded variables that can result in concen-
tration inequalities. For instance, the hard constraints might arise
from an underlying combinatorial object such as a packing [6],
spanning tree [8], or matching [15] that needs to be produced. In
our case, the rounded variables must satisfy both matching (1b),
(1c), and barter constraints (1d) (i.e., each agent gives the items
of same total value as it received). Gandhi et al. [15] developed a
rounding scheme where the rounded variables satisfy the matching
constraints along with other useful properties. Therefore, we adapt
their rounding scheme (to satisfy matching constraints) followed
by a careful rounding scheme that results in rounded variables
satisfying the barter constraints.

Centralized barter exchanges are well-studied under various
barter settings. For instance, Abraham et al. [2] showed that the
bounded length edge-weighted directed cycle packing is NP-Hard
which led to several heuristic based methods to solve these hard
problems, e.g., by using techniques of operations research [7, 9,
17, 23], AI/ML modeling [21, 22]. Recently several works focused
on the fairness in barter exchange problems [1, 13, 14, 20]. Our
work adds to the growing body of research in theory and heuristics
surrounding ubiquitous barter exchange markets.

4 OUTLINE OF OUR CONTRIBUTIONS AND

THE PAPER

Firstly, we introduce the BarterSV problem, a natural generalization
of edge-weighted directed cycle packing and show that it is NP-Hard
to solve the problem exactly. Our main contribution is a randomized
dependent rounding algorithm BarterDR with provable guaran-
tees on the quality of the allocation. The following definitions help
present our results. Suppose we are given an integral allocation
{𝑋𝑒 } ∈ {0, 1} |𝐸 | , we define the net value loss of each agent 𝑖 (i.e.,
the violation in the barter constraint (1d)):

𝐷𝑖 :=
∑︁
𝑏∈𝐿𝑖

𝑣𝑏𝑋 (𝑏) −
∑︁
𝑎∈𝑅𝑖

𝑣𝑎𝑋 (𝑎) . (2)

Our main contribution is a rounding algorithm BarterDR that
satisfies both matching (1b), (1c) and barter constraints (1d) as de-
sired in multi-agent exchanges. Recollect that existing rounding
algorithm such as GKPS-DR (indeed a pre-processing step of our
BarterDR) rounds the fractional matching to an integral solution
enjoying the properties mentioned in Section 2. The main chal-
lenge in our problem is satisfying the barter constraint. Here, a
direct application of GKPS-DR alone can result in a worst case
violation of

∑
𝑎∈𝐿𝑖 𝑣𝑎 on 𝐷𝑖 , corresponding to the agent losing all

their items and gaining none (see the example in the Appendix).
However, our algorithm BarterDR rounds much more carefully to
ensure, for each agent 𝑖 , 𝐷𝑖 is at most 𝑣∗

𝑖
:= max𝑎∈𝐿𝑖∪𝑅𝑖 𝑣𝑎 , i.e., the

most valuable item in𝐻𝑖 ∪𝑊𝑖 . The two following theorems provide
lower and upper bounds on tractable 𝐷𝑖 (i.e., (2)) guarantees for
BarterSV. BarterDR on a bipartite graph (𝐿, 𝑅, 𝐸) is worst-case
time O((|𝐿 | + |𝑅 |) (|𝐿 | + |𝑅 | + |𝐸 |)) where 𝐿, 𝑅 = O(|I|𝑛). We view
Theorem 1 as our main result.

Theorem 1. Given a BarterSV instance, BarterDR is an efficient

randomized algorithm achieving an allocation with optimal utility

in expectation and where, for all agents 𝑖 , 𝐷𝑖 < 𝑣
∗
𝑖
with probability 1

and E[𝐷𝑖] = 0.

Theorem 2. Deciding whether a BarterSV instance has a non-

empty valid allocation with 𝐷𝑖 = 0 for all agents 𝑖 is NP-hard, even if

all item values are integers.

Owing to its similarities to GKPS-DR, BarterDR enjoys similar
useful properties:

Theorem 3. BarterDR rounds {𝑥𝑒 } ∈ [0, 1] |𝐸 | in the feasible

region of BarterSV-LP into {𝑋𝑒 } ∈ {0, 1} |𝐸 | while satisfying (P1),
(P2), and (P3).

Outline of the paper. In Section 5 we describe BarterDR (Algo-
rithm 1), our randomized algorithm for BarterSV, and its subrou-
tines FindCCC and CCWalk in detail. Next, we give proofs and
proof sketches for Theorems 1 and 3.

5 BARTERDR: DEPENDENT ROUNDING

ALGORITHM FOR BarterSV
Notation. BarterDR is a rounding algorithm that proceeds in

multiple iterations, therefore we use a superscript 𝑟 to denote the
value of a variable at the beginning of iteration 𝑟 . An edge 𝑒 ∈ 𝐸 is
said to be floating if 𝑥𝑟𝑒 ∈ (0, 1). Analogously, let 𝐸𝑟 := {𝑒 ∈ 𝐸 : 𝑥𝑟𝑒 ∈
(0, 1)}, a vertex 𝑎 ∈ 𝐿∪𝑅 is said to be floating if 𝑥𝑟 (𝑎) :=

∑
𝑒∈𝐸 𝑥

𝑟
𝑒 ∉

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

Conference’17, July 2017, Washington, DC, USA Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

Z and the sets of floating vertices are 𝐿𝑟 := {𝑎 ∈ 𝐿 : 𝑥𝑟 (𝑎) ∉ Z}
and 𝑅𝑟 := {𝑎 ∈ 𝑅 : 𝑥𝑟 (𝑎) ∉ Z}. Define 𝐶 (𝑖) := {𝑎 : 𝑎 ∈ 𝐿𝑖 ∪ 𝑅𝑖 }, for
each 𝑖 ∈ [𝑛], to be the set of participating vertices in each barter
constraint. We say two vertices 𝑎, 𝑏 ∈ 𝐿 ∪ 𝑅 are partners if there
exists 𝑖 ∈ [𝑛] such that 𝑎, 𝑏 ∈ 𝐶 (𝑖) and 𝑎 ≠ 𝑏. Note if 𝑎 and 𝑏 are
partners, then they are distinct vertices corresponding to items
(owned or desired) by the same agent 𝑖 . In iteration 𝑟 , a vertex
𝑎 ∈ 𝐶 (𝑖) is said to be partnerless if 𝐶 (𝑖) ∩ (𝐿𝑟 ∪ 𝑅𝑟) = {𝑎}; i.e., 𝑎
is the only floating vertex in 𝐶 (𝑖). We use the shorthand 𝑎 ∼ 𝑏 to
denote 𝑎 and 𝑏 are partners. Edges and vertices not floating are said
to be settled. For vertices 𝑎 and 𝑏, 𝑎 { 𝑏 denotes a simple path from
𝑎 to 𝑏. Define 𝐷𝑟

𝑖
to be 𝐷𝑖 , as defined in (2), but with variables {𝑥𝑟𝑒 }

instead of {𝑋𝑒 }. The fractional degree of 𝑎 ∈ 𝐿 ∪ 𝑅 refers to 𝑥𝑟 (𝑎).
Once an edge is settled, its value does not change. In the each

iteration BarterDR looks exclusively at the floating edges 𝐸𝑟 and
the graph induced by them. Namely,𝐺𝑟 := (𝐿(𝐸𝑟), 𝑅(𝐸𝑟), 𝐸𝑟) where
𝐿(𝐸𝑟) := {𝑎 ∈ 𝐿 : ∃𝑒 ∈ 𝐸𝑟 , 𝑒 ∈ 𝑁 (𝑎)} and 𝑅(𝐸𝑟) is defined
analogously. In each iteration, at least one edge or vertex becomes
settled, i.e., |𝐸𝑟 | + |𝐿𝑟 | + |𝑅𝑟 | > |𝐸𝑟+1 | + |𝐿𝑟+1 | + |𝑅𝑟+1 |. Therefore
BarterDR terminates in iteration 𝑇 where |𝐸𝑇 | = 0 and 𝑇 ≤
|𝐿 | + |𝑅 | + |𝐸 |.

Algorithm and analysis outline. BarterDR begins by making 𝐺
acyclic via the pre-processing step in Section 5.1. Next, BarterDR
proceeds as follows. While there are floating edges find an appro-
priate sequence of paths P constituting a CCC or CCW (defined in
Section 5.2). The strategy for judiciously rounding P is fleshed out
in Section 5.3. Finally, Section 5.4 concludes with proof sketches
for Theorems 1 and 3.

5.1 Pre-processing: remove cycles in 𝐺

The pre-processing step consists of finding a cycle𝐶 via depth-first
search in the graph of floating edges and rounding 𝐶 via GKPS-DR
until there are no more cycles. Let {𝑥0

𝑒 }𝑒∈𝐸 denote the LP solution
and {𝑥1

𝑒 }𝑒∈𝐸 denote the output of the pre-processing step. Bar-
terDR begins on {𝑥1

𝑒 }𝑒∈𝐸 .
GKPS-DR on cycles never changes fractional degrees, i.e., ∀𝑎 ∈

𝐿 ∪ 𝑅, 𝑥0 (𝑎) = 𝑥1 (𝑎). Lemma 5 is used to construct CCC’s and
CCW’s, and it is the raison d’être for the pre-processing step.

Lemma 4. The pre-processing step is efficient and gives 𝐷1
𝑖
= 0 for

all agents 𝑖 with probability 1.

Lemma 5. Each connected component of 𝐺1
has at least 2 floating

vertices.

5.2 Construction of CCC’s and CCW’s via

FindCCC

This section introduces CCC’s and CCW’s. The definition of these
structures facilitates rounding edges while respecting the barter
constraints each iteration. The subroutines for constructing CCC’s
and CCW’s, FindCCC and CCWalk, are described in Algorithms 2
and 3. The correctness of these subroutines, and thus the existence
of CCC’s and CCW’s, follows from Lemma 6.

Definition 2. A connected component cycle (CCC) is a sequence
of 𝑞 ≥ 1 paths P = ⟨𝑠1 { 𝑡1, . . . , 𝑠𝑞 { 𝑡𝑞⟩ such that, letting
𝑉 (P) = ⋃

𝑖∈[𝑞] {𝑠𝑖 , 𝑡𝑖 } be the paths’ endpoint vertices,

(1) ∀𝑖 ∈ [𝑞], 𝑡𝑖 ∼ 𝑠𝑖+1 (taking 𝑠𝑞+1 ≡ 𝑠1),
(2) ∀𝑎 ∈ 𝑉 (P), |𝑉 (P) ∩𝐶 (𝑎) | = 2,
(3) ∀𝑖 ∈ [𝑞], 𝑠𝑖 { 𝑡𝑖 belong to distinct connected components,

and
(4) ∀𝑖 ∈ [𝑞], 𝑠𝑖 and 𝑡𝑖 are floating vertices.

Instead, we have a connected component walk (CCW) if criteria 3)
and 4) are met but 1) and 2) are relaxed to: 1) ∀𝑖 ∈ [𝑞 − 1], 𝑡𝑖 ∼ 𝑠𝑖+1
and 𝑠1 and 𝑡𝑞 are partnerless; and 2) ∀𝑎 ∈ 𝑉 (P) − {𝑠1, 𝑡𝑞}, |𝑉 (P) ∩
𝐶 (𝑎) | = 2.

Recall that a rounding iteration 𝑟 is fixed so whether a vertex
is floating or partnerless is well-defined. When P is rounded the
set of vertices whose fractional degrees change is precisely 𝑉 (P).
Requirements 1 and 2 of a CCC say 𝑡𝑖 and 𝑠𝑖+1 are partners and they
do not have any other partner vertices in 𝑉 (P). Comparably, for
CCW’s these requirements imply the same for all vertices but the
“first” and “last,” which are partnerless. Therefore, for CCC’s and
CCW’s the vertices in 𝑉 (P) respectively appear in 𝑞 and 𝑞 + 1 dis-
tinct barter constraints. The requirements in the definitions of CCC
and CCW come in handy during the analysis because: each path
belongs to a different connected component hence they are vertex
and edge disjoint; if a barter constraint has exactly two vertices in
𝑉 (P) then these vertices’ fractional degree changes can be made to
cancel each other out in the barter constraint; and floating vertices
ensure paths can be rounded in a manner analogous to GKPS-DR.
For comparison, GKPS-DR also needed paths with floating end-
points, but maximal paths always have such endpoints whereas the
paths of P need not be maximal. Consequently, the requirement
that paths of P have floating endpoints must be imposed.

Algorithm 1: BarterDR

Input: {𝑥1
𝑒 } ∈ {0, 1} |𝐸 | , corresponding to

𝐺1 = (𝐿(𝐸1), 𝑅(𝐸1), 𝐸1); i.e., the output of the
pre-processing described in Section 5.1

1 𝑟 ← 1
2 while 𝐸𝑟 ≠ ∅ do
3 P ← CCC or CCW returned by FindCCC in 𝐺𝑟

4 Round P as described in Section 5.3 yielding 𝐺𝑟+1 and
{𝑥𝑟+1𝑒 }; 𝑟 ← 𝑟 + 1

5 end

6 return {𝑥𝑟𝑒 } ∈ {0, 1} |𝐸 |

Uncrossing the half-CCWs. We show how to resolve "crossing"
half-CCW’s as mentioned in FindCCC Line 9. Using 𝑂1 and 𝑂2

build 𝑉 :=
〈
𝑠′𝑞, 𝑡
′
𝑞−1, . . . , 𝑠

′
2, 𝑡
′
1, 𝑡1, 𝑠2, . . . , 𝑠𝑞

〉
. 𝑉 can be seen as the

sequence of path endpoints (i.e., 𝑉 in CCWalk) resulting from a
run of CCWalk(𝑠′𝑞). By the half-CCW’s "crossing" we mean that
in some iteration of the while-loop of CCWalk either a connected
component is revisited or 𝑡𝑖 was partners with a vertex previously
visited. But these cases are precisely Lines 9 and 14 from CCWalk
where it is known a CCC can be resolved.

Lemma 6. If 𝐺𝑟
has no cycles, FindCCC efficiently returns a CCC

or CCW.

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Barter Exchange with Shared Item Valuations Conference’17, July 2017, Washington, DC, USA

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

Algorithm 2: FindCCC
Input: 𝐺𝑟 = (𝑈 (𝐸𝑟),𝑉 (𝐸𝑟), 𝐸𝑟)
Output: CCC or CCW ⟨𝑠𝑖 { 𝑡𝑖 ⟩𝑖∈[𝑞]

1 𝑠1, 𝑡1 ← distinct floating vertices in some connected
component 𝐶 of 𝐺𝑟

2 (𝑂1, 𝜎1) ← CCWalk(𝑡1)
3 if 𝜎1 = "CCC" then

4 return 𝑂1
5 (𝑂2, 𝜎2) ← CCWalk(𝑠1)
6 if 𝜎2 = "CCC" then

7 return 𝑂2
8 Let 𝑂1 = (𝑡1, 𝑠2, 𝑡2, . . . , 𝑠𝑞, 𝑡𝑞) and 𝑂2 = (𝑡 ′1, 𝑠

′
2, 𝑡
′
2, . . . , 𝑠

′
𝑞′ , 𝑡
′
𝑞′)

9 If 𝑂1 and 𝑂2 “cross,” resolve 𝑂1 and 𝑂2 into a CCC and
return it; see Section 5.2

10 return〈
𝑡 ′
𝑞′ { 𝑠′

𝑞′ , 𝑡
′
𝑞′−1, 𝑠

′
𝑞′−1, . . . , 𝑠

′
2 { 𝑡 ′2, 𝑡

′
1 { 𝑡1, 𝑠2 { 𝑡2, . . . , 𝑠𝑞 { 𝑡𝑞

〉
Algorithm 3: CCWalk(𝑎)
Input: 𝐺𝑟 = (𝑈 (𝐸𝑟),𝑉 (𝐸𝑟), 𝐸𝑟), the walk’s starting vertex 𝑎
Output: A CCC or half of a CCW; a string indicating

whether a CCC was returned
1 𝑉 ← (𝑡1), letting 𝑡1 := 𝑎 // ordered list of path

endpoints

2 𝑆 ← {𝐶1} where 𝐶1 is the connected component containing
𝑎 // seen CC’s

3 𝑖 ← 2
4 while True do

5 if 𝑡𝑖−1 is partnerless then

6 return (𝑉 , "CCW")
7 𝑠𝑖 ← partner of 𝑡𝑖−1
8 𝐶𝑖 ← connected component containing 𝑠𝑖
9 if 𝐶𝑖 ∈ 𝑆 then

10 𝐶𝑖 = 𝐶𝑘 for some 𝑘 < 𝑖 so let 𝑠′
𝑘

:= 𝑠𝑖
11 return (

〈
𝑠′
𝑘
{ 𝑡𝑘 , . . . , 𝑠𝑖−1 { 𝑡𝑖−1

〉
, "CCC")

12 𝑡𝑖 ← floating vertex in 𝐶𝑖 distinct from 𝑠𝑖

13 𝑉 ← 𝑉 ⊕ (𝑠𝑖), where ⊕ denotes sequence concatenation
14 if ∃𝑏 ∈ 𝑉 , 𝑏 ∼ 𝑡𝑖 then // 𝑡𝑖 already has a

partner in 𝑉

15 It must be that 𝑏 already had a partner 𝑐 ∈ 𝑉 .
WLOG, 𝑏 = 𝑡𝑘−1 and 𝑐 = 𝑠𝑘 , some 𝑘 ≤ 𝑖

16 return (⟨𝑠𝑘 { 𝑡𝑘 , . . . , 𝑠𝑖 { 𝑡𝑖 ⟩ , "CCC")
17 𝑉 ← 𝑉 ⊕ (𝑡𝑖)
18 𝑖 ← 𝑖 + 1, 𝑆 ← 𝑆 ∪ {𝐶𝑖 }
19 end

5.3 Rounding CCC’s and CCW’s

Now we shed light on what we mean by carefully rounding the
paths of the CCC/CCW P. But first we build some intuition. Focus
on 𝑡𝑝 and 𝑠𝑝+1 for some fixed 1 ≤ 𝑝 ≤ 𝑞 in case of a CCC (or
𝑝 < 𝑞 in the case of a CCW). Since 𝑡𝑝 ∼ 𝑠𝑝+1, whatever rounding

procedure we use, we want the relative signs of the changes to
𝑥𝑟 (𝑡𝑝) and 𝑥𝑟 (𝑠𝑝+1) to depend on whether 𝑡𝑝 and 𝑠𝑝+1 fall on the
same or different sides of 𝐺 (these sides being “left” and “right”
corresponding to vertex sets 𝐿 and 𝑅; equivalently, left and right
of “=” in (1d)). This way (1d) is preserved after rounding. Likewise,
the magnitudes of fractional degree changes to 𝑡𝑝 and 𝑠𝑝+1 must
be balanced depending on 𝑣𝑝 and 𝑣𝑝+1 so that (1d) is preserved
for 𝑖 corresponding to 𝑡𝑝 , 𝑠𝑝+1 ∈ 𝐶 (𝑖). Intuitively, these two points
are necessary to successfully round P. To this end, we now define
roundable colorings. If 𝑎 and 𝑏 are vertices belonging to different
sides of the graph, we say 𝑎 ⊥ 𝑏; otherwise we say 𝑎 ̸⊥ 𝑏.

Definition 3 (Roundable coloring). The CCC P =⟨𝑠𝑖 { 𝑡𝑖 ⟩𝑖∈[𝑞]
has a roundable coloring if there exists C : 𝑉 (P) → {−1, 1} such
that i) for all 𝑖 ∈ [𝑞], C(𝑠𝑖) = C(𝑡𝑖) if and only if 𝑠𝑖 ⊥ 𝑡𝑖 ; and ii)
for all 𝑖 ∈ [𝑞], C(𝑡𝑖) = C(𝑠𝑖+1) if and only if 𝑡𝑖 ⊥ 𝑠𝑖+1. A roundable
coloring for a CCW is defined the same way except ii) becomes
∀𝑖 ∈ [𝑞 − 1], C(𝑡𝑖) = C(𝑠𝑖+1) if and only if 𝑡𝑖 ⊥ 𝑠𝑖+1.

Lemma 7. Every CCC and CCW admits an efficiently computable

roundable coloring C.

Property i) will ensure 𝑎, 𝑏 ∈ 𝑉 (P) see same-sign fractional
degree change if and only if C(𝑎) = C(𝑏). Property ii) is equivalent
to Remark 1 and verifies each 𝑠𝑖 { 𝑡𝑖 is roundable in GKPS-DR
manner.

Although the notation used next is cumbersome, the intuition is
to fix 𝛼, 𝛽 > 0 “small enough” that all edge variables stay in [0, 1]
and vertex fractional degrees stay within their current ceilings
and floors but “large enough” that at least one edge or vertex is
settled. First, fix the roundable coloring C, which is possible per
Lemma 7. Next, decompose each path 𝑠𝑖 { 𝑡𝑖 into alternating
matchings 𝑀𝑖

−1 and 𝑀𝑖
1 such that ∀𝑎 ∈ {𝑠𝑖 , 𝑡𝑖 }, ∃𝑒 ∈ 𝑀𝑖

C(𝑎) such
that 𝑒 ∈ 𝑁 (𝑎); property ii) of C guarantees this is possible. In other
words, vertex 𝑎 ∈ {𝑠𝑖 , 𝑡𝑖 } is present in𝑀𝑖

C(𝑎) . For readability drop
the 𝑟 superscripts briefly and let

Γ𝑖−1 (𝛾) ≡
∨

𝑒∈𝑀𝑖
−1

(𝑥𝑒 + 𝛾 = 1) ∨
∨
𝑒∈𝑀𝑖

1

(𝑥𝑒 − 𝛾 = 0)

∨
∨

𝑎∈{𝑠𝑖 ,𝑡𝑖 }
(C(𝑎) = −1 =⇒ 𝑥 (𝑎) + 𝛾 = ⌈𝑥 (𝑎)⌉)

∨
∨

𝑎∈{𝑠𝑖 ,𝑡𝑖 }
(C(𝑎) = 1 =⇒ 𝑥 (𝑎) − 𝛾 = ⌊𝑥 (𝑎)⌋), (3)

and, symmetrically,

Γ𝑖1 (𝛾) ≡
∨
𝑒∈𝑀𝑖

1

(𝑥𝑒 + 𝛾 = 1) ∨
∨

𝑒∈𝑀𝑖
−1

(𝑥𝑒 − 𝛾 = 0)

∨
∨

𝑎∈{𝑠𝑖 ,𝑡𝑖 }
(C(𝑎) = 1 =⇒ 𝑥 (𝑎) + 𝛾 = ⌈𝑥 (𝑎)⌉)

∨
∨

𝑎∈{𝑠𝑖 ,𝑡𝑖 }
(C(𝑎) = −1 =⇒ 𝑥 (𝑎) − 𝛾 = ⌊𝑥 (𝑎)⌋). (4)

Finally, the magnitudes fixed (in analogy to Section 2) are

𝛼 := min
𝛾 > 0 :

∨
𝑖∈[𝑞]

Γ𝑖−1

(
1
𝑣𝑖
𝛾

) , 𝛽 := min
𝛾 > 0 :

∨
𝑖∈[𝑞]

Γ𝑖1

(
1
𝑣𝑖
𝛾

) .
(5)

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

Conference’17, July 2017, Washington, DC, USA Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

Both 𝛼 and 𝛽 are well defined as they are the minima of non-empty
finite sets. The update proceeds probabilistically as follows: ∀𝑖 ∈
[𝑞],∀𝑒 ∈ 𝑠𝑖 { 𝑡𝑖 ,

w.p.
𝛽

𝛼 + 𝛽 , 𝑥
𝑟+1
𝑒 =

{
𝑥𝑟𝑒 + 1

𝑣𝑖
𝛼, 𝑒 ∈ 𝑀𝑖

−1
𝑥𝑟𝑒 − 1

𝑣𝑖
𝛼, 𝑒 ∈ 𝑀𝑖

1
; (6)

else, w.p.
𝛼

𝛼 + 𝛽 , 𝑥
𝑟+1
𝑒 =

{
𝑥𝑟𝑒 − 1

𝑣𝑖
𝛽, 𝑒 ∈ 𝑀𝑖

−1
𝑥𝑟𝑒 + 1

𝑣𝑖
𝛽, 𝑒 ∈ 𝑀𝑖

1
. (7)

5.4 Algorithm analysis

Proof sketch of Theorem 3. The proof proceeds via the following
invariants maintained at each iteration 𝑟 of BarterDR. Except for
(J2), the proofs for the invariants are almost identical to those in
[15]. This is because BarterDR is crafted so as to be similar to
GKPS-DR in the ways necessary for this analysis to carry over.

(J1) ∀𝑒 ∈ 𝐸, E[𝑥𝑟𝑒] = 𝑥0
𝑒 .

(J2) ∀𝑎 ∈ 𝐿 ∪ 𝑅 and with probability 1, ⌊𝑥0 (𝑎)⌋ ≤ 𝑥𝑟 (𝑎) ≤
⌈𝑥0 (𝑎)⌉.

(J3) ∀𝑎 ∈ 𝐿 ∪ 𝑅, ∀𝑆 ⊆ 𝑁 (𝑎), ∀𝑐 ∈ {0, 1}, E[∏𝑒∈𝑆 𝑥
𝑟+1
𝑒] ≤

E[∏𝑒∈𝑆 𝑥
𝑟
𝑒].

Though BarterDR chooses 𝛼 and 𝛽 differently, the main difference
is there may not be a rounded edge in every path of the CCC/CCW,
which is okay.

Lemma 8. BarterDR achieves optimal objective in expectation

and ∀𝑖 ∈ [𝑛], E[𝐷𝑖] = 0.

Lemma 9. If 𝐷𝑟
𝑖
= 0 and there exists distinct floating 𝑎, 𝑏 ∈ C(𝑖),

then 𝐷𝑟+1
𝑖

= 0.

Proof of Theorem 1. It is straightforward to check that after
solving BarterSV-LP-Caps there are at most |𝐸 | floating edges. Each
iteration of the pre-processing step finds a cycle, say using depth-
first-search, and rounds said cycle in time O(|𝐿 | + |𝑅 |) with at least
one edge being settled every time a cycle is rounded. Therefore, the
pre-processing step takes time at most O(|𝐸 | · (|𝐿 | + |𝑅 |)). Similarly,
FindCCC takes time O(|𝐿 | + |𝑅 |) to find and round a CCC or CCW.
Each iteration a CCC/CCW is rounded either one edge or vertex
becomes settled. Therefore BarterDR runs in time O((|𝐿 | + |𝑅 |) ·
(|𝐿 | + |𝑅 | + |𝐸 |)).

Let 𝐷𝑟
𝑖
be 𝐷𝑖 like in (2) but with variables 𝑥𝑟𝑒 instead of 𝑋𝑒 . Then

Lemma 9 guarantees that for each agent 𝑖 , 𝐷𝑟
𝑖
= 0 implies 𝐷𝑟+1

𝑖
= 0

until 𝐿𝑖 ∪ 𝑅𝑖 has exactly one floating vertex (if this happens at all).
This means if in some iteration the number of floating vertices
in 𝐿𝑖 ∪ 𝑅𝑖 went from at least 2 to 0, then 𝐷𝑖 = 0 by the degree
preservation invariant (J2), proved in the proof of Theorem 3, and
we are done. Therefore, the only case we must consider is when
there is a solitary floating vertex 𝑑 ∈ 𝐿𝑖 ∪ 𝑅𝑖 . Let 𝑡 ′ be the first
iteration that startedwith𝐿𝑖∪𝑅𝑖 having a sole vertex𝑑 with𝑥𝑡

′ (𝑑) ∉

Z. Then by expanding

𝐷𝑖 ≤

������∑︁𝑎∈𝐿𝑖 𝑣𝑎𝑋 (𝑎) −
∑︁
𝑏∈𝑅𝑖

𝑣𝑏𝑋 (𝑏)

������ (8)

=

������∑︁𝑎∈𝐿𝑖 𝑣𝑎𝑋 (𝑎) −
∑︁
𝑎∈𝐿𝑖

𝑣𝑎𝑥
𝑡 ′ (𝑎) +

∑︁
𝑏∈𝑅𝑖

𝑣𝑏𝑥
𝑡 ′ (𝑏) −

∑︁
𝑏∈𝑅𝑖

𝑣𝑏𝑋 (𝑏)

������
(9)

=

������∑︁𝑎∈𝐿𝑖 𝑣𝑎 (𝑋 (𝑎) − 𝑥𝑡 ′ (𝑎)) +
∑︁
𝑏∈𝑅𝑖

𝑣𝑏 (𝑥𝑡
′
(𝑏) − 𝑋 (𝑏))

������ (10)

≤
∑︁

𝑎∈ (𝐿𝑖∪𝑅𝑖)−{𝑑 }
𝑣𝑎

���𝑋 (𝑎) − 𝑥𝑡 ′ (𝑎)��� + 𝑣𝑑 ���𝑥𝑡 ′ (𝑑) − 𝑋 (𝑑)��� (11)

< 𝑣𝑑 ≤ 𝑣∗𝑖 , (12)

which is our desired 𝐷𝑖 bound for Theorem 1. Equation (9) follows
because we assume 𝐷1

𝑖
= 0 (as 𝐷0

𝑖
corresponds to the LP solution

and the pre-processing step thus guarantees 𝐷1
𝑖
= 0) and 𝑡 ′ is the

first iteration where 𝐿𝑖 ∪ 𝑅𝑖 contains exactly one floating vertex;
therefore, by induction and Lemma 9, 𝐷𝑡 ′

𝑖
= 0. Inequality (11)

follows from the triangle inequality. The strict inequality in (12)
follows because 𝑑 was the sole floating vertex of 𝐿𝑖 ∪𝑅𝑖 in iteration
𝑡 ′; hence by Lemma E.2, ∀𝑎 ∈ (𝐿𝑖 ∪ 𝑅𝑖) − {𝑑}, 𝑋 (𝑎) − 𝑥𝑡

′ (𝑎) = 0
and |𝑥𝑡 ′ (𝑑) − 𝑋 (𝑑) | < 1.

By assumption, 𝐷1
𝑖
= 0 for all 𝑖 since {𝑥0

𝑒 }𝑒∈𝐸 is an optimal
solution to the corresponding BarterSV-LP and the pre-processing
step ensures 𝐷0

𝑖
= 0 =⇒ 𝐷1

𝑖
= 0. Then, by Lemma 9, the only 𝐷𝑖 ’s

that are not necessarily preserved are those where 𝐿𝑖 ∪ 𝑅𝑖 ends up
with exactly one floating vertex in some algorithm iteration 𝑡 ′. As
argued above, this case leads to 𝐷𝑖 < 𝑣

∗
𝑖
. Together with Lemma 8

this completes the proof. □

Consequently from Theorems 1 and 3:

Corollary 1. BarterSV-LP with all items having equal values is

integral.

6 FAIRNESS

Fairness is an important consideration when resource allocation
algorithms are deployed in the real-world. Theorem 3 allows for
adding fairness constraints to BarterSV-LP. Previous works such
as [10–12] studied various group fairness notions, and formulated
the fair variants of problems like Clustering, Set Packing, etc., by
adding fairness constraints to the Linear Programs of the respective
optimization problems.

Consider a toy example of such an approachwhere we are given ℓ
communities𝐺1, . . . ,𝐺ℓ ⊆ [𝑛] of agents coming together to thicken
the market. In order to incentivize said communities to join the
centralized exchange, the algorithm designer may promise that each
community𝐺𝑝 will receive at least 𝜇𝑝 units of value on average. By
adding the constraints∑︁

𝑖∈𝐺𝑝

𝑥 (𝑟𝑖 𝑗)𝑣 𝑗 ≥ 𝜇𝑝 , 𝑝 ∈ [ℓ] (13)

to the BarterSV-LP, the algorithm designer ensures that the ex-
pected utility of each group 𝐺𝑝 is at least 𝜇𝑝 . More precisely, (P1)

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Barter Exchange with Shared Item Valuations Conference’17, July 2017, Washington, DC, USA

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

and the linearity of expectation ensures

E[
∑︁
𝑖∈𝐺𝑝

𝑋 (𝑟𝑖 𝑗)𝑣 𝑗] =
∑︁
𝑖∈𝐺𝑝

E[𝑋 (𝑟𝑖 𝑗)]𝑣 𝑗

=
∑︁
𝑖∈𝐺𝑝

𝑥 (𝑟𝑖 𝑗)𝑣 𝑗 ≥ 𝜇𝑝 .

The same rationale can be extended to provide individual guaran-
tees (in expectation) by adding analogous constraints for each agent.
We conclude this brief discussion by highlighting the versatility of
LPs and subsequently of BarterDR.

7 CONCLUSION

We introduce and study BarterSV, a centralized barter exchange
problem where each item has a value agreed upon by the partic-
ipating agents. The goal is to find an allocation/exchange that (i)
maximizes the collective utility of the allocation such that (ii) the
total value of each agent’s items before and after the exchange
is equal. Though it is NP-hard to solve BarterSV exactly, we can
efficiently compute allocations with optimal expected utility where
each agent’s net value loss is at most a single item’s value. Our prob-
lem is motivated by the proliferation of large scale web markets on
social media websites with 50,000-60,000 active users eager to swap
items with one another. We formulate and study this novel problem
with several real-world exchanges of video games, board games,
digital goods and more. These exchanges have large communities,
but their decentralized nature leaves much to be desired in terms
of efficiency. Future directions of this work include accounting
for arbitrary item valuations i.e., different agents may value items
differently.

REFERENCES

[1] Zeinab Abbassi, Laks V. S. Lakshmanan, and Min Xie. 2013. Fair Recommenda-
tions for Online Barter Exchange Networks. In International Workshop on the

Web and Databases.
[2] David J. Abraham, Avrim Blum, and Tuomas Sandholm. 2007. Clearing Algo-

rithms for Barter Exchange Markets: Enabling Nationwide Kidney Exchanges. In
Proceedings of the 8th ACM Conference on Electronic Commerce (EC ’07). As-
sociation for Computing Machinery, New York, NY, USA, 295–304. https:
//doi.org/10.1145/1250910.1250954

[3] Itai Ashlagi, Adam Bingaman, Maximilien Burq, Vahideh Manshadi, David
Gamarnik, Cathi Murphey, Alvin E. Roth, Marc L. Melcher, and Michael A.
Rees. 2018. Effect of Match-Run Frequencies on the Number of Transplants and
Waiting Times in Kidney Exchange. American Journal of Transplantation 18, 5
(2018), 1177–1186. https://doi.org/10.1111/ajt.14566

[4] Haris Aziz, Ioannis Caragiannis, Ayumi Igarashi, and Toby Walsh. 2021. Fair
Allocation of Indivisible Goods and Chores. Auton Agent Multi-Agent Syst 36, 1
(Nov. 2021), 3. https://doi.org/10.1007/s10458-021-09532-8

[5] Péter Biró, David F. Manlove, and Romeo Rizzi. 2009. Maximum Weight Cycle
Packing in Directed Graphs, with Application to Kidney Exchange Programs.
Discrete Math. Algorithm. Appl. 01, 04 (Dec. 2009), 499–517. https://doi.org/10.
1142/S1793830909000373

[6] Brian Brubach, Karthik Abinav Sankararaman, Aravind Srinivasan, and Pan
Xu. 2017. Algorithms to Approximate Column-sparse Packing Problems. ACM
Transactions on Algorithms (TALG) 16 (2017), 1 – 32.

[7] Margarida Carvalho, Xenia Klimentova, Kristiaan Glorie, Ana Viana, and Miguel
Constantino. 2021. Robust models for the kidney exchange problem. INFORMS

Journal on Computing 33, 3 (2021), 861–881.
[8] Chandra Chekuri, Jan Vondrák, and Rico Zenklusen. 2010. Dependent random-

ized rounding via exchange properties of combinatorial structures. In 2010 IEEE

51st Annual Symposium on Foundations of Computer Science. IEEE, 575–584.
[9] Miguel Constantino, Xenia Klimentova, Ana Viana, and Abdur Rais. 2013. New

insights on integer-programming models for the kidney exchange problem.
European Journal of Operational Research 231, 1 (2013), 57–68.

[10] Sharmila Duppala, Juan Luque, John Dickerson, and Aravind Srinivasan. 2023.
Group Fairness in Set Packing Problems. In Proceedings of the Thirty-Second

International Joint Conference on Artificial Intelligence, IJCAI-23, Edith Elkind
(Ed.). International Joint Conferences on Artificial Intelligence Organization,
391–399. https://doi.org/10.24963/ijcai.2023/44 Main Track.

[11] Seyed Esmaeili, Sharmila Duppala, Davidson Cheng, Vedant Nanda, Aravind
Srinivasan, and John P Dickerson. 2023. Rawlsian fairness in online bipartite
matching: Two-sided, group, and individual. In Proceedings of the AAAI Confer-

ence on Artificial Intelligence, Vol. 37. 5624–5632.
[12] Seyed A. Esmaeili, Sharmila Duppala, John P. Dickerson, and Brian Brubach.

2022. Fair Labeled Clustering. https://doi.org/10.48550/arXiv.2205.14358
arXiv:2205.14358 [cs]

[13] Wenyi Fang, Aris Filos-Ratsikas, Søren Kristoffer Stiil Frederiksen, Pingzhong
Tang, and Song Zuo. 2015. Randomized assignments for barter exchanges: Fair-
ness vs. efficiency. In Algorithmic Decision Theory: 4th International Conference,

ADT 2015, Lexington, KY, USA, September 27–30, 2015, Proceedings. Springer,
537–552.

[14] Golnoosh Farnadi, William St-Arnaud, Behrouz Babaki, and Margarida Carvalho.
2021. Individual Fairness in Kidney Exchange Programs. Proceedings of the AAAI
Conference on Artificial Intelligence 35, 13 (May 2021), 11496–11505.

[15] Rajiv Gandhi, Samir Khuller, Srinivasan Parthasarathy, and Aravind Srinivasan.
2006. Dependent Rounding and Its Applications to Approximation Algorithms.
J. ACM 53, 3 (May 2006), 324–360. https://doi.org/10.1145/1147954.1147956

[16] Rajiv Gandhi, Samir Khuller, and Aravind Srinivasan. 2004. Approximation
Algorithms for Partial Covering Problems. Journal of Algorithms 53, 1 (Oct.
2004), 55–84. https://doi.org/10.1016/j.jalgor.2004.04.002

[17] Kristiaan M Glorie, J Joris van de Klundert, and Albert PM Wagelmans. 2014.
Kidney exchange with long chains: An efficient pricing algorithm for clearing
barter exchanges with branch-and-price. Manufacturing & Service Operations

Management 16, 4 (2014), 498–512.
[18] Maurice Herlihy. 2018. Atomic cross-chain swaps. In ACM Symposium on Princi-

ples of Distributed Computing (PODC). 245–254.
[19] William Stanley Jevons. 1879. The Theory of Political Economy. Macmillan and

Company.
[20] Xenia Klimentova, Ana Viana, João Pedro Pedroso, and Nicolau Santos. 2021.

Fairness models for multi-agent kidney exchange programmes. Omega 102
(2021), 102333.

[21] Duncan McElfresh, Michael Curry, Tuomas Sandholm, and John Dickerson. 2020.
Improving Policy-Constrained Kidney Exchange via Pre-Screening. In Advances

in Neural Information Processing Systems, Vol. 33. 2674–2685.
[22] Ritesh Noothigattu, Dominik Peters, and Ariel D Procaccia. 2020. Axioms for

learning from pairwise comparisons. Advances in Neural Information Processing

Systems 33 (2020), 17745–17754.
[23] Benjamin Plaut, John Dickerson, and Tuomas Sandholm. 2016. Fast optimal

clearing of capped-chain barter exchanges. In Proceedings of the AAAI Conference

on Artificial Intelligence, Vol. 30.
[24] Sri AravindaKrishnan Thyagarajan, Giulio Malavolta, and Pedro Moreno-

Sanchez. 2022. Universal atomic swaps: Secure exchange of coins across all
blockchains. In IEEE Symposium on Security and Privacy (S&P). IEEE, 1299–1316.

7

https://doi.org/10.1145/1250910.1250954
https://doi.org/10.1145/1250910.1250954
https://doi.org/10.1111/ajt.14566
https://doi.org/10.1007/s10458-021-09532-8
https://doi.org/10.1142/S1793830909000373
https://doi.org/10.1142/S1793830909000373
https://doi.org/10.24963/ijcai.2023/44
https://doi.org/10.48550/arXiv.2205.14358
https://arxiv.org/abs/2205.14358
https://doi.org/10.1145/1147954.1147956
https://doi.org/10.1016/j.jalgor.2004.04.002

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

Conference’17, July 2017, Washington, DC, USA Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

A DIRECT APPLICATION OF GKPS-DR FAILS

Example 1 is a worst case instance where a direct application of
GKPS-DR to the fractional optimal solution of BarterSV results in
a net loss of

∑
𝑗∈𝐿𝑖 𝑣 𝑗 for some agent 𝑖; i.e., agent 𝑖 gives away all

their items and does not receive any item from its wishlist.

Example 1. Consider an instance of BarterSV with two agents
where𝑊1 = {1, 2},𝑊2 = {3, 4} and 𝐻1 = {3, 4}, 𝐻2 = {1, 2}. Let the
values of the items be 𝑣 (1) = 𝑣 (2) = 10 and 𝑣 (3) = 𝑣 (4) = 20.

Figure 1 shows the bipartite graph of the BarterSV instance from
Example 1. The edges are unweighted and the optimal LP solution
is 𝑥 = [0.5, 0.5, 1, 1]. The first two coordinates of 𝑥 correspond
to items given by agent 1. GKPS-DR will round both of these co-
ordinates to 0 with positive probability thus resulting in agent 2
incurring a net loss of

∑
𝑎∈𝐿2 𝑣𝑎 = 20 units of value.

Figure 1: The bipartite graph corresponding to the BarterSV
instance in Example 1. Blue and orange vertices correspond

to agents 1 and 2, respectively. The optimal LP solution is

𝑥 = [0.5, 0.5, 1, 1].

Observation 1. GKPS-DR rounding 𝑥 results in the vector 𝑋 =

[0, 0, 1, 1] with positive probability; this is the worst case for agent
2 where their net loss is

∑
𝑎∈𝐿2 𝑣𝑎 = 20 units of value.

The above example can be easily generalized to instances with
larger item-lists and more agents where some agent 𝑖 achieves net
value loss

∑
𝑎∈𝐿𝑖 𝑣𝑎 with positive probability.

B REDUCING TO BarterSVWITH SINGLE ITEM

COPIES

BarterSV with arbitrary item capacities can be modeled with the
following integer program. Parallel edges (values of 𝑦𝑒 > 1) model
the fact that 𝑖 may give 𝑖′ up to min{𝜂𝑖 (𝑗), 𝜔𝑖′ (𝑗)} copies of 𝑗 . Each
vertex ℓ𝑖 𝑗 and 𝑟𝑖 𝑗 has value 𝑣 𝑗 ; so 𝑣ℓ𝑖 𝑗 = 𝑣 𝑗 and so on. Crucially,
𝐸 has edges only between vertices of equal value. Let Z+ denote
the non-negative integers. Then a valid allocation corresponds to
a vector 𝑦 such that for 𝑒 ∈ 𝐸, 𝑦𝑒 ∈ Z+ is feasible in the following
Integer Program (IP);

max
∑︁
𝑒∈𝐸

𝑤𝑒𝑦𝑒 (14a)

subj. to 𝑦 (ℓ𝑖 𝑗) ≤ 𝜂𝑖 (𝑗), 𝑖 ∈ [𝑛], ℓ𝑖 𝑗 ∈ 𝐿𝑖 (14b)
𝑦 (𝑟𝑖 𝑗) ≤ 𝜔𝑖 (𝑗), 𝑖 ∈ [𝑛], 𝑟𝑖 𝑗 ∈ 𝑅𝑖 (14c)∑︁
𝑎∈𝐿𝑖

𝑦 (𝑎)𝑣𝑎 =
∑︁
𝑏∈𝑅𝑖

𝑦 (𝑏)𝑣𝑏 , 𝑖 ∈ [𝑛] (14d)

𝑦𝑒 ∈ Z+, 𝑒 = (ℓ𝑖 𝑗 , 𝑟𝑖′ 𝑗) ∈ 𝐸. (14e)

The weights𝑤𝑒 ∈ R can be set arbitrarily; we will come back to this.
For 𝑎 ∈ 𝐿 ∪ 𝑅, we denote 𝑦 (𝑎) :=

∑
𝑒∈𝑁 (𝑎) 𝑦𝑒 where 𝑁 (𝑎) denotes

the open neighborhood of 𝑎 i.e., 𝑁 (𝑎) := {(𝑎, 𝑏) ∈ 𝐸 : 𝑏 ∈ 𝑈 ∪𝑉 }.
Thus for 𝑒 = (ℓ𝑖 𝑗 , 𝑟𝑖′ 𝑗) ∈ 𝐸, 𝑦𝑒 = 𝑘 says agent 𝑖 gives 𝑘 copies of 𝑗
to agent 𝑖′. With this in mind, (1b) ensures each agent 𝑖 gives away
at most 𝜂𝑖 (𝑗) copies of item 𝑗 , (1c) ensures each agent 𝑖 receives at
most 𝜔𝑖 (𝑗) copies of item 𝑗 , and (1d) ensures, for each agent 𝑖 , the
value received

∑
𝑏∈𝑅𝑖 𝑦 (𝑏)𝑣𝑏 equals the value given

∑
𝑎∈𝐿𝑖 𝑦 (𝑎)𝑣𝑎 .

It follows that an allocation is valid allocation if and only if the
corresponding {𝑦𝑒 }𝑒∈𝐸 is a feasible point of (1). For each 𝑒 ∈ 𝐸
we may set 𝑤𝑒 = 𝑣 𝑗 and recover the objective of maximizing the
collective value received by all agents. Nevertheless, our results hold
even if 𝑤𝑒 is set arbitrarily. For example, the algorithm designer
could place greater value on certain item transactions, or they may
maximize the sheer number of items received by uniformly setting
𝑤𝑒 = 1. Henceforth

∑
𝑒∈𝐸 𝑤𝑒𝑦𝑒 is the allocation’s utility. Therefore,

IP (1) is equivalent to BarterSV.
By relaxing (1e) to 𝑦𝑒 ≥ 0 for 𝑒 ∈ 𝐸 we arrive at the natural

LP relaxation of BarterSV, namely BarterSV-LP-Caps. This can be
reduced to an instance of BarterSV-LP (that is, with unit capacities)
as follows.

Proof of Lemma 1. The instance with unit copies of each item
proceeds as follows. Note that this instancewill be large but it is only
a thought experiment; we do not directly solve the corresponding
LP, write the full graph down, etc.. Fix an agent 𝑖 and an item 𝑗 in
𝐻𝑖 . Make 𝜂𝑖 (𝑗) copies of this vertex each with unit capacity, say
ℓ𝑖 𝑗1, ℓ𝑖 𝑗2, . . . , ℓ𝑖 𝑗𝜂𝑖 (𝑗) . Similarly, for an item 𝑗 ′ ∈ 𝑊𝑖 , make 𝜔𝑖 (𝑗 ′)
copies 𝑟𝑖 𝑗 ′1, 𝑟𝑖 𝑗 ′2, . . . , 𝑟𝑖 𝑗 ′𝜔𝑖 (𝑗 ′) . Like before add edges between all
vertices corresponding to the same items. Keep all edge weights the
same and use the same corresponding weights for edges between
copies i.e., if 𝑒 = (ℓ𝑖 𝑗𝑘1 , 𝑟𝑖′ 𝑗𝑘2) and 𝑓 = (ℓ𝑖 𝑗 , ℓ𝑖′ 𝑗) then𝑤𝑒 = 𝑤 𝑓 . Call
this new set of edges over vertex copies 𝐸′.

To see the two formulations are equivalent, we show 𝑦, ∀𝑒 ∈
𝐸,𝑦𝑒 ≥ 0 is feasible to BarterSV-LP-Caps if and only if 𝑧, ∀𝑒 ∈
𝐸′, 𝑧𝑒 ∈ [0, 1] is feasible to BarterSV-LP. Moreover, 𝑦 and 𝑧 have
the same objective value. Let 𝑒 = (ℓ𝑖 𝑗 , 𝑟𝑖′ 𝑗) then 𝑦𝑒 = 𝑘 + 𝑟 for
𝑘 ∈ Z+ and 0 ≤ 𝑟 < 1. Correspondingly let 𝑒𝑝 = (ℓ𝑖 𝑗𝑝 , 𝑟𝑖′ 𝑗𝑝) ∈
𝐸′ and set 𝑧𝑒1 , 𝑧𝑒2 , . . . , 𝑧𝑒𝑘 all equal to 1 and 𝑧𝑒𝑘+1 = 𝑟 . 𝑘 + 𝑟 ≤
min{𝜂𝑖 (𝑗), 𝜔𝑖 (𝑗)} if and only if 𝑦 and 𝑧 are feasible. Moreover, both
𝑦𝑒 and (𝑧𝑒1 , . . . , 𝑧𝑒𝑘+1) each contribute (𝑘 + 𝑟)𝑤𝑒 to the objective
and (𝑘 + 𝑟)𝑣 𝑗 value given by agent 𝑖 and received by agent 𝑖′.

Therefore we always write and solve BarterSV-LP-Caps and
use BarterSV-LP only as a thought experiment to facilitate the
presentation of the problem. It is easy to check that the size of
BarterSV-LP-Caps is polynomial in |I |, 𝑛, log𝜂, and log𝜔 . □

Following from the proof above we also have (where 𝐸′ corre-
sponds to the graph with vertex copies as outlined in the proof of
Lemma 1)

Lemma B.1. A solution {𝑥𝑒 }𝑒∈𝐸′ to BarterSV-LP has at most |𝐸 |
floating variables.

Proof of Lemma B.1. Like in the proof of Lemma 1, correspond-
ing to each group of 𝑧𝑒1 , 𝑧𝑒2 , . . . there is at most one 𝑧𝑒𝑝 = 𝑟 for
0 ≤ 𝑟 < 1. Therefore, the number of floating edges is at most
|𝐸 |. □

Proof of Lemma 2. The reduction in the proof of Lemma 1 is
an instance of VBM shown to be equivalent to BarterSV. □

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Barter Exchange with Shared Item Valuations Conference’17, July 2017, Washington, DC, USA

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

Proof of Lemma 3. The IP is equivalent as argued above. Since
the feasible region BarterSV-LP is larger than that of the corre-
sponding IP, it follows the objective of BarterSV-LP is an upper
bound on the objective of (1). □

C PRE-PROCESSING

Proof of Lemma 9. When rounding a cycle each vertex appear-
ing in the cycle has two edges with changes equal-in-magnitude
and opposite-in-sign. Therefore, all vertex fractional degrees, and
thus 𝐷𝑖 values, are preserved. □

Lemma C.1. Let {𝑥𝑒 } ∈ (0, 1) |𝐸 | be a vector of floating edges over
a connected bipartite graph (𝑈 ,𝑉 , 𝐸). Then the number of floating

vertices in (𝑈 ,𝑉 , 𝐸) is not 1.

Proof of Lemma C.1. Let𝑢 be the sole floating vertex, i.e.,𝑥 (𝑢) ∉
Z, and, without loss of generality, let 𝑢 ∈ 𝑈 . For 𝑆 ⊆ 𝑈 ∪ 𝑉 , let
𝑑 (𝑆) :=

∑
𝑠∈𝑆 𝑥𝑠 . Then 𝑑 (𝑈 − {𝑢}) + 𝑥𝑢 = 𝑑 (𝑈) = ∑

𝑒∈𝐸 𝑥𝑒 = 𝑑 (𝑉).
But 𝑢 being the only floating vertex implies 𝑑 (𝑈 − {𝑢}) + 𝑥 (𝑢) ∉ Z
and 𝑑 (𝑉) ∈ Z. □

Proof of Lemma 5. If there are 0 floating vertices in a con-
nected component, then each vertex has degree at least two be-
cause ∀𝑒 ∈ 𝐸𝑟 , 𝑥𝑟𝑒 ∈ (0, 1). Hence there must be a cycle. Since the
pre-processing step has eliminated all cycles then no connected
component has 0 floating vertices. The result then follows from
applying Lemma C.1 to each connected component of 𝐺1. □

D CORRECTNESS OF FINDCCC

Proof of Lemma 7. Consider P = ⟨𝑠𝑖 { 𝑡𝑖 ⟩𝑖∈[𝑞] . Assign an
arbitrary color to 𝑠1, say C(𝑠1) = 1. Note here 𝑠1 and 𝑡𝑞 are the
two partnerless vertices. Because C only has two colors, this im-
mediately determines the color of 𝑡1, which depends on whether 𝑠1
and 𝑡1 are same-side vertices. Again, this immediately determines
the color of 𝑠2, which in turn determines the color of 𝑡2, and so on.
Since 𝑠1 and 𝑡𝑞 are partnerless, their colors can be whatever they
need to be to satisfy the first property. The vertices are colored
in the order 𝑠1, 𝑡1, 𝑠2, 𝑡2, . . . , 𝑠𝑞, 𝑡𝑞 . Thus, if P is a CCW this greedy
scheme efficiently finds a roundable coloring in time O(|𝐿 | + |𝑅 |).

Instead suppose P is a CCC. Once more, the same greedy scheme
starting by coloring 𝑠1 will satisfy all roundable coloring properties,
except maybe for C(𝑡𝑞) = C(𝑠1). We now verify this. Observe that
the greedy algorithm ensures

∀𝑖 ∈ [𝑞], C(𝑡𝑖) = C(𝑠𝑖) · (−1)1(𝑡𝑖⊥𝑠𝑖)

and
∀𝑖 ∈ [𝑞 − 1], C(𝑠𝑖+1) = C(𝑡𝑖) · (−1)1(𝑡𝑖 ̸⊥𝑠𝑖+1)

where 1(·) equals 1 if “·” is true and 0 otherwise; this is a slight
abuse of notation since ⊥ is a relation but we are treating it as a
boolean function. Expanding by repeated application of the above
observations, we have

C(𝑡𝑞) = C(𝑠1) · (−1)
∑

𝑖∈ [𝑞] 1(𝑡1 ̸⊥𝑠𝑖)+
∑

𝑖∈ [𝑞−1] 1(𝑡𝑖 ̸⊥𝑠𝑖+1)

= C(𝑠1) · (−1)𝑝+𝑠𝑞−1

where 𝑝 is the number of same-side paths and 𝑠𝑞−1 is the number of
same-side partners not counting the pair 𝑡𝑞 and 𝑠1. Then ensuring
we have a roundable coloring reduces to ensuring that 𝑡𝑞 ⊥ 𝑠1 =⇒

𝑝 + 𝑠𝑞−1 is even and 𝑡𝑞 ̸⊥ 𝑠1 =⇒ 𝑝 + 𝑠𝑞−1 is odd. Letting 𝑠 be
the total number of same-side partners, the above is equivalent to
asking 𝑝 + 𝑠 be even, which we now prove.

Let 𝑑 be the number of different-side paths, and let 𝑐𝐿 , 𝑐𝑅 , 𝑐𝐿𝑅
respectively be the number of left-left, right-right, and left-right
partner pairs. So,

𝑝 + 𝑑 = 𝑞 = 𝑠 + 𝑐𝐿𝑅 . (15)

Let 𝑛𝐿 be the number of left vertices in the CCC. Clearly, 𝑛𝐿 =

2𝑐𝐿+𝑐𝐿𝑅 . Look at𝑛𝐿−𝑑 , this is the number of left vertices remaining
after removing the different-side paths in ⟨𝑠𝑖 { 𝑡𝑖 ⟩𝑖∈[𝑞] . Since these
vertices must be covered by same side paths we must have 𝑛𝐿 − 𝑑
even. Then, with all congruences taken modulo 2,

0 ≡ 𝑛𝐿 − 𝑑 ≡ 2𝑐𝐿 + 𝑐𝐿𝑅 − 𝑑 ≡ 𝑐𝐿𝑅 − 𝑑.

Plugging the above into (15) gives 𝑝 = 𝑠 + 𝑐𝐿𝑅 − 𝑑 ≡ 𝑠 . Therefore,
𝑠 + 𝑝 ≡ 𝑠 + 𝑠 ≡ 0. □

Proof of Lemma 6. For a vertex 𝑏 ∈ 𝐿(𝐸𝑟) ∪𝑅(𝐸𝑟), let 𝐾 (𝑏) be
the set of vertices in the connected component of 𝐺𝑟 containing 𝑏.
Let 𝑉𝑟 be the sequence of vertices 𝑉 at the beginning of iteration 𝑟
(i.e., corresponding to Ψ in CCWalk). For a vertex 𝑏We use𝑉𝑟 −𝑏 to
denote𝑉𝑟 without vertex 𝑏. Like in CCWalk, “⊕” denotes sequence
concatenation. Let 𝑎𝑟 and 𝑧𝑟 be the first and last vertices of𝑉𝑟 ; note
𝑎𝑟 does not change over iterations. We prove the correctness of
CCWalk with the aid of the following loop invariants maintained
at the beginning of each iteration 𝑟 of the while-loop.

(I1) 𝑧𝑟 has no partners in 𝑉𝑟 .
(I2) ∀𝑏 ∈ 𝑉𝑟 − 𝑧𝑟 , 𝑏 has exactly one partner in 𝑉𝑟 .
(I3) 𝑎𝑟 is the only vertex from 𝑉𝑟 in 𝐾 (𝑎𝑟).
(I4) ∀𝑏 ∈ 𝑉𝑟 − 𝑎𝑟 , there are exactly two vertices from 𝑉𝑟 con-

tained in 𝐾 (𝑏).
Proceed by induction. When 𝑟 = 1, 𝑉𝑟 = ⟨𝑎⟩ so 𝑎𝑟 = 𝑎 = 𝑧𝑟 so all
invariants are (vacuously) true. Let 𝑃 (𝑘) be the predicate saying
all invariants hold at the beginning of iteration 𝑘 ≥ 1. We assume
𝑃 (𝑘) and show 𝑃 (𝑘 + 1).

If there is an iteration𝑘+1, thenCCWalk did not return during it-
eration𝑘 andmust have added ⟨𝑠𝑘 , 𝑡𝑘 ⟩ to𝑉𝑘 = ⟨𝑡1, 𝑠2, 𝑡2, . . . , 𝑠𝑘−1, 𝑡𝑘−1⟩.
If 𝑧𝑘+1 = 𝑡𝑘 had a partner in 𝑉𝑘 ⊕ ⟨𝑠𝑘 ⟩ then iteration 𝑘 would have
been the last as a CCC would have been returned. Therefore (I1)
holds at the beginning of iteration 𝑘 + 1.

By 𝑃 (𝑘), ∀𝑏 ∈ 𝑉𝑘 − 𝑡𝑘−1, 𝑏 has exactly one partner in 𝑉𝑘 and
𝑡𝑘−1 has zero partners in𝑉𝑘 . By construction 𝑠𝑘 is selected to be the
partner of 𝑡𝑘−1 so now 𝑡𝑘−1 and 𝑠𝑘 have exactly one partner each
in 𝑉𝑘+1. Therefore (I2) holds at the beginning of iteration 𝑘 + 1.

If 𝑉𝑘+1 were to not meet (I3) then it must mean that either
𝑠𝑘 ∈ 𝐾 (𝑎𝑘) or 𝑡𝑘 ∈ 𝐾 (𝑎𝑘). But in this case the connected component
𝐾 (𝑎𝑘) was revisited during iteration 𝑘 and a CCC was returned.

By construction 𝐾 (𝑠𝑘) = 𝐾 (𝑡𝑘). Moreover, ∀𝑏 ∈ 𝑉𝑘 , 𝐾 (𝑠𝑘) ≠
𝐾 (𝑏) otherwise 𝐾 (𝑏) was revisited and iteration 𝑘 would have been
the last. Therefore, (I4) continues to hold.

Moreover note the while-loop runs at most O(|𝐿 | + |𝑅 |) many
times since revisiting a connected component of 𝐺𝑟 causes the
function to return.

Next we leverage the loop invariants to prove CCWalk returns
valid CCC’s. First observe that by construction of 𝑉 , Properties 1)
and 4) of a CCC are always immediate. CCWalk returns CCC’s

9

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

Conference’17, July 2017, Washington, DC, USA Anon.

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

when a connected component is revisited or when the added 𝑡𝑖
already has partners present in 𝑉 . Fix some iteration 𝑟 ≥ 1.

Suppose a connected component 𝐶𝑘 , 𝑘 < 𝑟 is revisited. Then〈
𝑠′
𝑘
{ 𝑡𝑘 , . . . , 𝑠𝑟−1 { 𝑡𝑟−1

〉
is returned. By (I1), 𝑡𝑟−1 and 𝑠′

𝑘
are

each others only partners. Recall by construction 𝑡𝑘 ∼ 𝑠𝑘+1, 𝑡𝑘+1 ∼
𝑠𝑘+1, . . . , 𝑠𝑟−1 ∼ 𝑡𝑟−1, so by (I2) it follows that each of
𝑡𝑘 , 𝑠𝑘+1, 𝑡𝑘+1, . . . , 𝑠𝑟−1, 𝑡𝑟−1 has at exactly one partner amongst them-
selves. Therefore, Property 2) of CCC’s holds. It remains to check
Property 3). By (I4) and the fact that there are paths 𝑠𝑝 { 𝑡𝑝 , for
𝑘 < 𝑝 < 𝑟 , each 𝑠𝑝 { 𝑡𝑝 belongs to a distinct connected com-
ponent. 𝑠′

𝑘
{ 𝑡𝑘 must belong to a unique connected component

different from each 𝑠𝑝 { 𝑡𝑝 ; otherwise there was a connected
component containing 𝑠𝑝 , 𝑡𝑝 , and 𝑠𝑘 contradicting one of (I3) and
(I4) (depending on whether 𝑘 = 1 or 𝑘 > 1).

Instead suppose a CCC is returned because 𝑡𝑟 had a partner
𝑏 ∈ 𝑉𝑟 ⊕ (𝑠𝑟). Let 𝑏 be the last vertex in𝑉𝑟 ⊕ (𝑠𝑟) such that 𝑏 ∼ 𝑡𝑟 . If
𝑏 = 𝑠𝑟 then ⟨𝑠𝑟 { 𝑡𝑟 ⟩ is clearly a CCC. So suppose 𝑏 ∈ 𝑉𝑟 . It must
be that 𝑏 = 𝑠𝑝 for some 𝑝 < 𝑟 ; otherwise 𝑏 is not the last such vertex.
So focus on proving

〈
𝑠𝑝 { 𝑡𝑝 , . . . , 𝑠𝑟 { 𝑡𝑟

〉
is a CCC. Property 2)

follows because 𝑡𝑟−1 and 𝑠𝑟 are each other’s only partners by (I1); 𝑡𝑟
and 𝑠𝑝 are each other’s only partners because by (I2) 𝑠𝑝 previously
had only partner 𝑡𝑝−1 but we have cut it out from the CCC; and the
rest of the pairs have unique partners by (I2). Lastly, Property 3)
holds because 𝐾 (𝑠𝑟) was not a revisited CC so 𝑠𝑟 and 𝑡𝑟 belong to a
distinct CC, and the rest of the path endpoints belong to distinct
CC’s by (I4).

The last remaining case is that where the two half-CCW’s over-
lap. This can be resolved into a CCC in themanner already described
in the main text under the paragraph Uncrossing the half-CCW’s of
Section 5.2.

Runtime of FindCCC.. We conclude with comments about the
runtime of FindCCC. We can build a hash-map mapping vertices to
a set of all their floating partners. This hash-map can be constructed
in time O(|𝐿 | + |𝑅 |). Similarly, we can build a set to keep track of
visited connected components. Finding the partner 𝑠𝑖 of 𝑡𝑖−1 can
be done in O(1) time by checking the hash-map, and finding the
vertex 𝑡𝑖 in 𝐾 (𝑠𝑖) can be done by starting a depth first search from
𝑡𝑖 until a floating vertex is reached. After rounding a the CCC/CCW
remove vertices that became settled from their respective sets of
floating partners. The depth first searches starting from each 𝑡𝑖
altogether visit each vertex and edge at most O(1) times before
returning and each vertex is removed from the hash-map’s set of
floating partners at most once. Therefore, CCWalk runs in time
O(|𝐿 | + |𝑅 |). FindCCC calls CCWalk O(1) times and resolving the
two-half CCW’s can be thought of as another run of CCWalk, as
argued above. Therefore, FindCCC finishes in time O(|𝐿 | + |𝑅 |). □

E PROOF OF THEOREM 3

Lemma E.1. BarterDR satisfies (J1).

Proof. The property holds trivially for 𝑟 = 0. Recall 𝑟 = 1
corresponds to the output of the pre-processing step. This fact is
proved in [15]. Therefore, focus on some fixed 𝑟 > 1 and proceed by
induction. Fix 𝑒 ∈ 𝐸 and the CCC/CCW to be rounded P = ⟨𝑠𝑖 {
𝑡𝑖 ⟩𝑖∈[𝑞] . Proceed by considering the following two events.

Event𝐴: 𝑒 does not appear inP so 𝑒 does not change this iteration.
Thus by the induction hypothesis E[𝑥𝑟+1𝑒 | (𝑥𝑟𝑒 = 𝑧) ∧𝐴] = 𝑧.
Event 𝐵: 𝑒 appears in P, say, in path 𝑠𝑖 { 𝑡𝑖 for a fixed 𝑖 . Recall
values 𝛼 and 𝛽 from (5) are fixed and 𝑥𝑟𝑒 is modified according to
(6). Assuming 𝑒 ∈ 𝑀𝑖

−1 then

E[𝑥𝑟+1𝑒 | (𝑥𝑟𝑒 = 𝑧) ∧ 𝐵] = 𝑧 + 𝛼
𝑣𝑖

(
𝛽

𝛼 + 𝛽

)
− 𝛽

𝑣𝑖

(
𝛼

𝛼 + 𝛽

)
= 𝑧.

The same holds if instead 𝑒 ∈ 𝑀𝑖
1. Hence

E[𝑥𝑟+1𝑒 | (𝑥𝑟𝑒 = 𝑧)] = E[𝑥𝑟+1𝑒 | (𝑥𝑟𝑒 = 𝑧) ∧ 𝐵] · Pr(𝐵)
+ E[𝑥𝑟+1𝑒 | (𝑥𝑟𝑒 = 𝑧) ∧𝐴] · Pr(𝐴)

= 𝑧 (Pr(𝐴) + Pr(𝐵)) = 𝑧.

Let 𝑍 be the set of possible values for 𝑥𝑟𝑒 .

E[𝑥𝑟+1𝑒] =
∑︁
𝑧∈𝑍
E[𝑥𝑟+1𝑒 | (𝑥𝑟𝑒 = 𝑧)] · Pr(𝑥𝑟𝑒 = 𝑧)

=
∑︁
𝑧∈𝑍

𝑧 · Pr(𝑥𝑟𝑒 = 𝑧) = E[𝑥𝑟𝑒] .

By the IH, then E[𝑥𝑟+1𝑒] = 𝑥0
𝑒 . □

Lemma E.2. BarterDR satisfies (J2).

Proof. The property holds trivially for 𝑟 = 0. Recall 𝑟 = 1
corresponds to the output of the pre-processing step. This fact is
proved in [15]. Therefore, focus on some fixed 𝑟 > 1 and proceed
by induction. Fix 𝑎 ∈ 𝐿 ∪ 𝑅 and the CCC/CCW to be rounded
P = ⟨𝑠𝑖 { 𝑡𝑖 ⟩𝑖∈[𝑞] . Recall 𝑉 (P) denotes the endpoints of the
paths of P. Proceed by cases.

Case 𝐴: 𝑎 ∉ 𝑉 (P). Then either 𝑎 does not appear in P or 𝑎
appears in P but with two edges incident on it. In the former case
clearly 𝑥𝑟+1𝑎 = 𝑥𝑟𝑎 . In the latter case, the change of each incident
edge is equal in magnitude and opposite in sign (since one edge
belongs to 𝑀𝑖

−1 and the other to 𝑀𝑖
1) therefore 𝑥

𝑟+1
𝑎 = 𝑥𝑟𝑎 as well.

Thus by the IH ⌊𝑥0 (𝑎)⌋ ≤ 𝑥𝑟+1 (𝑎) ≤ ⌈𝑥0 (𝑎)⌉.
Case 𝐵: 𝑎 ∈ 𝑉 (P). There is a single incident edge 𝑒 ∈ 𝑁 (𝑎).

Without loss of generality, said edge belongs path 𝑠𝑖 { 𝑡𝑖 and thus
to𝑀𝑖

−1 (the proof for𝑀
𝑖
1 is identical). Then either 𝑥

𝑟+1 (𝑎) = 𝑥𝑟 (𝑎)+
𝛼/𝑣𝑖 or 𝑥𝑟+1 (𝑎) = 𝑥𝑟 (𝑎) − 𝛽/𝑣𝑖 . In either case, by definition of 𝛼
and 𝛽 (i.e., (5)), 𝛼 and 𝛽 are small enough that ⌊𝑥𝑟 (𝑎)⌋ ≤ 𝑥𝑟+1 (𝑎) ≤
⌈𝑥𝑟 (𝑎)⌉. Observe ⌊𝑥0 (𝑎)⌋ = ⌊𝑥𝑟 (𝑎)⌋ and ⌈𝑥0 (𝑎)⌉ = ⌈𝑥𝑟 (𝑎)⌉.

Having handled exhaustive cases, the proof is complete. □

Lemma E.3. BarterDR satisfies (J3).

Proof. The property holds trivially for 𝑟 = 0. Recall 𝑟 = 1
corresponds to the output of the pre-processing step. This fact is
proved in [15]. Therefore, focus on some fixed 𝑟 > 1 and proceed by
induction. Fix a vertex 𝑎 and a subset of edges 𝑆 incident on 𝑎 like
in (J3). Also fix the CCC/CCW to be rounded P = ⟨𝑠𝑖 { 𝑡𝑖 ⟩𝑖∈[𝑞] .
Proceed based on the following events.

Event𝐴: no edge in 𝑆 has its value modified. Then E[∏𝑒∈𝑆 𝑥
𝑟+1
𝑒 |

𝐴] = E[∏𝑒∈𝑆 𝑥
𝑟
𝑒 | 𝐴].

Event 𝐵: two edges 𝑒1, 𝑒2 ∈ 𝑆 have their values modified. Said
edges must both belong to 𝑠𝑖 { 𝑡𝑖 , for some fixed 𝑖 , with one

10

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

Barter Exchange with Shared Item Valuations Conference’17, July 2017, Washington, DC, USA

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

belonging to𝑀𝑖
−1 and the other to𝑀𝑖

1; say 𝑒1 ∈ 𝑀𝑖
1 and 𝑒2 ∈ 𝑀𝑖

−1.
Then

(𝑥𝑟+1𝑒1 , 𝑥𝑟+1𝑒2) =
{
(𝑥𝑟𝑒1 + 𝛼/𝑣𝑖 , 𝑥

𝑟
𝑒2 − 𝛼/𝑣𝑖) with probability 𝛽/(𝛼 + 𝛽)

(𝑥𝑟𝑒1 − 𝛽/𝑣𝑖 , 𝑥
𝑟
𝑒2 + 𝛽/𝑣𝑖) with probability 𝛼/(𝛼 + 𝛽)

where 𝛼 and 𝛽 are fixed per (5). Let 𝑆1 = 𝑆 − {𝑒1, 𝑒2}. Then

E

[∏
𝑒∈𝑆

𝑥𝑟+1𝑒 | (∀𝑒 ∈ 𝑆, 𝑥𝑟𝑒 = 𝑧𝑒) ∧ 𝐵
]

= E
[
𝑥𝑟𝑒1 · 𝑥

𝑟
𝑒2 | (∀𝑒 ∈ 𝑆, 𝑥

𝑟
𝑒 = 𝑧𝑒) ∧ 𝐵

] ∏
𝑒∈𝑆1

𝑧𝑒 .

The above expectation can be written as (Ψ + Φ)∏𝑒∈𝑆1 𝑧𝑒 , where

Ψ = (𝛽/(𝛼 + 𝛽)) · (𝑧𝑒1 + 𝛼) · (𝑧𝑒2 − 𝛼) and
Φ = (𝛼/(𝛼 + 𝛽)) · (𝑧𝑒1 − 𝛽) · (𝑧𝑒2 + 𝛽) .

It is easy to s how Ψ + Φ ≤ 𝑧𝑒1𝑧𝑒2 . Thus, for any fixed {𝑒1, 𝑒2} ⊆ 𝑆
and for any fixed (𝛼, 𝛽), and for fixed values of 𝑧𝑒 , the following
holds:

E

[∏
𝑒∈𝑆

𝑥𝑟+1𝑒 | (∀𝑒 ∈ 𝑆, 𝑥𝑟𝑒 = 𝑧𝑒) ∧ 𝐵
]
≤
∏
𝑒∈𝑆

𝑧𝑒 .

Hence, E[∏𝑒∈𝑆 𝑥
𝑟+1
𝑒 | 𝐵] ≤ E[∏𝑒∈𝑆 𝑥

𝑟
𝑒 | 𝐵].

Event 𝐶 : exactly one edge in the set 𝑆 has its value modified. Let
𝐶 denote the event that edge 𝑒1 ∈ 𝑆 has its value changed in the
following probabilistic way

𝑥𝑟+1𝑒1 =

{
𝑥𝑟𝑒1 + 𝛼 with probability 𝛽/(𝛼 + 𝛽)
𝑥𝑟𝑒1 − 𝛽 with probability 𝛼/(𝛼 + 𝛽) .

Thus, E[𝑥𝑟+1𝑒1 | (∀𝑒 ∈ 𝑆, 𝑥
𝑟
𝑒 = 𝑧𝑒) ∧𝐶] = 𝑧𝑒1 . Letting 𝑆1 = 𝑆 − {𝑒1},

we get that E[∏𝑒∈𝑆 𝑥
𝑟+1
𝑒 | (∀𝑒 ∈ 𝑆, 𝑥𝑟𝑒 = 𝑧𝑓) ∧𝐶] equals

𝐸 [𝑥𝑟+1𝑒1 | (∀𝑒 ∈ 𝑆, 𝑥
𝑟
𝑒 = 𝑧𝑓) ∧𝐶]

∏
𝑒∈𝑆1

𝑧𝑒 =
∏
𝑒∈𝑆

𝑧𝑒 .

Since the equation holds for any 𝑒1 ∈ 𝑆 , for any values of 𝑧𝑒 , and
for any (𝛼, 𝛽), we have E[∏𝑒∈𝑆 𝑥

𝑟+1
𝑒 | 𝐶] = E[∏𝑒∈𝑆 𝑥

𝑟
𝑒]. □

Proof of Theorem 3. By Lemmas E.1 and E.2 BarterDR satis-
fies (P1) and (P2). Let 𝑇 be the last iteration of BarterDR. From
Lemma E.3 we have

Pr(
∧
𝑒∈𝑆
(𝑋𝑒 = 1)) = E[

∏
𝑒∈𝑆

𝑥𝑇+1𝑒] ≤ E[
∏
𝑒∈𝑆

𝑥1
𝑒] =

∏
𝑒∈𝑆

𝑥0
𝑒 =

∏
𝑒∈𝑆

Pr(𝑋𝑒 = 1) .

The proof for 𝑐 = 0 (i.e., Pr(𝑋𝑒 = 0)) is identical. Therefore, Bar-
terDR satisfies (P3). □

F PROOF OF THEOREM 1

Proof of Lemma 8. Given a BarterSV instance, let OPTIP and
OPTLP be the optimal objectives of the corresponding IP (1) and the
corresponding BarterSV-LP. Let {𝑋 ∗𝑒 }𝑒∈𝐸 and {𝑥∗𝑒 }𝑒∈𝐸 be optimal
solutions to the IP and LP, respectively. ThenOPTIP =

∑
𝑒∈𝐸 𝑤𝑒𝑋

∗
𝑒 ≤∑

𝑒∈𝐸 𝑤𝑒𝑥
∗
𝑒 = OPTLP. Per Theorem 3, BarterDR satisfies (P1)

when rounding {𝑥∗𝑒 }𝑒∈𝐸 to {𝑋𝑒 } ∈ {0, 1} |𝐸 | . Therefore,E[
∑
𝑒∈𝐸 𝑤𝑒𝑋𝑒] =∑

𝑒∈𝐸 𝑤𝑒E[𝑋𝑒] =
∑
𝑒∈𝐸 𝑤𝑒𝑥

∗
𝑒 = OPTLP.

By the linearity of expectation and (P1),

E[𝐷𝑖] = E[
∑︁
𝑎∈𝐿𝑖

𝑋 (𝑎)𝑣𝑎 −
∑︁
𝑏∈𝑅𝑖

𝑋 (𝑏)𝑣𝑏]

=
∑︁
𝑏∈𝐿𝑖
E[𝑋 (𝑏)]𝑣𝑏 −

∑︁
𝑎∈𝑅𝑖
E[𝑋 (𝑎)]𝑣𝑎

=
∑︁
𝑏∈𝐿𝑖

𝑥∗ (𝑏)𝑣𝑏 −
∑︁
𝑎∈𝑅𝑖

𝑥∗ (𝑎)𝑣𝑎 = 𝐷0
𝑖 = 0.

The last equation follows because {𝑥∗𝑒 }𝑒∈𝐸 satisfies (1d) per LemmaE.1.
□

Proof of Lemma 9. If no vertex from 𝐿𝑖 ∪ 𝑅𝑖 appears in the
CCC/CCW’s endpoints 𝑉 (P) :=

⋃
𝑖∈[𝑞] {𝑠𝑖 , 𝑡𝑖 } then we are done.

So suppose 𝑎 ∈ 𝐿𝑖∪𝑅𝑖 and 𝑎 ∈ 𝑉 (P) on this 𝑟 -th rounding iteration.
By assumption there exists another floating𝑏′ ∈ 𝐿𝑖∪𝑅𝑖 in iteration 𝑟
when ⟨𝑠𝑖 { 𝑡𝑖 ⟩𝑖∈[𝑞] was constructed. Therefore,𝑎 is not partnerless
hence it cannot be the endpoint of a CCW so there exists 𝑏 ∈
𝑉 (P) such that 𝑎 ∼ 𝑏. Moreover, by property 2 of the definition
of a CCC/CCW, said 𝑏 is unique. Therefore, 𝑎 and 𝑏 are the only
vertices in 𝑉 (P) affecting 𝐷𝑖 this iteration 𝑟 ; i.e., ∀𝑑 ∈ (𝐿𝑖 ∪ 𝑅𝑖) −
{𝑎, 𝑏}, 𝑥𝑟 (𝑑) = 𝑥𝑟+1 (𝑑). Since 𝑎 ∼ 𝑏, we may assume without
loss of generality that 𝑎 = 𝑡𝑘 and 𝑏 = 𝑠𝑘+1 for some 𝑘 ∈ [𝑞] (or
𝑘 ∈ [𝑞 − 1] for a CCW); recall 𝑠𝑞+1 ≡ 𝑠1. We know C(𝑎) = C(𝑏)
if and only if 𝑎 and 𝑏 belong to opposite graph sides where C is
the valid coloring function corresponding to P, which can be fixed
efficiently per Lemma 7.

Consider the two possible rounding events, described in (6). Call
these events 𝜃1 and 𝜃2. Suppose 𝑎 and 𝑏 are opposite-side vertices,
hence C(𝑎) = C(𝑏). Focus on event 𝜃1 (the proof for 𝜃2 is exactly
the same but replacing 𝛼 with −𝛽). Under event 𝜃1 we have

𝑥𝑟+1 (𝑎) = 𝑥𝑟 (𝑎) − C(𝑎) 1
𝑣𝑎
𝛼 and 𝑥𝑟+1 (𝑏) = 𝑥𝑟 (𝑏) − C(𝑏) 1

𝑣𝑏
𝛼.

Note the factor of “−C(𝑎)” appears because 𝑎 belongs to𝑀𝑖
C(𝑎) for

some 𝑖 . Conveniently, this leaves us with

𝑥𝑟+1 (𝑎)𝑣𝑎 − C(𝑎)C(𝑏)𝑥𝑟+1 (𝑏)𝑣𝑏
= 𝑥𝑟 (𝑎)𝑣𝑎 − C(𝑎)C(𝑏)𝑥𝑟 (𝑏)𝑣𝑏 − C(𝑎)𝛼 + C(𝑎)𝛼 (16)
= 𝑥𝑟 (𝑎)𝑣𝑎 − C(𝑎)C(𝑏)𝑥𝑟 (𝑏)𝑣𝑏 , (17)

using the fact C(𝑏) · C(𝑏) = 1. Without loss of generality let 𝑎 ∈ 𝐿𝑖 .
Therefore, expanding 𝐷𝑟+1

𝑖
:

𝐷𝑟+1
𝑖 =

∑︁
𝑠∈𝐿𝑖

𝑥𝑟+1 (𝑠)𝑣𝑡 −
∑︁
𝑡 ∈𝑅𝑖

𝑥𝑟+1 (𝑡)𝑣𝑡 . (18)

Having fixed 𝑎 ∈ 𝐿𝑖 , we know C(𝑎)C(𝑏) = 1 if and only if 𝑏 ∈ 𝑅𝑖 .
Thus, take out 𝑥𝑟+1 (𝑎) and 𝑥𝑟+1 (𝑏) from the sums and substitute
(17) to have∑︁
𝑠∈𝐿𝑖−{𝑎,𝑏}

𝑥𝑟+1 (𝑠)𝑣𝑡−
∑︁

𝑡 ∈𝑅𝑖−{𝑏}
𝑥𝑟+1 (𝑡)𝑣𝑡+𝑥𝑟 (𝑎)𝑣𝑎−C(𝑎)C(𝑏)𝑥𝑟 (𝑏)𝑣𝑏 .

(19)
Now observe that 𝑥𝑟+1 (𝑝) = 𝑥𝑟 (𝑝) for all 𝑝 ∈ (𝐿𝑖 ∪ 𝑅𝑖) − {𝑎, 𝑏}.
Moreover, 𝑏 ∈ 𝑅𝑖 if and only if C(𝑎)C(𝑏) = 1, so we can reabsorb
the terms “𝑥𝑟 (𝑎)𝑣𝑎” and “𝑥𝑟 (𝑏)𝑣𝑏” into their respective summations;
thus yielding

∑
𝑠∈𝐿𝑖 𝑥

𝑟 (𝑠)𝑣𝑡 −
∑
𝑡 ∈𝑅𝑖 𝑥

𝑟 (𝑡)𝑣𝑡 . But this is precisely
𝐷𝑟
𝑖
, which we’ve assumed to be 0. □

11

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

Conference’17, July 2017, Washington, DC, USA Anon.

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

G HARDNESS OF BarterSV
We first prove Theorem 2: it is NP-Hard to find any non-empty
allocation satisfying𝐷𝑘 = 0 for all agents𝑘 . By non-empty wemean
the corresponding LP solution 𝑥 ≠ 0, i.e., at least one agent gives
away an item. The proof proceeds by reducing from the NP-hard
problem of Partition.

Definition 4 (Partition). A Partition instance takes a set 𝑆 =

{𝑎1, 𝑎2, . . . , 𝑎𝑛} of 𝑛 positive integers summing to an integer 2𝑇 .
The goal of Partition is to determine if 𝑆 can be partitioned into
disjoint subsets 𝑆1 and 𝑆2 such that each subset sums exactly to an
integer 𝑇 .

Lemma G.1. Given a Partition instance, it can be reduced in poly-

nomial time to a corresponding BarterSV instance with two agents.

Proof. Consider an instance 𝐼 = (𝑆, 2𝑇) of partition problem
where 𝑆 = {𝑎1, 𝑎2, . . . , 𝑎𝑛} such that

∑
𝑖∈[𝑛] 𝑎𝑖 = 2𝑇 and 𝑎𝑖 is an

integer, for all 𝑖 ∈ [𝑛]. Given an instance 𝐼 of Partition, the
BarterSV instance constructed is as follows.

Let the set of items I = {𝑖1, 𝑖2, . . . , 𝑖𝑛, 𝑖𝑛+1} with item values
𝑣 𝑗 := 𝑎 𝑗 for each item 𝑖 𝑗 , 𝑗 ∈ [𝑛] and 𝑣𝑛+1 := 𝑇 for item 𝑖𝑛+1.
There are two agents 𝐴 = {1, 2}, where agent 1 has item lists
𝐻1 := {𝑖1, . . . , 𝑖𝑛} and𝑊1 := {𝑖𝑛+1}. Symmetrically, agent 2 has
item lists𝑊2 := {𝑖 𝑗 : 𝑗 ∈ [𝑛]} and 𝐻2 := {𝑖𝑛+1}. The particular
weights of allocating items (i.e.,𝑤𝑒 in the bipartite graph) do not
matter as we only care about whether some non-empty allocation
exists. □

Recall the goal is to show there exists a non-empty allocation such
that for each agent 𝑘 ∈ [2], 𝐷𝑘 = 0 if and only if the corresponding
Partition instance has a solution.

Lemma G.2. There exists a polynomial time algorithm to find

a non-empty allocation of items with 𝐷𝑘 = 0 for each agent 𝑘 in

the BarterSV instance if and only if there exists a polynomial time

algorithm to the corresponding Partition instance.

Proof. Forward direction (Partition =⇒ BarterSV). Given
a solution (𝑆1, 𝑆2) to the Partition instance, the corresponding
BarterSV instance has a solution in the following manner. Allocate
the items {𝑖 𝑗 : 𝑗 ∈ 𝑆1} in the have-list of agent 1 to agent 2 and allo-
cate the item 𝑖𝑛+1 to agent 1. Thus, the value of the items received
and given by both the agents is exactly 𝑇 resulting in a non-empty
allocation with 𝐷1 = 𝐷2 = 0.

Backward Direction (BarterSV =⇒ Partition). Take a non-
empty allocation of itemsI to each agent 𝑘 ∈ [2] with𝐷𝑘 = 0. Such
a non-empty allocation must have agent 1 giving away their only
item, which has value𝑇 . Therefore 𝐷1 = 0 implies agent 1 received
𝑇 units of value. Let the items agent 1 received be 𝑖 𝑗1 , 𝑖 𝑗2 , . . . , 𝑖 𝑗ℓ ,
letting 𝐽 = { 𝑗1, . . . , 𝑗ℓ }. Thus,

∑
𝑝∈ 𝐽 𝑣𝑝 = 𝑇 . Therefore, the corre-

sponding partition instance has solution 𝑆1 = {𝑎𝑝 : 𝑝 ∈ 𝐽 } and
𝑆2 = {𝑎𝑝 : 𝑝 ∉ 𝐽 }. □

Thus, Lemmas G.1 and G.2 show that it is NP-hard to find a
non-empty allocation of items with 𝐷𝑘 = 0 for any agent 𝑘 . That is,
Theorem 2.

G.1 Additional hardness results

The prior hardness result showed that finding any non-empty allo-
cation is NP-hard but not necessarily strongly NP-hard since Par-
tition is weakly NP-hard. We can additionally show the decision
version of BarterSV (i.e., does there exist a non-empty allocation
with utility ≥ 𝐾) is strongly NP-hard.

Theorem 4. The decision version of BarterSV is strongly NP-Hard.

Definition 5 (3-Partition). Given a set 𝑆 = {𝑎1, 𝑎2, . . . , 𝑎3𝑚} of
3𝑚 positive integers summing to an integer𝑚𝑇 and 𝑎𝑖 ∈ (𝑇 /4,𝑇 /2).
The goal of 3-Partition is to determine if 𝑆 can be partitioned
into𝑚 disjoint subsets 𝑆1, 𝑆2, . . . , 𝑆𝑚 , such that each subset sums
exactly to an integer 𝑇 .

Note that each subset 𝑆𝑖 , 𝑖 ∈ [𝑚] in the partition can have exactly
3 integers each.

Lemma G.3. Given any 3-Partition instance, it can be reduced to

a corresponding BarterSV instance with𝑚 + 1 agents in polynomial

time.

Proof. Consider an instance 𝐼 = (𝑆,𝑇) of 3-Partition where
𝑆 = {𝑎1, 𝑎2, . . . , 𝑎3𝑚} such that

∑
𝑖∈[3𝑚] 𝑎𝑖 = 𝑚𝑇 and 𝑎𝑖 is an in-

teger, for all 𝑖 ∈ [3𝑚]. Given an instance 𝐼 of 3-Partition we
construct an instance of BarterSV as follows:
Suppose that the set of items I = {𝑖1, 𝑖2, . . . , 𝑖3𝑚, 𝑖3𝑚+1, . . . , 𝑖4𝑚}
where the values are 𝑣 𝑗 := 𝑎 𝑗 for each item 𝑖 𝑗 , 𝑗 ∈ [3𝑚] and
𝑣3𝑚+𝑘 := 𝑇 for each item 𝑖3𝑚+𝑘 , 𝑘 ∈ [𝑚]. There are a set of
𝑚 + 1 agents 𝐴 = {1, 2, . . . ,𝑚 + 1}, where each agent 𝑘 ∈ [𝑚]
consists of the items {𝑖3𝑚+𝑘 } and {𝑖1, 𝑖2, . . . , 𝑖3𝑚} in its have-list
and wish-list respectively. The agent𝑚 + 1 has𝑚 items in its wish-
list {𝑖3𝑚+𝑘 : 𝑘 ∈ [𝑚]} and {𝑖1, 𝑖2, . . . , 𝑖3𝑚} in its have-list. Let the
weight of allocating item 𝑖 𝑗 from agent 𝑎 to any valid agent 𝑏 is
given by 𝑣 𝑗 . Therefore, the goal of the decision version of BarterSV
problem is to determine if there exists a re-allocation of items such
that for each agent 𝑘 ∈ [𝑚 + 1], 𝐷𝑘 = 0 and the total allocation
utility is (2𝑚)𝑇 . □

The following lemma is crucial in establishing the hardness of
BarterSV.

Lemma G.4. There exists a polynomial time solution to BarterSV
problem instance iff there exists a polynomial time solution to the

corresponding instance of the 3-Partition.

Proof. Forward Direction (3-Partition =⇒ BarterSV)
Given a solution 𝑆1, 𝑆2, . . . , 𝑆𝑚 to 3-Partition, we can find a so-
lution to the corresponding instance of BarterSV in the following
manner. We allocate, the items {𝑖 𝑗 : 𝑗 ∈ 𝑆𝑘 } in the have-list of
agent𝑚 + 1 to agent 𝑘 for each 𝑘 ∈ [𝑚] and allocate all the items
{𝑖3𝑚+𝑘 : 𝑘 ∈ [𝑚]} to agent𝑚 + 1. Thus, the value of the items re-
ceived and given by agent𝑚+1 is exactly𝑚𝑇 resulting in𝐷𝑚+1 = 0.
Further the value of items assigned to each agent 𝑘 ∈ [𝑚] is ex-
actly 𝑇 which is equal to the value of item given. Observe that for
each agent 𝑘 ∈ [𝑚], the total value of items received and given are
exactly 𝑇 , therefore 𝐷𝑘 = 0. Therefore, the utility of the allocation
is exactly𝑚𝑇 +𝑚𝑇 = 2𝑚𝑇 and 𝐷𝑘 = 0 for each agent 𝑘 ∈ [𝑚 + 1].

Backward Direction (BarterSV =⇒ 3-Partition) Given
a non-empty allocation of items I to each agent 𝑘 ∈ [𝑚 + 1]

12

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

Barter Exchange with Shared Item Valuations Conference’17, July 2017, Washington, DC, USA

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

with 𝐷𝑘 = 0 such that the total value of items reallocated is 2𝑚𝑇 .
Then each agent 𝑘 ∈ [𝑚] has respectively received items from
the partition 𝐻𝑚+1,1, 𝐻𝑚+1,2, . . . , 𝐻𝑚+1,𝑚 of the have-list of agent
𝑚 + 1 such that

∑
𝑗∈𝐻𝑚+1,𝑘 𝑣 𝑗 = 𝑇 for each 𝑘 ∈ [𝑚]. Recall that

the items 𝐻𝑚+1 = {𝑖1, 𝑖2, . . . , 𝑖3𝑚} = ¤
⋃

𝑘∈[𝑚]𝐻𝑚+1,𝑘 . Therefore, we
can create a solution to the corresponding 3-Partition instance

by choosing 𝑆𝑘 = {𝑎 𝑗 : 𝑗 ∈ 𝐻𝑚+1,𝑘 } for each 𝑘 ∈ [𝑚]. Notice that∑
𝑘∈[𝑚] |𝑆𝑘 | = 3𝑚, 𝑎 𝑗 ∈ (𝑇 /4,𝑇 /2) implies |𝑆𝑘 | = 3 for all 𝑘 , and

for all 𝑘 ∈ [𝑚], ∑𝑗∈𝑆𝑘 𝑎 𝑗 = 𝑇 . Therefore, 𝑆1, 𝑆2, . . . , 𝑆𝑚 is both a
partition of 𝑆 and a valid solution to the problem. □

Thus Lemma G.4 shows the decision version of the BarterSV is
NP-hard. Therefore, Theorem 4 follows.

13

	Abstract
	1 Introduction
	1.1 Problem formulation: BarterSV

	2 Preliminaries: GKPS dependent rounding
	3 Related work
	4 Outline of our contributions and the paper
	5 BarterDR: dependent rounding algorithm for BarterSV
	5.1 Pre-processing: remove cycles in G
	5.2 Construction of CCC's and CCW's via FindCCC
	5.3 Rounding CCC's and CCW's
	5.4 Algorithm analysis

	6 Fairness
	7 Conclusion
	References
	A Direct application of GKPS-DR fails
	B Reducing to BarterSV with single item copies
	C Pre-processing
	D Correctness of FindCCC
	E Proof of Theorem 3
	F Proof of Theorem 1
	G Hardness of BarterSV
	G.1 Additional hardness results

