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ABSTRACT

Knowledge distillation has been proven effective for compressing transformer ar-
chitectures by transferring knowledge from teacher to student models. Logits-
based methods of knowledge distillation cannot fully capture the intermediate
representations and features within the teacher model, which may result in the
student model not fully learning all the knowledge from the teacher model. Thus,
previous work focuses on transferring knowledge through intermediate features
or attention maps. However, leveraging multi-head attention maps in transformers
for knowledge distillation presents challenges due to head misalignment and sub-
optimal feature alignment, often requiring projectors to align features or special
modifications to the model architecture. To address above limitations, we pro-
pose the Squeezing-Heads Distillation (SHD) method. This method reduces the
number of attention maps to any desired number through linear approximation,
without requiring additional projectors or parameters. This facilitates better align-
ment and knowledge transfer between models with different numbers of heads,
enhancing both flexibility and efficiency. Experimental results demonstrate sig-
nificant improvements in both language and vision generative models, validating
the effectiveness of our method.

1 INTRODUCTION

In recent years, generative large models have experienced rapid growth, significantly impacting
both NLP (e.g., GPT series[Brown (2020), Achiam et al. (2023)], LLaMA series[Touvron et al.
(2023), Dubey et al. (2024)]) and computer vision domains (e.g., text-to-image generation[Esser
et al. (2024)], text-to-video generation[Blattmann et al. (2023)]). Despite their impressive capabili-
ties, these models typically involve a massive number of parameters, posing substantial challenges
for practical online applications.

As the core of transformer models, the multi-head attention mechanism allows each head to attend
to different parts of the input sequence, enabling the model to capture diverse and complex relation-
ships between tokens. However, research such as Voita et al. (2019) has shown that only a small
subset of attention heads significantly contributes to performance, suggesting redundancy among
heads. By pruning the redundant heads, models can maintain their performance while reducing
complexity. Similarly, Michel et al. (2019) demonstrates that most attention heads can be removed
during testing without substantial performance degradation. Both studies and our observation3.1
suggest redundancy among multiple heads.

While pruning is a powerful compression technique, knowledge distillation offers another approach
to model compression and performance improvement. Traditional knowledge distillation methods,
particularly those developed for CNNs before the transformer era, focus on transferring knowledge
through logits and intermediate feature maps. Techniques like DeiT[Touvron et al. (2021)] use a
distillation token, and Patient-KD[Sun et al. (2019)] transfers intermediate features. However, trans-
formers emphasize attention mechanisms, prompting research into distilling attention maps directly.
TinyBERT[Jiao et al. (2019b)] and MobileBERT[Sun et al. (2020)] both explore the distillation of
attention maps but require special model designs of matching head numbers between teacher and

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

student models, which is alignment barriers in knowledge distillation for transformers. See a more
detailed description in our observation3.2.

We aim to design a practical method for generating multi-head attention map supervision from the
teacher model during training, matching the student’s head number to facilitate fine-grained knowl-
edge transfer. This approach addresses head number mismatch, coarse-grained attention transfer,
and the need for additional projectors. By introducing a non-standard attention matrix, we can
achieve lossless feature representation with fewer heads. However, as stated in observation3.3, the
unconstrained matrix lacks necessary attention knowledge for distillation.

In response to these challenges, we propose the Squeezing Multi-Heads Distillation method. This
approach compresses multiple attention maps into a single attention map through efficient linear
approximation, achieving fine-grained knowledge transfer between teacher and student models with
different numbers of heads. The Squeezing Multi-Heads Distillation method offers several advan-
tages. Flexibility: Unlike existing approaches that require matching attention head counts, our
method allows for models with varying numbers of heads, broadening its applicability across differ-
ent architectures. Fine-grained Attention Knowledge: it goes beyond simply transferring attention
features F ∈ RN×D from the multi-head attention output, such as the Gram matrix FTF , which
provides a coarse approximation akin to single-head attention distillation. Efficiency: By com-
pressing multiple attention maps into a single map using linear approximation, our method reduces
computational overhead during distillation, improving overall efficiency compared with using tradi-
tional projectors with extra parameters.

The main contributions of this paper are as follows:

• We analyzed the behavior of multi-head compression using both unconstrained and con-
strained attention matrix approximations during training, and proposed an efficient Squeez-
ing Multi-Heads Distillation(SHD) method based on linear approximation to address re-
dundancy and alignment challenges in multi-head attention distillation.

• Our method provides a flexible and efficient solution for fine-grained knowledge transfer in
knowledge distillation, which can be seamlessly integrated into existing distillation frame-
works.

• We demonstrated the effectiveness of our method through comprehensive experiments on
both language and vision generative tasks across diverse settings.

2 RELATED WORK

2.1 EFFICIENT MULTI-HEAD ATTENTION

The transformer architecture has revolutionized the field of natural language processing and com-
puter vision, enabling the development of powerful models. One of the key components of the
transformer is the attention mechanism, which allows the model to focus on relevant parts of the
input sequence when making predictions. While inferencing these layers is often slow, due to the
memory-bandwidth cost of repeatedly loading the large ”keys” and ”values” tensors. MQA[Shazeer
(2019)] uses a single key-value head, drastically speeds up decoder inference, while GQA[Ainslie
et al. (2023)] introduce grouped-query attention to avoid quality degradation of MQA. Research
such as [Voita et al. (2019)] and [Michel et al. (2019)] conduct a detailed analysis of the functional
roles of individual heads within the transformer’s multi-head attention mechanism. Specifically,
they assess whether certain heads are underperforming or redundant, and explore the feasibility of
directly discarding these less contributive heads.

2.2 KNOWLEDGE DISTILLATION OF TRANSFORMER

Knowledge distillationHinton (2015) aims to train student networks by compressing or transferring
knowledge from teacher model to student model. There are two common methods in this field,
logits-based methods [Cho & Hariharan (2019), Furlanello et al. (2018), Mirzadeh et al. (2020),
Zhang et al. (2018), Zhao et al. (2022)] which convey knowledge on the logits level and hint-based
methods [Heo et al. (2019), Huang & Wang (2017), Kim et al. (2018), Park et al. (2019), Peng
et al. (2019)] which convey knowledge through intermediate features. As an example of using both
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above methods in knowledge distillation of transformer, DistillBERT(Sanh et al. (2019)) initializes
the student with teacher’s partial parameters, and minimized the soft target probabilities and co-
sine similarity of hidden states between the teacher and the student. Through Alishahi et al. (2019)
find that the attention weights learned by BERT can capture substantial linguistic knowledge, Tiny-
BERT(Jiao et al. (2019a)) propose the attention based distillation to encourage that the linguistic
knowledge can be transferred from teacher to student. MobileBERT(Sun et al. (2020)) train a spe-
cially designed inverted-bottleneck and bottleneck structures to keep their layer number and hidden
size the same for the teacher and the student, transferring knowledge through feature maps and self-
attention maps. MINILM(Wang et al. (2020)) introduce the scaled dot-product between values in
the self-attention module as the new deep self-attention knowledge, in addition to the attention dis-
tributions. However, the above work require that the number of attention heads must be same for the
teacher and the student, which is not in line with reality.

3 OBSERVATIONS

3.1 OBSERVATION 1: HEAD REDUNDANCY IN TRANSFORMERS

Multi-head attention is a very common technique that improves the performance of attention mech-
anisms in transformer models, leading to significant improvements. However, we observed that
different heads often capture similar or redundant attention pattern, as illustrated in Fig.1.

The most common patterns of attention maps are diagonal and vertical lines, indicating the impor-
tance of adjacent tokens or key elements. This phenomenon is prevalent in well-trained generative
models, especially the large ones with many heads. This suggests that the number of heads is redun-
dant to some degree.

Figure 1: Attention maps during inference on a random sample in Dolly Datatset by GPT2-XL from
different heads of one layer. Each column is from the same head. We random selected three heads to
visualize it. The attention patterns are very similar and contain much redundancy within one layer.
Only Response attentions are kept and Instruction attentions are masked.

3.2 OBSERVATION 2: ALIGNMENT BARRIERS IN KNOWLEDGE DISTILLATION FOR
TRANSFORMERS

In recent literature, we have identified two major alignment barriers in knowledge distillation for
transformers.

First, the significant dimensional gap between large and small transformer models makes feature
alignment less effective. Knowledge distillation in generative models faces challenges due to differ-
ences in hidden dimensions; large models typically have higher-dimensional hidden layers, making
feature alignment with smaller models difficult. For example, GPT-3[Brown (2020)]’s model di-
mension is 12,288, which is almost 20 times larger than that of GPT-3[Brown (2020)] Small. Some
methods introduce projection layers to align features[ Sun et al. (2020)], but these methods add
extra parameters and do not focus on the attention module. Consequently, most feature alignment
knowledge distillation methods appear ineffective for generative models.
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Second, transformer models often differ in the number of attention heads, leading to head alignment
problems. Previous methods like MobileBERT[ Sun et al. (2020)] employed specialized model
designs to circumvent the head alignment issue, but this required both teacher and student models
to be specifically engineered, potentially reducing performance. To our knowledge, we are the first
to directly address the head alignment problem of attention maps in knowledge distillation.

3.3 OBSERVATION 3: RANK LIMITATIONS OF ATTENTION MAPS AND THEIR IMPLICATIONS

Consider a self-attention module without the causal mask, as used in many diffusion models. The
hidden dimension per head (d) is often much smaller than the number of tokens (N ). For example,
DiT models have d = 64 per head but are trained on images with 64× 64 = 4096 tokens. This also
occurs in most generative models.

Reviewing how the attention map of a single head is computed:

Ai = softmax
(
Qi(Ki)⊤√

d

)
, (1)

where Ai ∈ RN×N is the attention map of the i-th head, Qi,Ki ∈ RN×d are the queries and keys,
N is the number of tokens, and d is the hidden dimension per head.

Since N > d in most cases, the rank of Ai is limited to at most d, making Ai a rank-deficient matrix.
As a result, the attention map of a single head cannot fully utilize its theoretical capacity, leading to
redundancy from a linear algebra perspective.

To explore this further, consider introducing a non-standard attention matrix Ã ∈ RN×N , which is
not constrained by non-negativity or the requirement that each row sums to one. By allowing all
heads to replace the standard attention with a shared Ã, we can achieve lossless feature representa-
tion with just a single head, as the matrix offers N2 degrees of freedom but is constrained to only
N × d. This provides a mathematical basis for head compression.

However, the unconstrained nature of Ã lacks the structured attention knowledge required for tasks
like distillation. In the following sections, we will propose a efficient solution to incorporate more
meaningful knowledge into this representation while maintaining a reasonable feature representation
loss.

4 SQUEEZING HEADS: A BETTER SUPERVISION BEYOND JUST LOGITS

Traditional knowledge distillation algorithms primarily focus on feature distillation. However, the
gap in hidden dimensions between teacher and student transformer models makes feature alignment
challenging. Attention maps provide a better supervision signal since they are independent of hidden
dimensions. Yet, teachers and students often have different numbers of heads due to computational
constraints in model design. Our method addresses this issue by improving knowledge transfer. We
propose a technique that compresses diverse multi-head attention into a single attention map while
preserving key information, which can then be used as supervision for knowledge distillation. Ini-
tially, we introduce lossless unconstrained attention compression and optimal constrained attention
compression based on teacher features, but these methods are computationally inefficient for every
training iteration. We then present our “squeezing heads” method, which compresses attention maps
by efficient linear approximation and achieves strong results in practice.

4.1 ATTENTION COMPRESSION BY EXACT OPTIMIZATION

Let’s examine multi-head attention more closely. Generally, attention consists of two parts: (1)
Scaled Dot-Product Attention and (2) Multi-Head Attention. The scaled dot-product attention is
defined as:

Attention(Q,K, V ) = softmax
(
QK⊤
√
d

)
V. (2)
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The multi-head attention mechanism can be described as:

MultiHead(Q,K, V ) = Concat(Head1, . . . ,Headh)WO,

where Headi = Attention(QWQ
i ,KWK

i , V WV
i ),

(3)

where WQ
i ,WK

i ,WV
i ∈ Rdmodel×d, and WO ∈ Rhd×dmodel are projection matrices.

To better understand our method, we can expand WO as concatenated per-head output projections
WO

i ∈ Rd×dmodel [Elhage et al. (2021)]. Then, the multi-head attention can be rewritten as:

MultiHead(Q,K, V ) =

h∑
i=1

HeadiWO
i =

h∑
i=1

AiVWV
i WO

i ,

where Ai = softmax

(
QWQ

i (KWK
i )⊤√

d

)
.

(4)

From an information theory perspective, we try to compress multiple attention maps into a single
attention map while preserving feature representation. We denote VWV

i WO
i as Xi for simplicity

of symbols. Consider combining two attention heads A2i−1 and A2i into a single attention map Ãi

that satisfies:

Ãi = argmin
Ãi

∥∥∥Ãi (X2i−1 +X2i)− (A2i−1X2i−1 +A2iX2i)
∥∥∥2
F
.

This unconstrained optimization problem seeks the Ãi that best aligns the combined transformed
value vectors before and after compression, effectively ”squeezing” the attention heads by finding
the optimal aggregate attention map Ãi.

We observe that the loss can actually be reduced to zero, providing a closed-form solution for Ãi

regardless of how many heads are compressed, due to the additional degrees of freedom. However,
directly computing Ãi using the pseudo-inverse is impractical during training because it has a com-
putational complexity of O(N6) and this solution does not consider the constrain of the attention
matrix and can not provide token relation knowledge.

If we constrain the optimization problem by restricting the values in Ãi to the range [0, 1] and
ensuring that each row sums to 1, the problem becomes convex with a global minimum solution.
Nonetheless, the computational complexity remains O(N6), making it equally impractical to apply
during training.

4.2 LINEAR APPROXIMATION FOR ALIGNING ATTENTION MAPS

Obtaining exact attention compression results is computationally expensive. To mitigate this, we
propose a linear combination of attention maps to approximate the combined effect. For simplicity,
we demonstrate this by squeezing two heads into one; however, our method can be easily extended
to compress any number of heads into one. We reparameterize Ãi as a linear combination of known
attention maps as follows:

Ãi = αiA2i−1 + (1− αi)A2i, (5)

where αi ∈ [0, 1] is a scalar weight to be determined.

Our goal is to find αi that minimizes the difference between the combined output using Ãi and the
original outputs:

αi = argmin
α

∥∥∥Ãi(X2i−1 +X2i)− (A2i−1X2i−1 +A2iX2i)
∥∥∥2
F
, (6)
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where X2i−1 = VWV
2i−1W

O
2i−1 and X2i = VWV

2iW
O
2i .

Expanding the expression, we have:

E(αi) = ∥(αiA2i−1 + (1− αi)A2i) (X2i−1 +X2i)− (A2i−1X2i−1 +A2iX2i)∥2F
= ∥αiM +N∥2F ,

(7)

where we denote M = (A2i−1 −A2i)(X2i−1 +X2i), N = A2iX2i−1 −A2i−1X2i for simplicity.

To find the optimal αi, we set the derivative of E(αi) with respect to αi to zero:

dE(αi)

dαi
= 2αi∥M∥2F + 2⟨M,N⟩ = 0, (8)

where ⟨M,N⟩ denotes the Frobenius inner product.

Solving for αi, we get:

αi = −⟨M,N⟩
∥M∥2F

. (9)

Since A2i−1 and A2i are attention maps with non-negative elements and row sums equal to 1, and
αi is computed to minimize the reconstruction error, in practice αi often falls within the interval
[0, 1].

By using this linear combination, we can effectively squeeze the attention maps from two heads
into one, aligning the teacher’s attention maps with those of the student model that has fewer heads,
thus facilitating better knowledge transfer during distillation. Progressively we can merge heads into
arbitrary numbers.

4.3 TRAINING OBJECTIVE OF SQUEEZING HEADS DISTILLATION

Attention maps represent discrete categorical distributions. Inspired by logit distillation, we intro-
duce attention temperature to enhance low-probability regions. Consequently, we modify Eq.10 to
incorporate attention temperature:

Ai = softmax(
Qi(Ki)⊤√

dTa

) (10)

where Ta is the attention temperature which is manually set and normally larger than 1.0. The
function of attention temperature is the same as temperature in logit distillation, which is to soften
the output probabilities and make it more uniform, highlighting the relative differences between
tokens more clearly.

Since our method only focuses on the supervised attention maps of teachers, it can be plugged into
all logit-based distillation. The Squeezing Heads Distillation Loss is expressed as:

LSHD = β

L∑
i=1

Hs∑
j=1

LKL(Ã
t
i, A

s
i ) (11)

where LKL is the Kullback-Leibler divergence loss. We add it to the original training loss in our
experiments with beta to control the intensity.

5 EXPERIMENTS

To validate the improvement of our method, we performed several experiments on different gen-
erative transformer models. We trained diffusion transformer models for image generation tasks
and trained various LLMs for both LLM pretraining tasks and supervised fine-tuning tasks. All the
LLM and diffusion generative models selected are transformer models. We apply our method to
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self-attention blocks of all student model layers. We select image generation tasks and LLM tasks
because those two represent generative tasks nowadays since diffusion transformer models use full
attention on the whole image or latent space and LLMs use causal attention to performance in an
auto-regressive manner. Those two represent the most generative methods in two major AIGC fields.

Suppose teacher and student models have different layers of transformer block. In that case, we
select the corresponding layers of the teacher model for the student, e.g. if the teacher has 48 layers
and the student has 24 layers, the supervision of student’s 4th layer will be the teacher’s 8th layer.

5.1 MAJOR RESULTS

Method Params Model Image Res Steps FID-50K↓ IS↑ Prec↑ Rec↑

teacher 130M MDTv2-B/2 256x256 400k 35.77 54.01 0.48 0.62

w/o KD 33M MDTv2-S/2 256x256 400k 44.87 37.29 0.47 0.49
KD 33M MDTv2-S/2 256x256 400k 38.73 43.43 0.50 0.48
KD+SHD 33M MDTv2-S/2 256x256 400k 36.95 46.27 0.52 0.48

teacher 675M MDTv2-XL/2 256x256 3500k 1.58 314.73 0.79 0.65

w/o KD 33M MDTv2-S/2 256x256 500k 42.33 40.38 0.48 0.49
KD 33M MDTv2-S/2 256x256 500k 33.08 49.23 0.52 0.57
KD+SHD 33M MDTv2-S/2 256x256 500k 32.27 50.54 0.53 0.57

Table 1: Performance comparison for image generation on ImageNet-1K. The detailed definitions
of metrics Prec and Rec can be found in Kynkäänniemi et al. (2019).

Image Generation. We did several experiments on MDTv2 models under different model sizes,
as shown in 1. We select MDTv2-S/2-MDTv2-XL/2, and MDTv2-S/2-MDTv2-B/2 as the student-
teacher pairs for different model sizes. With simple KD, our methods can improve FID and IS
scores by a huge margin on both settings, achieving a 36.95 FID score when training 400k steps
for MDTv2-S/2 model. It shows that with different teacher model size and large capacity gaps, our
method still benefits the student model’s representation learning.

Pretraining on LLM. The results after fine-tuning are reported in Tab.2. We can observe that
extremely small models like BabyLLaMA (58M) still can gain improvement from our method in
this experiment. The performance of our method beats models of twice our size on several evalu-
ation datasets like SST-2, MRPC, QQP and MNLI-mm, while performance on other datasets also
improved compared to our baseline. We can see that our method to imitate attention maps in the
pretraining shows great generalization capability on downstream tasks.

Model OPT(base) T5(base) BabyLLaMA BabyLLaMA+SHD
Size 125M 222M 58M 58M

CoLA(MCC) 15.2 11.3 15.6 17.5(+1.9)
SST-2 81.9 78.1 85.8 88.4(+2.6)
MRPC(F1) 72.5 80.5 81.6 82.0(+0.4)
QQP(F1) 60.4 66.2 82.8 83.1(+0.3)
MNLI 57.6 48.0 72.9 72.8(-0.1)
MNLI-mm 60.0 50.3 73.7 74.0(+0.3)
RTE 60.0 49.4 58.6 58.6(+0.0)
BoolQ 63.3 66.0 59.8 61.7(+1.9)
MultiRC 55.2 47.1 54.6 59.0(+4.4)
WSC 60.2 61.4 53.0 56.6(+3.3)

Table 2: Fine-tuning accuracy (if not specified), MCC score or F1 score evaluated by SuperGLUE
on language pretraining task.
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Supervised Fine-tuning on LLM. We evaluated our method in Tab.3. Our method beats our base-
line MiniLLM[Gu et al. (2024)] by 0.8% on DollyEval. This is the major metric we look on since
the models are trained on Dolly. Our model also gains huge improvement on other test sets like S-
NI UnNI, achieving SoTA in the same model and training settings. The experiment on SelfInst also
shows that our method can benefit the student’s representations even when the student is better than
the teacher’s performance (14.3->15.2). The knowledge transferred by SHD is the ability to model
long-range dependencies. The student can always benefit from a model with more parameters, even
if it is not optimized to its full state (in our experiment, the teacher only trained with SFT). We also
show our method over three different student model sizes. We have made almost all improvements
except on S-NI with the 760M student model. The teacher is not well trained compared to the stu-
dent in this case.On relatively modern and large models like LLaMA-13B and LLaMA-7B, our SHD
still can boost the performance, gaining 1.1% improvement on UnNI.

Method Head Params DollyEval SelfInst VincunaEval S-NI UnNI

Teacher(GPT2-XL) 25 1.5B 27.6 14.3 16.3 27.6 31.8

SFT w/o KD 12

120M

23.3 10.0 14.7 18.5 18.5
KD 12 22.8 10.8 13.4 16.4 22.0
MiniLLM 12 24.6 13.2 16.9 25.1 25.6
MiniLLM+SHD 12 24.8 13.6 18.0 25.1 25.7

SFT w/o KD 16

340M

25.5 13.0 16.0 25.1 32.0
KD 16 25.0 12.0 15.4 23.7 31.0
MiniLLM 16 25.4 14.6 17.7 27.4 31.3
MiniLLM+SHD 16 26.2 15.2 17.7 28.1 32.2

SFT w/o KD 20

760M

25.4 12.4 16.1 21.5 27.1
KD 20 25.9 13.4 16.9 25.3 31.7
MiniLLM 20 26.4 15.9 17.7 29.2 33.0
MiniLLM+SHD 20 26.5 16.2 18.2 28.9 33.5

Teacher(LLaMA-13B) 40 13B 29.7 23.4 19.4 35.8 38.5

MiniLLM 32 7B 28.9 23.1 19.4 34.8 37.4
MiniLLM+SHD 32 29.1 23.4 20.0 34.9 38.5

Table 3: Performance Comparison of distillation of LLM on various Test sets, supervised fine-tuning
on Dolly.

Image Classification on ImageNet-1k.To show the effectiveness of our methods, we also did image
classification to prove our method can be applied to discriminative tasks. We followed the original
settings of ViTKD[Yang et al. (2022)] and NKD[Yang et al. (2023)], which focuses on knowledge
distillation of ViT-ViT teacher-student training pairs. All experiments are conducted on ImageNet-
1k in the Table 4. The teacher model is DeiT3-small and the student model is Deit-Tiny. The
result of ViTKD+NKD+SHD also shows the compatibility of SHD with FD methods, improving
the performance of ViTKD+NKD by 0.42% on a strong baseline.

Method Model Head Epochs Top1 Acc

Teacher DeiT3-small 6 300 80.69

Baseline (without KD) DeiT-Tiny 3 300 74.43
Baseline+SHD DeiT-Tiny 3 300 75.38

ViTKD+NKD DeiT-Tiny 3 300 77.79
ViTKD+NKD+SHD DeiT-Tiny 3 300 78.21

Table 4: Performance Comparison for image classification on ImageNet-1K.
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5.2 ABLATIONS AND ANALYSIS

Comparison with other representation distillation methods. Traditional Knowledge distillations
always solve the dimension-alignment problem by using projectors or distilling the relations between
features which is called Feature Distillation (FD). The projector aligns the student’s feature to the
teacher’s dimension by a single linear projection or an MLP, causing more training parameters to
train. The other previous works distill the relations of the features among tokens or spatial-wise
pixels. The most common way is to calculate the self-correlations:

Cor =
FFT

∥F∥∥F∥
, Lcor = 1− Sim(Cort, Cors) (12)

where F is the intermediate feature and Sim is any similarity score measured by some function. We
did comparison experiments in Tab.5. We did hyperparameters searching like our method did and
their best results are reported. The details of training speed, training parameters, and FLOPs are in
the Appendix. We also compared one of the SoTA FD methods: VkD[Miles et al. (2024)]. We also
did an ablation study in which we used similarities of attention maps between all heads and selected
the pairs of heads of maximum similarity to merge heads on training set before training. We call it
”head matching” in the Table 5. Our method surpasses those two methods on all evaluation datasets
except SelfInst results, which are the same, without extra training costs.

Method DollyEval SelfInst VincunaEval S-NI UnNI

MiniLLM 25.4 14.6 17.7 27.4 31.3
MiniLLM+FD+Projector 25.8 15.2 17.6 27.3 31.4
MiniLLM+FD+self correlation 25.9 15.2 15.8 26.8 31.7
MiniLLM+VkD 26.0 14.9 17.7 27.1 31.0
MiniLLM+SHD 26.2 15.2 17.7 28.1 32.2
MiniLLM+SHD+head matching 26.3 15.3 18.2 28.1 32.3

Table 5: Performance Comparison with other representation distillation methods.

We show that forcing students to only imitate the relations or the features can cause bad harm to
model performance as well, resulting in a degradation of VincunaEval and S-Ni datasets, while our
method can benefit from attention relations. This is also proven mathematically by our method part.
Our method has the lowest loss of teachers knowledge transfer in the measurement of output.

Hyperparameters. The results of different hyperparameters are listed in Tab.6 on image generation.
Our method is not very sensitive to hyperparameters and does not require many maunal settings.
Also, the attention temperature we propose can improve the results as well.

temperature beta FID IS precision Recall
1 0.5 37.73 45.25 0.51 0.49
1 2.0 38.64 44.16 0.50 0.48
1 5.0 39.39 43.86 0.49 0.49
2 2.0 36.95 46.27 0.51 0.48

Table 6: Performance comparison for different hyper-parameters for image generation on ImageNet-
1K for SHD.

Is SHD better than hard selecting on heads? Hard selecting is another way to squeeze heads from
teacher to student. We did an experiment in which we randomly selected Hs heads from teacher
models before training and used the attention maps of those heads to supervise the student’s training.
The results are reported in Tab.7 on image generation. The performance dropped drastically with
hard selecting several heads compared to KD baselines. This shows that the dropping heads of
teachers can be very important for students. The capacity gap from teacher to student can not be
ignored for hard selecting.

9
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FID IS precision Recall
w/o KD 42.33 40.38 0.48 0.49
KD 38.73 43.43 0.50 0.48
KD+hard select 40.03 42.22 0.50 0.48
KD+SHD 36.95 46.27 0.52 0.48

Table 7: The performance comparison on ImageNet-1K for Image Generation of selecting different
attention maps source.

This experiment also indicates the priority of our method over hard selection. If only part of the
teacher knowledge has been transferred among heads, it can be harmful to the student. Our method
of soft merging is a better option.

Is SHD better than constant merging on heads? SHD always calculates sample-wise α for differ-
ent heads and layers. A naive thought is to merge the teacher’s heads by simple constant α = 0.5. We
also did ablation studies for this experiment in Tab.8. It achieves comparable results with the original
MiniLLM baseline, but also cannot improve the performance like SHD does. SHD is sample-wise
and more fine-grained.

Method DollyEval SelfInst VincunaEval S-NI UnNI

MiniLLM 25.4 14.6 17.7 27.4 31.3
MiniLLM+constant merge 25.5 15.0 17.7 27.1 31.5
MiniLLM+SHD 26.2 15.2 17.7 28.1 32.2

Table 8: Comparison of merging heads. ”Constant merge” indicates a combination of the teacher’s
attention maps via different heads in a still constant manner. Our method is sample-wised.

Does SHD works independently?We did this ablation study on discriminative tasks in Table.4. We
used SHD independently and the result still improved 0.95% without logits KD.

6 CONCLUSION

In this work, we introduce the Squeezing-Heads Distillation (SHD) method, a novel approach to
knowledge distillation that addresses the challenges posed by head misalignment and redundancy
in multi-head attention mechanisms of transformer models. Our method effectively compresses
multiple attention maps into a single map through a linear search process, enabling better alignment
and knowledge transfer between models with different numbers of heads. This approach not only
enhances the flexibility and efficiency of the distillation process but also improves the performance
of student models across various generative tasks.

We validate the effectiveness of SHD through comprehensive experiments on both image generation
and language pretraining tasks. Our results demonstrate significant improvements in key metrics
such as FID, IS, and accuracy, outperforming traditional knowledge distillation methods and other
representation distillation techniques. The proposed method also proves to be robust across different
model sizes and architectures, showing its general applicability.

Furthermore, our ablation studies confirm that SHD provides a more stable and efficient improve-
ment compared to hard selecting or constant merging of heads. The introduction of attention temper-
ature further enhances the distillation process by softening the output probabilities, leading to better
performance in student models. Notably, SHD achieves these improvements without introducing
additional training parameters or significantly impacting training speed.

In conclusion, the Squeezing-Heads Distillation method offers a practical and effective solution for
optimizing knowledge distillation in transformers, enabling the deployment of smaller, more effi-
cient models without compromising on performance. This work paves the way for further research
into flexible and efficient distillation techniques that can adapt to the diverse architectures of modern
large-scale models.
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A APPENDIX

Figure 2: Distribution of α from different layers of GPT2-XL. Same color represents same head.

Training details. For image generation tasks, we used the families of MDTv2 architecture which
is a variant of DiT models. We use it to prove that our method is compatible with different kinds
of methods. We used the MDT-B/2 model as the teacher model and MDT-S/2 model as the student
model, which are both trained on ImageNet-1k with a resolution of 256x256, using a 256 batch size
and Adan optimizer. Other settings are also aligned with the original MDT and DiT. The β we set
on image generation tasks is 2.0.

For language pretraining tasks, we trained LLaMA models on the BabyLM dataset. We compare
our method with BabyLLaMA. BabyLLaMA averaged two teacher model logits as an ensembled
teacher. The teacher models used are GPT-2 and LLaMA. Experiments are conducted only on
one GPU. The models are trained for 6 epochs with a batch size of 256 and for a learning rate of
2.5 × 10−4. We take one teacher’s attention map for squeezing head distillation. We followed all
the settings of BabyLLaMA. The β we set is 1.0. We retrained BabyLLaMA with BabyLM with the
original settings and official code and reevaluated the metrics.

For supervised fine-tuning tasks, we follow the setting of MiniLLM. we randomly selected 12500
samples for training, 1000 samples for validation, and 500 samples for testing from databricks-dolly-
15k dataset, respectively. The other training recipes are the same as MiniLLM except batchsize=16
in the LLAMA-13B-7B pairs due to our limited computation resources.. We retrained all MiniLLM
models with the official reproducible code. The metrics are averaged among 5 runs with 5 random
seeds.

Evaluation. We evaluate image generation with common metrics: Frechet Inception Distance(FID),
Inception Score (IS), Precision and Recall. The major metric is FID since it evaluates both diversity
and fidelity. The results are evaluated with 250 DDPM sampling steps and 50000 samples generated
with classifier-free guidance 3.8.

We evaluate LLM pretraining with SuperGLUE as the fine-tuning benchmarks. After pretraining
with BabyLM dataset, the models are then finetuned with superGLUE. All the fine-tuning follows
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the setting of BabyLLaMA to avoid overfitting. The metrics we used are the Matthews correlation
coefficient (MCC), F1 score, and accuracy.

As for supervised fine-tuning tasks, we followed MiniLLM using 5 instruction-following datasets:
DollyEval, SelfInst, VicunaEval, S-NI, and UnNI. Rouge-L score is the main metric for evaluating
all models. It can measure the precision of the model’s generation.

Our method is compared to previous method in Fig.A.

Figure 3: Comparison of typical representation distillation methods and our method. (a) Typical
distillation uses a projector to align student features with teacher features, introducing extra parame-
ters. (b) Typical distillation uses relations like self-correlations to align feature dimensions. (c) Our
method, SHD, uses attention maps and outputs to squeeze attention maps, aligning with the student
and ensuring minimal loss of knowledge transfer.

Training Speed Params

MiniLLM 1.41s 340M
MiniLLM+FD+Projector 1.69s 394M
MiniLLM+FD+Self correlation 1.49s 340M
MiniLLM+VkD 1.55s 344M
MiniLLM+SHD 1.41s 340M

Table 9: Training time cost of SHD and other FD-based methods with GPT2-Medium.

Loss function selection. We did ablation studies over loss function in Tab.10. KL performs better
than MSE. We believe this is predictable since the same phenomenon happens in traditional logits
supervision. And the performance always gets improved for whatever loss function is, proving
SHD’s positive impact.

Loss Function FID IS precision Recall
KL 36.95 46.27 0.5142 0.4843
MSE 38.04 44.34 0.5048 0.4921

Table 10: Comparison on different loss functions.

Training speed of SHD. Our method only computes the α in a batch-wise manner during training,
which has a minor impact on the training speed of the baselines. We measured the training speed
of MiniLLM and MiniLLM with SHD in Tab.9. We used 16 NVIDIA V100 GPUs to test the time.
The time influence of SHD is negligible. Comparing to extra training parameters and extra training
time like FD or VkD, the improvement of SHD is basically free.
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Distribution of α in SHD. We sampled all training data (12.5k samples) from the Dolly dataset and
calculate all α by GPT2−XL to squeeze to 16 heads from 25 heads in total. The visualization of the
α is in Fig.2. We can show that α always falls in the range of [0,1] for a pre-trained teacher model,
making our method very stable in training, since it cannot provide any negative supervision of the
attention maps. The distribution varies among different layers. Some certain heads like ”Head 8”
focus on one head in shallower layers and the other in deeper layers, indicating that our method can
distinguish which head contains more useful information after squeezing and dynamically change
the way of merging among layers.

Complexity of SHD. As illustrated in our method section, the complexity of SHD is similar to the
attention mechanism, leading to a O(N2) complexity. Most intermediate computation are already
done within original multi-head attention.
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