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ABSTRACT

Reinforcement learning algorithms typically involve an explicit maximization step
somewhere in the process. For example, policy gradient methods maximize an es-
timate of the expected return, and TD methods maximize the target value while
training a critic network. However, explicit maximization of neural function ap-
proximators leads to learning out-of-distribution actions during offline training,
which in turn can lead to overestimation and distributional shift of the learned
policy. Can we instead devise an offline RL method that maximizes the value
implicitly, via generalization? In this paper, we show how expressive conditional
generative models combined with Implicit Q-Learning backups can enable this,
providing an offline RL method that attains good results through generalization
alone, and state-of-the-art results when combined with a simple filtering step that
maximizes over samples from the policy only at evaluation time. We believe that
our work provides evidence that the next big advancements in offline RL will in-
volve powerful generative models.

1 INTRODUCTION

Offline reinforcement learning (offline RL) holds the promise of leveraging large datasets for
learning-based control and decision making without costly online exploration (Levine et al., 2020).
However, standard algorithms typically involve iteratively choosing actions that maximizes the esti-
mated value of a neural-network critic (e.g., as with Q-learning or Q-function actor-critic methods).
As this critic is imperfect, the maximizing action will often have an erroneous (and overestimated)
value prediction (Fujimoto et al., 2019; Kumar et al., 2020; Levine et al., 2020). While in the online
setting an agent that learned such an action may collect more data and correct itself, in offline RL
these mistakes cannot be reversed. Therefore, a variety of modifications to standard methods have
been proposed specifically to avoid out-of-distribution actions (Fujimoto et al., 2019; Kumar et al.,
2019a; 2020). One may argue, however, that learning methods that are based on explicit maximiza-
tion are simply not fit for the offline setting, further implying that supervised learning (SL)-based
methods should be explored. Indeed, instead of maximizing estimated returns, an agent may learn
the relation between outcomes of trajectories (datum X in SL) and actions that led to them (label
Y ), so that a policy is conditioned on those outcomes at test time. Following this motivation, RvS
(RL via SL)—or Upside-Down RL (Schmidhuber, 2019)—methods suggest to view offline RL as
maximum likelihood estimation conditioned on a desired return, or even advantage value (Kumar
et al., 2019b; Emmons et al., 2021). Surprisingly, such simple algorithms, without employing any
critic networks, can improve on standard behavioral cloning. Nevertheless, their performance does
not match the state of the art, which should not be surprising. Clearly, it is difficult to specify the
optimal in-distribution return value, to condition the policy on, that it could obtain at test time while
temporaly decomposing it across encountared states in a trajectory. Lastly, Brandfonbrener et al.
(2022) have shown formally that to produce reliable return-conditioned policies, RvS requires data
coverage of these returns. Can we circumvent these problems and devise RvS policies that are not
sensitive to the conditioning values?

Surprisingly, we can construct an optimal policy by conditioning the behavior-cloning distribution
on zero. To understand this puzzle, recall that the advantage value of optimal actions under the opti-
mal Q-function is always zero (Sutton & Barto, 2018), regardless of their actual return. While having
only finite offline data we cannot compute optimal Q-functions, one can learn approximately optimal
ones for in-distribution actions with Implicit Q-Learning (Kostrikov et al., 2021, IQL). An action
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distribution that is conditioned on such state-advantage pairs could then be used to extract the opti-
mal policy at test time by conditioning it on zero advantage. In effect, conditioning on advantages
puts temporal compositionality back into the conditional policy training, enabling it to leverage gen-
eralization to maximize the value without actually needing to extrapolate to unseen returns. Based
on this reasoning, we propose a method that (1) precomputes the advantage-value labels for state-
action pairs in the dataset with IQL, and then (2) trains a behavioral-cloning policy conditioned on
state and these advantage values, such that (3) at test time, leveraging the approximate optimality of
our value functions, we can extract a strong policy from this model by conditioning it on zero advan-
tage at every state. We implement a few variants of this approach, the best one employing diffusion
models, as they have proven successful at capturing fine conditioning information and representing
highly complex distributions (Ho et al., 2020; Song et al., 2020; Ho & Salimans, 2022). We eval-
uate our method—Advantage-Conditioned Diffusion (ACD)—on the D4RL benchmark tasks (Fu
et al., 2020), and show that by itself this method can deliver satisfying results without any explicit
maximization, and in combination with additional filtering techniques it can reach state-of-the-art
performance on the challenging antmaze tasks.

2 RELATED WORK

Many of the recently proposed offline RL methods incorporate some sort of penalty, regularizer,
or constraint that avoids overestimation of out-of-distribution actions, so that standard algorithmic
techniques that, unlike our ACD, involve explicit maximization could be applied and learn only
in-distribution behaviors (Wu et al., 2019; Kumar et al., 2020; Fujimoto & Gu, 2021). Departing
from this perspective, Implicit Q-Learning (Kostrikov et al., 2021, IQL) trains a value function that
accomplishes this objective implcitly via the expectile loss, and provides value estimates based on
in-distribution actions. Nevertheless, extracting a good policy from IQL critics remains an opem
question. The original method trains a unimodal state-conditioned policy with Advantage-Weighted
Regression (Peng et al., 2019), which has that flaw that it incentifies the policy to learn all actions
in the dataset, including the most suboptimal ones. In contrast, we use the advantages to form labels
to condition our diffusion policy on, which we train with the denoising loss. With such a model, we
can mitigate the influence of poor actions at test time by conditioning the policy on high advantage
values.

Another line of research, sometimes referred to as Upside-Down RL (Srivastava et al., 2019, UDRL)
or RvS (Kumar et al., 2019b; Emmons et al., 2021), observes that any dataset that consists of subop-
timal trajectories may provide an optimal supervision for conditional maximum-likelihood models.
For example, the original UDRL papers (Schmidhuber, 2019; Srivastava et al., 2019) suggest that
the policy can be conditioned on both the reward and the time required to earn it, and demonstrate
preliminary results in OpenAI Gym (Brockman et al., 2016) environnments. Reward-conditioned
policies (RCP) of Kumar et al. (2019b), in the offline setting, learns the value function of the be-
havior policy, and then conditions the test-time policy on the desired advantage value. In order to
achieve performance better than the bahavior policy, this value must be greater than zero and tuned.
This approach induces a trade-off: zero advantages induce in-distribution actions with behavior
policy-like performance, while higher advantages can improve that performance, but are likely to
fall in the trap being queried for out-of-distribution values. Indeed, the resulting method was found
to perform worse than AWR (Peng et al., 2019), which we benchmark our method against. Our algo-
rithm avoids the above problems by using IQL (Kostrikov et al., 2021) advantage functions, which
have that property that actions with zero advantage value are nearly-optimal and in-distribution.
Therefore, at test time, we can safely condition on zero advantage and achieve good performance.
Another work that uses rewards for direct supervision is that of Decision Transformer (Chen et al.,
2021, DT), where the policy is extracted from a transformer (Vaswani et al., 2017) that models the
trajectory as a sequence. However, for this model to perform well it is necessary to condition it on
a long (up to 50 steps) subset of the action-observation-reward history which incurs additional com-
putational burden on top of that of storing and training the model. Even at this expense, the model
was found not to perform well in more challenging tasks, like antmaze in D4RL (see, for example,
evaluations in Kostrikov et al. (2021)). In contrast, our method, apart from the scalar advantage,
conditions the policy only on the current state and achieves good results.

Recently, we have observed a surge in interest of applying Diffusion Models (Sohl-Dickstein et al.,
2015; Ho et al., 2020; Song et al., 2020) in RL. Diffusion Q-Learning (Wang et al., 2022, DQL)
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models the policy with a diffusion model and optimizes it against both the maximum-likelihood
and policy-gradient losses. A possible drawback of this algorithm is that it requires backpropa-
gation through the entire denoising process which introduces additional computational overhead.
Implicit Diffusion Q-Learning (Hansen-Estruch et al., 2023, IDQL), on the other hand, optimizes
the diffusion model solely with respect to the denoising loss, without the need for backpropagation
through the denoising process. Unfortunately, this training scheme does not put any preference on
performant actions, and in order to obtain good performance at test time, one must sample multiple
actions and execute the one with the highest IQL value. Our ACD, instead, incorporates information
from IQL critics into the diffusion training, so that at test time we can bias the model’s distribution
towards high-quality actions.

3 PRELIMINARIES

This section explains the necessary background for this paper. We recall the foundations of offline
RL, review the main idea behind RL via supervised learning, and summarize diffusion models.

3.1 OFFLINE REINFORCEMENT LEARNING

We consider a Markov decision process (Sutton & Barto, 2018, MDP) where, at timestep t ∈ N,
an agent is at state st ∈ S, takes an action at ∈ A, and moves to the next state st+1 ∼ P (·|st, at),
collecting along a reward r(st, at). The agent’s goal is to find a state-conditioned policy π that
maximizes the expected return,

η(π) = E
[ ∞∑

t=0

γtr(st, at) | π
]
,

sometimes referred to as expected total reward, for a predefined value γ ∈ [0, 1). The maximizer
policy of the above equation induces the action-value function that equals the expected return given
the state and action taken, and satisfies the Bellman optimality equation

Q∗(s, a) = r(s, a) + γ · Es′∼P

[
max
a′∈A

Q∗(s′, a′)
]
. (1)

In the infinite data regime, this function can be found with approximate fixed point iteration methods
which train the left side of the above equation to match the right one (Sutton & Barto, 2018; Mnih
et al., 2015; Fujimoto et al., 2018). The policy can be then trained to maximize the value function.
However, in offline RL, the agent cannot interact with the MDP directly, but instead is given a
dataset of N transitions {sti , ati , r(sti , ati), sti+1}Ni=1. This setting prevents application of standard
RL algorithms which update the policy with stochastic gradient ascent since actions that optimize the
estimated value function may not be covered by the dataset’s distribution, and thus their optimality
can be an error of the estimate of the return (Levine et al., 2020). Implicit Q-Learning (Kostrikov
et al., 2021, IQL) attempts to solve this problem by replacing the max operator at the next state in
Equation (1) with an implicit, in-distribution max. To that end, it trains state-value and action-value
function pair (V τ , Qτ ) so that V τ models the τ th expectile of Qτ at a given state

V τ (s) = Eτ
a∼D|s[Q(s, a)],∀s ∈ S,

where, τ ∈ [0.5, 1) and Eτ
x∼p[x] is the expectile operator for x ∼ p(x). That is, the solution to

Eτ
x∼p[x] = argmin

mτ
Ex∼p

[(
τ · 1(x−mτ≥0) + (1− τ) · 1(x−mτ<0)

)
· (x−mτ )2

]
,

where 1(E) is the indicator function of the event E. As τ ≥ 1− τ , the minimizer mτ tries to make
the event x−mτ ≥ 0 happen rarely, and thus concentrates around higher values, converging to the
maximum of the dsiribution as τ → 1. Such V τ is then used in the Bellman backup for Qτ so that
they satisfy

Qτ (s, a) = r(s, a) + γ · Es′∼P

[
V τ (s′)

]
.

As the expectile is applied over actions in the dataset’s distribution only, the critic can avoid the
extrapolation error (Fujimoto et al., 2019) and learn an approximately optimal value function. To
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extract the policy from these critics, IQL uses Advantage-Weighted Regression (Peng et al., 2019,
AWR), which is a weighted form of maximum likelihood estimation:

π∗ = argmax
π

E(s,a)∼D
[
exp

(
β ·Aτ (s, a)

)
· log π(a|s)

]
,

where β ∈ R+ and Aτ (s, a) = Qτ (s, a) − V τ (s) is the IQL advantage value. Unfortunately, as
AWR assigns a positive weight to every action, neural network policies are incentified to learn all
of them, instead of choosing only the best behaviors. Our method tackles this problem by using
the advantage as a learning signal, rather than a weight, allowing us to query the model for optmial
actions at test time by specifying the advantage value.

3.2 REINFORCEMENT LEARNNIG VIA SUPERVISED LEARNING

The premise of Reinforcement Learnnig Via Supervised Learning (RvS) is that, by conditioning the
policy on outcomes of trajectories during training, we can query it for actions that lead to a desired
outcome at test time (Emmons et al., 2021). Frequently chosen outcomes include goal states (Ding
et al., 2019) and the return (Kumar et al., 2019b; Chen et al., 2021). In this work, we focus on the
latter as the goal-conditioned RL can be viewed as RL with an indicator reward function. To train a
return-conditioned policy, one can maximize the log-likelihood

LRvS(π) = E(s,a,R)∼D
[
log π(a|s, R)

]
,

where R is the reward-to-go for the state-action pair (s, a). To compute the reward-to-go R for a
pair (s, a), one can simply sum (and discount) the current and all future rewards within a trajectory
in the dataset until the next done signal is encountared. Then, at test time, one can obtain a per-
formant policy by conditioning on a desired (high) return, π(a|s, R∗), and updating R∗ every time
by subtracting the recent reward, R∗ ← R∗ − r(s, a). Unfortunately, although elegant, this type
of methods is still behind the state-of-the-art algorithms (Emmons et al., 2021), which should not
come across as surprising: naturally, to obtain returns that are better than those in the dataset, one
must condition the policy on higher returns. The policy network has not seen such returns during
training, and thus is likely to output poor actions. In fact, Brandfonbrener et al. (2022) formalize this
intuition by deriving statistical bounds on the performance of RvS with respect to the return cover-
age in the dataset. According to their analysis, without data coverage of the desired returns, a good
performance of the trained policy cannot be guaranteed. In contrast, this paper introduces an algo-
rithm employing value-based methods to leverage temporal compositionality of returns, and results
in a policy that outputs high-quality actions by conditioning on the—always in-distribution—zero
advantage. In this paper, we will introduce a method that avoids querying for out-of-distribution ac-
tions by conditioning on the advantage function, which has the property that in-distribution returns
that it models are concentrated around zero.

3.3 DIFFUSION MODELS

Denoising diffusion probabilistic models (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al.,
2020, DDPM) fit a data distribution pθ(x) ≈ pdata(x) by reversing a diffusion process. That is, a
process in which a point x0 ∼ p(x0) gets gradually blurred with Gaussian noise:

xt =
√
1− βtxt−1 +

√
βtϵt, ϵt ∼ N(0, I), t = 1, . . . , T

where βt is an increasing sequence of positive scalars, known as variance schedule. Note that, in
this paper, we use superscripts to denote diffusion steps and substricts to denote steps in the MDP.
Having learned to predict the noise vectors with denoising score matching (Vincent, 2011), DDPMs
can generate new data by drawing a noise vector xT ∼ N(0, I) and simulating a reverse process:

xt−1 =
1

αt

(
xt −

βt

√
1− α̂t

ϵθ(xt, t)
)
+
√

βtϵ̂t, ϵ̂t ∼ N(0, I), t = T, . . . , 1. (2)

where αt = 1 − βt and α̂t =
∏t

k=1 αk. One can consider an additional variable, y ∼ pdata(y) and
modeling the conditional distribution pθ(x|y) ≈ pdata(x|y) by conditioning the noise network on y,
that is ϵθ(xt, t, y), which was trained on joint samples (x, y) ∼ pdata(x, y).

Conditional generation, most of the time, deals with y being categorical variables, known as classes
(Russakovsky et al., 2015; Van den Oord et al., 2016; Odena et al., 2017). Nevertheless, the condi-
tional distribution pdata(x|y) is well-defined even if y is a continuous scalar. In the next section, we
leverage this property by implementing our advantage-conditioned policy as a diffusion model.
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4 METHOD

In this section, we carefully explain how we develop our method, analyzing its key design choices
one at a time.

4.1 OPTIMIZATION THROUGH CONDITIONING

Our derivation begins with an observation that, under the optimal action-value and state-value func-
tions, Q∗(s, a) and V ∗(s), the optimal action for every state has advantage value

A∗(s, a) = Q∗(s, a)− V ∗(s) = Q∗(s, a)−max
a′∈A

Q∗(s, a′) = 0.

Hence, in the infinite data regime, we could learn these value functions and use them to label the
state-action pairs with their advantage value. Then, we could use these labels to fit a conditional
distribution π(a|s,A). At test time, in order to extract the optimal policy from π, one can simply
condition it on A = 0, for every state, as we formalize in the following theorem.
Theorem 1. LetP be the set of distributions overA that are conditional on pairs (s, x) ∈ S×R, and
d(s, a) be a strictly positive distribution over state-action pairs. Let A∗(s, a) = Q∗(s, a) − V ∗(s)
be the optimal advantage function and

π∗ ∈ argmax
π∈P

E(s,a)∼d

[
log π

(
a|s, A∗(s, a)

)]
.

Then, π∗(a|s) ≜ π∗(a|s, 0) is the optimal policy.

Proof. First, note that an action a is optimal at state s if and only if A∗(s, a) = 0, since this is
equivalent to Q∗(s, a) = V ∗(s) = maxa′∈A Q∗(s, a′). Further, π∗(a|s,A∗ = 0) > 0 implies
that Pr

(
A∗(s, a) = 0|s, a

)
> 0, and since A∗(s, a) is a deterministic mapping, this means that

A∗(s, a) = 0. Hence, a is optimal at state s, which finishes the proof.

Of course, in offline RL, we only have access to a finite dataset, implying that the optimal value func-
tions cannot be computed. Nevertheless, we can learn approximate, in-distribution value functions
V τ and Qτ with IQL (Kostrikov et al., 2021). As τ → 1, V τ (s) converges to the max of Qτ (s, a)
over in-distribution actions, and actions with Aτ (s, a) = 0 converge to the optimal action at state s.
Thus, we can approximately recover the policy from Theorem 1 by computing the advantage labels
A for (s, a) ∈ D with IQL, and use them to learn the conditional distribution π∗(a|s,A). This gives
rise to a dataset

Dlabeled = {sti , ati , yti = Aτ (sti , ati)}Ni=1 (3)

Figure 1: The union of histograms, with bin
width of 0.25, of IQL advantage values in
antmaze-medium-play. Actions with positive ad-
vantage have a very low coverage.

Having obtained such a dataset, we train a neural-
network action distribution conditioned on the state
and advantage value. Then, at test time, we de-
ploy the policy by conditioning the distribution on
A = 0. Of course, it may be tempting to condi-
tion on higher advantage values. However, actions
with substantially greater values are not guaranteed
to be in-distribution. We illustrate this by plotting
the histogram of IQL advantage values in antmaze-
medium-play in Figure 1, which reveals that the cov-
erage of advantages suddenly drops above 0. There-
fore, while it is possible to increase that value from
zero to marginally improve the performance and not
go out of distribution, the value that allows for that
will depend on the task and the dataset. Hence, we
simply condition on A = 0 at test time.

The policy can be implemented in a number of ways, but the most typical one for RL is a Gaussian
distribution parameterized by multi-layer percepteron (Schulman et al., 2015; Haarnoja et al., 2018;
Kumar et al., 2020). We implement our approach with this architecture for a proof of concept
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Dataset SAC BC AWR ACG
antmaze-umaze 0 65 56 81.9
antmaze-umaze-diverse 0 55 70.3 57.9
antmaze-medium-play 0 0 0 14.1

Table 1: ACG outperforms Soft Actor-Critic (SAC), Behavior Cloning (BC), and Advantage-
Weighted Regression (AWR) in 2 out of 3 tested D4RL tasks, and places second once.

of optimization via generalization with IQL advantage values. We test this algorithm (which we
refer to, for now, as ACG: Advantage-Conditioned Gaussian) against three approaches: off-policy
RL (represented by SAC (Haarnoja et al., 2018)), maximum-likelihood estimation (represented by
BC), and weighted maximum-likelihood (represented by AWR (Peng et al., 2019)), in three D4RL
environments, as presented in Table 1. As oppose to those methods, ACG was capable of improving
upon the behavior policy in all three tasks, placing first in 2 out of 3 of them, and once coming
second.

Nevertheless, Gaussian distributions parameterized by MLPs are not the most effective probabilistic
models. Thus, we continue developing our method by incorporating recent advances from generative
modeling—diffusion models (Ho et al., 2020).

4.2 ADVANTAGE-CONDITIONED DIFFUSION

In this subsection, we combine the idea of policies conditioned on optimal advantages with the
diffusion model toolkit. We implement the conditional distribution πθ(a|s,A) as a diffusion model,
which we implement with a noise network ϵθ(at, t, s, A). That is, the network that generates an
action a = a0 from random noise aT ∼ N(0, I) and takes the state and advantage information as
input. Furthermore, inspired by classifier-free guidance (Ho & Salimans, 2022), we additionally
train an (advantage-)unconditional noise model ϵθ(at, t, s). In practice, we train only one network,
and call the unconditional model by passing a special null token ∅ into the network, ϵθ(at, t, s, ∅).
The token is implemented by prepending an indicator variable to the advantage, resulting in an
input vector y = [1(not null),1(not null) · A] ∈ R2. As such, during training, we drop the advantage
information such that we have 1(not null) = 0 with probability p = 0.1. After training the model, at
test time, we sample from it using a linear combination of the score networks,

ϵωθ (a
t, t, s, A = 0) ≜ (1 + ω) · ϵθ(at, t, s, A = 0)− ω · ϵθ(at, t, s, ∅), (4)

where ω ∈ R. It is worth noting that for ω = −1, the model becomes fully unconditional, and for
ω = 0 the linear-combination trick is identical to a vannila conditional network. In our experiments,
we found that this technique can significantly boost performance (e.g., from 43.2 to 56.1 on antmaze-
medium-play), and throughout the paper we work with ω = 3. We summarize the whole method in
Algorithm 1.

Algorithm 1 Advantage-Conditioned Diffusion

1: Input: dataset D, critic networks Qϕ(s, a) & Vϕ(s), noise network ϵθ, Bernoulli parameter p.
2: for step = 0, 1, . . . do
3: Sample a batch B ⊂ D.
4: Make an IQL update on Qϕ & Vϕ.
5: ∀(s, a) ∈ B, label them with Aϕ(s, a) = Qϕ(s, a)− Vϕ(s).
6: Mask the advantage labels independently at random with probability p.
7: Make a gradient descent step on ϵθ with the denoising loss.
8: end for
9: Deploy: Diffusion policy parameterized by ϵωθ (a

t, t, s, A = 0) from Equation (4).

4.3 ADVANTAGE REPRESENTATION

We elaborate that we explored other forms of conditioning of the advantage value which we dis-
cuss here. First, while working on ACG, we tried discretizing the real axis into Nbin bins, and
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encode an advantage value with the ith standard basis vector if it belonged to the ith bin. This
indeed improved the network’s performance on some tasks. We report example results in Table 2.

Task Raw Discrete

antmaze-umaze 81.9 82.1
antmaze-medium-play 14.1 34.9

Table 2: Ablation of advantage representation
(raw real values vs discretized categorical) for
ACG in antmaze tasks.

Nevertheless, we do not include more results
for this technique since we found that our final
method—ACD—works better with raw advantage
values. Furthermore, poor results for ACG with
scalar advantages can be improved by changing
the optimizer from Adam (Kingma & Ba, 2014)
to AdamW (Loshchilov & Hutter, 2017). Such
an observation provides an interesting insight into
the difference between the abilities of MLPs and
DDPMs: the less expressive MPLs struggle to gen-
eralize to information from a single continuous sig-
nal but work descently with crude, discrete signals, while the more expressive diffusion model ben-
efits from exact continuous advantage values.

While working with ACD, we tried the previously-mentioned raw and discrete repre-
sentations, as well as more sophisticated methods of modeling the advantage input.

Raw Discrete Sinusoidal Learned

53.4 36.5 26.8 27.7

Table 3: Ablation of advantage representations
for ACD in antmaze-medium-play tasks.

Namely, we attempted to use Transformer’s sinsu-
soidal encoding (Vaswani et al., 2017) of advan-
tage, as well as to learn an MLP mapping from
raw values to a vector that would be an input to
the DDPM. While we found these two approaches
perform similarly, they significantly worsened the
performance of our policy, so we decided to work
with raw scalars.

We also tried training an unconditional DDPM and sample from it in a classifier guidance style—by
incorporating the gradient of the Q-function with respect to the denoised action,∇atQτ (s, at), into
the reverse process, similarly to Diffuser (Janner et al., 2022). However, in addition to being more
computationally expensive due to the gradient of the Q-function, this variation performed worse
than classifier-free guidance in our early experiments. Hence, we decided not to pursue it further,
and leave a more exhaustive exploration of it as future work.

4.4 VALUE FILTERING

While we will show that the method described above is already sufficient to attain good performance
for offline RL without any explicit maximization, we found that in order to obtain results that are
competitive with state-of-the-art methods it is beneficial to add an additional test-time value filtering
phase as a post-processing step on our method, similarly to the technique used by IDQL (Hansen-
Estruch et al., 2023). At test time, we sample Nsample actions from the conditional DDPM,{

a(i) ∼ πθ

(
a(i)|s, A = 0

)}Nsample

i=1
,

compute their Q-values, and execute the action with the largest Q-value. We refer to this method
as filtered ACD (ACD-F). While this does introduce explicit maximization, this is only performed
at test time, and not during training. Note that we have not tuned the value of Nsample, but simply
adopted it from IDQL. This may have impact of the performance of ACD-F, since the goal of con-
ditioning is to narrow down the distribution of sampled actions (center it around a particular mode).
Thus, it is likely that the same number of samples that was optimal for IDQL may be too high for
ACD, increasing the probability of encountering an adversarial action. Indeed, we noticed a drop in
performance of ACD-F with respect to ACD in antmaze-umaze-diverse (see Table 4). Nevertheless,
we keep this value for simplicity, and leave its analysis and tuning for future work.

5 EXPERIMENTS

To implement the diffusion policy, we borrow the core of our architecture from IDQL (Hansen-
Estruch et al., 2023) which consists of three residual blocks with layer normalization. Advantage
(or null) conditioning information is done by concatenating the 2-dimension vector y from Subsec-
tion 4.2 to the state vector. During training, we choose to drop the advantage information and train
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(a) halfcheetah-medium (b) antmaze-umaze (c) antmaze-medium (d) antmaze-large

Figure 2: Visualization of D4RL tasks that we evaluate on.

Dataset BC AWR IQL DQL IDQL ACD ACD-F
halfcheetah-med 44 47.4 51.1 51.0 48.5 49.2 51.6
antmaze-umaze 65 56 86.4 47.6 93.8 78.4 77.1
antmaze-umaze-div 55 70.3 62.4 35.8 62 59 45.8
antmaze-med-play 0 0 76 42.5 86.6 56.1 83.5
antmaze-med-div 0 0 70.0 78.6 84.8 56.3 86.8
antmaze-large-play 0 0 39.6 46.4 62 14.7 57.6
antmaze-large-div 0 0 47.5 57.3 51.8 11.7 51.1

Table 4: Performance comparison of a range of offline RL methods, including state-of-the-art IQL-
and DDPM-based methods. ACD achieves good results with advantage-conditional generation only,
without explicit maximization at all. With value filtering, ACD-F is competitive with SOTA.

the null model with probability p = 0.1. At test time, we sample from the model with classifier-
free guidance (Eq. (4)) with ω = 3. We evaluate our methods, ACD and ACD-F, on challenging
D4RL tasks and compare to prior methods: Behavior Cloning (BC), Advantage-Weighted Regres-
sion (Peng et al., 2019, AWR), Implicit Q-Learning (Kostrikov et al., 2021, IQL), Diffusion Q-
Learning (Wang et al., 2022, DQL), and Implicit DQL (Hansen-Estruch et al., 2023, IDQL).

We focus, in particular, on antmaze tasks (Figures (2b)-(2d)), for which the datasets were cre-
ated running different goal-conditioned policies. These tasks test the agent’s stitching ability—
composing optimal behavior in different regions of the state space—that allows it to generate better
trajectories than those of the behavior policy. As we can see in Table 4, ACD by itself is sufficient to
improve upon the behavior policy and significantly outperforms AWR. This confirms that it is possi-
ble to learn competitive policies for offline RL without explicit maximization and instead conditional
generation only. Unsurprisingly, additional samples and value filtering improves the performance
of our method, making ACD-F significantly better than prior art, apart from IDQL, with which it is
competitive in nearly all tested tasks.

6 CONCLUSION

In this paper, we presented a method of solving offline reinforcement learning with conditional
generative modeling. The conditioning variables of our policy are optimal advantage values, which
have the property of equaling zero at optimum. In order to learn approximately optimal advantages
for in-distribution actions, we use Implicit Q-Learning (IQL), and to extract performant behavior
from the learned model, we simply condition it on the zero scalar. This procedure does not require
explicit maximization steps in the policy training. We investigated the performance of many design
choices, including network architectures, training, training, and sampling steps. Our final policy
itself, which is trained to learn conditional distributions, is implemented with a diffusion model,
from which we sample using a classifier-free guidance-style method. The results that we obtained
prove that offline RL policies can be trained with generative losses, without the need of explicit
maximization of the return, and deployed with a simple conditioning scheme. Out future work will
focus on a deeper exploration of the design choices in diffusion models that allow for sampling the
highest-quality actions without the need of excessive sampling and value filtering. We anticipate
and look forward to seeing generative models enable solving the biggest challenges of offline RL.
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