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Abstract

In multiplayer games, self-interested behavior among the players can harm the
social welfare. Tax mechanisms are a common method to alleviate this issue
and induce socially optimal behavior. In this work, we take the initial step of
learning the optimal tax that can maximize social welfare with limited feedback in
congestion games. We propose a new type of feedback named equilibrium feedback,
where the tax designer can only observe the Nash equilibrium after deploying a
tax plan. Existing algorithms are not applicable due to the exponentially large tax
function space, nonexistence of the gradient, and nonconvexity of the objective.
To tackle these challenges, we design a computationally efficient algorithm that
leverages several novel components: (1) a piece-wise linear tax to approximate
the optimal tax; (2) extra linear terms to guarantee a strongly convex potential
function; (3) an efficient subroutine to find the exploratory tax that can provide
critical information about the game. The algorithm can find an ϵ-optimal tax with
O(βF 2/ϵ) sample complexity, where β is the smoothness of the cost function and
F is the number of facilities.

1 Introduction

In modern society, large-scale systems often consist of many self-interested players with shared
resources, such as transportation and communication networks. Importantly, the objectives of
individual players are not always aligned with the system efficiency, and the system designer should
take this into consideration. A widely known example is Braess’s paradox, where adding more roads
to a network can make the network more congested [Braess, 1968]. Price of anarchy is a notion that
measures the inefficiency caused by selfish behavior compared with optimal centralized behavior
[Koutsoupias and Papadimitriou, 1999]. Characterizing such inefficiency has been an active research
area with applications in resource allocation [Marden and Roughgarden, 2014], traffic congestion
[Roughgarden and Tardos, 2004], and others. The inefficiency motivates research on how to design
mechanisms to improve performance even when the players are still behaving selfishly.
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Tax mechanisms are a standard approach to resolving the inefficiency issue, which are widely studied
in economics, operations research, and game theory. The goal of tax mechanisms is to incentivize
self-interested players to follow socially optimal behavior by applying tax/subsidy. Congestion game
is a widely studied class of game theory models characterizing the interactions between players
sharing facilities, where the cost of each facility depends on the “congestion” level [Wardrop, 1952,
Rosenthal, 1973]. As a motivating example, in traffic routing games, each facility corresponds to
an edge in a network, and each player chooses a path that connects her source node and target node.
The cost of each facility corresponds to the latency of each edge, which depends on the number of
players using that edge. Then, the tax can be interpreted as the toll collected by the road owner or the
government to improve overall traffic efficiency [Bergendorff et al., 1997].

Most existing works on congestion game tax design focus on the computation complexity of the
optimal tax [Nisan et al., 2007, Caragiannis et al., 2010]. They assume the tax designer has full
knowledge of the underlying game, which is unrealistic in many applications. As Nash equilibrium is
the only stable state of the system, we study a partial information feedback setting named “equilibrium
feedback", where the tax designer can only observe information about the Nash equilibrium. The
limited feedback information brings new challenges to the tax designer, and strategic exploration is
necessary to learn or design the optimal tax. In this work, we aim to take the first step in learning
optimal tax design for congestion games, and we study the following problem:

How can we learn the optimal tax design in congestion games with equilibrium feedback?

Below we highlight our contributions.

1.1 Main Contributions and Technical Novelties

1. The first algorithm for learning optimal tax design in congestion games. To the best of
our knowledge, this is the first result for learning optimal tax in congestion games with partial
information feedback. Our algorithm enjoys O(F 2β/ϵ) sample complexity for learning an ϵ-optimal
tax, where F is the number of facilities and β is the smoothness coefficient of the cost function.
The sample complexity has no dependence on the number of actions, which could be exponential
in F . In addition, we provide an efficient implementation for network congestion games with
Õ(poly(V,E, ϵ)) computational complexity, where V and E are the numbers of the vertexes and
edges in the network. Due to space limitation, we defer the computation analysis and experiments to
Appendix C and Appendix E.

2. Piece-wise linear function approximation. We only assume the cost functions are smooth and
make no parameterization assumptions as they are too strong to be satisfied in real-world applications.
To tackle this challenge, we use piece-wise linear functions to approximate the optimal tax function.
While only the values of the cost functions can be observed, we show that a carefully designed
piece-wise linear function can approximate the unobservable optimal tax function well.

3. Strongly convex potential function. One challenge in tax design is controlling the sensitivity of
Nash equilibrium w.r.t. tax perturbation. We always enforce tax functions with subgradient lower
bounded by some positive value, which leads to a strongly convex potential function. As a result,
the Nash equilibrium will be unique and Lipschitz with respect to tax perturbation. As the potential
function for optimal tax is not necessarily strongly convex, we carefully choose the strong-convexity
coefficient to balance the induced bias.

4. Exploratory tax design. Given the equilibrium feedback, the tax designer can only indirectly
query the cost function by applying tax. Consequently, exploration in tax design becomes much more
difficult than that in standard bandit problems where the player can directly query the value of an
action [Lattimore and Szepesvári, 2020]. We design an exploratory tax that pushes the equilibrium
to the “boundary", where an additional tax perturbation will change the equilibrium and reveal
information about at least one unknown facility.

In this work, we focus on the well-known nonatomic congestion games. We hope our algorithm and
analysis provide new insight on the intriguing structure of nonatomic congestion games. In addition,
the tax design algorithm might find applications in real-world problems such as toll design in traffic
networks. Due to space limitation, most proofs are deferred to the appendix.
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Notations. [m] = {1, 2, · · · ,m}. For a set of real numbers K and a real number x : min{K} ≤
x ≤ max{K}, we define [x]+K := miny∈K:y≥x y and [x]−K := maxy∈K:y≤x y. The clip operation
clip(a, l, r) := min{max{a, l}, r} clips a into the interval [l, r]. We use O(·) to hide absolute
constants and Õ(·) to hide polylog terms as well. A function f : X 7→ R is α-strongly convex if
f(y) ≥ f(x)+∇f(x)⊤(y−x)+ α

2 ∥y − x∥22 ,∀x, y ∈ X . f is β-smooth if ∥∇f(x)−∇f(y)∥2 ≤
β ∥x− y∥2 ,∀x, y ∈ X .

2 Related Work

Learning in congestion games. We refer the readers to the textbook [Nisan et al., 2007] for a
general introduction to congestion games, the price of anarchy and tax mechanisms. Nonatomic
congestion games were first studied in [Pigou, 1912] and formalized by [Wardrop, 1952]. Atomic
congestion games were introduced by [Rosenthal, 1973] and the connection with potential games is
developed by [Monderer and Shapley, 1996]. In contrast to general-sum games without structures,
(approximate) Nash equilibrium can be computed efficiently in congestion games due to the existence
of the potential function. Recently, various algorithms are developed to learn the Nash equilibrium in
congestion games with different feedback oracles [Krichene et al., 2015, Chen and Lu, 2016, Cui
et al., 2022, Jiang et al., 2022, Panageas et al., 2023, Dong et al., 2023, Dadi et al., 2024]. These
algorithms are derived from the perspective of the players in the system, while our algorithm is
essentially different in that it is utilized by the system designer to induce better equilibrium.

Optimal tax design in congestion games. For nonatomic congestion games, optimal tax design
has a closed-form solution known as the marginal cost mechanism [Nisan et al., 2007]. For atomic
congestion games, the marginal cost mechanism can no longer improve the efficiency [Paccagnan
et al., 2021]. Instead, other mechanisms are proposed for optimal local/global and congestion
dependent/independent tax in atomic congestion games [Caragiannis et al., 2010, Bilò and Vinci,
2019, Paccagnan et al., 2021, Paccagnan and Gairing, 2021, Harks et al., 2015]. Notably, all of these
mechanisms assume full knowledge of the game while we consider learning with partial information
feedback.

Stackelberg games. Stackelberg game [Von Stackelberg, 2010] models the interactions between
leaders and followers such that leaders take actions first and the followers make decisions after
observing leaders’ actions. Tax design can be formulated as a Stackelberg game where the designer
is the leader and the game players are the followers. Equipped with a best response oracle to predict
followers’ actions, Letchford et al. [2009], Blum et al. [2014], Peng et al. [2019] propose algorithms
for learning Stackelberg equilibrium. Recently, Bai et al. [2021], Zhong et al. [2021], Zhao et al.
[2023] generalize these results to learning Skackelberg equilibrium with bandit feedback, under
finite actions or linear function approximation assumptions. For tax design, the search space is an
exponentially large function space with complicated dependence on the objective. Consequently,
existing results for Stackelberg games become vacuous when specialized to our problem.

Mathematical programming under equilibrium constraint. Tax design can be formulated
as minimizing social cost with respect to tax under the constraint that players are following the
equilibrium. This is known as mathematical programs with equilibrium constraints (MPEC). MPEC
is a bilevel optimization problem and is NP-hard in general [Luo et al., 1996]. Existing approaches
use specific inner loop algorithms to approach the equilibrium so that the gradient can be propagated
to the outer loop [Li et al., 2020, Liu et al., 2022, Li et al., 2022, Maheshwari et al., 2023, Li et al.,
2023, Grontas et al., 2024], relying on a unique and differentiable equilibrium [Colson et al., 2007].
However, such an approach requires many strong assumptions, such as the tax designer can control
the algorithm of the agents, convex objective function and parameterized tax function. In contrast,
our results make none of these assumptions.

3 Preliminaries

Nonatomic congestion games. A weighted nonatomic congestion game (congestion game) is
described by the tuple (F ,A[m], w[m], cF ), where F is the set of facilities with cardinality F , m is
the number of commodities, Ai is the action set for commodity i ∈ [m], wi ∈ [0, 1] is the weight for
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commodity i ∈ [m] such that
∑

i∈[m] wi = 1, and cf : [0, 1] 7→ [0, 1] is the cost function for facility
f ∈ F . Each commodity consists of infinite number of infinitesimal players with a total load to be
wi. Each individual player is self-interested and has a negligible effect on the game.

In congestion games, action a ∈ Ai, i ∈ [m] is a subset of F , i.e. a ⊆ F , which denotes the facilities
utilized by action a. For commodity i ∈ [m], we use strategy xi = (xi,a)a∈Ai

∈ [0, wi]
|Ai| with

constraint
∑

a∈Ai
xi,a = wi to denote how the load is distributed over all the actions. The joint

strategy for the game is represented by x = (x1, x2, · · · , xm) ∈ [0, 1]A, where A =
∑

i∈[m] |Ai|.
We use X to denote the set of all feasible strategies.

A decentralized perspective of strategy xi for commodity i is that each self-interested infinitesimal
player follows a randomized strategy that chooses a ∈ Ai with probability proportional to xi,a. With
the law of large number, the load on action a would be xi,a.

Cost function. For a strategy x, the cost of a facility is cf (lf (x)), where lf (x) =∑
i∈[m]

∑
a∈Ai:f∈a xi,a is the load on facility f . The cost of an action a is the sum of the facility

cost that a utilizes: ca(x) :=
∑

f∈a cf (lf (x)).

We make the following assumption on the cost function. Monotonicity is a standard congestion game
assumption, which is also observed in many real-world applications as more players sharing one
facility, each player will have less gain or more cost [Nisan et al., 2007]. Smoothness is a standard
technical assumption for analysis.
Assumption 1. We assume the cost function satisfies:

1. Monotonicity: cf (·) is non-decreasing for all f ∈ F ,

2. Smoothness: cf (·) is β-smooth for all f ∈ F .

Nash equilibrium. Nash equilibrium in nonatomic congestion games, also known as the Wardrop
equilibrium [Wardrop, 1952], is the strategy that no player has the incentive to deviate from its
strategy as formalized in Definition 1. In other words, Nash equilibrium is a stable state for a system
with selfish players.
Definition 1. A Nash equilibrium strategy x is a joint strategy such that each player is choosing the
best action: for any commodity i ∈ [m] and actions a, a′ ∈ Ai, we have

ca(x) ≤ ca′(x), if xi,a > 0.

Similarly, an ϵ-approximate Nash equilibrium x satisfies that

∀i ∈ [m], a, a′ ∈ Ai, ca(x) ≤ ca′(x) + ϵ, if xi,a > 0.

For a strategy x and commodity i, actions a ∈ Ai such that xi,a > 0 are named as the “in-support"
actions and the others are “off-support" actions. For a Nash equilibrium, in-support actions must all
have the same cost and off-support actions are no better than in-support actions. It is well known that
Nash equilibrium always exists in congestion games [Beckmann et al., 1956].

Potential Function. An important concept in congestion games is the potential function:

Φ(x) :=
∑
f

∫ lf (x)

0

cf (u)du.

If Assumption 1 is satisfied, then Φ(x) is a convex function and Nash equilibrium is equivalent to the
minimizer of the potential function [Beckmann et al., 1956].

Network congestion games. Network congestion games are congestion games with multicommod-
ity network structure, which are also known as the selfish routing games [Roughgarden, 2005]. A
multicommodity network is described by a directed graph (V, E) where V is the vertex set and E is
the edge (facility) set. In addition, each commodity i ∈ [m] corresponds to a pair of source and target
vertex (si, ti), and actions are all feasible paths connecting si and ti. Each edge is associated with a
nondecreasing cost (latency) function.
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4 Tax Design for Congestion Games

In this section, we introduce tax design in congestion games. Before we get into the details, we will
first introduce some notions to simplify the problem.

4.1 Polytope Description for Congestion Games

For a strategy xi ∈ R|Ai|, the dimension |Ai| can be as large as 2F . Instead, it would be convenient
to consider the facility load yi ∈ RF such that yi,f =

∑
a∈Ai:f∈a xi,a. In addition, we define

y =
∑

i∈[m] yi ∈ RF to be the total facility load. We use ϕ(i)(·) to denote the reparameterization
mapping:

ϕ(x) = y, ϕi(xi) = yi,∀i ∈ [m],

and we set Y = {y ∈ RF : ∃x ∈ X , y = ϕ(x)} to be the set of all feasible loads. Note that ϕ
is not necessarily a bijection, i.e., there could exist multiple strategies sharing the same load. We
use ϕ−1(y) := {x ∈ X : ϕ(x) = y} to denote the set of strategies that are mapped to load y. The
potential function can be defined after the repameterization as well:

Φrepa(y) :=
∑
f

∫ yf

0

cf (u)du = Φ(x),∀x ∈ Φ−1(y).

Importantly, Φrepa(y) does not depend on the choice of strategy x ∈ ϕ−1(y). For the reparameterized
potential function, we have the following lemma showing that it is almost equivalent to the original
potential function. When it is clear from the context, we will simplify Φrepa as Φ.

Lemma 1. Φrepa is convex under Assumption 1. If y∗ = argminy Φ
repa(y), then for any x ∈

ϕ−1(y∗), x is a Nash equilibrium.

For any Nash equilibrium strategy x, we call y = ϕ(x) the Nash equilibrium load (Nash load).

4.2 Optimal Tax for Congestion Games

Nash equilibrium is a stable state for a system with self-interested players, as no player has the
incentive to deviate unilaterally. However, Nash equilibrium does not efficiently utilize the facilities,
which is measured by the social cost:

Ψ(y) :=
∑
f

yfcf (yf ).

Price of anarchy is a concept that measures the efficiency of selfish agents in a system, defined as the
ratio between the worst-case social cost for equilibria and the optimal social cost:

PoA =
maxy is a Nash equilibrium load Ψ(y)

miny∈Y Ψ(y)

For example, in nonatomic congestion games with polynomial cost functions, the price of anarchy
grows as Θ(d/ ln d) where d is the degree of the polynomials [Nisan et al., 2007].

To reduce the price of anarchy, one standard approach is to enforce a tax on each facility to change
the behavior of the self-interested players. Formally, a taxed congestion game is described by
(F ,A[m], w[m], cF , τF ) with an additional tax function τf : [0, 1] → R on facility f ∈ F . The cost
of facility f with load u under tax becomes cf (u) + τf (u). Correspondingly, we define the potential
function with tax τ as

Φ(y; τ) :=
∑
f

∫ yf

0

[cf (u) + τf (u)] du,

and the Nash load would satisfy y∗ ∈ argminy Φ(y; τ).

The optimal tax is defined as the tax that can induce optimal social behavior for self-interested players.
We want to note that tax is not included in social cost following the convention in tax design.
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Protocol 1 Online Tax Design for Congestion Games

Initialize: Facility set F .
for t = 1, 2, . . . , T do

Designer chooses tax τ t.
Designer observes Nash load yt = argminy∈Y Φ(y; τ) and Nash cost ct = [cf (y

t
f )]f∈F for

f ∈ F .
end for

Definition 2. A tax τ is an optimal tax if all Nash equilibria under tax τ can minimize the social cost:

argmin
y∈Y

Φ(y; τ) ⊆ argmin
y∈Y

Ψ(y).

In addition, a tax τ is an ϵ-optimal tax if we have

Ψ(y) ≤ min
y′∈Y

Ψ(y′) + ϵ,∀y ∈ argmin
y′′∈Y

Φ(y′′; τ).

The marginal cost tax is defined as

τ∗ : τ∗f (u) = uc′f (u),∀f ∈ F .

As Φ(y; τ∗) = Ψ(y), the Nash equilibrium under tax τ∗ will minimize the social cost and τ∗ is an
optimal tax [Nisan et al., 2007]. We will make the following assumption so that the cost combined
with tax c+ τ∗ is still non-decreasing. In many real world problems, c′f (u) is non-decreasing due to
the law of diminishing marginal utility, which guarantees Assumption 2.
Assumption 2. Marginal cost tax τ∗f (u) = uc′f (u) is non-decreasing for all f ∈ F .

4.3 Tax Design for Congestion Games

In this paper, we consider the case where the system designer (e.g. government) wants to enforce an
(approximate) optimal tax to induce optimal social behavior and maximize social welfare. However,
the cost function is unknown so the optimal tax function cannot be computed directly via the marginal
cost mechanism. On the other hand, the designer can enforce several taxes and observe the feedback.
As Nash equilibrium is the stable state of the system, we assume the designer can observe the
equilibrium feedback.

Formally, tax design is formulated as an online learning problem as shown in Protocol 1. At round t,
the designer can choose a tax τ t and observe the corresponding Nash equilibrium load yt ∈ RF and
Nash equilibrium cost ct ∈ RF . The sample complexity of a tax design algorithm is the number of
rounds for designing an ϵ-optimal tax.

A naive approach is the designer first enumerates all of the ϵ-approximations of τ∗ and chooses the
tax with minimal social cost. However, such an approach would require O((1/ϵ)Fβ/ϵ) samples as
the complexity of using piece-wise linear function to approximate τ∗f (a β-smooth function) with ϵ

error is O((1/ϵ)β/ϵ), resulting in exponential dependence on the parameters β, 1/ϵ and F .

Another approach is applying algorithms for mathematical programming under equilibrium con-
straints. Specifically, we can formulate tax design as solving

min
τ

Ψ(y(τ)), s.t. y(τ) = argmin
y∈Y

Φ(y; τ).

However, y(τ) can be non-differentiable or even discontinuous w.r.t. τ , and Ψ(y(τ)) can be non-
convex w.r.t. τ (Lemma 5). As a result, previous results do not apply to our problem as they apply
gradient-based methods and make convexity assumptions [Li et al., 2020, Liu et al., 2022].

5 Learning Optimal Tax in Nonatomic Congestion Games

In this section, we describe our algorithm that can learn an ϵ-optimal tax with O(F 2β/ϵ) samples.
First, we introduce piece-wise linear functions as a nonparametric way to approximate the marginal
cost tax τ∗ [Takezawa, 2005].

6



Definition 3. (Piece-wise Linear Function) We use a dictionary* d = {(x1, y1), · · · , (xn, yn)} for
xi ̸= xj ,∀i ̸= j (w.l.o.g. we let x1 < x2 < · · · < xn) to represent a piece-wise linear function d(·)
on [x1, xn] such that

d(x) =
x− xi+1

xi − xi+1
yi +

xi − x

xi − xi+1
yi+1,∀x ∈ [xi, xi+1].

In addition, we use
⋃

to represent the update method for dictionary. I.e., d
⋃
(x, y) is the piece-wise

linear function interpolating one more point (x, y) if (x, d(x)) is not already in d, otherwise it will
update d(x) to y.

We will maintain the piece-wise function on a grid L = {0,∆, 2∆, · · · ,K∆ = 1} with K =
⌈
2β
ϵ

⌉
and ∆ = 1/K. The time complexity for computing d(x) is O(logK) for any x ∈ [0, 1].

5.1 Main Algorithm

Algorithm 1 Tax Design for Congestion Game

1: Initialize: Facility set F , number of rounds T , tolerance ϵ, smoothness β, perturbation δ =
ϵ∆2/8.

2: Set initial tax τ1 : τ1f = {(0, 0), (1, β + ϵ)} for all f ∈ F . Set K1
f to be {0} for all f ∈ F .

3: for t = 1, 2, . . . , T do
4: Observe Nash load yt ∈ RF and Nash cost ct ∈ RF under tax τ t.
5: Set F̄ to be the unknown facility set (Definition 4).
6: Set lf = τ tf ([y

t
f ]

−
Kt

f
) + ϵ(ytf − [ytf ]

−
Kt

f
) and rf = τ tf ([y

t
f ]

+
Kt

f

⋃
{1}) + ϵ(ytf − [ytf ]

+
Kt

f

⋃
{1}) for

each f ∈ F̄ .
7: Run Algorithm 2 with input yt, ct, τ t = [τ tf (y

t
f )]f , F̄ and [lf , rf ]f∈F̄ .

8: if Algorithm 2 return False then
9: return τ t

10: else
11: Algorithm 2 return τ̃ ∈ RF , f̃ ∈ F̄ , sign ∈ {−1, 1}.
12: Apply tax τ̇ t : τ̇ t

f̃
= τ t

f̃

⋃
(yt

f̃
, τ̃ t

f̃
) + sign · δ and τ̇ tf = τ tf

⋃
(ytf , τ̃

t
f ) for f ̸= f̃ .

13: Observe ẏt, ċt ∈ RF as the Nash load and the Nash cost of each facility.
14: Update τt+1 and Kt+1 according to (1).
15: end if
16: end for

In this section, we introduce our main algorithm. At each round t, we will maintain a known index
set Kt

f ⊆ L where the marginal cost tax can be accurately estimated (Lemma 7), and use a piece-wise
linear function to approximate the tax function by interpolating the values at the known indexes.
The piece-wise linear function takes the form τ tf = {(xt

i, y
t
i)}i and the known index set Kt

f satisfies
{xt

i}i = Kt
f

⋃
{1} and Kt

f ⊆ L. Here 1 is a special case as it is not in the known index set initially
but it is needed as the boundary for the piece-wise linear function τ tf . Initially, the tax is set to be
τ1f (u) = {(0, 0), (1, β + ϵ)} and the auxiliary tax is τ̂1f = {(0, 0), (1, β)} for f ∈ F (Line 2). Here
we set τ̂1f (1) = β as β is always an upper bound on τ∗f (1). The auxiliary tax τ̂ tf is a non-decreasing
piece-wice linear approximation of τ∗f and we always set tax τ tf (u) = τ̂ tf (u) + ϵu to ensure that the
subgradient of the tax enforced is lower bounded by ϵ.

At round t, after observing Nash equilibrium load yt ∈ RF and Nash equilibrium cost ct ∈ RF , the
facilities are split into two sets: known facilities and unknown facilities.
Definition 4. For each round t, facility f is known if the Nash load ytf ∈ [0, 1] satisfies [ytf ]

−
L ∈ Kt

f

and [ytf ]
+
L ∈ Kt

f . Otherwise, facility f is unknown for round t.

For a known facility f , the Nash load is either in the known index set or sandwiched by two
consecutive known indexes. As a result, the tax estimate for the Nash load τ tf (y

t
f ) will be close to the

*In this dictionary, key is xi and value is yi. For readers unfamiliar with the dictionary data structure, it can
be regarded as a set with a special update operation.

7



true optimal tax τ∗f (y
t
f ) with error 2ϵ (Lemma 8). We will apply Algorithm 2 to find the exploratory

tax to gather information about unknown facilities (Line 7).
Proposition 1. If Algorithm 2 return False at round t, then tax τ t is an 6ϵF -optimal tax. If Algorithm
2 output τ̃ t, f̃ t, signt at round t, then we have

0 <
∣∣∣yt

f̃t − ẏt
f̃t

∣∣∣ ≤ ∆.

If Algorithm 2 output τ̃ t, f̃ t, signt at round t, we update the tax and the known index set by the
following rule. For u ∈ {[yt

f̃t
]+L , [y

t
f̃t
]−L}\Kt

f̃t
(this set is not empty as f̃ t is an unknown facility), we

set

τ̂ t+1

f̃t
=τ̂ t

f̃t

⋃(
u, clip

(
u ·

ct
f̃t

− ċt
f̃t

yt
f̃t

− ẏt
f̃t

, τ̂ t
f̃t([y

t
f̃t ]

−
Kt

f̃t
), τ̂ t

f̃t([y
t
f̃t ]

+
Kt

f̃t

⋃
{1})

))
, (1)

Kt+1

f̃t
=Kt

f̃t

⋃
{u}. (2)

and τ̂ t+1
f = τ̂ tf ,K

t+1
f = Kt

f for f ̸= f̃ t. Then we set τ t+1
f (u) = τ̂ t+1

f (u) + ϵu for all f ∈ F and
u ∈ [0, 1].

In words, we clip the two-point estimate u ·
ct
f̃t−ċt

f̃t

yt

f̃t−ẏt

f̃t
on the left and right known index of τ̂ t

f̃t
(u) so

that τ̂ t+1

f̃t
(u) is still a non-decreasing piece-wise linear approximation of the marginal cost tax τ∗f .

τ t+1
f is added with an extra linear term to guarantee a strongly convex potential function (Lemma 2).

As 0 <
∣∣∣ytf − ẏtf

∣∣∣ ≤ ∆, the two point estimate of the gradient
ctf−ċtf
yt
f−ẏt

f
is accurate enough for c′f (u)

such that
∣∣∣τ t+1

f̃t
(u)− τf (u)

∣∣∣ ≤ ϵ (Lemma 6).

As |Kt
f̃t
| increases by 1 at round t and there are F such sets with size bounded by O(β/ϵ), Algorithm 2

will output False within at most O(Fβ/ϵ) rounds, which implies τ t is an ϵF -optimal tax (Proposition
1). With proper rescaling, the sample complexity for learning ϵ-optimal tax is O(F 2β/ϵ).
Theorem 1. Under Assumption 1 and Assumption 2, Algorithm 1 will output a 6ϵF tax within
T ≤ 2Fβ/ϵ rounds. In addition, each round has at most two tax realizations.

Remark 1. To uniformly approximate a β-smooth function, we have to know its value at O(β/ϵ)
points [Takezawa, 2005]. For an ϵ-optimal tax, we need to estimate τ∗f with ϵ/F accuracy as the
error accumulates with all the facilities. As a result, we conjecture that O(F 2β/ϵ) sample complexity
is tight and we leave the lower bound to future work.

Remark 2. Our algorithm can be easily adapted to the case where we have feedback other than only
the equilibrium feedback. Specifically, when the tax designer obtain a non-equilibrium feedback, she
can still update the optimal tax estimate if the feedback provides new information. It is possible for
our algorithm to find the optimal tax even if no equilibrium feedback is provided. In addition, as long
as the equilibrium can be reached after applying a tax, the algorithm can always find the optimal tax.

5.2 Subroutine for Finding Exploratory Tax

In this section, we describe Algorithm 2, which can find an exploratory tax that satisfies Proposition
1. The idea is we can observe another similar but different Nash equilibrium load by perturbing the
tax. However, there are two challenges:

1. Perturbing the tax might change the Nash equilibrium load drastically.
2. Perturbing the tax might not change the Nash equilibrium load at all.

To resolve the first issue, we always apply taxes that have (sub)gradient lower bounded by ϵ > 0. The
feasible range [lf , rf ] for updating tax τ tf with (ytf , ·) guarantees that the updated tax still maintains
the subgradient lower bound. By Lemma 2, the potential function is always ϵ-strongly convex. As a
result, the Nash load for any feasible tax is unique and Lipschitz w.r.t. tax perturbation. To resolve
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Algorithm 2 Test Tax Design

1: Initialize: Nash flow y ∈ RF , tax τ ∈ RF , cost c ∈ RF , unknown facility set F̄ , unknown
facility range [lf , rf ] for f ∈ F̄ .

2: Set strategy x ∈ ϕ−1(y). Compute commodity load yi = ϕi(xi) ∈ RF for i ∈ [m].
3: Set I = False.
4: if Exists f ∈ F̄ and i ∈ [m] such that 0 < yi(f) < wi then
5: return τ, f, 1.
6: end if
7: for Commodity i ∈ [m] do
8: Let F̄i = {f ∈ F̄ :

∑
a:f∈a xi,a = wi} and F̄ ′

i = {f ∈ F̄ :
∑

a:f∈a xi,a = 0}.
9: Set τ̄ : τ̄F̄i

= rF̄i
, τ̄F̄ ′

i
= lF̄ ′

i
, τ̄F\(F̄i

⋃
F̄ ′

i)
= τF\(F̄i

⋃
F̄ ′

i)
.

10: if Gapi(x, c+ τ̄) < 0 then
11: Set I = True.
12: break
13: end if
14: end for
15: if I = False then
16: return False.
17: end if
18: Set τ ′ = τ
19: for f ∈ F̄i do
20: Set τ̃u : τ̃uf = u, τ̃uF\{f} = τ ′F\{f}.
21: Set u = argmax{u : Gapj(x, c+ τ̃u) ≥ 0,∀j}.
22: if u ≤ rf then
23: return τ̃u, f, 1.
24: end if
25: Set τ ′ = τ̃ rf .
26: end for
27: for f ∈ F̄ ′

i do
28: Set τ̃u : τ̃uf = u, τ̃uF\{f} = τ ′F\{f}.
29: Set u = argmin{u : Gapj(x, c+ τ̃u) ≥ 0,∀j}.
30: if u ≥ lf then
31: return τ̃u, f,−1.
32: end if
33: Set τ ′ = τ̃ lf .
34: end for

the second issue, we find the tax that makes the current Nash equilibrium on the “boundary". I.e., an
additional perturbation will make the Nash equilibrium change. Intuitively, this is similar to removing
the slackness in a constrained optimization problem. By Lemma 3, we can observe a different Nash
load on f if we make the additional perturbation.
Lemma 2. If the subgradient of the cost function cf is lower bounded by ϵ > 0 for all f ∈ F ,
then the potential function Φrepa(y) is ϵ-strongly convex. However, Φ(x) is not necessarily strongly
convex.

Lemma 3. If two taxes τ and τ̇ only differ in facility f and the Nash loads y and ẏ are different, then
yf ̸= ẏf .

Definition 5. The gap for a strategy x ∈ X with cost c ∈ RF is defined as

Gapi(x, c) = min
a:xi,a=0

∑
f :f∈a

cf − max
a:xi,a ̸=0

∑
f :f∈a

cf . (3)

In the algorithm, we use Gapi(x, c) to measure the cost gap between in-support actions and off-
support actions for commodity i and strategy x. If x is a Nash equilibrium and c is the Nash cost,
then all of the in-support actions have the same minimal cost and Gapi(x, c) ≥ 0 holds. Informally,
“boundary” tax τ means that Gapi(x, c+ τ) = 0 for a Nash equilibrium x and perturbing τ results in
Gapi(x, c+ τ) < 0, so the Nash equilibrium under the perturbed tax will be different from x.
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Now we discuss how Algorithm 2 finds the “boundary” tax in detail. The input to the algorithm is the
Nash flow y, the Nash cost c, the Nash tax τ , the unknown facility set F̄ and the feasible tax range
[lf , rf ] for each unknown facility f ∈ F̄ . We emphasize that here the Nash cost/tax are the values of
the cost/tax function on the Nash load and they are vectors in RF instead of functions. [lf , rf ] is the
feasible range for the perturbed tax value at facility f . By the definition of lf and rf , current tax τ tf
updated with (ytf , u), u ∈ [lf , rf ] is still a tax with subgradient lower bounded by ϵ.

For the first step, the algorithm will compute strategy x ∈ ϕ−1(y) as the Nash equilibrium strategy
(Line 2). If there exists an unknown facility f and commodity i such that not all load of commodity i
is using f or not using f (Line 4), then perturbing the tax at facility f will make x not longer a Nash
equilibrium as in-support actions have different costs.

Otherwise, for each unknown facility f and commodity i, either all of the load is using f or all of the
load is not using f . As a result, in-support actions always have the same cost after perturbing the tax.
For the next step, we verify if there exists a tax within the feasible ranges for unknown facilities that
makes x not a Nash equilibrium. However, there does not exist a universal worst-case tax that can
verify if x is always a Nash equilibrium or not.

Fortunately, the worst-case tax has a closed form for each commodity separately: the taxes for
facilities used by all of the Nash load would be the upper bound rf and the taxes for facilities used
by none of the Nash load would be the lower bound lf , thus maximizing the cost for in-support
actions and minimizing the cost for off-support actions (Line 9). For each commodity i, we apply the
corresponding worst-case tax and check if the in-support actions are still the optimal actions (Line
10). If for all commodities, the in-support actions are optimal under the worst-case tax, then for any
tax within the feasible range, y is the Nash load and the algorithm will output False (Line 16). As τ∗
is approximately within the range, yt approximately minimizes the social cost (Lemma 10).

Otherwise, the algorithm finds commodity i such that x is not the Nash equilibrium under the worst-
case tax (Line 11). For the last step, we gradually transform the initial tax to this worst-case tax and
stop when x is not the Nash equilibrium for some commodity. Specifically, the algorithm iteratively
changes the tax in the unknown facility set F̄ = F̄i

⋃
F̄ ′

i (Line 19 and Line 27) to the worst-case tax.

For facility f ∈ F̄i, the algorithm finds the boundary tax for facility f that satisfies
u = argmax

u
{u : Gapj(x, c+ τ̃u) ≥ 0,∀j ∈ [m]}.

If u ≤ rf , we will output τ̃u, f, 1. By the definition of u, if we further increase u, one of the gaps
will become negative and x is no longer the Nash equilibrium. Otherwise, all feasible taxes for f
have a nonnegative gap for all commodities, which means x is still the Nash equilibrium, and we
continue for the next facility. After enumerating all the facilities in F̄i, we enumerate F̄ ′

i in the same
way. Eventually, the tax is transformed into the worst-case tax with negative gap for commodity i, so
this process will end and output τ̃u, f, sign such that τ̃u is the tax that makes the Nash equilibrium
on the boundary, f is the facility to perturb and sign is the direction to perturb the tax at f .

6 Conclusion

We proposed the first algorithm with polynomial sample complexity for learning optimal tax in
nonatomic congestion games. The algorithm leverages several novel designs to exploit the special
structure of congestion games, which can also be implemented efficiently. Below we list a few
potential future research directions:

1. Relaxing the Nash equilibrium assumption to players following no-regret dynamics or
quantal response equilibrium.

2. Design algorithms that do not require prior knowledge of the smoothess coefficient.
3. Generalize the algorithm to atomic congestion games.
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A Basics about Congestion Games

Lemma 4. If strategy x is an ϵ-NE in a congestion game, then x is an ϵ-minimizer of the corresponding
potential function Φ(·).

Proof. Let x∗ = argminx∈X Φ(x) and y = ϕ(x). First, we show that

∇i,aΦ(x) =∇i,a

∑
f

∫ yf

0

cf (u)du

=∇i,a

∑
f∈a

∫ yf

0

cf (u)du

=
∑
f∈a

cf (yf )∇i,ayf

=
∑
f∈a

cf (yf )∇i,a

∑
i′,a′:f∈a′

xi′,a′

=
∑
f∈a

cf (yf ).

Then we have

Φ(x)− Φ(x∗) ≤ ⟨x− x∗,∇Φ(x)⟩ (Convexity)

≤
∑
i∈[m]

⟨xi − x∗
i ,∇iΦ(x)⟩

≤
∑
i∈[m]

∑
a∈Ai

xi,a

∑
f∈a

cf (yf )− min
a∈Ai

wi

∑
f∈a

cf (yf )


≤

∑
i∈[m]

∑
a∈Ai

xi,aϵ

=
∑
i∈[m]

wiϵ

= ϵ.

Lemma 1. Φrepa is convex under Assumption 1. If y∗ = argminy Φ
repa(y), then for any x ∈

ϕ−1(y∗), x is a Nash equilibrium.

Proof. For y1, y2 ∈ Y , we have

Φrepa(y1) + Φrepa(y2)− 2Φrepa(
y1 + y2

2
) =

∑
f

∫ y1
f

0

cf (u)du+

∫ y2
f

0

cf (u)du− 2

∫ y1
f+y2

f
2

0

cf (u)du

 .

Now we show that
∫ y1

f

0
cf (u)du+

∫ y2
f

0
cf (u)du− 2

∫ y1
f+y2

f
2

0
cf (u)du is nonnegative for all f ∈ F .

W.l.o.g., we assume y1f ≤ y2f and we have

∫ y1
f

0

cf (u)du+

∫ y2
f

0

cf (u)du− 2

∫ y1
f+y2

f
2

0

cf (u)du =

∫ y2
f

y1
f
+y2

f
2

cf (u)du−
∫ y1

f+y2
f

2

y1
f

cf (u)du

=

∫ y1
f+y2

f
2

y1
f

[
cf (u+

y2f − y1f
2

)− cf (u)

]
du

≥0,
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where the last step is from Assumption 1 (monotonicity). As a result, Φrepa is convex.

Let y∗ = argminy Φ
repa(y) and x ∈ ϕ−1(y∗). If there exists x′ ∈ X such that Φ(x′) < Φ(x), then

we have Φrepa(ϕ(x′)) < Φrepa(y∗), which contradicts the definition of y∗. As a result, x is the
minimizer of Φ(·), which means x is a Nash equilibrium.

Lemma 5. The Nash load under tax τ : y(τ) = argminy∈Y Φ(y; τ) is not continuous w.r.t. τ . In
addition, the social welfare Ψ(y(τ)) is not convex w.r.t. τ .

Proof. For the first part, we construct a congestion game with two facilities f1, f2, one commodity
with action set {f1, f2}, and constant cost c1 = 1, c2 = 1 − ϵ with ϵ > 0. Then for tax τ = 0, we
have y(τ) = [0, 1]. For constant tax τ1 = 0, τ2 = 2ϵ, we have y(τ) = [1, 0]. As ϵ can be arbitrarily
small, y(τ) is not continuous w.r.t. τ .

For the second part, we construct a congestion game with two facilities f1, f2, one commodity with
action set {f1, f2}, and cost function c1 = 1, c2(u) =

√
u for u ∈ [0, 1]. We apply constant tax

τ : τ1 = t, τ2 = 0 for t ∈ [−1, 0]. The Nash equilibrium under tax τ is y(τ) = [1−(1+t)2, (1+t)2].
Then the social cost is Ψ(y(τ)) = 1− t(1 + t)2, which is not convex on [−1, 0].

B Missing Proofs in Section 5

Lemma 2. If the subgradient of the cost function cf is lower bounded by ϵ > 0 for all f ∈ F ,
then the potential function Φrepa(y) is ϵ-strongly convex. However, Φ(x) is not necessarily strongly
convex.

Proof. First, by the definition of the potential function Φ, it is easy to show that ∇Φ(y) =
[cf (yf )]f∈F . For y1, y2 ∈ Y , we have

(∇Φ(y1)−∇Φ(y2))⊤(y1−y2) =
∑
f∈F

(cf (y
1
f )−cf (y

2
f ))(y

1
f−y2f ) ≥

∑
f∈F

ϵ(y1f−y2f )
2 = ϵ

∥∥y1 − y2
∥∥2
2
,

which implies Φ(·) is a ϵ-strongly convex function.

For the second argument, we only need to construct a congestion game such that there exists two
strategy x1, x2 ∈ X such that for ϕ(tx1 + (1− t)x2) is a constant for t ∈ [0, 1], which implies the
potential function Φ(tx1 + (1− t)x2) = Φrepa(ϕ(tx1 + (1− t)x2)) is a constant w.r.t. t. However,
a strongly convex function cannot be a constant on a line, which implies Φ is not strongly convex.

We construct a congestion game with three facilities f1, f2, f3, three actions a1 = {f1}, a2 =
{f2}, a3 = {f3} and three commodities with action set {a1, a2}, {a2, a3}, {a3, a1}. Strategy x1 :
x1
1 = [1, 0, 0], x1

2 = [0, 1, 0], x1
3 = [0, 0, 1] and x2 : x2

1 = [0, 1, 0], x2
2 = [0, 0, 1], x2

3 = [1, 0, 0].
Then tx1 + (1 − t)x2 is a feasible strategy and we have ϕ(tx1 + (1 − t)x2) = [1, 1, 1] for all
t ∈ [0, 1].

Lemma 3. If two taxes τ and τ̇ only differ in facility f and the Nash loads y and ẏ are different, then
yf ̸= ẏf .

Proof. For simplicity, we consider the equivalent tax-free case that we have two costs c, ċ with
subgradient lower bounded by ϵ and they only differ in facility ḟ . The potential functions are

Φ(Y ) =
∑
f

∫ Yf

0

cf (u)du, Φ̇(Y ) =
∑
f

∫ Yf

0

ċf (u)du.

By Lemma 2, Φ and Φ̇ are strongly convex and thus the Nash equilibrium load y and ẏ are unique.
Suppose yḟ = ẏḟ . Consider any Y ∈ Y such that Yḟ = yḟ , we have

Φ̇(Y )− Φ̇(y) =
∑
f

∫ Yf

yf

ċf (u)du =
∑
f ̸=ḟ

∫ Yf

yf

ċf (u)du+

∫ Yḟ

yḟ

ċḟ (u)du

=
∑
f ̸=ḟ

∫ Yf

yf

cf (u)du = Φ(Y )− Φ(y) ≥ 0.
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As a result, we have Φ̇(y) ≤ Φ̇(ẏ). By the optimality of ẏ, we have y = ẏ. By contradiction, if
y ̸= ẏ, we have yḟ = ẏḟ .

Lemma 6. If |u1 − u2| ≤ ∆, then for any |u3 − u1| ≤ ∆, we have∣∣∣∣cf (u1)− cf (u2)

u1 − u2
− c′f (u3)

∣∣∣∣ ≤ ϵ.

Proof. This is a direct corollary of the β-smoothness. By mean value theorem, we have
cf (u1)−cf (u2)

u1−u2
= c′f (u) for some u ∈ [u1, u2]. As |u− u3| ≤ |u− u1|+ |u1 − u3| ≤ 2∆ ≤ ϵ

2β , we
have ∣∣∣∣cf (u1)− cf (u2)

u1 − u2
− c′f (u3)

∣∣∣∣ ≤ ϵ.

Lemma 7. For round t and facility f , if u ∈ Kt
f , then we have

∣∣∣τ tf (u)− τ∗f (u)
∣∣∣ ≤ 2ϵ.

Proof. By the algorithm design, for each u ∈ Kt
f , τ tf (u) will not change after u is added to Kf . We

will use induction on t to prove
∣∣∣τ̂ tf (u)− τf (u)

∣∣∣ ≤ ϵ for u ∈ Kt
f . At round t = 1, K1

f = {0} and

τ̂1f (0) = τ∗f (0) = 0 holds.

Suppose at round t, we have Kt+1

f̃t
= Kt

f̃t

⋃
{u} with u ∈ {[yt

f̃t
]+L , [y

t
f̃t
]−L}\Kt

f̃t
, and Kt+1

f = Kt
f

for f ̸= f̃ t. By the induction hypothesis, we only need to prove
∣∣∣τ̂ t+1

f̃t
(u)− τ∗

f̃t
(u)

∣∣∣ ≤ 2ϵ. Recall
that

τ̂ t+1

f̃t
(u) = clip

(
u ·

ct
f̃t

− ċt
f̃t

yt
f̃t

− ẏt
f̃t

, τ̂ t
f̃t([y

t
f̃t ]

−
Kt

f̃t
), τ̂ t

f̃t([y
t
f̃t ]

+
Kt

f̃t

⋃
{1})

)
.

Then we have the following three cases. For simplicity we replace f̃ t with f .

(1) τ̂ t+1
f (u) = u · ctf−ċtf

yt
f−ẏt

f
. By Lemma 11 and Lemma 6, we have

∣∣∣τ̂ t+1
f (u)− τ∗f (u)

∣∣∣ = ∣∣∣∣∣u ctf − ċtf
ytf − ẏtf

− uc′f (u)

∣∣∣∣∣ ≤ ϵ.

(2) τ̂ t+1
f (u) = τ̂ tf ([y

t
f ]

−
Kt

f
) and u · ctf−ċtf

yt
f−ẏt

f
≤ τ̂ tf ([y

t
f ]

−
Kt

f
). Then we have

τ̂ t+1
f (u) = τ̂ tf ([y

t
f ]

−
Kt

f
) ≤ τ∗f ([y

t
f ]

−
Kt

f
) + ϵ ≤ τ∗f (u) + ϵ,

where the first inequality is from the induction hypothesis as [ytf ]
−
Kt

f
∈ Kt

f and the second inequality
is from Assumption 2. In addition, we have

τ̂ t+1
f (u) ≥ u ·

ctf − ċtf
ytf − ẏtf

≥ uc′f (u)− ϵ = τ∗f (u)− ϵ.

(3) τ̂ t+1
f (u) = τ̂ tf ([y

t
f ]

+
Kt

f

⋃
{1}) and u · ctf−ċtf

yt
f−ẏt

f
≥ τ̂ tf ([y

t
f ]

+
Kt

f

⋃
{1}). Then we have

τ̂ t+1
f (u) ≤ u

ctf − ċtf
ytf − ẏtf

≤ uc′f (u) + ϵ ≤ τ∗f (u) + ϵ.

If [ytf ]
+
Kt

f

⋃
{1} ∈ Kt

f , then we have

τ̂ tf (u) = τ̂ tf ([y
t
f ]

+
Kt

f

⋃
{1}) ≥ τ∗f ([y

t
f ]

+
Kt

f

⋃
{1})− ϵ ≥ τ∗f (u)− ϵ.
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If [ytf ]
+
Kt

f

⋃
{1} = 1 and 1 /∈ Kt

f , we still have

τ̂ tf (u) = β ≥ uc′f (u) = τ∗f (u).

For each of these three cases, the induction holds.

As τ tf (u) = τ̂ tf (u) + ϵu for all f ∈ F and u ∈ [0, 1], we have
∣∣∣τ tf (u)− τ∗f (u)

∣∣∣ ≤ 2ϵ.

Lemma 8. For round t, if facility f is known, then we have
∣∣∣τ tf (ytf )− τ∗f (y

t
f )
∣∣∣ ≤ 3ϵ.

Proof. If ytf ∈ Kt
f , we can directly apply Lemma 7. Otherwise, we set u1 = [ytf ]

−
L and u2 = [ytf ]

+
L .

Then we have u1 < ytf < u2 and u1, u2 ∈ Kt
f . There exists λ1 ∈ [0, 1], λ1 + λ2 = 1 such that

ytf = λ1u1 + λ2u2. By Lemma 6, we have
∣∣∣τ tf (ui)− τ∗f (ui)

∣∣∣ ≤ 2ϵ for i ∈ {1, 2}. Then we have∣∣τ tf (ytf )− τf (y
t
f )
∣∣

=
∣∣λ1τ

t
f (u1) + λ2τ

t
f (u2)− (λ1u1 + λ2u2)c

′
f (u)

∣∣
≤
∣∣λ1τ

t
f (u1)− λ1u1c

′
f (u)

∣∣+ ∣∣λ2τ
t
f (u2)− λ2u2c

′
f (u)

∣∣
≤λ1

∣∣τ tf (u1)− τ∗f (u1)
∣∣+ λ1u1

∣∣c′f (u1)− c′f (u)
∣∣+ λ2

∣∣τ tf (u2)− τ∗f (u2)
∣∣+ λ2u2

∣∣c′f (u2)− c′f (u)
∣∣

≤2λ1ϵ+ λ1ϵ+ 2λ2ϵ+ λ2ϵ (Lemma 6, β-smoothness and |u− ui| ≤ ϵ/β.)
≤3ϵ.

Lemma 9. If Algorithm 2 return False at round t, then for any τ̃ ∈ RF such that τ̃f = τ tf (yf ) for
f ∈ F\F̄ t and τ̃f ∈ [ltf , r

t
f ] for f ∈ F̄ t, we have Gapi(x

t, ct + τ̃) ≥ 0 for all i ∈ [m]. In addition,
xt is a Nash equilibrium for tax τ̃ .

Proof. For simplicity, we will omit t when there is no confusion. Algorithm 2 return False if and
only if for all i ∈ [m] and tax τ̄i : τ̄F̄i

= rF̄i
, τ̄F̄ ′

i
= lF̄ ′

i
, τ̄F\(F̄i

⋃
F̄ ′

i )
= τF\(F̄i

⋃
F̄ ′

i )
, we have

Gapi(x, c+ τ̄) = min
a:xi,a=0

∑
f :f∈a

(cf + τ̄f )− max
a:xi,a ̸=0

∑
f :f∈a

(cf + τ̄f ) ≥ 0.

By the definition of F̄i, for any f ∈ F̄i and a : xi,a ̸= 0, we have f ∈ a. Similarly, for any f ∈ F̄ ′
i

and a : xi,a ̸= 0, we have f /∈ a. Thus for any a : xi,a ̸= 0, we have∑
f :f∈a

(cf + τ̄f )−
∑
f :f∈a

(cf + τ̃f ) =
∑
f∈F̄i

(rf − τ̃f ) ≥ 0.

For any a : xi,a = 0, we have∑
f :f∈a

(cf + τ̄f )−
∑
f :f∈a

(cf + τ̃f ) =
∑

f∈F̄ ′
i

⋂
a

(lf − τ̃f ) ≤ 0.

As a result, we have

Gapi(x
t, ct + τ̃) = min

a:xi,a=0

∑
f :f∈a

(cf + τ̃f )− max
a:xi,a ̸=0

∑
f :f∈a

(cf + τ̃f )

≥ min
a:xi,a=0

∑
f :f∈a

(cf + τ̄f )− max
a:xi,a ̸=0

∑
f :f∈a

(cf + τ̄f ) ≥ 0.

To prove that xt is Nash equilibrium for tax τ̃ , we only need to show that for in-support actions
a : xt

i,a ̸= 0, the action costs
∑

f :f∈a(c
t
f + τ̃f ) are the same. This can be derived by∑

f :f∈a

(ctf + τ tf )−
∑
f :f∈a

(ctf + τ̃f ) =
∑
f∈F̄i

(τ tf − τ̃f ),∀a : xt
i,a ̸= 0,

which is independent of a. As xt is Nash equilibrium for tax τ t,
∑

f :f∈a(c
t
f +τ tf ) is also independent

of a.
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Lemma 10. If Algorithm 2 return False at round t, then tax τ t is an 6Fϵ-optimal tax.

Proof. For known facility f , by Lemma 8, we have
∣∣∣τ∗f (ytf )− τ tf (y

t
f )
∣∣∣ ≤ 3ϵ. By Lemma 7, for any

u ∈ Kt
f , we have

∣∣∣τ∗f (u)− τ tf (u)
∣∣∣ ≤ 2ϵ. Thus for unknown facility f , we have

ltf = τ tf ([y
t
f ]

−
Kt

f
) + ϵ · (ytf − [ytf ]

−
Kt

f
) ≤ τ∗f ([y

t
f ]

−
Kt

f
) + 2ϵ+ ϵ = τ∗f ([y

t
f ]

−
Kt

f
) + 3ϵ,

rtf = τ tf ([y
t
f ]

+
Kt

f

⋃
{1})+ ϵ · (ytf − [ytf ]

+
Kt

f

⋃
{1}) ≥ τ∗f ([y

t
f ]

+
Kt

f

⋃
{1})− 2ϵ− ϵ = τ∗f ([y

t
f ]

+
Kt

f

⋃
{1})− 3ϵ,

As τ∗f is nondecreasing (Assumption 2), we have

ltf − 3ϵ ≤ τ∗f ([y
t
f ]

−
Kt

f
) ≤ τ∗f (y

t
f ) ≤ τ∗f ([y

t
f ]

+
Kt

f

⋃
{1}) ≤ rtf + 3ϵ.

Thus there exists tax τ̃ t such that τ̃ tf (y
t
f ) satisfies the condition of Lemma 9 and

∣∣∣τ∗f (ytf )− τ̃ tf (y
t
f )
∣∣∣ ≤

3ϵ for all f ∈ F . xt is the Nash equilibrium for tax τ̃ t, we have

∀i ∈ [m], a, a′ ∈ Ai,
∑
f∈a

cf (y
t
f ) + τ̃ tf (y

t
f ) ≤

∑
f∈a′

cf (y
t
f ) + τ̃ tf (y

t
f ), if x

t
i,a > 0.

Thus we have

∀i ∈ [m], a, a′ ∈ Ai,
∑
f∈a

cf (y
t
f ) + τ∗f (y

t
f ) ≤

∑
f∈a′

cf (y
t
f ) + τ∗f (y

t
f ) + 6Fϵ, if xt

i,a > 0.

By Lemma 4, Ψ(ytf )−miny∈Y Ψ(y) ≤ 6Fϵ.

Lemma 11. If Algorithm 2 output τ̃ t, f̃ t, signt at round t, then we have

0 <
∣∣∣yt

f̃t − ẏt
f̃t

∣∣∣ ≤ ∆.

Proof. First, we prove
∣∣∣yt

f̃t
− ẏt

f̃t

∣∣∣ > 0. We consider the following two cases.

(1) Algorithm 2 return at Line 5. As we have 0 < yi(f̃
t) < wi, there exists a, a′ ∈ Ai such that

xi,a > 0, xi,a′ > 0 and f̃ t ∈ a, f̃ t /∈ a′. Suppose yt
f̃t

= ẏt
f̃t

. Then by Lemma 3, we have yt = ẏt as

τ t and τ̇ t only differ in facility f̃ t. As a result, xt is Nash equilibrium for tax τ̇ t. However, xt is the
Nash equilibrium for tax τ tf implies∑

f∈a

cf (y
t
f ) + τ tf (y

t
f ) =

∑
f∈a′

cf (y
t
f ) + τ tf (y

t
f ).

As τ t and τ̇ t only differ in facility f̃ t and f̃ t ∈ a, f̃ t /∈ a′, we have∑
f∈a

cf (y
t
f ) + τ̇ tf (y

t
f ) ̸=

∑
f∈a′

cf (y
t
f ) + τ̇ tf (y

t
f ),

which means xt is not the Nash equilibrium for tax τ̇ . By contradiction, we have yt
f̃t

= ẏt
f̃t

.

(2) Algorithm 2 return τ̃u, f̃ , sign at Line 23 or Line 31. As there exists j ∈ [m] such that Gapj(x, c+

τ̃u+sign·ϵ) < 0, x is not a Nash equilibrium under tax τ̇ t. Let τ̈ t : τ̈ tf = τ tf
⋃
(ytf , τ̃

u
f ) for f ∈ F .

Then τ̇ t and τ̈ t only differs in f̃ and x is the Nash equilibrium under tax τ̈ t. By applying Lemma 3
with τ̇ t and τ̈u, we have yt

f̃t
= ẏt

f̃t
.

Second, we prove
∣∣∣yt

f̃t
− ẏt

f̃t

∣∣∣ ≤ ∆. (1) Algorithm 2 return at Line 5. Suppose we have
∣∣∣ytf − ẏtf

∣∣∣ >
∆. By the tax design, the (sub)gradient of the tax (τ tf )

′(u) ≥ ϵ for u ∈ [0, 1]. As a result, Φ(y, c+ τ t)

is ϵ-strongly convex by Lemma 2. As yt = argminy∈Y Φ(y; c+ τ t), we have

Φ(ẏt; c+ τ t)− Φ(yt; c+ τ t) > ϵ∆2/2.
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However, we have |Φ(y; c+ τ t)− Φ(y; c+ τ̇ t)| ≤ δ for all y ∈ Y . Thus we have

Φ(ẏt; c+ τ̇ t)− δ ≤ Φ(yt; c+ τ̇ t)− δ/2 ≤ Φ(yt; c+ τ t) ≤ Φ(ẏt; c+ τ t) ≤ Φ(ẏt; c+ τ̇ t) + δ.

Comparing to the inequality above, we have 2δ > ϵ∆2/2, which is incorrect by the definition of δ.
By contradiction, we have

∣∣∣ytf − ẏtf

∣∣∣ ≤ ∆.

(2) Algorithm 2 return τ̃u, f̃ , sign at Line 23 or Line 31. Let τ̈ t : τ̈ tf = τ tf
⋃
(ytf , τ̃

u
f ) for f ∈ F . Then

x is the Nash equilibrium under tax τ̈ t. Let τ̈ : τ̈ tf = τ tf
⋃
(ytf , τ̃f ) for all f ∈ F . By the definition

of τ̈ t and the feasible range τ̃f ∈ [lf , rf ], the subgradient of τ̈ tf is lower bounded by ϵ. As a result,

Φ(·; c+ τ̈ t) is ϵ-strongly convex on [0, 1]. We can prove
∣∣∣ytf − ẏtf

∣∣∣ ≤ ∆ by following the analysis

for case (1) and replacing τ t with τ̈ t.

Proposition 1. If Algorithm 2 return False at round t, then tax τ t is an 6ϵF -optimal tax. If Algorithm
2 output τ̃ t, f̃ t, signt at round t, then we have

0 <
∣∣∣yt

f̃t − ẏt
f̃t

∣∣∣ ≤ ∆.

Proof. This is directly from Lemma 10 and Lemma 11.

Lemma 12. Algorithm 1 return False in at most KF rounds.

Proof. By Lemma 11 and the update rule (1), if Algorithm 2 return τ̃ t, f, sign at round t, then we
will have one more known point, i.e.,

∑
f∈F Kt+1

f =
∑

f∈F Kt
f + 1. As Kt

f ⊆ L for all f ∈ F and
|L| = K + 1, we proved the lemma.

Theorem 1. Under Assumption 1 and Assumption 2, Algorithm 1 will output a 6ϵF tax within
T ≤ 2Fβ/ϵ rounds. In addition, each round has at most two tax realizations.

Proof. The proof is directly from Proposition 1 and Lemma 12.

C Computation Complexity

In this section, we discuss the computation complexity of Algorithm 1 and Algorithm 2. We will show
that these two algorithms can be implemented with Õ(poly(A,F,m)) complexity for each round.
For network congestion games, the computation complexity can be sharpened to Õ(poly(V,E,m)),
avoiding the dependence on A that can be exponential in V and E.

C.1 General Congestion Games

For Algorithm 1, we compute/update the value of the cost/tax function for each facility. As we use
the dictionary data structure, computing value and updating value only have O(logK) = O(log β/ϵ)

complexity. As a result, the complexity of one round in Algorithm 1 is Õ(F ).

For Algorithm 2, x ∈ ϕ−1(y) is a Caratheodory decomposition problem and can be formulated as a
linear program with A variables, F+m equation constraints and A inequality constraints (Proposition
2), which can be solved in polynomial time [Cohen et al., 2021].

The bottleneck is in computing u = argmaxu{u : Gapj(x, c+ τ̃u) ≥ 0,∀j ∈ [m]} for τ̃u : τ̃uf =

u, τ̃uF\{f} = τ ′F\{f}, f ∈ F̄i. For simplicity, we use the notation: c̃u = c+ τ̃u as the cost with tax
τ̃u. By Definition 5 and the definition of action cost, we have

Gapj(x, c+ τ̃u) = min
a:xj,a=0

c̃ua − max
a:xj,a ̸=0

c̃ua . (4)
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For action cost c̃ua , if f ∈ a, it is a linear function w.r.t. u in the form of u + C for some constant
C. Otherwise, it is a constant w.r.t. u. As a result, we can determine the function c̃ua with O(F )

computation as we only need to compute c̃
τ ′
f

a to decide the constant. Then we can compute Gapj(x, c+
τ̃u) in closed form and compute uj = argmaxu{u : Gapj(x, c+ τ̃u) ≥ 0} with O(AF ) complexity.
Finally, u = minj∈[m] uj can be computed with O(mAF ) complexity. Similarly, u = argminu{u :

Gapj(x, c+ τ̃u) ≥ 0,∀j ∈ [m]} has Õ(mAF ) computation complexity.

C.2 Network Congestion Games

For network congestion games, Algorithm 2 can be implemented by applying shortest path algorithms
on a modified network, thus avoiding the dependence on A. We will apply Dijkstra’s algorithm with
Õ(V + E) complexity while other shortest path algorithms can be used as well.

First, the Caratheodory decomposition x ∈ ϕ−1(y) can be done efficiently with O(V E + E2) steps
similar to the decomposition algorithm in [Panageas et al., 2023]. While their algorithm is for the
flow polytopes with one commodity, it can be directly generalized to the multi-commodity case. We
defer the algorithm and analysis to Appendix D.

For u = argmaxu{u : Gapj(x, c+ τ̃u) ≥ 0,∀j ∈ [m]}, the computation complexity can be boosted
to Õ(m(E + V )). To achieve this, we consider how (4) changes as u increases from τ ′f to rf . By
Algorithm 2, we have Gapj(x, c + τ̃u) ≥ 0 when u = τ ′f as otherwise the algorithm ends at the
previous iteration. In addition, facility f either has none of the Nash load or has all of the Nash load
for facility j according to the algorithm design. For the first case, the in-support action costs will
not change as u increases. Gapj(x, c + τ̃u) ≥ 0 always holds as the off-support action costs are
nondecreasing w.r.t. u.

For the second case (all in-support actions use f ), the in-support action costs take the form of
u+ C and C can be determined by applying shortest path algorithm with edge weight c+ τ̃ τ

′
f . For

off-support action cost, we observe that

min
a:xj,a=0

c̃ua = min
{

min
a:xj,a=0,f∈a

c̃ua , min
a:xj,a=0,f /∈a

c̃ua
}
= min

{
min

a:xj,a=0,f∈a
c̃ua , min

a:f /∈a
c̃
τ ′
f

a

}
, (5)

where the second equation is from that the action cost does not depend on u and xj,a = 0 if f /∈ a.
The first term in (5) grows linearly w.r.t. u as f̃ ∈ a, so it is always larger than the in-support action
cost. The second term in (5) is the shortest path length for commodity j that does not use facility
f , which can be computed as the shortest path in the network after removing edge f . As a result,
uj = argmaxu{u : Gapj(x, c+ τ̃u) ≥ 0} can be computed with O(E + V ) complexity. Then the
complexity for computing u = minj∈[m] uj is Õ(m(E + V )).

Similarly, uj = argminu{u : Gapj(x, c + τ̃u) ≥ 0} can be reduced to solving the shortest path
that must use edge f in the network. We consider how (4) changes as u decreases from τf to lf .
Initially, the gap is nonnegative. If f has all of the Nash load, then the in-support action cost is a
linear function u+ C and it decreases at least as fast as the first term. As a result, the gap is always
nonnegative. Otherwise, f has none of the Nash load and in-support action costs remain constant.

We notice the following equation:

min
a:xj,a=0

c̃ua = min
{

min
a:xj,a=0,f∈a

c̃ua , min
a:xj,a=0,f /∈a

c̃ua
}
= min

{
min
a:f∈a

c̃ua , min
a:xj,a,f /∈a

c̃
τ ′
f

a

}
, (6)

where the second equation is from that f ∈ a implies a is off-support (xj,a = 0) and f /∈ a implies
c̃ua is independent of u. The second term in (6) is a constant and is always greater than the in-support
action cost. The first term in (6) is a linear function u and it can be determined by computing the
shortest path that always uses f̃ and with edge weights c+ τ̃ τf . This subproblem can be solved by
applying the shortest path algorithm twice: the first one is to connect the source node and the starting
node of f̃ , and the second one is to connect the end node of f̃ and the target node. As a result, the
complexity for u = maxj∈[m] uj is Õ(m(E + V )) as well. Thus the computation complexity for
Algorithm 2 in network congestion games is O(V E + E2 +mV +mE).
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D Missing Proofs in Section C

Proposition 2. Finding x ∈ ϕ−1(y) can be formulated as the following linear program.

min
x∈RA

1

s.t. y =
∑
i∈[m]

∑
ai∈Ai

xi,ai
ai

wi =
∑

ai∈Ai

xi,ai
,∀i ∈ [m]

xi,ai ≥ 0,∀i ∈ [m], ai ∈ Ai

Proof. The second and third constraints guarantees x is a feasible strategy. The first constraint
indicates y = ϕ(x). As a result, any feasible point of the program is a solution of ϕ−1(y).

Algorithm 3 Efficient Computation of Flow Decomposition (Modified from [Panageas et al., 2023])

1: Input: A load y ∈ Y .
2: xi,a = 0 for all i ∈ [m] and a ∈ Ai.
3: while ∃f : yf > 0 do
4: Let A = {f : yf > 0}.
5: Let fmin = argminf∈A yf and ymin = minf∈A yf .
6: Let a be a (si, ti) path of network G(V,A) with fmin ∈ p.
7: Let xi,a = ymin, yf = yf − ymin if f ∈ a.
8: end while

Proposition 3. Algorithm 3 can output a Caratheodory decomposition of y within E steps.

Proof. During the algorithm, load y will always be nonnegative: yf ≥ 0,∀f ∈ F . For each round,
we will have yfmin

reduced to 0. As a result, the algorithm will end within at most E rounds.

We only need to prove that path a always exists in Line (6) for each round. First, y always remains a
multi-commodity flow as Line (7) will not affect the law of conservation in the network. By flow
decomposition theorem, there exists simple paths a1, a2, · · · , ap such that

y =
∑
i∈[p]

wiai,

where wi > 0 are positive flow weights. As yfmin
> 0, there exists ai such that fmin ∈ ai. Then for

any f ∈ ai, yf ≥ wi > 0. As a result, path a exists for Line (6).

E Experiments

We implemented our algorithm and conducted experiments on a classic example known as the
nonlinear variant of Pigou’s example [Nisan et al., 2007]. Concretely, nonlinear variant of Pigou’s
example is a routing game with one source node s and one target node t. There are two edges
connecting s and t. One edge has constant cost c0(x) = c,∀x ∈ [0, 1] for some c ∈ [0, 1], and the
other edge has polynomial cost c1(x) = xp. One important property of such games is the price of
anarchy grows without bound as p → ∞, which urges proper tax to induce socially optimal behavior.

We apply our algorithm to learn the optimal tax with different c0 and p. As we can see, the social
welfare quickly converges to the optimal one. Another important observation is the learned tax
function does not uniformly converge to the marginal cost tax, which is reasonable as accurate
estimate is only necessary around the Nash equilibrium induced by the tax.
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(a) c=0.2, p=2 (b) c=0.2, p=4

(c) c=0.6, p=2 (d) c=0.6, p=4

(e) c=1, p=2 (f) c=1, p=4

Figure 1: Social Welfare Curves of the Algorithm for various values of c and p. We can observe that
the social welfare converges to the optimal one quickly.
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(a) c=0.2, p=2 (b) c=0.2, p=4

(c) c=0.6, p=2 (d) c=0.6, p=4

(e) c=1, p=2 (f) c=1, p=4

Figure 2: Estimated Tax Functions at the Last Iteration for various values of c and p. The estimation
is not uniformly accurate but they are accurate at the induced Nash equilibrium.
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is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: We provide the proof in the appendix.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Our experiment is a direct implementation of our algorithm on a well-known
task and can be reproduced.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [No]

Justification:

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Our experiment is a direct implementation of our algorithm on a well-known
task and can be reproduced.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]

Justification: Our experiments are deterministic.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Our experiment require minimal computation resources.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification:

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Our research can be potentially applied to real-world tax design.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We did not use public dataset.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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