
The Merit of River Network Topology for Neural Flood Forecasting

Nikolas Kirschstein * † Yixuan Sun *

Abstract
Climate change exacerbates riverine floods, which
occur with higher frequency and intensity than
ever. The much-needed forecasting systems typi-
cally rely on accurate river discharge predictions.
To this end, the SOTA data-driven approaches
treat forecasting at spatially distributed gauge sta-
tions as isolated problems, even within the same
river network. However, incorporating the known
topology of the river network into the prediction
model has the potential to leverage the adjacency
relationship between gauges. Thus, we model
river discharge for a network of gauging stations
with GNNs and compare the forecasting perfor-
mance achieved by different adjacency definitions.
Our results show that the model fails to benefit
from the river network topology information, both
on the entire network and small subgraphs. The
learned edge weights correlate with neither of the
static definitions and exhibit no regular pattern.
Furthermore, the GNNs struggle to predict sud-
den, narrow discharge spikes. Our work hints at a
more general underlying phenomenon of neural
prediction not always benefitting from graphical
structure and may inspire a systematic study of
the conditions under which this happens.

1. Introduction
Floods are among the most destructive natural disasters that
occur on Earth, causing extensive damage to infrastructure,
property, and human life. They are also the most common
type of disaster, accounting for almost half of all disaster
events recorded (cp. Figure 1). In 2022 alone, floods af-
fected 57.1 million people worldwide, killed almost 8000,
and caused 44.9 billion USD in damages (CRED, 2022).
With climate change ongoing, floods have become increas-
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Figure 1. Historical occurrence of natural disasters by disaster type.
The number of events increased over time, with floods being the
most common. (Ritchie et al., 2024).

ingly frequent over the last decades and are expected to be
even more prevalent in the future (United Nations, 2022).
Thus, early warning systems that can help authorities and in-
dividuals prepare for and respond to impending floods play
a crucial role in mitigating fatalities and economic costs.

Operational forecasting systems such as Google’s Flood
Forecasting Initiative (Nevo et al., 2022) typically focus on
riverine floods, which are responsible for the vast majority
of damages. A key component in these systems is the predic-
tion of future river discharge1 at a gauging station based on
environmental indicators such as past discharge and precipi-
tation. The state-of-the-art data-driven approaches are based
on Kratzert et al. (2019b) and consist in training an LSTM
variant on multiple gauges jointly to exploit the shared un-
derlying physics. However, even when some of those gauges
are in the same river network, this topology information is
not taken into account. One reason might be that the main
benchmarking dataset family CAMELS-x (Addor et al.,
2017; Alvarez-Garreton et al., 2018; Coxon et al., 2020;
Chagas et al., 2020; Fowler et al., 2021) does not contain
such information. Recently, Klingler et al. (2021) published
a new benchmarking dataset LamaH-CE that follows the
CAMELS-x framework but includes topology data.

1amount of water volume passing through a given river section
per unit time
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In this work, we investigate the effect of river network topol-
ogy information on discharge predictions by employing a
single end-to-end GNN to allow the network structure to
be utilised during the prediction process. We train GNNs
on LamaH-CE and, to assess the merit of incorporating the
graph structure, compare the effect of different adjacency
definitions:

(1) no adjacency, which is equivalent to existing ap-
proaches with cross-gauge shared parameters but iso-
lated gauges,

(2) binary adjacency of neighbouring gauges in the net-
work,

(3) weighted adjacency according to physical relationships,
namely stream length, elevation difference, and aver-
age slope between neighbouring gauges, and

(4) learned adjacency by treating edge weights as a model
parameter.

We perform this comparison for both the entire dataset as
well as four deliberately chosen small-scale subnetworks
with different local topologies. Furthermore, we inspect
how the learned edge weights in (4) correlate with the
static weights in (3). Finally, we analyse the model’s be-
haviour on the worst-performing gauge. Our source code
is publicly available at https://github.com/nkirschi/

neural-flood-forecasting.

2. Related Work
Classical approaches towards river discharge prediction
stem from finite-element solutions to partial differential
equations such as the Saint-Venant shallow-water equations
(Vreugdenhil, 1994; Wu, 2007). However, these models
suffer from scalability issues since they become compu-
tationally prohibitive on larger scales, as required in the
real world (Nevo et al., 2020). Furthermore, they impose
a strong inductive bias by making numerous assumptions
about the underlying physics.

On the other hand, data-driven methods and in particular
deep learning provide excellent scaling properties and are
less inductively biased. They are increasingly being ex-
plored for a plethora of hydrological applications, including
discharge prediction (see surveys by Mosavi et al., 2018;
Chang et al., 2019; Sit et al., 2020), where they tend to
achieve higher accuracy than the classical models. The vast
majority of studies employ Long Short-Term Memory mod-
els (LSTM; Hochreiter & Schmidhuber, 1997) due to their
inherent suitability for sequential tasks and reliability in pre-
dicting extreme events (Frame et al., 2022). Whereas these
studies usually consider forecasting for a single gauging
station, Kratzert et al. (2019a;b) demonstrate the generalisa-
tion benefit of training a single spatially distributed LSTM

Figure 2. Geographical contextualisation of the LamaH-CE dataset.
Circle colour indicates gauge elevation, while circle size indicates
catchment size. (Klingler et al., 2021)

model on multiple gauging sites jointly. Their approach
exploits the shared underlying physics across gauges but is
still agnostic to the relationship between sites.

Incorporating information from neighbouring stations or
even an entire river network into a spatially distributed
model potentially improves prediction performance. Up-
stream gauges could “announce” the advent of increased
water masses to downstream gauges, which in turn could
provide forewarning about already ongoing flooding further
downstream. The input then becomes a graph whose ver-
tices represent gauges and edges represent flow between
gauges. The corresponding deep learning tool to cap-
ture these spatial dependencies is Graph Neural Networks
(GNN). Kratzert et al. (2021) employ it as a post-processing
step to route the per-gauge discharge predicted by a conven-
tional LSTM along the river network. In contrast, we seek
to unify prediction and routing in a single GNN.

3. Methodology
3.1. Data Preprocessing

The LamaH-CE2 dataset (Klingler et al., 2021) contains his-
torical discharge and meteorological measurements on an
hourly resolution for 859 gauges in the broader Danube
river network shown in Figure 2. Covering an area of
170 000 km2 with diverse environmental conditions, Klin-
gler et al. expect that results from investigations on this
dataset carry over to other river networks. Unfortunately,
LamaH-CE does not provide any flood event annotations, so
that we can only model continuous discharge but not floods
as discrete events. Moreover, the dataset does not include
average propagation time between gauges, meaning that a
predictor needs to implicitly infer the time lag by comparing
observations at neighbouring gauges.

2LArge-SaMple DAta for Hydrology for Central Europe
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The river network defined by LamaH-CE naturally forms
a directed acyclic graph (DAG) G = (V, E). The nodes V
represent gauges, and the edges E represent flow between a
gauge and the next downstream gauges. Hence, G is anti-
transitive, i.e., no skip connections exist. We preprocess G
to distil a connected subgraph with complete data.

Region Selection. Figure 2 shows that G contains four dif-
ferent connected components, of which we restrict ourselves
to the largest one, ”Danube A”. Its most downstream gauge
close to the Austrian-Hungarian border has complete dis-
charge data for the years 2000 through 2017. Starting at this
gauge, we determine all connected gauges of the Danube A
region by performing an inverse depth-first search given by
Algorithm A.1. Overall, 608 out of the original 859 gauges
belong to this connected component.

Gauge Filtering. While the meteorological data is com-
plete, the discharge data contains gaps. Klingler et al. have
filled any consecutive gaps of at most six hours by linear
interpolation and left the remaining longer gaps unaltered.
We only want to consider gauges that (a) do not have these
longer periods of missing values and (b) provide discharge
data for at least the same time frame (2000 to 2017) as
the most downstream gauge. To this end, we remove all
gauges that violate these requirements from the graph using
Algorithm A.2. Predecessors and successors of a deleted
node get newly connected with a combined edge weight so
that network connectivity is maintained. Note that thanks
to antitransitivity, a duplicate check is unnecessary when
inserting the new edges. After this preprocessing step, we
are left with 358 out of the previously 608 gauges.

Overall, the reduced graph G consists of n := |V| = 358
gauges with T hours of discharge measurements for the
years 2000 to 2017, which we can conceptually represent
as a node signal Q =

[
q(1) | q(2) | . . . | q(T )

]
∈ Rn×T .

Equally, we have four node signals of the same shape
for each of the meteorological context variables precipita-
tion, topsoil moisture, air temperature, and surface pressure.
However, we exclude them from all notation throughout the
paper for simplicity of presentation, i.e., drop the implicit
third dimension of size 5.

Normalisation. We normalise the data to surrender all
gauges to the same scale and accelerate the training process
(LeCun et al., 2002). In particular, we normalise per gauge,
i.e., element-wise, using the standard score:

q(t) ← q(t) − µ

σ
where

µ = 1
T

∑T
t=1 q

(t)

σ2 = 1
T−1

∑T
i=1(q

(t) − µ)2

Train-test splits. To robustly assess the performance of a
trained model on unseen data via cross-validation, we con-
sider three different train-test splits. The last two years 2016

and 2017 always serve for testing, and from the remainder
eight years are chosen for training: once the even years in
2000 to 2015, once the odd years in 2000 to 2015, and once
the contiguous years 2008 to 2015. Note the differences to
vanilla fold-based cross-validation schemes: (a) we need to
ensure the train years temporally precede the test years, and
(b) due to the small amount of available years we choose
the same test set for all splits.

3.2. The Forecasting Task

We task the model with an instance of supervised node
regression. Assume we are given a certain amount of W
(”window size”) most recent hours of discharge and me-
teorological measurements, for all gauges. Our goal is to
predict the discharge L (”lead time”) hours in the future.
Again, for simplicity, we restrict all notation to the dis-
charge data in the input since the meteorological data can
be trivially added in an extra dimension.

Features & Targets. To conduct supervised learning, we
extract input-output pairs from the time series represented
by Q (cp. Section 3.1). For t = W,W + 1 . . . , T − L, we
define the feature matrix at time step t as

X(t) :=

[
q(t−W+1)

∣∣∣∣∣ . . .
∣∣∣∣∣ q(t−1)

∣∣∣∣∣ q(t)

]
∈ Rn×W

and the corresponding target vector as y(t) := q(t+L) ∈ Rn.
We collect all samples into the set D = {(X(t),y(t))}T−L

t=W

and partition it according to a given train-test split into
D = Dtrain ∪· Dtest. The extraction process can be illustrated
as follows:

time−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

ga
ug

es
←
−−
−−
−−
−−
−−
−

Q

X(t) L←−→y(t) . . .


︸ ︷︷ ︸

W

Adjacency. Besides the input and target measurements, we
feed the river network topology to the GNN in the form
of an adjacency matrix A ∈ Rn×n. For the definition of
matrix entries corresponding to an edge (i, j) ∈ E (the rest
being zero), we consider the following choices:

(1) isolated: Ai,j := 0 equates to removing all edges and
results in the augmented normalised adjacency matrix
to be a multiple of the identity so that each GNN layer
degenerates to a node-wise linear layer.

(2) binary: Ai,j := 1 corresponds to the unaltered adja-
cency matrix as it comes with the LamaH-CE dataset.
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(3) weighted: Ai,j := w(i,j) quantifies a physical relation-
ship, for which LamaH-CE provides three alternatives:

• the stream length along the river between i and j,
• the elevation difference along the river between i

and j, and
• the average slope of the river between i and j.

(4) learned: Ai,j := ω(i,j) where ω ∈ R|E| is a learnable
model parameter.

The first two variants allow us to compare the effect of
introducing the river network topology into the model at
all. The last two variants enable insights into what kind of
relative importance of edges is most helpful. As usual in
GNNs, we use the normalised augmented adjacency matrix

Ā := (Din+diag(ξ))−
1
2 (A+diag(ξ))(Din+diag(ξ))−

1
2

where self-loops for node i with weight ξi are added and ev-
erything is symmetrically normalised based on the diagonal
in-degree matrix Din. We generally set ξi as the mean of all
incoming edge weights at node i to make self-loops roughly
equally important to the other edges. The only exception to
this is option (1) above, where that mean would be zero and
thus result in no information flow whatsoever, so that in this
case, we set the self-loop weights to one instead.

Model. Our desideratum is a GNN fθ : Rn×W → Rn

parameterised by θ which closely approximates the map-
ping of windows X to targets y, i.e., ŷ := fθ(X) ≈
y. All our models have a sandwich architecture: an
affine layer EncoderΘ0 : Rn×W → Rn×d embeds the
W -dimensional input per gauge into a d-dimensional la-
tent space. On this space, a sequence of N layers
GNNLayerΘi

: Rn×d × Rn×n → Rn×d with subsequent
activation function σ = ReLU are applied. Finally, another
affine layer DecoderΘN+1

: Rn×d → Rn projects from the
latent space to a scalar per gauge. In symbols:

H(0) := EncoderΘ0
(X)

H(i) := σ(GNNLayerΘi
(H(i−1), Ā)) for i = 1, . . . , N

ŷ := DecoderΘN+1
(H(N)).

We consider three choices for GNNLayer: a residual ver-
sion of the vanilla GCN layer (Kipf & Welling, 2017),
the inherently residual GCNII layer (Chen et al., 2020),
and a residual version of the attention-based GAT layer
(Veličković et al., 2017). Since the GAT layer already con-
tains a learned component, the adjacency case (4) would be
redundant for this architecture, so that we replace it with the
case of providing all three edge weights in (3) jointly, which
is not possible with the other two layer definitions. All three
employ residual connections to overcome the phenomenon
known as oversmoothing (Oono & Suzuki, 2020), where the
features of adjacent nodes converge with increasing depth.

Relevancy Score. The dataset contains many periods of
almost no discharge activity. To guide the training process
and focus on “interesting” discharge windows, we seek
to quantify the relevancy of each row x(g) ∈ RW in the
feature matrix X. First, we unnormalise to recover the
original discharge values x

(g)
⋆ := σgx

(g) + µg. Then, let
∇x(g)

⋆ ∈ RW denote the numerical derivative according
to the second-order accurate central differences method,
and

∫
x
(g)
⋆ ∈ R the numerical integral according to the

trapezoidal rule. We define the relevancy as

ϱ(x(g)) := mean

(
∇x(g)

⋆

µg

)2

⊙
∫
x
(g)
⋆

µg
∈ RW .

This heuristic definition captures both the rate of change in a
given discharge window and the overall discharge in relation
to its mean, while weighting the former twice as strongly.
The year-wise maximisers shown in Section 3.2 suggest that
this is a reasonable measure of relevancy. Note that it does
not depend on the meteorological context variables.

Optimisation Objective. To measure the error between a
model prediction ŷ for input X and the target y, we weight
the standard multi-dimensional regression square loss by
the relevancy score:

L(ŷ,y,X) := 1
n∥ϱ(X)⊙ (ŷ − y)∥22.

Training is then defined as optimising the expected loss
over the empirical distribution of training samples in Dtrain,
regularised by the ℓ2-norm of the parameters:

min
θ

E(X,y)∼Dtrain [L(fθ(X, Ā),y,X)] + λ
2 ∥θ∥

2
2.

Testing Metric. Recall that we perform training on nor-
malised samples. For testing, we must calculate metrics on
the unnormalised version of the predictions and targets:

ŷ⋆ := σ ⊙ ŷ + µ, y⋆ := σ ⊙ y + µ.

The standard metric in hydrology for a single gauge is the
Nash-Sutcliffe Efficiency (NSE; Nash & Sutcliffe, 1970). It
compares the sum of squared errors of the model to the that
of the constant mean-predictor and subtracts this value from
one to obtain a percentage score in [0, 1]. An NSE of zero
means that the model’s predictive capability is no better
than that of the empirical mean, while an NSE of one indi-
cates perfect model predictions. Since we are training the
model with a weighted objective, we analogously weight3

the evaluation metric with the relevancy score:

NSE := 1−
∑|Dtest|

i=1 ϱ(X(t))⊙(ŷ(ti)
⋆ − y

(ti)
⋆ )2∑|Dtest|

i=1 ϱ(X(t))⊙(µ− y
(ti)
⋆ )2

.

We straightforwardly obtain a summary metric by averaging
across gauges: NSE := 1

n

∑n
g=1 NSEg .

3The unweighted version yields qualitatively similar results but
has higher absolute values since it rewards performing well on
trivial windows more than the weighted metric.
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Figure 3. Year-wise maximisers of the relevancy score ϱ. Each maximiser’s discharge window (blue) exhibits both high variability as well
as an excessive overall discharge level, in relation to the mean discharge of its gauge (gray).

4. Experiments
4.1. Experimental Setup

The code to reproduce our experiments is publicly available4.
Table 1 lists the relevant hyperparameters we use throughout
all experiments unless stated otherwise. On the data side,
we set the window size to W = 24 and lead time to L = 6
hours, which are realistic choices. While, conceptually,
larger window sizes would be preferred to provide a longer
history to the predictor, they also imply a larger latent space
dimensionality d and thus restrict computational feasibility.

Table 1. Default hyperparameters for our experiments.
HYPERPARAMETER VALUE

D
A

TA

WINDOW SIZE (W ) 24 h
LEAD TIME (L) 6 h
NORMALISATION? Z-SCORE

M
O

D
E

L

ARCHITECTURE GCNII
NETWORK DEPTH (N ) 19
LATENT SPACE DIM (d) 128
EDGE DIRECTION BIDIRECTED
ADJACENCY TYPE BINARY

T
R

A
IN

IN
G

INITIALISATION KAIMING
OPTIMISER ADAM
# EPOCHS 100
BATCH SIZE 64
LEARNING RATE 10-4

REGULARISATION STRENGTH (λ) 10-5

4https://github.com/nkirschi/neural-flood-forecasting

On the model side, we consider all three choices of layer
definition described in Section 3.2, resulting in three model
architectures ResGCN, GCNII, and ResGAT. We choose a
depth of N = 19 layers to allow information propagation
along the entire river graph, since the longest path in the
preprocessed graph consists of 19 edges. The latent space
dimensionality of d = 128 is chosen large enough to allow
an injective feature embedding but small enough to avoid
memory issues. The edge direction and adjacency type
hyperparameters are subject to investigation in Section 4.2.

On the training side, all neural network parameters are ran-
domly initialised using the standard Kaiming initialisation
scheme (He et al., 2015) for architectures with ReLU activa-
tions. We then perform 100 epochs of stochastic mini-batch
gradient descent, which is enough for the process to con-
verge. The descent algorithm is Adaptive Moments (Adam;
Kingma & Ba, 2015) with a learning rate of 10−4. To
prevent overfitting, besides regularising with a strength of
λ = 10−5, we select the parameters from the epoch with
minimal loss on a random holdout set containing 1

5 of the
training data.

4.2. River Topology Comparison

Our main experiment compares the impact of the six differ-
ent gauge adjacency definitions detailed in Section 3.2 on
forecasting performance. In addition, we also consider three
alternative edge orientations, which determine the direction
of information flow in the GNN, as none of the options is

5
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a priori preferable. The downstream orientation is given
by the dataset, the upstream orientation results from revers-
ing all edges, and the bidirected orientation from adding
all reverse edges to the forward ones. We cross-validate
all 18 topology combinations on the three train-test splits
established in Section 3.1 using the summary NSE metric
defined in Section 3.2, and report the results in Table 2.

Surprisingly, model performance shows almost no sensitiv-
ity to the choice of graph topology. Isolating the gauges
does not harm performance beyond the standard deviation,
and no combination outperforms a 19-layer MLP baseline.
This indicates that the forecasting task for a gauge mainly
benefits from the past discharge at that gauge but not from
the discharge at neighbouring gauges. The river graph topol-
ogy makes no difference. Even when the model is allowed
to learn an optimal edge weight assignment, it does not
manage to outperform the baseline.

4.3. Learning the Weights

The case of learned edge weights is of particular interest.
They were initialised by drawing from the uniform distri-
bution in [0.9, 1.1] to arrange them neutrally around one
while still introducing sufficient noise to break symmetry.
Whenever learned weights get negative during training, we
clip them to zero. The distribution of the learned weights
(cp. Table A.3) is still centred around one with minima close
to zero and maxima below ten.

To see if the learned weights exhibit any similarities with
the physical weights, we calculate Pearson correlation coef-
ficients for all topology combinations. Table 3 shows that
none of the physical weight assignments correlate much
with the learned weights. In multiple instances, the sign
even flips when using a different model architecture. For
instance, the largest positive correlation occurs with stream
length for ResGCN, but in this same case GCNII achieves
a negative correlation of the same magnitude. Hence, we
conclude that none of the physical edge weights from the
datasets are optimal context information for the predictor.

4.4. Small-scale Subnetworks

To exclude the possibility that the considerable depth is
causing the GCN to not outperform the baseline MLP due
to more general issues with training very deep networks, we
repeat the topology comparison from Section 4.2 on four
small subgraphs of the river network illustrated in Figure 4.
Since the graph rewiring done by Algorithm A.2 can have
a strong effect when considering only a handful nodes, we
skipped it in the preprocessing for this experiment and chose
only subgraphs with full data coverage to begin with. Fur-
thermore, to allow for sufficient model capacity, we increase
the latent space dimensionality to 512 for this experiment.

Table 2. Forecasting performance on different river network topolo-
gies, given as mean and standard deviation of NSE across folds. A
wide 2-layer MLP baseline achieves a result of 85.37%± 1.64%.
Bold indicates the best value per column. Note that results for
the isolated adjacency type are not affected by the choice of edge
orientation due to the absence of edges in this case.

(a) ResGCN

ADJACENCY TYPE
EDGE ORIENTATION

DOWNSTREAM UPSTREAM BIDIRECTED

ISOLATED
85.07%
±0.66%

85.07%
±0.66%

85.07%
±0.66%

BINARY
82.03%
±1.97%

83.90%
±1.26%

82.73%
±2.54%

STREAM LENGTH
81.64%
±1.45%

81.98%
±3.06%

83.09%
±2.37%

ELEVATION DIFFERENCE
82.16%
±1.85%

83.43%
±0.16%

83.16%
±1.76%

AVERAGE SLOPE
81.93%
±1.18%

80.68%
±1.99%

81.59%
±2.21%

LEARNED
81.34%
±1.61%

84.13%
±0.81%

83.50%
±1.59%

(b) GCNII

ADJACENCY TYPE
EDGE ORIENTATION

DOWNSTREAM UPSTREAM BIDIRECTED

ISOLATED
84.12%
±1.88%

84.12%
±1.88%

84.12%
±1.88%

BINARY
84.09%
±1.11%

85.16%
±1.74%

84.81%
±0.53%

STREAM LENGTH
84.29%
±1.28%

85.09%
±2.11%

83.90%
±1.05%

ELEVATION DIFFERENCE
84.44%
±0.81%

84.87%
±1.78%

84.06%
±0.68%

AVERAGE SLOPE
83.93%
±1.39%

84.47%
±1.11%

84.68%
±0.68%

LEARNED
84.91%
±1.97%

85.00%
±2.11%

85.56%
±1.41%

(c) ResGAT

ADJACENCY TYPE
EDGE ORIENTATION

DOWNSTREAM UPSTREAM BIDIRECTED

ISOLATED
83.10%
±0.88%

83.10%
±0.88%

83.10%
±0.88%

BINARY
80.68%
±4.78%

82.59%
±2.01%

82.77%
±0.47%

ALL OF THE BELOW
83.78%
±1.71%

83.33%
±1.76%

82.73%
±1.30%

STREAM LENGTH
80.21%
±4.85%

83.28%
±1.72%

83.56%
±1.57%

ELEVATION DIFFERENCE
80.58%
±5.00%

82.88%
±1.50%

82.87%
±1.44%

AVERAGE SLOPE
81.10%
±4.67%

82.81%
±0.90%

81.69%
±0.39%
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Table 3. Pearson correlation between learned and physical edge weights.
LEARNED EDGE WEIGHTS

DOWNSTREAM UPSTREAM BIDIRECTED

PHYSICAL EDGE WEIGHTS RESGCN GCNII RESGCN GCNII RESGCN GCNII

STREAM LENGTH
−0.375
±0.012

−0.285
±0.014

0.012
±0.056

0.027
±0.025

0.139
±0.024

−0.021
±0.048

ELEVATION DIFFERENCE
−0.148
±0.006

−0.214
±0.013

−0.346
±0.025

−0.325
±0.030

−0.182
±0.031

−0.188
±0.051

AVERAGE SLOPE
0.075
±0.007

−0.034
±0.018

−0.325
±0.014

−0.2955
±0.051

−0.242
±0.017

−0.158
±0.036

The results are consistent with those on the full dataset and
hence outsourced into the appendix tables A.4 to A.7. Note
that the orders of magnitude of NSE differ as the difficulty
of the prediction task naturally changes with the underlying
graph. The small-scale experiment confirms the observation
that topology context does not benefit prediction.

4.5. Worst Gauge Investigation

The performance on gauge #169 of all trained models is
considerably below the mean. For instance, the best overall
performing model, bidirected-learned GCNII (third fold),
achieves its worst NSE on this outlier gauge. To better
understand the scenarios that are challenging for the model,
we determine the top disjoint time horizons of 48 hours (24
hours for past and future) in terms of deviation of model
prediction from the ground truth. The resulting plots in
Figure 5 reveal that the outlier gauge is characterised by
sudden and narrow spikes, which are inherently hard to
forecast for any predictor. The gauge might be located
behind a floodgate. As a result, the forecasting performance
is mediocre, with the forecast often missing spikes.

5. Conclusion
In this work, we explored the applicability of GNNs to
holistic flood forecasting in a river network graph. Based
on the LamaH-CE dataset, we framed a supervised node
regression task for predicting future discharge at all gauging
stations in the graph given past observations. By modifying
the adjacency matrix, we compared the impact of different
adjacency definitions on the prediction performance. Our
results reveal that the impact of river topology is negligible.
The GNN performs equally well even when all edges are
removed from the graph, which makes it act like an MLP. It
does not benefit from weighted edges that resemble physical
relationships between gauges. When the model is allowed
to jointly learn the edge weights along with the other param-
eters, they correlate with neither constant weights nor any
of the physical weightings given by the dataset. A small-
scale subnetwork study shows that the results are not caused
by issues with training deep models but prove consistent

532531
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Figure 4. Four subgraphs of the river network with different depth
and sink in-degree. The node labels refer to the original gauge IDs
from the dataset.
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Figure 5. Worst predictions of the bidirected-learned GCNII (third
fold) on its overall worst gauge #169. Negative time indicates past,
and positive time indicates future discharge.
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throughout scales. Investigations on a challenging outlier
gauge indicate that the GNNs struggle to predict sudden,
narrow discharge spikes.

On a high level, future work is encouraged to investigate
under which conditions including graph topology in neural
predictors actually helps, which is not clear a priori. While
the key could lie in employing more specialised model ar-
chitectures such as DAGNN (Thost & Chen, 2021) for the
dataset at hand, there might be more fundamental limita-
tions to the use of GNNs for large-scale regression problems.
Moreover, for the application of flood forecasting, enhanc-
ing the dataset with inter-gauge propagation time metadata
and reliable flood annotations may allow the predictor to
leverage the relational context more effectively. Otherwise,
our results suggest that focusing on accurate spike prediction
might be more promising than incorporating river network
topology information.

Finally, there is a broader issue: we used a river network
dataset from central Europe as discharge measurements
are readily available there for long time periods. However,
the regions most affected by floods happen to be typically
located in low-income countries where data is scarce. More
gauges need to be installed in those high-risk regions, and
large-scale datasets collected to enable more relevant studies
and save lives.

Impact Statement
Flood forecasting is a crucial technology to mitigate hu-
manitarian crises in the age of climate change. With floods
being the most frequent type of natural disaster, even minor
methodological improvements are bound to greatly impact
disaster prevention and mitigation. While the results in
our work suggest that incorporating river network topology
into the forecasting process might not be one such improve-
ment, the momentousness of the topic demands that future
research continues to explore the idea as well as conditions
under which it potentially can be an improvement.
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A. Appendix
A.1. Preprocessing Algorithms

Algorithm A.1: Inverse depth-first search
Input: DAG G = (V, E), start node v0 ∈ V
Output: All direct and indirect predecessors

of v0 in G

inverseDFS(G, v0)
1 Vin ← {v ∈ V | (v, v0) ∈ E}
2 if Vin = ∅ then
3 return {v0}
4 else
5 return {v0} ∪

⋃
v∈Vin

invDFS(v)

Algorithm A.2: Rewire-removal of a node
Input: antitransitive weighted DAG G = (V, E , w),

moribund node vRIP ∈ V
Output: G without vRIP where its predecessors and

successors are rewired

rewireRemove(G, vRIP)
1 Vin ← {v ∈ V | (v, vRIP) ∈ E}
2 Vout ← {v ∈ V | (vRIP, v) ∈ E}
3 V ← V \ {vRIP}
4 E ← E \(Vin×{vRIP})\({vRIP}×Vout)∪(Vin×Vout)
5 for (vin, vout) ∈ Vin × Vout do
6 w(vin, vout)← w(vin, vRIP) + w(vRIP, vout)

A.2. Learned Edge Weights Statistics

Table A.3. Key statistics of the learned edge weights, accumulated across folds.
DOWNSTREAM UPSTREAM BIDIRECTIONAL

STATISTIC RESGCN GCNII RESGCN GCNII RESGCN GCNII

MEAN
0.462
±0.082

0.263
±0.072

0.670
±0.039

0.627
±0.056

0.789
±0.044

0.618
±0.062

STD
0.322
±0.013

0.281
±0.038

0.375
±0.004

0.369
±0.013

0.329
±0.008

0.361
±0.005

MIN
0.000
±0.000

0.000
±0.000

0.000
±0.000

0.000
±0.000

0.061
±0.045

0.000
±0.000

25% 0.191
±0.086

0.033
±0.033

0.382
±0.049

0.345
±0.066

0.556
±0.039

0.342
±0.079

MEDIAN
0.416
±0.084

0.158
±0.091

0.708
±0.064

0.628
±0.075

0.802
±0.049

0.592
±0.066

75 % 0.689
±0.102

0.434
±0.092

0.959
±0.036

0.894
±0.078

1.032
±0.040

0.901
±0.075

MAX % 1.313
±0.089

1.376
±0.094

1.471
±0.052

1.609
±0.102

1.565
±0.037

1.668
±0.083
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A.3. Subnetwork Results

Table A.4. Cross-validation NSE on subgraph (i) in Figure 4.

(a) ResGCN

ADJACENCY TYPE
EDGE ORIENTATION

DOWNSTREAM UPSTREAM BIDIRECTED

ISOLATED
75.07%
±7.25%

75.07%
±7.25%

75.07%
±7.25%

BINARY
82.77%
±1.26%

81.20%
±3.68%

77.61%
±4.43%

STREAM LENGTH
82.77%
±1.26%

81.20%
±3.68%

77.61%
±4.43%

ELEVATION DIFFERENCE
81.76%
±3.11%

81.42%
±3.74%

77.31%
±4.18%

AVERAGE SLOPE
81.76%
±3.11%

81.42%
±3.74%

77.31%
±4.18%

LEARNED
81.82%
±5.63%

81.61%
±2.63%

75.47%
±7.02%

(b) GCNII

ADJACENCY TYPE
EDGE ORIENTATION

DOWNSTREAM UPSTREAM BIDIRECTED

ISOLATED
80.44%
±3.16%

80.44%
±3.16%

80.44%
±3.16%

BINARY
80.52%
±4.53%

74.57%
±2.27%

81.16%
±2.97%

STREAM LENGTH
80.52%
±4.53%

74.57%
±2.27%

81.16%
±2.97%

ELEVATION DIFFERENCE
78.22%
±4.74%

74.42%
±4.53%

80.30%
±4.11%

AVERAGE SLOPE
78.22%
±4.74%

74.42%
±4.53%

80.30%
±4.11%

LEARNED
80.82%
±4.05%

75.67%
±4.29%

79.99%
±7.83%

(c) ResGAT

ADJACENCY TYPE
EDGE ORIENTATION

DOWNSTREAM UPSTREAM BIDIRECTED

ISOLATED
76.81%
±9.40%

76.81%
±9.40%

76.81%
±9.40%

BINARY
82.28%
±6.65%

83.85%
±3.56%

77.47%
±6.20%

ALL OF THE BELOW
75.60%
±7.43%

76.56%
±10.01%

75.88%
±9.85%

STREAM LENGTH
82.28%
±6.65%

83.85%
±3.56%

77.47%
±6.20%

ELEVATION DIFFERENCE
82.28%
±6.65%

83.85%
±3.56%

77.47%
±6.20%

AVERAGE SLOPE
82.28%
±6.65%

83.85%
±3.56%

77.47%
±6.20%

Table A.5. Cross-validation NSE on subgraph (ii) in Figure 4.

(a) ResGCN

ADJACENCY TYPE
EDGE ORIENTATION

DOWNSTREAM UPSTREAM BIDIRECTED

ISOLATED
93.20%
±0.23%

93.20%
±0.23%

93.20%
±0.23%

BINARY
92.61%
±5.50%

95.36%
±1.45%

95.40%
±1.80%

STREAM LENGTH
92.71%
±5.55%

94.82%
±1.80%

94.30%
±0.74%

ELEVATION DIFFERENCE
92.79%
±5.56%

94.92%
±1.49%

95.03%
±1.81%

AVERAGE SLOPE
92.68%
±5.56%

95.28%
±0.94%

95.25%
±0.58%

LEARNED
92.69%
±5.79%

96.17%
±0.25%

96.12%
±0.92%

(b) GCNII

ADJACENCY TYPE
EDGE ORIENTATION

DOWNSTREAM UPSTREAM BIDIRECTED

ISOLATED
91.95%
±1.89%

91.95%
±1.89%

91.95%
±1.89%

BINARY
95.61%
±1.18%

96.01%
±0.70%

93.65%
±3.67%

STREAM LENGTH
95.50%
±1.64%

95.80%
±0.88%

93.05%
±2.57%

ELEVATION DIFFERENCE
95.06%
±1.03%

96.24%
±0.75%

92.48%
±3.43%

AVERAGE SLOPE
95.58%
±1.66%

96.05%
±0.55%

95.23%
±0.52%

LEARNED
94.78%
±1.27%

94.84%
±1.54%

94.23%
±0.33%

(c) ResGAT

ADJACENCY TYPE
EDGE ORIENTATION

DOWNSTREAM UPSTREAM BIDIRECTED

ISOLATED
92.36%
±0.96%

92.36%
±0.96%

92.36%
±0.96%

BINARY
93.40%
±4.02%

95.08%
±1.33%

94.43%
±2.11%

ALL OF THE BELOW
94.78%
±0.81%

93.08%
±2.80%

94.47%
±3.76%

STREAM LENGTH
93.40%
±4.02%

95.08%
±1.33%

94.43%
±2.11%

ELEVATION DIFFERENCE
93.40%
±4.02%

95.08%
±1.33%

94.43%
±2.11%

AVERAGE SLOPE
93.40%
±4.02%

95.08%
±1.33%

94.43%
±2.11%

11



The Merit of River Network Topology for Neural Flood Forecasting

Table A.6. Cross-validation NSE on subgraph (iii) in Figure 4.

(a) ResGCN

ADJACENCY TYPE
EDGE ORIENTATION

DOWNSTREAM UPSTREAM BIDIRECTED

ISOLATED
78.12%
±3.80%

78.12%
±3.80%

78.12%
±3.80%

BINARY
79.23%
±3.07%

81.77%
±1.30%

78.10%
±1.66%

STREAM LENGTH
79.23%
±3.07%

81.66%
±1.18%

76.05%
±2.27%

ELEVATION DIFFERENCE
79.23%
±3.07%

81.81%
±1.34%

76.66%
±2.48%

AVERAGE SLOPE
79.23%
±3.07%

81.62%
±1.05%

77.51%
±2.02%

LEARNED
77.72%
±4.22%

82.39%
±1.35%

77.89%
±3.52%

(b) GCNII

ADJACENCY TYPE
EDGE ORIENTATION

DOWNSTREAM UPSTREAM BIDIRECTED

ISOLATED
79.58%
±1.78%

79.58%
±1.78%

79.58%
±1.78%

BINARY
78.64%
±2.26%

77.31%
±0.86%

77.60%
±2.24%

STREAM LENGTH
77.52%
±4.23%

75.38%
±1.89%

78.92%
±1.52%

ELEVATION DIFFERENCE
77.52%
±4.23%

76.93%
±2.07%

76.93%
±0.90%

AVERAGE SLOPE
78.64%
±2.26%

76.13%
±2.35%

79.46%
±1.23%

LEARNED
78.81%
±2.84%

76.84%
±1.38%

79.04%
±2.30%

(c) ResGAT

ADJACENCY TYPE
EDGE ORIENTATION

DOWNSTREAM UPSTREAM BIDIRECTED

ISOLATED
81.21%
±2.70%

81.21%
±2.70%

81.21%
±2.70%

BINARY
76.35%
±4.39%

76.90%
±1.48%

77.30%
±3.02%

ALL OF THE BELOW
80.69%
±2.65%

73.19%
±11.11%

75.19%
±2.83%

STREAM LENGTH
76.35%
±4.39%

76.90%
±1.48%

77.30%
±3.02%

ELEVATION DIFFERENCE
76.35%
±4.39%

76.90%
±1.48%

77.30%
±3.02%

AVERAGE SLOPE
76.35%
±4.39%

76.90%
±1.48%

77.30%
±3.02%

Table A.7. Cross-validation NSE on subgraph (iv) in Figure 4.

(a) ResGCN

ADJACENCY TYPE
EDGE ORIENTATION

DOWNSTREAM UPSTREAM BIDIRECTED

ISOLATED
96.00%
±0.43%

96.00%
±0.43%

96.00%
±0.43%

BINARY
94.99%
±0.25%

96.20%
±0.94%

95.58%
±0.59%

STREAM LENGTH
95.17%
±0.27%

96.10%
±1.12%

95.68%
±0.54%

ELEVATION DIFFERENCE
95.01%
±0.24%

96.18%
±0.88%

95.71%
±0.87%

AVERAGE SLOPE
95.14%
±0.24%

96.09%
±1.02%

95.20%
±0.85%

LEARNED
95.11%
±0.15%

96.34%
±0.87%

95.72%
±0.70%

(b) GCNII

ADJACENCY TYPE
EDGE ORIENTATION

DOWNSTREAM UPSTREAM BIDIRECTED

ISOLATED
95.90%
±0.09%

95.90%
±0.09%

95.90%
±0.09%

BINARY
96.05%
±0.12%

96.18%
±0.45%

96.02%
±0.52%

STREAM LENGTH
95.93%
±0.13%

96.26%
±0.46%

96.12%
±0.60%

ELEVATION DIFFERENCE
96.05%
±0.08%

96.09%
±0.48%

96.14%
±0.57%

AVERAGE SLOPE
96.02%
±0.06%

96.15%
±0.52%

95.92%
±0.63%

LEARNED
95.86%
±0.25%

96.22%
±0.63%

96.21%
±0.37%

(c) ResGAT

ADJACENCY TYPE
EDGE ORIENTATION

DOWNSTREAM UPSTREAM BIDIRECTED

ISOLATED
96.01%
±0.34%

96.01%
±0.34%

96.01%
±0.34%

BINARY
95.19%
±0.09%

96.50%
±0.06%

95.90%
±0.39%

ALL OF THE BELOW
96.17%
±0.26%

96.04%
±0.26%

95.89%
±0.04%

STREAM LENGTH
95.19%
±0.09%

96.50%
±0.06%

95.90%
±0.39%

ELEVATION DIFFERENCE
95.19%
±0.09%

96.50%
±0.06%

95.90%
±0.39%

AVERAGE SLOPE
95.19%
±0.09%

96.50%
±0.06%

95.90%
±0.39%
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A.4. Effect of Window Size and Lead Time

Table A.8. Cross-validation NSE of bidirected-learned GCNII for different window sizes
and lead times. Results generally improve with larger window size and smaller lead time.

WINDOW SIZE [h]
LEAD TIME [h]

1 2 3 6 9 12

12 98.87%
±0.05%

96.28%
±0.16%

92.99%
±0.63%

82.35%
±1.94%

72.51%
±2.01%

63.16%
±9.19%

24 99.05%
±0.06%

96.89%
±0.04%

94.20%
±0.52%

85.59%
±1.41%

75.98%
±2.84%

67.26%
±5.12%

36 99.04%
±0.04%

97.03%
±0.15%

94.53%
±0.24%

85.51%
±2.84%

78.54%
±3.65%

70.52%
±3.01%

48 99.03%
±0.06%

97.03%
±0.12%

94.77%
±0.20%

87.57%
±1.21%

79.72%
±2.12%

74.08%
±2.62%

60 98.99%
±0.06%

96.89%
±0.13%

94.61%
±0.10%

86.66%
±1.50%

81.01%
±2.50%

75.82%
±2.93%

72 99.02%
±0.03%

96.97%
±0.02%

94.65%
±0.31%

87.59%
±1.12%

80.25%
±1.85%

75.52%
±1.73%
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