Under review as a conference paper at ICLR 2026

BEHAVIORAL EMBEDDINGS OF PROGRAMS: A QUASI-
DYNAMIC APPROACH FOR OPTIMIZATION PREDIC-
TION

Anonymous authors
Paper under double-blind review

ABSTRACT

Learning effective numerical representations, or embeddings, of programs is a
fundamental prerequisite for applying machine learning to automate and enhance
compiler optimization. Prevailing paradigms, however, present a dilemma. Static
representations, derived from source code or intermediate representation (IR), are
efficient and deterministic but offer limited insight into how a program will be-
have or evolve under complex code transformations. Conversely, dynamic repre-
sentations, which rely on runtime profiling, provide profound insights into perfor-
mance bottlenecks but are often impractical for large-scale tasks due to prohibitive
overhead and inherent non-determinism. This paper transcends this trade-off by
proposing a novel quasi-dynamic framework for program representation. The core
insight is to model a program’s optimization sensitivity. We introduce the Program
Behavior Spectrum, a new representation generated by probing a program’s IR
with a diverse set of optimization sequences and quantifying the resulting changes
in its static features. To effectively encode this high-dimensional, continuous spec-
trum, we pioneer a compositional learning approach. Product Quantization is em-
ployed to discretize the continuous reaction vectors into structured, compositional
sub-words. Subsequently, a multi-task Transformer model, termed PQ-BERT, is
pre-trained to learn the deep contextual grammar of these behavioral codes. Com-
prehensive experiments on two representative compiler optimization tasks—Best
Pass Prediction and -Oz Benefit Prediction—demonstrate that our method outper-
forms state-of-the-art static baselines. Our code is publicly available at[ﬂ

1 INTRODUCTION

Applying machine learning to automate
and enhance compiler optimization has
emerged as a promising direction to un-
lock the full potential of modern complex

t
hardware [Ashouri et al.| (2018)); [Pan et al. ﬁ 5 s
&= Model —
e
)

|

Specific Tasks

LLVM IR Code
Program Classification

Pass Prediction

(2025azb); |Chen et al.| (2021); |Ansel et al.
(2014); Deng et al.| (2025). The success 2
of this paradigm hinges on a fundamen- Luva compiler
tal prerequisite: learning an effective nu- f]
merical representation, or embedding, of a !

. .C Program Embeddings
program. A powerful program embedding
acts as a universal semantic interface, cap-)))
turing the essential properties of the source F1gpr§ 1:. Example of machine learning for compiler
code in a dense vector. As illustrated in OPtimization task.
Figure |1} such representation can serve as a foundational component for a diverse array of high-
impact downstream tasks, ranging from optimization prediction and code classification to bug de-
tection and performance analysis.

Bug Detection

'Code: https://anonymous.4open.science/r/PREP-311F/

https://anonymous.4open.science/r/PREP-311F/

Under review as a conference paper at ICLR 2026

However, learning a representation that is both rich in semantics and practical for real-world compil-
ers presents a fundamental dilemma, forcing a choice between two prevailing but flawed paradigms:
(1) Static Representations: This dominant approach extracts features from various static pro-
gram representations, including source code, intermediate representation (IR), abstract syntax trees
(ASTs), and control or data flow graphs (CFGs/DFGs) |Wei et al.| (2020); Hellendoorn et al.| (2019);
Guo et al.|[(2020). Methods range from handcrafted feature vectors like Autophase Haj-Ali et al.
(2020) to deep learning models that operate on sequences (e.g., IR2Vec [VenkataKeerthy et al.
(2020)) or graph structures |Cummins et al. (2021a); |Guo et al.| (2020). The primary advantage
of static methods is their efficiency and determinism. However, their core limitation is their myopic
nature: they describe what a program is, structurally, but offer limited insight into how it will be-
have or evolve under complex code transformations. (2) Dynamic Representations: An alternative
approach involves profiling the program during execution to collect runtime features, such as hard-
ware performance counters (HPCs) Xu et al.|(2023). These representations offer profound insights
into a program’s true performance bottlenecks. Nevertheless, they are often impractical for large-
scale tasks due to their prohibitive overhead and inherent non-determinism. This trade-off between
the efficiency of static analysis and the insightfulness of dynamic profiling has created a significant
bottleneck, limiting the capabilities of current learning-based compilers.

In this work, we transcend this dilemma by proposing a novel quasi-dynamic framework for program
representation. Our core insight is that an effective representation for optimization can model a pro-
gram’s optimization sensitivity—its intrinsic propensity to react to different code transformations.
We introduce the Program Behavior Spectrum, a new representation generated by probing the
program’s IR with a set of diverse optimization sequences and quantifying the resulting changes in
its static features. To ensure scale-invariance, these reactions are captured using a logarithmic rela-
tive difference. We then pioneer a compositional learning approach to encode this high-dimensional
spectrum: Product Quantization (PQ) discretizes the continuous reaction vectors into structured
sub-words, and a multi-task Transformer model (PQ-BERT) is pre-trained to learn their deep con-
textual grammar.

Our main contributions are threefold:

* We are the first to propose a quasi-dynamic program representation, the Behavioral Spec-
trum. It captures a program’s optimization sensitivity by measuring changes in static fea-
tures under carefully designed optimization probes.

* We present a compositional encoding methodology using Product Quantization (PQ) and a
tailored multi-task Transformer (PQ—-BERT). This combination effectively learns the deep
grammar of program behavior while addressing the scale-vs-precision trade-off in repre-
sentation learning.

* We introduce a program embedding specifically designed for compiler optimization, and
demonstrate through comprehensive experiments that our method, Behavioral-PQ,
outperforms other baselines on two representative compiler optimization tasks.

2 METHODOLOGY

Our proposed framework learns program representations by modeling their quasi-dynamic reactions
to compiler optimizations. The process consists of three main stages, as illustrated in Figure [2}
(1) Behavioral Spectrum Extraction, where we quantify a program’s optimization sensitivity;
(2) Structured Vocabulary Construction, where we encode the continuous spectra into discrete,
compositional vocabulary; and (3) Behavioral Grammar Learning, where a Transformer model
learns the deep contextual relationships within these vocabulary.

2.1 STEP 1: BEHAVIORAL SPECTRUM EXTRACTION

The foundation of our approach is to represent a program not by its static structure alone, but by its
Behavioral Spectrum: a high-dimensional footprint that characterizes its reactions to a diverse set of
optimization transformations.

Under review as a conference paper at ICLR 2026

(a) - Behavioral Spectrum Extraction {b) - Structured Vocabulary Construction (c} - Behavioral Grammar Learning

[69, 230, 219, 206, 170, 124, 74, 17, 191, 130, 250] [69, 230, 219, [MASK], 170, 124, 74, 17, 191, 130, 250]
[67, 89, 181, 96, 189, 212, 150, 156, 146, 212, 111] [67, 89, 181, 96, 189, 212, [MASK], 156, 146, 212, 111]
[128, 17, 156, 187, 83, 231, 131, 161, 27, 114, 122] [128, 17, [MASK], 187, 83, 231, 131, 161, 27, 114, 122]
1, %1, [239, 62, 96, 62, 212, 176, 104, 167, 112, 179, 235] [239, 62, 96, 62, 212, 176, 104, 167, 112, [MASK], 235]
%4, %20, [59, 177, 136, 115, 165, 141, 87, 82, 232, 114, 149] [59, 177, 136, 115, [MASK], 141, 87, 82, 232, 114, 149]
= add nsw 132 %21, 1,
%phitmp = sext %22 to
br label %L.LB1 319

Input (P, M) }

/ Sub-Embeddings
--aggres \pply Pass Pipeline 1
--simplifycfg Probe)

--gun-hoist
--load-store-vectorizer Embedding Embedding | Embedding Embedding
--elim-avail-extern 1 1 2 ™-1} M

--early-cse-memssa 5 I T

Crenareg -0 : v

--aggressive-instcombine - @ Positional
Encoding

O0-00
Candidate Pass Pipokes Transformer Encoder
Extract Behavioral Spectrum

Behavioral Spectrum Custering
3 13 1)

Linear Linear
M-1} M

{ 3 1

13
1 2 M-1} M

{1 LLVM IR Code for Training T Feature Vector Clustering Index [

[©.36, 0.56, .78, 0.47, 0.23, 0.94, 0.28,

-36, 0.56, 0.78, 0.47, 0.23,

ﬁ
—
g
-

6
1
.92
5
4,

o
.14, ©.29, .66, 0.58,

[
[
[
[
[

ssosos

Figure 2: The overall architecture of our program representation learning framework. It transforms
LLVM IR into a Behavioral Spectrum, encodes it using Product Quantization, and learns its under-
lying grammar via a pre-trained Transformer model.

2.1.1 PROBING PROGRAM BEHAVIOR.

To elicit a program’s behavior, we apply a set of carefully designed optimization sequences, termed
as probes, to its LLVM IR. The choice of probes is critical: random or single-pass selections cannot
reveal the nuanced interactions present in realistic compilation.

We construct probes systematically in a data-driven way. First, each program in the pre-training
corpus is represented by its baseline Autophase feature vector, h,i,. We adopt Autophase because
it is a 56-dimensional feature set (e.g., counts of arithmetic instructions, basic blocks, and branches)
that provides a stable summary of program structure, and its changes under optimization directly
capture behavioral variation. We cluster these representations into P groups, under the assumption
that programs with similar structural features exhibit similar optimization sensitivities Haj-Ali et al.
(2020). For each cluster, we employ a heuristic search |Garciarena & Santanal (2016) (e.g., genetic
algorithm or greedy strategy) to find one fixed-length sequence that maximizes the average instruc-
tion count reduction across the cluster. Instruction count reduction is chosen as the optimization
objective because it is a reliable indicator of code size improvement.

This process yields P distinct sequences, each tuned to a category of program structures. The
resulting probe set is both powerful, since each probe is empirically optimized, and diverse, since
different clusters give rise to different strategies. For any program p, we then compute its behavioral
spectrum by first extracting its baseline vector horig € R®®, and then applying each probe i €
1,..., P to obtain optimized versions p} with corresponding vectors hopt, i. Comparing horig with
hgp,; across all probes produces a rich spectrum of behavioral transformations.

2.1.2 SCALE-INVARIANT REACTION QUANTIFICATION

A significant challenge in comparing program behaviors is their inherent scale sensitivity. A trans-
formation that removes 100 instructions may be monumental for a small kernel but trivial for a
million-line application. To address this, we quantify the reaction not as an absolute difference, but
as a logarithmic relative difference, ensuring a scale-invariant representation. For each feature
dimension j € {1,...,56}, the reaction d; ; for probe i is calculated as:

d; ; = log(1 + max(0, hopt,i,;)) — log(1 + max(0, horig,i,5)) (1)

where max(0, -) ensures that the input to the logarithm is non-negative, robustly handling poten-
tial minor negative values arising from feature extraction artifacts. The log(1 +) transformation
(or 1loglp) gracefully handles zero-valued features and compresses the effect of large absolute
changes, focusing on multiplicative, order-of-magnitude shifts. The complete Behavioral Spectrum
for program p is thus a matrix S, € RF*56 where each row is a scale-invariant reaction vector.
This corpus of spectra forms the basis for all subsequent learning.

Under review as a conference paper at ICLR 2026

2.2 STEP 2: STRUCTURED VOCABULARY CONSTRUCTION VIA PQ
2.2.1 MOTIVATION FOR DISCRETIZING BEHAVIORAL SPECTRA

The Behavioral Spectrum, S,,, provides a rich, continuous representation of a program’s optimiza-
tion sensitivities. However, to learn the complex grammar and long-range dependencies within this
P-step sequence, we need to leverage powerful sequence models like Transformers. These models
traditionally operate on discrete tokens, necessitating a bridge from our continuous vector space to
a discrete vocabulary.

The motivation for this discretization stems from a core hypothesis in compiler optimization: gen-
eralization. A given optimization sequence often elicits a similar zype of behavioral change across
a range of different programs. For example, a loop-unrolling pass might consistently produce a re-
action characterized by an increase in arithmetic instructions and a decrease in control-flow instruc-
tions, regardless of the specific program’s details. It is therefore desirable to group these similar
continuous reaction vectors into a finite set of discrete behavioral archetypes or words. Clustering
is a natural approach for discovering such archetypes.

However, a naive hard clustering method, which assigns each vector to a single, indivisible cluster
ID, may suffers from information loss. A vector lying on the boundary between two clusters is
forced into a single choice, losing the valuable information that it shares characteristics with both
archetypes. Furthermore, this approach struggles to capture the fine-grained internal structure of
the 56-dimensional reaction vectors. To overcome these limitations, we employ Product Quanti-
zation [Jegou et al.|(2010), a structured vector quantization technique that performs clustering in a
more granular, compositional manner.

2.2.2 PQ FOR STRUCTURED BEHAVIORAL ENCODING

The core insight of PQ is to abandon the search for monolithic, high-dimensional prototypes and
instead learn a set of low-dimensional, reusable building blocks or primitives. It posits that any
complex reaction vector can be approximately reconstructed by composing these simpler primitives.
This is analogous to representing a complex color not as a single entry in a giant color palette, but
as a combination of fundamental R, G, B values.

To implement this, PQ decomposes each D = 56 dimensional reaction vector d into M disjoint
sub-vectors. In our work, we choose M = 8, resulting in 8 sub-vectors {di,...,dg}, each of
dimension Dy, = D/M = 7. A separate, small-scale K-Means quantizer, g;, is then trained for
each of the M subspaces Ahmed et al.|(2020); Ravuri & Amarasinghe|(2025). Each quantizer ¢; has
its own codebook (or sub-vocabulary) C; = {c; 1, ..., ¢; k- } containing k* = 256 low-dimensional
centroids (where k£* corresponds to npys = 8).

An arbitrary reaction vector d is then encoded by quantizing each of its sub-vectors d; indepen-
dently:

. 2
C; = qL(d’L) = arg mln ||d1 — Cj,,j” (2)
J
The final representation is a compositional code: a tuple of M = 8 integer IDs, ¢ = (¢, ca, . .., C3),
where ¢; € {0,...,255}. The original vector d can be approximately reconstructed by concatenat-
ing the corresponding centroids: d = [C1,¢,,C2,c55 - - - » C8,c5)-

This compositional approach allows us to represent a vast number of distinct vectors (a virtual
vocabulary of size 256%) with a compact set of learned centroids (8 x 256), thereby retaining fine-
grained structural information with minimal loss.

2.3 STEP 3: LEARNING THE BEHAVIORAL GRAMMAR WITH PQ-BERT

The PQ step transforms each program’s continuous Behavior Spectrum into a structured, discrete
article of size P x M. This encoding preserves fine-grained information but does not yet capture
the rich contextual dependencies between the P different reactions. For instance, a program’s strong
reaction to a loop-unrolling probe is often correlated with its reaction to a vectorization probe. To
effectively learn this deep, underlying grammar of compiler optimization behavior, we require a
sufficiently powerful and expressive sequence model.

Under review as a conference paper at ICLR 2026

We design a Transformer-based model, which we call PQ-BERT, tailored to our compositional
codes. Standard language models like BERT are trained to predict a single token from its context.
However, our PQ representation is multi-faceted, where each reaction is described by M sub-word
IDs. A naive approach might concatenate these sub-words into a longer sequence, but this may
disrupt the inherent synchrony of the M subspaces. Therefore, our method is to treat the prediction
of the M sub-word IDs as a multi-task learning problem, where the model is forced to learn the
intricate correlations between subspaces simultaneously. We pre-train PQ-BERT using a multi-task
Masked Language Model (MLM) objective.

Model Architecture. The PQ-BERT architecture is designed to process the P x M matrix of com-
positional codes. The input to the model is a sequence of P reaction codes, C = {cy,cs,...,cp},
where each ¢; = (¢g1,...,¢0) is a tuple of M sub-word IDs. The model first projects these
discrete codes into a continuous vector space using M independent sub-embedding layers. For each
code c;, the i-th sub-embedding layer, E;, maps the sub-word ID ¢, ; to a low-dimensional vector
e;; = E;(ct;). These M sub-embeddings are then concatenated to form a single high-dimensional
embedding x; = [e;1;€42;...; € 0] for the ¢-th reaction, where its dimension is Dioder = 256.
This sequence of P fused embeddings, X = {xi,...,Xxp}, is then augmented with positional
encodings and processed by a standard multi-layer Transformer Encoder |[Vaswani et al,| (2017).
The encoder uses self-attention to produce a sequence of contextually-aware output representations
H = {h;,...,hp}. Finally, to facilitate the multi-task objective, the model employs M indepen-
dent linear output heads. The i-th head, O;, takes the entire output sequence H and produces a
distribution of logits over the k* possible sub-words for the i-th subspace.

Pre-training Task and Objective Function. We pre-train PQ-BERT using a multi-task MLM
objective. Let C be the set of all P x M code sequences in our corpus. During training, for each
sequence C, we randomly select a set of indices Zy,,s« to be masked, which constitutes approximately
15% of the P x M total sub-word positions. The masked input sequence is denoted as Cpagkeq- The
model’s objective is to predict the original sub-word IDs, C,,, at these masked positions.

The total loss £ is defined as the sum of the average cross-entropy losses from all M output heads,
calculated only over the masked positions. For a single sequence, the loss is:

M

1
L) =) = D ~10gP(cti|Cusca) 3)
i—1 |Imask,i| (t,3)
= 7Z)€Zmask,1

where Z,q,; are the masked positions corresponding to the i-th subspace, and the probability
P(ct,i|Cmasked) 1s computed from the logits produced by the i-th output head O; after a softmax
operation. This multi-task setup forces the model to learn the intricate correlations between differ-
ent subspaces of the reaction vectors. For instance, it might learn that a certain type of reaction in
the first 7 dimensions (e.g., related to scalar instructions) often co-occurs with a specific reaction in
the last 7 dimensions (e.g., related to memory behavior). This process yields a powerful encoder
capable of understanding the deep, compositional grammar of program optimization behavior. The
pre-trained Transformer Encoder part of the model is then used to generate embeddings for down-
stream tasks.

Table 1: Composition of downstream datasets from CompilerGym.

Uncurated Datasets

Type Dataset Train Val Test Curated Datasets
blas—v0 133 28 29 Type Dataset Train Val Test
github-v0 7,000 1,000 0 cbench-v1 0 0 11

Uncurated linux-v0 4,906 1,000 0 Curated mibench-v1 0 0 40
opencv-v(Q 149 32 32 chstone-v0 0 0 12
poj104-vl1 7,000 1,000 0 npb-v0 0 0 121
tensorflow-v0 415 89 90

Total - 19,603 3,149 335

Under review as a conference paper at ICLR 2026

3 EXPERIMENTAL SETUP

Pre-training Dataset. For self-supervised pre-training, we use a dataset of over 220,000 LLVM IR
files constructed for the task of classifying programs by functionalities |Mou et al. (2016). Each file
corresponds to a competitive programming solution, providing rich diversity in algorithmic struc-
tures and computational patterns. This allows the model to acquire general-purpose program seman-
tics that are independent of specific optimization tasks. We train for 30 epochs with a learning rate
of 10~* and batch size of 32.

Downstream Task Datasets. To evaluate transferability, we adopt benchmarks from Compiler-
Gym [Cummins et al| (2021b). Importantly, these benchmarks are entirely different from our pre-
training corpus, ensuring strict out-of-domain evaluation Fursin|(2009); Guthaus et al.|(2001)); Bailey
et al.| (1991)); Hara et al.| (2008)); |Culjak et al.| (2012);/Abadi et al.|(2016). Following the official split,
uncurated benchmarks (e.g., 1inux, github) are used for training, while curated benchmarks
(e.g., cbench, mibench) are reserved for testing. Table [T] summarizes the dataset composition.

Downstream Tasks. We consider two widely studied tasks in compiler auto-tuning: (1) predict-
ing which optimization pass among 124 candidates yields the largest instruction reduction, and (2)
predicting the instruction reduction ratio under the —Oz optimization pipeline. These tasks are rep-
resentative of classification and regression challenges in compiler optimization and capture both
fine-grained and holistic optimization effects. Performance is reported using Top-1/Top-5 accuracy
and Mean Absolute Error (MAE), respectively.

Baselines. We compare against both feature-based and embedding-based methods. Feature-based
baselines include Autophase|Haj-Ali et al.|(2020) (56 handcrafted features) and InstCount (LLVM
instruction opcode counts), which can be used directly without further training. Embedding-based
baselines include IR2Vec |VenkataKeerthy et al.[(2020) and inst2vec |Ben-Nun et al.| (2018)), where
we use their released pre-trained embeddings. Since inst2vec only provides instruction-level em-
beddings rather than whole-program representations, we apply an LSTM encoder to aggregate them
for downstream tasks. In addition, we include the GNN-based ProGraML Cummins et al.| (2021a),
which is pre-trained on the same algorithm classification dataset as ours, ensuring a fair comparison.

Implementation Details. For a fair comparison, all methods are trained on NVIDIA A100 GPUs
under the same optimization settings (Adam with learning rate 1 x 10~#, batch size 128, 100 epochs).
For Best Pass Prediction, the models (except inst2vec) use a two-layer MLP (512 =+ 256 =
124), while the —Oz regression task uses a deeper MLP gradually shrinking from 256 to 1 dimen-
sion. For inst2vec, we directly adopt an LSTM-based model for both downstream tasks, instead
of the MLP used by other methods.

4 EXPERIMENTS

In this section, we present the empirical evaluation of our proposed behavioral embedding,
Behavioral-PQ. Our experiments are designed to answer three key research questions:

RQ1: Does our proposed behavioral representation outperform state-of-the-art static representa-
tions on compiler optimization tasks?

RQ2: What is the contribution of each key component in our framework, such as scale-invariant
quantification and compositional encoding?

RQ3: Does the learned embedding space of our behavioral representation exhibit a meaningful
geometric structure that aligns with the semantics of compiler optimization tasks?

On reporting validation vs. test performance. We report both validation and test results. The
validation set is not used for model selection or hyperparameter tuning; it reflects the original split
and contains programs mostly from the same benchmark families as the training set, leading to
generally higher performance. In contrast, the test set is composed mainly of programs from suites
outside the training data, providing a stricter out-of-domain evaluation. Thus, validation measures
in-distribution generalization, while test primarily assesses cross-domain robustness.

Under review as a conference paper at ICLR 2026

Best Pass Prediction (Accuracy %) -0z Benefit (MAE %) {

100 — —

80

ot

Accuracy (%)
3
MAE (%) (Log Scale)
-

s
S

Best Pass Pred. Best Pass Pred. Best Pass Pred. Best Pass Pred. -0z Benefit (Val Set) -0z Benefit (Test Set)

(T-1 Val Set) (T-5 Val Set) (T-1 Test Set) (T-5 Test Set)

Method
[0 Autophase [InstCount [IR2Vec [inst2vec [ProGraML [0 Ours (Behavioral-PQ)

Figure 3: Performance comparison across two prediction tasks: Best Pass Prediction, evaluated in
terms of accuracy (higher values indicate better performance), and -Oz Benefit Prediction, evaluated
in terms of Mean Absolute Error (lower values indicate better performance).

4.1 MAIN RESULTS: SUPERIOR PERFORMANCE ON DOWNSTREAM TASKS (RQ1)

To evaluate the practical utility and versatility of the learned program representations, we select two
downstream tasks that are central to the field of compiler optimization. These tasks were chosen
to assess two distinct but equally critical capabilities: fine-grained, single-step decision making
(classification) and holistic, long-range performance estimation (regression).

4.1.1 TASK 1: BEST PASS PREDICTION

This is a 124-class classification problem. We evaluate performance using Top-1 and Top-5 accuracy.
Top-1 accuracy measures the percentage of cases where the model’s single highest-probability
prediction is the correct best pass. Top-5 accuracy measures the percentage of cases where the
correct best pass is included within the model’s top five predictions, a metric that reflects the practical
utility of the model in narrowing down the search space for autotuners.

Figure presents the results on both the validation and test sets. Our method, Behavioral-PQ,
achieves a Top-1 accuracy of 64.48% and a Top-5 accuracy of 89.55% on the held-out test set. This
represents a substantial improvement over all baseline methods. Notably, it surpasses the strongest
static embedding baseline, inst2vec (39.27% Top-1), by a large margin of over 25 absolute percent-
age points in Top-1 accuracy. This result strongly suggests that the behavioral spectrum captures
critical information about optimization sensitivity that is not readily available in purely static repre-
sentations.

4.1.2 TASK 2: -Oz BENEFIT PREDICTION

We further evaluate the representations on the task of predicting the benefit of the —Oz optimization
pipeline. This regression task assesses a representation’s ability to model the cumulative effect of
a long sequence of interacting transformations. The results, measured by Mean Absolute Error
(MAE), are presented in Figure[3]

Our Behavioral-PQ method achieves a Mean Absolute Error of 8.19% on the test set, with a
corresponding validation MAE of 2.22%. This is the lowest error among all tested methods. For
comparison, the next best baseline, inst2vec, yields an MAE of 16.23%, while other static repre-
sentations such as IR2Vec and Autophase result in MAEs of 25.40% and 25.92%, respectively. The
performance difference between methods is more pronounced on this task than on the single-pass
prediction task. The results suggest that while static representations can be effective for modeling
immediate, single-pass effects, they are less suited for predicting the outcomes of complex opti-
mization sequences. Our Behavioral Spectrum, by directly encoding the program’s reactions to
such transformations, appears to provide a more effective signal for this type of long-range predic-
tive task.

Under review as a conference paper at ICLR 2026

Table 2: Ablation study results on both downstream tasks. For Best Pass, Top-5 Acc. (%) is reported.
For -0z Pred., MAE (%) is reported. Best test set results for each task are in bold.

Best Pass (Top-5 %) -Oz Pred. (MAE %)

Model Variant

Validation Test Validation Test
Ours (KMeans) 98.48 93.43 3.19 8.24
Ours (No-Relative) 99.05 94.33 2.81 10.96
Ours (No-Transformer) 98.73 87.46 2.31 10.08
Ours (Behavioral-PQ, Full) 99.08 89.55 2.22 8.19

4.2 ABLATION STUDIES (RQ2)

To answer RQ2, we conduct a series of ablation studies to dissect our framework and validate
the contribution of each key design component. We compare our full Behavioral-PQ model
against three variants: (1) Ours (KMeans), which discards Product Quantization and instead
directly clusters the full behavioral vectors using standard K-Means; (2) Ours (No-Relative),
which uses absolute feature differences instead of the scale-invariant logarithmic ratio; and (3) Ours
(No-Transformer), which removes the Transformer encoder and directly pools the encoded
sub-embeddings.

The results are presented in Table 2] For the Best Pass Prediction task, our full Behavioral-PQ
model achieves the highest Top-5 accuracy on the validation set (99.08%), while the
No-Relative variant achieves the highest Top-5 accuracy on the test set (94.33%). This sug-
gests that for this classification task, coarser-grained signals captured by absolute differences or
monolithic clusters can provide reasonably strong predictive power, although our full model remains
competitive on the test set (89.55%).

For the more complex —Oz Benefit Prediction task, the superiority of our full model is clear. On
both the validation and test sets, Behavioral—-PQ achieves the lowest MAE (2.22% and 8.19%,
respectively), significantly outperforming all ablated versions. Notably, the No-Relative and
No-Transformer variants reach higher MAE values on the test set (10.96% and 10.08%, respec-
tively), confirming that methodscale-invariant quantification is critical for generalization to complex
regression tasksmethod, and that the methoddeep contextual reasoning provided by the Transformer
is essential for modeling long-range optimization effectsmethod.

4.3 EMBEDDING SPACE ANALYSIS (RQ3)

Table 3: Top-1 accuracy (%) of a K-Nearest Neighbors classifier (k=5) on the Best Pass Prediction
task, evaluated on the test set. This metric reflects the semantic structure of each embedding space.

Embedding Method Autophase InstCount IR2Vec inst2vec ProGraML Ours
K-NN Top-1 Acc. (%) 46.57 75.82 74.33 72.15 70.75 79.70

To answer RQ3, we investigate whether our learned embedding space exhibits a meaningful geometric structure
that aligns with the semantics of compiler optimization. A well-structured space should group programs with
similar optimization needs into coherent clusters. We evaluate this property both quantitatively, using a K-
Nearest Neighbors (K-NN) classifier, and qualitatively, through t-SNE visualization.

The results provide converging evidence of our method’s superiority. Quantitatively, we use a K-NN classifier
(k = 5), whose performance directly reflects the local semantic coherence of a space. As shown in Table[3} our
Behavioral-PQ embedding achieves a Top-1 accuracy of 79.70 %, significantly outperforming all baselines,
including the next best method, InstCount (75.82%). Qualitatively, this strong result is visually corroborated
by the t-SNE projection of the embedding spaces, presented in Figure |4, The visualization shows that our
Behavioral-PQ space is the only one to exhibit distinct, well-separated clusters of programs that share the
same optimal pass. For instance, programs for which ~instcombine is optimal are naturally grouped to-
gether. Together, these quantitative and qualitative results suggest that our behavioral approach generally learns
a representation space that is reasonably well-structured and semantically aligned with the task of compiler
optimization.

Under review as a conference paper at ICLR 2026

Behavioral-PQ ProGraML InstCount
40 20
20
~ 20 ~ ~
c c 10 c 10
) =) k]
a0 @ @
c c c 0
o o 0)
£ £ £
a-20 a a-10
-10
_a0 A -20
30 -20 -1o 0 10 20 30 -5 -lo -5 [5 10 15 -20 -10 0 10 20
Dimension 1 Dimension 1 Dimension 1
15 inst2vec IR2Vec Autophase
15
15
10 10
o~ o~ 10 o~
s s s s s °
@ @ @
2 2 o 2 o
g o0 @]
£ E 5 £ s
8 5 a a
-10 -10
-10 . -15 -15
-20 -1s -lo -5 [5 10 -20 -1o0 0 10 20 30 -1s -1o0 -5 0 5 10 15
Dimension 1 Dimension 1 Dimension 1

Figure 4: t-SNE visualization of embedding spaces for the test set. Each point is a program, colored
by its true best optimization pass.

5 RELATED WORK

Program representations for machine learning in compiler optimization have evolved from handcrafted features
to learned embeddings Zhu et al.| (2024)); [Cummins et al.| (2023); |Gong et al.| (2025); [Liu et al.| (2021); |Park
et al.| (2022). Early approaches relied on manually designed IR-level metrics such as Autophase |[Haj-Ali et al.
(2020) and InstCount Lattner & Adve|(2004); Cummins et al. (2021b), which count instructions, branches, and
memory operations. These features are simple and interpretable but lack the expressiveness needed to capture
complex behaviors, limiting generalization across diverse code bases.

Learned representations instead encode semantics automatically. inst2vec |Ben-Nun et al.| (2018) applies
skip-gram models on LLVM IR, capturing local context but ignoring control/data flow. IR2Vec|VenkataKeerthy!
et al.| (2020) extends this via graph-based flow analysis, while ProGraML |Cummins et al.| (2021a)) unifies
control, data, and call graphs in a multigraph for message passing, enabling richer analyses. These approaches
better capture non-local dependencies and are less sensitive to superficial variations. Dynamic profiling has also
proven useful Xu et al.|(2023));|Duesterwald et al.|(2003), recording runtime behaviors such as memory accesses
and input/output values. Such signals complement static embeddings, motivating quasi-dynamic approaches
that integrate both perspectives for more effective optimization.

5.1 LIMITATIONS AND FUTURE WORK

Limitations. Our approach has four main limitations. First, the diversity of optimization probes may be
insufficient for some program classes, although the selected probes maintain reasonably good optimization
performance. Second, inference requires computing P 4 1 Autophase features per program, introducing some
preprocessing overhead (about 0.2s per program), although this remains faster and more stable compared with
collecting full dynamic features. Third, our evaluation is currently focused on compiler optimization tasks,
with limited validation on other downstream tasks such as program classification. Fourth, while behavioral
vocabularies provide interpretability, their semantic meaning and coverage are still limited, which may affect
the generalizability of the representations.

Future Work. Future directions include developing adaptive probe selection strategies to better suit dif-
ferent program classes, reducing preprocessing costs through more efficient Autophase computation, and ex-
ploring limited integration of dynamic information to improve prediction accuracy. Additionally, we plan to
validate the approach on a broader range of downstream tasks beyond compiler optimizations, and to enhance
the interpretability and coverage of behavioral vocabularies for more explainable program representations.

6 CONCLUSION

This work introduces a quasi-dynamic paradigm for program representation, termed as Behavioral Embed-
dings, which characterize programs by modeling their responses to a series of carefully designed optimization
probes. By capturing these optimization-sensitive behaviors, the approach encodes deep semantics that are dif-
ficult to extract from static structure alone. Compared with purely static embeddings, it effectively balances the
efficiency of static analysis with the richer, task-relevant insights typically provided by dynamic profiling. Em-
pirical results demonstrate clear advantages: our model substantially improves accuracy on best pass prediction
and reduces error in optimization benefit prediction.

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

The research presented in this paper adheres to ethical principles for academic work. All program corpora
used for pre-training and evaluation, such as the OJ dataset and CompilerGym benchmarks, are derived from
publicly available, open-source codebases intended for research purposes. We acknowledge that the large-scale
pre-training of our Transformer models requires significant computational resources, which has an associated
environmental impact. We argue that this cost is justified by the foundational nature of this research, which
aims to establish a new, more efficient paradigm for compiler optimization that could, in the long term, reduce
overall computational waste. While our work focuses on benign compiler optimization, we recognize that ad-
vanced program representation techniques could potentially be misused for analyzing or optimizing malicious
software. However, our proposed method does not introduce any capabilities uniquely suited for such applica-
tions beyond those already present in existing program analysis tools. We advocate for the responsible use of
these technologies within the academic and industrial communities.

REPRODUCIBILITY

To support the reproducibility of Behavioral-PQ, we make the complete source code and experimen-
tal configuration publicly accessible. All models, training datasets, and scripts can be found at:
https://anonymous.4open.science/t/PREP-311F/. The repository provides step-by-step instructions for setting
up the environment, running the experiments, and reproducing the results on standard benchmarks. By provid-
ing these resources, we aim to enable independent verification and replication of our findings, fostering further
progress in compiler optimization research.

REFERENCES

Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay
Ghemawat, Geoffrey Irving, Michael Isard, et al. {TensorFlow}: a system for {Large-Scale} machine
learning. In /2th USENIX symposium on operating systems design and implementation (OSDI 16), pp.
265-283, 2016.

Mohiuddin Ahmed, Raihan Seraj, and Syed Mohammed Shamsul Islam. The k-means algorithm: A compre-
hensive survey and performance evaluation. Electronics, 9(8):1295, 2020.

Jason Ansel, Shoaib Kamil, Kalyan Veeramachaneni, Jonathan Ragan-Kelley, Jeffrey Bosboom, Una-May
O’Reilly, and Saman Amarasinghe. Opentuner: An extensible framework for program autotuning. In Pro-
ceedings of the 23rd international conference on Parallel architectures and compilation, pp. 303-316, 2014.

Amir H Ashouri, William Killian, John Cavazos, Gianluca Palermo, and Cristina Silvano. A survey on compiler
autotuning using machine learning. ACM Computing Surveys (CSUR), 51(5):1-42, 2018.

David H Bailey, Eric Barszcz, John T Barton, David S Browning, Robert L Carter, Leonardo Dagum, Rod A
Fatoohi, Paul O Frederickson, Thomas A Lasinski, Rob S Schreiber, et al. The nas parallel benchmarks. The
International Journal of Supercomputing Applications, 5(3):63-73, 1991.

Tal Ben-Nun, Alice Shoshana Jakobovits, and Torsten Hoefler. Neural code comprehension: A learnable
representation of code semantics. Advances in neural information processing systems, 31, 2018.

Junjie Chen, Ningxin Xu, Peiqi Chen, and Hongyu Zhang. Efficient compiler autotuning via bayesian optimiza-
tion. In 2021 IEEE/ACM 43rd International Conference on Software Engineering (ICSE), pp. 1198-1209.
IEEE, 2021.

Ivan Culjak, David Abram, Tomislav Pribanic, Hrvoje Dzapo, and Mario Cifrek. A brief introduction to opencv.
In 2012 proceedings of the 35th international convention MIPRO, pp. 1725-1730. IEEE, 2012.

Chris Cummins, Zacharias V Fisches, Tal Ben-Nun, Torsten Hoefler, Michael FP O’Boyle, and Hugh Leather.
Programl: A graph-based program representation for data flow analysis and compiler optimizations. In
International Conference on Machine Learning, pp. 2244-2253. PMLR, 2021a.

Chris Cummins, Bram Wasti, Jiadong Guo, Brandon Cui, Jason Ansel, Sahir Gomez, Somya Jain, Jia Liu,
Olivier Teytaud, Benoit Steiner, Yuandong Tian, and Hugh Leather. Compilergym: Robust, performant
compiler optimization environments for ai research, 2021b. URL https://arxiv.org/abs/2109.
08267.

Chris Cummins, Volker Seeker, Dejan Grubisic, Mostafa Elhoushi, Youwei Liang, Baptiste Roziere, Jonas
Gehring, Fabian Gloeckle, Kim Hazelwood, Gabriel Synnaeve, et al. Large language models for compiler
optimization. arXiv preprint arXiv:2309.07062, 2023.

10

https://arxiv.org/abs/2109.08267
https://arxiv.org/abs/2109.08267

Under review as a conference paper at ICLR 2026

Chaoyi Deng, Jialong Wu, Ningya Feng, Jianmin Wang, and Mingsheng Long. Compilerdream: Learning a
compiler world model for general code optimization, 2025. URL https://arxiv.org/abs/2404.
16077.

Evelyn Duesterwald, Calin Cascaval, and Sandhya Dwarkadas. Characterizing and predicting program behav-
ior and its variability. In 2003 12th International Conference on Parallel Architectures and Compilation
Techniques, pp. 220-231. IEEE, 2003.

Grigori Fursin. Collective tuning initiative: automating and accelerating development and optimization of
computing systems. In GCC Developers’ Summit, 2009.

Unai Garciarena and Roberto Santana. Evolutionary optimization of compiler flag selection by learning and ex-
ploiting flags interactions. In Proceedings of the 2016 on Genetic and Evolutionary Computation Conference
Companion, pp. 1159-1166, 2016.

Jingzhi Gong, Vardan Voskanyan, Paul Brookes, Fan Wu, Wei Jie, Jie Xu, Rafail Giavrimis, Mike Basios,
Leslie Kanthan, and Zheng Wang. Language models for code optimization: Survey, challenges and future
directions, 2025. URL https://arxiv.org/abs/2501.01277.

Daya Guo, Shuo Ren, Shuai Lu, Zhangyin Feng, Duyu Tang, Shujie Liu, Long Zhou, Nan Duan, Alexey
Svyatkovskiy, Shengyu Fu, et al. Graphcodebert: Pre-training code representations with data flow. arXiv
preprint arXiv:2009.08366, 2020.

Matthew R Guthaus, Jeffrey S Ringenberg, Dan Ernst, Todd M Austin, Trevor Mudge, and Richard B Brown.
Mibench: A free, commercially representative embedded benchmark suite. In Proceedings of the fourth
annual IEEE international workshop on workload characterization. WWC-4 (Cat. No. 01EX538), pp. 3—14.
IEEE, 2001.

Ameer Haj-Ali, Qijing Jenny Huang, John Xiang, William Moses, Krste Asanovic, John Wawrzynek, and
Ton Stoica. Autophase: Juggling hls phase orderings in random forests with deep reinforcement learning.
Proceedings of Machine Learning and Systems, 2:70-81, 2020.

Yuko Hara, Hiroyuki Tomiyama, Shinya Honda, Hiroaki Takada, and Katsuya Ishii. Chstone: A benchmark
program suite for practical c-based high-level synthesis. In 2008 IEEE International Symposium on Circuits
and Systems (ISCAS), pp. 1192-1195. IEEE, 2008.

Vincent J Hellendoorn, Charles Sutton, Rishabh Singh, Petros Maniatis, and David Bieber. Global relational
models of source code. In International conference on learning representations, 2019.

Herve Jegou, Matthijs Douze, and Cordelia Schmid. Product quantization for nearest neighbor search. IEEE
transactions on pattern analysis and machine intelligence, 33(1):117-128, 2010.

Chris Lattner and Vikram Adve. Llvm: A compilation framework for lifelong program analysis & transforma-
tion. In International symposium on code generation and optimization, 2004. CGO 2004., pp. 75-86. IEEE,
2004.

Hongzhi Liu, Jie Luo, Ying Li, and Zhonghai Wu. Iterative compilation optimization based on metric learning
and collaborative filtering. ACM Transactions on Architecture and Code Optimization (TACO), 19(1):1-25,
2021.

Lili Mou, Ge Li, Lu Zhang, Tao Wang, and Zhi Jin. Convolutional neural networks over tree structures for pro-
gramming language processing. In Proceedings of the AAAI conference on artificial intelligence, volume 30,
2016.

Haolin Pan, Hongyu Lin, Haoran Luo, Yang Liu, Kaichun Yao, Libo Zhang, Mingjie Xing, and Yanjun Wu.
Compiler-rl: Towards agentic compiler auto-tuning with reinforcement learning, 2025a. URL https:
//arxiv.org/abs/2506.15701,

Haolin Pan, Yuanyu Wei, Mingjie Xing, Yanjun Wu, and Chen Zhao. Towards efficient compiler auto-tuning:
Leveraging synergistic search spaces. In Proceedings of the 23rd ACM/IEEE International Symposium on
Code Generation and Optimization, pp. 614-627, 2025b.

Sunghyun Park, Salar Latifi, Yongjun Park, Armand Behroozi, Byungsoo Jeon, and Scott Mahlke. Srtuner:
Effective compiler optimization customization by exposing synergistic relations. In 2022 IEEE/ACM Inter-
national Symposium on Code Generation and Optimization (CGO), pp. 118-130. IEEE, 2022.

Chaitanya Ravuri and Saman Amarasinghe. Eliminating hallucination-induced errors in llm code generation
with functional clustering, 2025. URL https://arxiv.org/abs/2506.11021,

11

https://arxiv.org/abs/2404.16077
https://arxiv.org/abs/2404.16077
https://arxiv.org/abs/2501.01277
https://arxiv.org/abs/2506.15701
https://arxiv.org/abs/2506.15701
https://arxiv.org/abs/2506.11021

Under review as a conference paper at ICLR 2026

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz Kaiser,

and Illia Polosukhin. Attention is all you need. Advances in neural information processing systems, 30,
2017.

S VenkataKeerthy, Rohit Aggarwal, Shalini Jain, Maunendra Sankar Desarkar, Ramakrishna Upadrasta, and
YN Srikant. Ir2vec: Llvm ir based scalable program embeddings. ACM Transactions on Architecture and
Code Optimization (TACO), 17(4):1-27, 2020.

Jiayi Wei, Maruth Goyal, Greg Durrett, and Isil Dillig. Lambdanet: Probabilistic type inference using graph
neural networks. arXiv preprint arXiv:2005.02161, 2020.

Xiangzhe Xu, Zhou Xuan, Shiwei Feng, Siyuan Cheng, Yapeng Ye, Qingkai Shi, Guanhong Tao, Le Yu,
Zhuo Zhang, and Xiangyu Zhang. Pem: Representing binary program semantics for similarity analysis via
a probabilistic execution model. In Proceedings of the 31st ACM Joint European Software Engineering
Conference and Symposium on the Foundations of Software Engineering, pp. 401-412, 2023.

Mingxuan Zhu, Dan Hao, and Junjie Chen. Compiler autotuning through multiple-phase learning. ACM
Transactions on Software Engineering and Methodology, 33(4):1-38, 2024.

12

Under review as a conference paper at ICLR 2026

APPENDIX

A DETAILED CASE STUDY ON BLas-v0_.127.LL

To provide a more concrete, micro-level example of our model’s behavior, we conduct a deep-dive analysis into
a successful prediction case: the program blas-v0.127.11 from the test set.

Scenario Overview. For this program, the empirically determined single best optimization pass is
—instcombine. Our Behavioral-PQ based model successfully includes this pass in its Top-5 predic-
tions, with —~instcombine being the highest-ranked (Top-1) recommendation. It is worth noting that a
baseline model relying solely on static Autophase features failed to include —instcombine in its Top-5
predictions for this case. The respective predictions are shown in Table [d]

Table 4: Model predictions for the case study program blas-v0_.127.11.

Item Details
Ground Truth Best Pass -instcombine (ID: 53)
Our Model’s Top-5 —instcombine, —early-cse-memssa, —ipsccp, etc.

Analyzing the Relationship between Predictions and Probe Reactions. To better understand the
information available to our model, we investigate the relationship between the program’s Behavioral Spectrum
and the model’s correct prediction. We first identify which of the 100 probes elicits the strongest reaction. The
reaction strength is defined as the magnitude of reduction in a key Autophase feature (feature #51).

Our analysis shows that Probe #10, a complex 50-pass sequence, elicited the single strongest reaction. We
then cross-reference our model’s Top-5 predicted passes against the composition of this most impactful probe
sequence.

The results of this analysis are detailed in Table 5] We found that the 50 passes within the strongest probe
sequence contain a total of 12 instances of passes that were also present in our model’s Top-5 prediction list.
Most notably, the ground truth best pass, —instcombine, appears 3 times within this single most reactive
probe.

Table 5: Analysis of the alignment between the model’s Top-5 predictions and the composition of
the most reactive probe sequence (Probe #10) for blas-v0.127.11.

Analysis Item Finding

Most Reactive Probe Index Probe #10

Model’s Top-5 Predictions —instcombine (Top-1),
-early-cse-memssa, -ipsccep,

—globalopt, -mergefunc

Occurrences of Top-5 Passes within

Probe #10
—instcombine 3 times
—early-cse-memssa 4 times
—-ipsccp 2 times
—-globalopt 3 times
-mergefunc 0 times
Total Alignment 12 out of 50 passes in the strongest probe are from

the model’s Top-5 list.

Discussion. This analysis reveals a strong correlation: the program reacts most intensely to a probe se-
quence that is richly populated with passes the model identified as highly effective. While this correlation does
not establish a direct causal link—as the probe’s overall effect is a result of the entire 50-pass sequence, not just
the individual passes—it does provide valuable insight. It suggests that the Behavioral Spectrum contains dis-
cernible signals related to the efficacy of certain optimization types. The pre-trained PQ—-BERT model appears
to be capable of identifying these signals within the complex, high-dimensional spectrum and associating them
with correct individual pass recommendations.

13

Under review as a conference paper at ICLR 2026

Table 6: Performance comparison with general-purpose Large Language Models (LLMs) in a zero-
shot setting. For the Best Pass Prediction task, we report Top-1 and Top-5 accuracy (%). For the
-0z Benefit Prediction task, we report Mean Absolute Error (MAE, %). The performance of our
specialized model and the best traditional baseline are included for reference.

Model / Method Task 1(Top-1 %) Task 1(Top-5 %) Task2
General-Purpose Large Language Models (Zero-Shot)

gpt-5-mini 35.52 56.12 23.87
zai-org/GLM-4.5 34.93 59.10 22.81

DeepSeek-V3 34.03 54.93 24.05
baidu/ERNIE-4.5-300B-A47B 2.39 23.28 23.70
tencent/Hunyuan-A13B-Instruct 1.30 2.60 23.52
Tongyi-Zhiwen/QwenLong-L.1-32B 23.54 48.25 22.74
Specialized Models (for reference)

Autophase (Best Baseline) 38.51 56.72 25.92
Ours (Behavioral-PQ) 64.48 89.55 8.19

B COMPARISON WITH GENERAL-PURPOSE LARGE LANGUAGE MODELS

Recent advancements in Large Language Models (LLMs) have demonstrated remarkable capabilities in code
understanding and generation. To situate our work within this modern context, we conducted an experiment to
evaluate the zero-shot performance of several state-of-the-art general-purpose LLMs on our two downstream
tasks. We provided the models with the full LLVM IR, its Autophase features, and the list of candidate passes,
then prompted them to return their predictions in a structured JSON format.

The results, summarized in Table [f] reveal a clear trend. While some of the best-performing LLMs (e.g.,
gpt-5-mini, GLM—-4.5, DeepSeek-V3) achieve a respectable Top-5 accuracy of around 55-60% on the
Best Pass Prediction task, their performance is still substantially lower than our specialized Behavioral-PQ
model (89.55%). Notably, even the best LLM’s Top-1 accuracy (35.52%) does not surpass that of the simple,
handcrafted Autophase baseline (38.51%). On the more complex —Oz Benefit Prediction task, the performance
gap is even more stark. The best-performing LLM (GLM-4 . 5) yields an MAE of 22.81%, an error rate nearly
three times higher than that of our method (8.19%).

These findings provide a crucial insight: while general-purpose LLMs possess a broad understanding of code,
this knowledge does not readily translate to the highly specialized, quantitative, and nuanced domain of com-
piler optimization. Their zero-shot reasoning struggles to match the performance of a smaller, domain-specific
model that has been pre-trained on a representation—our Behavioral Spectrum—that is intrinsically aligned
with the task of predicting optimization outcomes.

C THE USE OF LARGE LANGUAGE MODELS

Large Language Models were utilized to support the enhancement of clarity and coherence throughout the
manuscript. They helped with rephrasing, maintaining academic standards, and improving overall readability.
It is important to note that their role was confined to the writing process, and all material was carefully reviewed
and finalized by the authors themselves.

14

	Introduction
	Methodology
	Step 1: Behavioral Spectrum Extraction
	Probing Program Behavior.
	Scale-Invariant Reaction Quantification

	Step 2: Structured Vocabulary Construction via PQ
	Motivation for Discretizing Behavioral Spectra
	PQ for Structured Behavioral Encoding

	Step 3: Learning the Behavioral Grammar with PQ-BERT

	Experimental Setup
	Experiments
	Main Results: Superior Performance on Downstream Tasks (RQ1)
	Task 1: Best Pass Prediction
	Task 2: -Oz Benefit Prediction

	Ablation Studies (RQ2)
	Embedding Space Analysis (RQ3)

	Related Work
	Limitations and Future Work

	Conclusion
	Detailed Case Study on blas-v0_127.ll
	Comparison with General-Purpose Large Language Models
	The Use of Large Language Models

