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Abstract

Score-based models have become increasingly popular for image and video generation. In
score-based models, a generative task is formulated using a parametric model (such as a
neural network) to directly learn the gradient of such high dimensional distributions, instead
of the density functions themselves, as is done traditionally. From a mathematical point of
view, such gradient information can be utilized in reverse by stochastic sampling to generate
diverse samples. However, from a computational perspective, existing score-based models
can be efficiently trained only if the forward or the corruption process can be computed
in closed form. By using the relationship between the process and layers in a feed-forward
network, we derive a backpropagation-based procedure, which we call Intermediate Generator
Optimization, to utilize intermediate iterates of the non-Gaussian process with negligible
computational overhead. The main advantage of IGO is that it can be incorporated into
any standard autoencoder pipeline for generative tasks. We analyze the sample complexity
properties of IGO to solve downstream tasks like Generative PCA. We show applications
of IGO on two dense predictive tasks, viz., image extrapolation, and point cloud denoising.
Our experiments indicate that it is possible to obtain an ensemble of generators for various
time points is possible using first-order methods.

1 Introduction
Generative Adversarial Networks (GANs) were first shown to be successful in generating high-resolution
realistic natural images Wu et al. (2019), and biomedical images Harutyunyan et al. (2001) for augmentation
purposes. Variational Autoencoders (VAEs) came out as a popular alternative, based on minimizing the
distortion given by integral metrics such as KL divergence. In both GANs and VAEs, the learning problem
coincides. We seek to learn the process of generating new samples based on latent space modeled as random
distributions Razavi et al. (2019); Zhang et al. (2019). Some of the applications enabled by such deep
generative models (DGMs) in vision include style transferring Zhu et al. (2017), inpainting Demir & Unal
(2018), image restoration and manipulation Pan et al. (2021). VAE architectures have also been successfully
deployed in temporal prediction settings owing to their robustness properties Nazarovs et al. (2021); Rubanova
et al. (2019).

Score-based models on the other hand, transform the given data into a known prior by slowly perturbing it
using a Stochastic Differential Equation (SDE) and then undo the perturbation process by solving the SDE
in reverse-time. This reverse-time SDE is approximated by a time-dependent neural network. Score-based
models have become increasingly popular when it comes to deep generative models, and have outperformed
the previous state-of-the-art in image generation Dhariwal & Nichol (2021); Song et al. (2021); Ho et al.
(2021). They have also been extensively used for video generation Ho et al. (2022), as well as Text-to-Image
generation Nichol et al. (2021); Ramesh et al. (2022); Zhang et al. (2023).

How to train Score-Based Models? In score based models, the goal is to learn the gradients ∇x log pt(x)
by training a time-dependent score based model sθ(x, t). In particular we seek to solve the following
distributional optimization problem Song et al. (2021):

θ∗ = arg min
θ

Et

[
λ(t)Ex(0)Ex(t)|x(0)

[∥∥sθ(x(t), t) − ∇x(t) log pt(x(t) | x(0))
∥∥2

2

]]
, (1)
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Figure 1: Coupling iterates from a given corruption process with Generators. The idea is to tie the encoder
(E) and the decoder (D) of a Generator (G) to the level of noise present in the input.

We refer to the loss function in Equation (1) as the standard (or usual) loss function, and the squared loss as
L(sθ, x(t), t). For efficiently training Score-based DGMs, the prior distribution is chosen to be a Gaussian
distribution, mean and variance as a function of t can be written in closed-form expressions that can be
evaluated efficiently. We discuss more about the loss function and its connection to Kernel Density Estimation
(KDE) in section Sec. 3.

Problem Statement. Non-Gaussian processes have many applications, especially in physics-informed
neural networks Raissi et al. (2019); Pokkunuru et al. (2023). In this work we propose a novel way to
train Score-based Generative models under non-Gaussian corruption procedures, thus incorporating physics
based information directly during training and/or inference. We show how our novel technique Intermediate
Generator Optimization can be used to increase the diversity of G and solve various inverse problems when
given the access to the forward process of SDEs where the forward operator cannot be computed easily.

Our Contributions. Motivated by the applications in various large scale vision settings (i) we propose a
new fully differentiable framework that explicitly models the corruption process within DGMs, and which can
be trained using standard backpropagation procedures like SGD and its variants, (ii) we analyze the statistical
properties of our proposed framework called Intermediate Generator Optimization (IGO) using recently
introduced Intermediate Layer Optimization (ILO) framework Daras et al. (2021) for solving inverse problems
and moreover, (iii) we show the utility of our procedure with extensive results on several image generation and
prediction tasks. In the challenging three dimensional point cloud setting, we identify potentially beneficial
regularizers for improving the robustness profile of denoisers. We show how to formulate and implement
recently introduced projected power method (PPower) Liu et al. (2022) within our IGO framework (code
provided in supplement).

Roadmap. We start with a brief literature review in Sec. 2. In Sec. 3, we show how efficient discretization
strategies can be used for non-Gaussian corruption processes and help improve range of generators. In Sec. 4,
using the Information Bottleneck Principle, we introduce the notion of an intermediate generator regularizer
for utilizing iterates of a discrete process during training. We argue that our regularizer can be efficiently
optimized and analyze its sample complexity for linear inverse problems. Sec. 5 provides theoretical guarantees
of the application of IGO. We then discuss various vision use cases of IGO such as image generation, dense
extrapolation, and point cloud denoisers along with our experimental results in Sec. 6.

2 Literature Review

In recent years, there has been a growth in literature, which focuses on utilizing ODE and SDE theory in
Neural Networks Chen et al. (2018); Li et al. (2020); Tzen & Raginsky (2019). More recently, physics-inspired
approaches have been proposed to design algorithms for symbolic regression purposes that exploit the
underlying symmetries in the problem. For example, Udrescu & Tegmark (2020) show that neural networks
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can be used to learn reduce the search space by quickly finding such symmetries in the dataset. Similar ideas
were also applied in the context of extending the range of generators for GAN/VAE with strategies that
explicitly prevent mode collapse. Wasserstein based loss functions are often preferred if the DGM suffers from
mode collapse during training Arjovsky et al. (2017). In fact, from a technical perspective, it is possible to
show that Neural SDEs have the same expressive power as high dimensional GANs Kidger et al. (2021). The
equivalence is achieved by simply parameterizing the (drift and diffusion functions of) forward process and its
reverse process, using separate neural networks. This connection is mathematically interesting because it
allows using such DGMs for solving classical statistical problems such as Monte Carlo simulations van Rhijn
et al. (2021).

From a fixed generator, iterative refinement techniques were proposed for dense tasks, especially at high
resolution Saharia et al. (2021). Score-based models generalize this idea, and achieve the state of the art
results from many image synthesis problems Dhariwal & Nichol (2021). An interesting idea for Probabilistic
Time Series Imputation was proposed by Tashiro et al. (2021). Authors explicitly train for imputation and can
exploit correlations between observed values, unlike general score-based approaches. To extend the class of
distributions that can be modeled within such a framework, various categorical and discrete parameterizations
of the distributions have been proposed. For example, Austin et al. (2021) introduced Discrete Denoising
Diffusion Probabilistic Models, which is based on corruption with transition matrices that mimic Gaussian
kernels in continuous space, but based on nearest neighbors in embedding space, by utilizing absorbing states
of a process.

On the VAE side, to deal with additional computational overhead of solving differential equations within
score based models, authors in Gorbach et al. (2017) propose a scalable variational inference framework.
Using coordinate descent on existing gradient matching approach, they propose new gradient matching
algorithm that infers states and parameters in an alternating fashion, thus offering computational speedups
in certain regimes. This is somewhat closer to our work than others since we infer the parameters of Eτ

and Dτ during training which correspond to state dependent parameters in their setting. By relating ODEs
with Gaussian Processes Wenk et al. (2019) provide a fast gradient matching procedure. On the other hand
Bansal et al. (2022) discuss how the training and sampling procedures of diffusion models can be generalized
for non-Gaussian corruption processes like blur and masking. We further develop on their ideas and explore
the landscape of continuous non-Gaussian corruption processes, by using Lotka-Volterra Kelly (2016) and
Arnold’s Cat Map Bao & Yang (2012).

3 Non-Gaussian corruption via Discretization
Basic Setup. A Stochastic Differential Equation (SDE), where f and g are the drift and the diffusion
functions respectively, and w is the Standard Brownian Motion is represented by 2:

dx = f(x, t) dt + g(t) dw. (2)

We can map data to a noise distribution using the forward SDE in Equation (2) and reverse the SDE for
generation using:

dx = [f(x, t) − g(t)2∇x log pt(x)] dt + g(t)dw̄, (3)

where w̄ is the Brownian Motion when time flows backward from T to 0, and dt is an infinitesimal negative
timestep. After training using Equation (1), we may simply replace the log-likelihood in the reverse SDE
by our model s in Equation (3) for sampling purposes. In essence an approximate model s will allow us
to generate diverse, yet realistic samples using a small amount of independent random noise component, g.
Later in this section, we present a discussion about why the SDE-based loss function automatically induces
diversity in samples generated by a generative model.

Our Assumption on Forward Process. For the SDE model given in Equation (2), typically the drift
function f is chosen to be affine, thus bypassing the need to obtain pt(x(t) | x(0)). We consider learning
the trajectory information under cases when f is not necessarily affine. We do this by modelling f using
two popularly known processes, Lotka-Volterra and Arnold’s Cat Map (samples shown in Figure 1, more in
supplement). In order to do that, we relax the assumption that we have access to an efficient discretization
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of the process in Equation (2). Specifically, we say that the forward SDE Equation (2) can be efficiently
computed using the Euler-Maruyama (EM) method. We will use x̃ to denote the approximation to x provided
by the EM discretization. For a time-varying multiplicative process defined by dxt = a(xt, t) dt + b(xt, t) dwt,
where a and b are smooth functions similar to f and g in Equation (2), but a is not affine, the EM algorithm
executes the following iterations:

x̃j+1 = x̃j + a(x̃j , t)∆t + b(x̃j , t)z
√

∆t, (4)

where x̃j denotes the j−th iterate and z ∼ N (0, 1) is a sample drawn uniformly at random from the standard
normal distribution. Note that the process defined in Equation (2) satisfies our assumption here since we
allow b to depend on xt. The discretization provided by Equation (4) enables us to simulate the SDE and
subsequently sample from pt(x(t) | x(0)).

Connection to KDE. To understand the loss function in Equation (1) consider the standard Kernel
Density Estimation (KDE) procedure for the moment. KDE is a smooth estimator of probability density
function, and is known to converge faster than histograms (function values), in terms of sample complexity,
see Wasserman (2010). While parameters of KDEs are usually tuned to maximize the likelihood of observed
data, using higher order (or finer) information such as gradients have been studied recently in small scale
settings, see Sasaki et al. (2017); Kim et al. (2019). Note that if x(t) ∈ Rn, then ∇x(t) log pt(x(t) | x(0)) ∈ Rn,
whereas log pt(x(t) | x(0)) ∈ R, so training sθ to fit gradients ∇x(t) log pt(x(t) | x(0)) may be slightly more
challenging than simply maximizing the likelihood log pt(x(t) | x(0)).

In Score based DGMs, the generator G learns the gradient of the log-likelihood function explicitly instead of
the density function itself. There are two benefits associated with this approach: (i) statistical range of the
generator can be naturally improved during sampling since gradients are often more informative (smooth
function values can be approximated using gradients by Taylor’s theorem), and (ii) computationally tractable
alternative to kernel density estimation since it does not require us to estimate the normalizing constant
which is usually intractable in high dimensions.

SDEs for Modeling Diversity. In order to improve the range of generators as desired, strategies that
involve explicit modeling of the forward or the corruption process have been suggested. Mathematically
speaking, this can be done by using Stochastic Differential Equations (SDE) of the form shown in Equation (2).

For generation, x(0) represents the (clean) dataset to be generated, given samples x(T ) for some sufficiently
large T . We know that under standard assumptions on f , we have that: as T ↑ ∞, x(T ) mostly represents
noise, that is, has least information, . Correspondingly, given samples x(0), the learning problem is to train a
generator G so that it produces a randomized version of x(0) from random noise x(∞). The key property of
SDEs that is attractive for distribution G is that each equilibrium solution of a forward SDE will have its
own unique trajectory, which can be used during training. We do so by coupling the intermediate iterate xτ

during training with specific layers in a DGM, as shown in Figure 1.

4 Efficient DGMs for Discrete Processes
To provide guarantees on DGM-based downstream tasks such as solving inverse problems, we propose a new
loss function to train the score-based model "s" based on individual trajectories of samples corrupted by the
discretized process defined in Equation (4). We begin by writing the empirical finite sample form of the
optimization problem in Equation (1) as follows:

min
θ

tT∑
τ=t1

λ (τ)
N∑

i=1
Exi(τ)|xi

L (sθ, xi (τ) , t) , (5)

where T represents the discretization size, and 0 ≤ ti ≤ 1 ∀ i = 1, . . . , N . To solve the optimization problem
in Equation (5), the most popular choice is to use first-order backpropagation type methods. Importantly,
the worst-case complexity of solving Equation (5) scales linearly with the discretization size T , which is
intractable in large-scale settings. By the chain rule, the efficiency of such algorithms strongly depends on
the ease of evaluating the derivative of the forward operator, denoted by the conditional expectation. While
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previous works assume that there is a closed-form solution to evaluate the conditional expectation, such an
assumption is invalid in our examples discussed above. If T = 1, then we may simply simulate the dataset
{xi} using Equation (4) to obtain x̃i(t1), and use it to compute the loss, and backpropagate.

Handling T = 2 case using IBP. Now we consider the setting in which we have access to only one
intermediate iterate x̃τ where τ < t for some arbitrary t ∼ U(0, 1), in our trajectory. Naively, we can
train two DGMs in parallel, one each for x̃t and x̃τ , thus incurring twice the memory and time complexity,
including resources spent for hyperparameter tuning. We propose a simpler alternative through the lens of the
so-called Information Bottleneck Principle (IBP) – the de-facto design principle used in constructing standard
Autoencoders architectures such as U-Net. In feedforward learning, the main result due to IBP is that layers
in a neural network try to compress the input while maximally preserving the relevant information regarding
the task at hand Goldfeld & Polyanskiy (2020). For designing neural networks, this corresponds to choosing
a sequence of transformations Tl such that the distance between successive transformations d(Tl, Tl−1) is
not too big. In practice, we can ensure this by simply choosing dimensions of layerwise weight matrices by
a decreasing function of layers (or depth). Intuitively, the idea is that if dimensions of Tl are a constant
factor of Tl−1, then at optimality (after training), when random input passes via Tl, a constant factor of noise
available when it passed through Tl−1 will be removed, in expectation.

By using the correspondence between the forward process defined in Equation (4) and intermediate layers
in a DGM, we will now define our loss function for intermediate iterates x̃τ . For simplicity, we drop the
subscript i. We define the regularization function R as follows,

R(x̃τ , t) = L (Dτ ◦ sτ ◦ Eτ , x̃τ , t) , (6)

where sτ (see dark green box in Figure 1) denotes the restriction of the score-based model s to iterate x̃τ , Eτ

denotes a shallow encoder for x̃τ , and similarly for the decoder Dτ . We will refer to the DGM defined by
Dτ ◦ sτ ◦ Eτ as the Intermediate Generator, see Figure 1. Intuitively, the regularization function R is
defined to modify the parameters of the model s to a specific set of connected layers given by sτ . To see
this, note that the overall parameter space θ can be seen as a product space over layers θl. At any given
training iteration, the R function restricts the update to layers that are suitable for decoding x̃τ . Thus, for
t ∼ [0, T ], τ < T , we can use Equation (6) to rewrite the training objective from Equation (1) as:

arg min
θ,Eτ ,Dτ

Et

[
λ(t)Ex(0)E(x(t)|x(0)L(sθ, x(t), t) + λ(τ)Ex(0)E(x(τ)|x(0)L(Dτ ◦ sτ,θ ◦ Eτ , x(τ), τ)

]
(7)

This new training objective allows us to use a convex combination of scores of standard decoder DT , and
intermediate iterate decoder Dτ . All our experiments in Sec. 6 utilize this convex combination objective
function for training. We can also extend Equation (7) to multiple iterates (T > 2). When we are given more
than one intermediate iterate from the discretized EM algorithm, Equation (6) can be rewritten as:

RT
0 (x̃) =

tT∑
τ=t1

L (Dτ ◦ sτ ◦ Eτ , x̃τ , t) . (8)

Interpreting R. Using a small step size in EM guarantees us that a larger class of SDEs can be simulated
(see Neuenkirch et al. (2019)), so x̃ ∼ x. Fix a sufficiently small ∆t, so x̃ ≈ x almost everywhere at any time
t. When the forward corruption process is a Markov process, increments of g are independent of t, and the
intermediate iterates do not carry additional information. However, in our discrete setting, the drift a and
diffusion b functions are time-varying for Arnold’s Cat Map and Lotka-Volterra. In this case, R simply tries to
revert the time-dependent noise process in the relevant part of the network sτ using appropriate Eτ , and Dτ .
Our regularization function provides time-dependent noise information explicitly by using the intermediate
iterate x̃τ during training in appropriate parts of the DGM. This ensures that our IGO framework can be
extended to energy-based models, which are known to perform as well as Score based DGMs Salimans & Ho
(2021) for image generation.

Implementation. IGO utilizes fewer computational resources in the following sense: if Eτ , and Dτ are
relatively shallow networks (as shown in Figure 1), then the cost of computing gradients with x̃τ is negligible
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compared to x̃, thus achieving cost savings by design. Using intermediate iterates while training sθ provides
more information of the corruption process by mapping multiple points to the same trajectory. Another clear
benefit that IGO has over methods like Sliced Score Matching Song et al. (2019) while learning the scores of a
non-affine drift is the easy sampling approach. Using IGO provides two different gradients viz., GT , and Gτ ,
thus expanding the range of the reverse SDE. In Sec. 6, we show how the two different scores learned by our
model can be utilized to generate different samples by a simple modification over existing sampling methods.

5 Theoretical Analysis for Downstream Tasks
We utilize the key result in ILO to analyze our procedure for downstream tasks. To that end, we assume that
the parameters of s, Eτ and Dτ are fixed (given by a pre-trained model), and show that IGO is suitable for
solving inverse problems under low sample settings. The input of the ILO algorithm is pre-trained DGM
with the goal of tuning the noise distribution for better image generation using gradient descent schemes. In
IGO, we use the knowledge of the forward process to optimize the parameters of the DGM to increase its
range during training.

Necessary Condition on DGM. We follow the same observation model as in Daras et al. (2021) given
by y = Ax + n where n is a random variable representing noise, and x is the unknown. It is well known that
when the measurement matrix A satisfies certain probabilistic requirements, then it is possible to solve for x
using a single (sub)gradient descent scheme Candes & Tao (2006); Tropp (2015). This is specified using the
S-REC condition in DGM-based prior modeling using the CSGM algorithm Bora et al. (2017). An example
that satisfies the probabilistic requirements is when the entries in A are distributed according to Gaussian
distribution, as mentioned in Daras et al. (2021).

To analyze R for prior modeling purposes, we assume that after training the generator has a compositional
structure given by G1 ◦ G2, which is followed in most standard architectures. The following observation is
crucial in analyzing IGO for compressive sensing purposes.
Observation 1. (Range expansion due to Eτ .) Setting the intermediate generator (of s) to be Gτ , the
range of our pre-trained model, G1 is increased to,

G := Gτ (Bk
2 (r1)) ⊕ Eτ (Bkτ

2 (rτ )), (9)

where ⊕ denotes the Minkowski Set sum, and kτ corresponds to the dimension of intermediate code associated
with x̃τ .

With the increased range in Observation 1, we show that using the overall generator trained with IGO as a
prior can be sample efficient in the following lemma. We make the same assumptions as in Theorem 1. in
Daras et al. (2021) on the entries of A, and smoothness of G2.
Lemma 1. Assume that the Lipschitz constant G is L, and we run gradient descent to solve for the
intermediate vector, as in CSGM. Assume that the number of measurements m in y is at least

min(k log(L1L2r1/δ), kτ log(LL2rτ /δ)) + log p, (10)

where p is the input dimension of G2 or the intermediate vector. Then, for a fixed p, we are guaranteed to
recover an approximate x with high probability (exponential in m).

Please see the supplement for the proof of the signal recovery lemma 1. Our proof uses the (now) standard
ϵ−net argument over the increased range space Vershynin (2018). In essence, if the Lipschitz constant of
the intermediate generator L is lower than the Lipschitz constant of G1, then we get an improved sample
complexity bound for IGO. Intuitively, lemma 1 states that the number of samples required during downstream
processing depends on two factors. The latent dimension size denoted by the log p term which remains the
same with or without intermediate iterates, and smoothness denoted by the Lipschitz constants L1, L, L2.

While we have no control over the size p, if the intermediate generator is smoother, and performs well on
training data y, then gradient descent succeeds in recovering the “missing" entries with fewer samples. In the
case when intermediate iterates are not useful, then our framework allows us to simply ignore the intermediate
generator without losing performance. In other words, our framework preserves the hardness of recovery –
easy problems remain easy.
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Algorithm 1 Solving PCA using IGO’s generative priors
1: for i ∈ {τ ′, τ, T} do
2: Initialize Z(0)

i (randomly or manually)
3: repeat
4: Compute v(t) = Z(t)T

i VZ(t)
i

5: Update Z(t+1)
i by solving: maxZ∈Rn ZT

i VZi subject to Zi ∈ Range(Gi)
6: until Convergence
7: end for

Output - Reconstructed top principal eigenvectors of V for i ∈ {τ ′, τ, T}

Lemma 1 on PCA: To apply Lemma 1 to the problem of PCA with complex generative priors, we solve
Equation (11).

v̂ := max
Z∈Rn

ZT VZ s.t. Z ∈ Range(GT ∪ Gτ ). (11)

Here, V is the covariance matrix of the dataset, Z can be randomly initialized or the column corresponding to
the largest diagonal entry of V can be chosen as the starting point. By GT ∪Gτ we mean the linear combination
of distributions of the generators GT and Gτ . Sec. 6.1 expands on this more using an experimental setting.

Leveraging a diverse G for generic Downstream Tasks. Consider a feature extractor (or an encoder)
induced by an appropriate SDE-guided DGM, that can extract relevant features from a mixture of two
distributions, for example, training, and adversarial. In this setting, if we know the distribution from which a
given feature has been sampled, then, we can hope to predict the sample at optimal error rates by using
a neural network with sufficient layers. When the mixtures have a natural dependency (given by SDE in
Equation (2)), then we may simply use weight sharing instead of training two separate models. Assume that
a DGM has a total of P parameters. Then, training |T | DGMs each for a time step of a discretization size
|T | would require O(P |T |) parameters. However in our approach, say we require p extra parameters for Eτ ,
Dτ , then the total number of parameters in our IGO framework is O(P + (p − 1)|T |) = O(P + |T |), for small
values of p – as is the case in our experimental settings – this can be a huge reduction in the number of
parameters O(P |T |) in standard framework vs O(P + |T |) in our IGO framework. Thus, achieving memory
as well as some time savings. We touch upon this in Sec. 6.4.

6 Experiments
In this section, we explore different applications of IGO across varying setups to showcase our idea of utilizing
an intermediate iterate x̃τ (τ = t/2 in all cases). First, in Sec. 6.1 we show our IGO framework for Generative
PCA, using a pre-trained network. Next, we show the procedure to train IGO in a U-Net based architecture
in Sec. 6.2. Then, we show the utility of intermediate features for prediction. In Sec. 6.3, we tackle the
challenging trajectory prediction tasks, in particular, we modify the ODE to take inputs from the intermediate,
and final iterates during training. Finally, In Sec. 6.4, we demonstrate the use of IGO in a dense prediction
task of denoising posed as a supervised learning problem. Here, a multi-layer perceptron is utilized as a
score-based model for denoising purposes.

6.1 Generative PCA with IGO

6.1.1 Setup Details

Here, we use a pre-trained network capable of generating MNIST digits to solve the eigenvalue problem using
the Projected Power (PPower) method Liu et al. (2022). The basic idea of the classic power method for
the eigenvalue problem is to repeatedly apply the eigenvector matrix to a starting vector (noise) and then
normalize it to converge to the eigenvector associated with the largest eigenvalue. The key difference between
the PPower method, compared to the classic power method is that it uses an additional projection operation
to ensure that the output of each iteration lies in the range of a generative model. We perform experiments
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(a) (L:R) Generated by Zτ ′, Zτ and ZT respectively. (b) Generated Samples, using α = 0.8 and Lotka-Volterra as
the non-affine drift, in Sec. 6.2

Figure 2: Image generation using IGO, Sec. 6.1 and Sec. 6.2

by optimizing the noise vector in 3 different cases, using Algorithm 1. Firstly, we use Zτ ′ to generate at
a smaller dimension, the decoder of Sτ in Figure 1. Then, we optimize Zτ for generation at Dτ , the last
decoding layer of the intermediate generator. Finally, we optimize the noise vector ZT , for generation at DT ,
the last decoding layer of the usual generator. In this experiment we show the utility of optimizing the noise
vector in smaller dimension (Zτ ′) by comparing it to the noise vector for the usual generator (ZT ) and the
intermediate generator (Zτ ). The projection step for each case is solved by using the generated samples from
the respective decoders using an Adam optimizer with 100 steps and a learning rate of 0.001.

6.1.2 Experimental results

Firstly, we see from Figure 2 - (a), that our model was able to generate images in all the 3 cases. The image
generated by reconstructing Zτ ′, the leftmost in Figure 2 - (a), looks noisier since the model’s features at
that stage were smaller in comparison to the other cases. We also analyze the cumulative explained variance
as a function of the number of components and show the results in the supplement. We see that the images
generated using a smaller dimension of noise vector Zτ ′ use less principal components to explain variance
compared to ZT and Zτ .

Takeaway. By Theorem 3 in Liu et al. (2022) we know that the reconstruction error is proportional to the
square root of the dimensions of Z. Our experiments indicate that the smaller dimensions of Z in Zτ and Zτ ′
can also be used to generate images. Thus, giving us lower reconstruction error as well as parameter savings
of approximately ZT - Zτ ′ dimensions.

6.2 IGO for training DGMs with non-Gaussian Drift

6.2.1 Setup Details

In a standard score-based generation, the transition kernel is assumed to be a multivariate Gaussian
distribution. Given a clean image x(0), we can apply the kernel using closed form evaluation to obtain the
noisy image x(t) for random t ∼ U(0, 1). Neural networks are then used to estimate the score, also known as
the time-dependent gradient field, to reverse the corruption process.

Here, we start off with explicitly modeling our corruption process using a non-affine SDE with Arnold’s cat
map and Lotka-Volterra as the drift to attain an intermediate iterate x̃τ , by setting up Eqn. (4). Our goal
here is to utilize our proposed Intermediate Generator Optimization, for training purposes. To do so, we
simulate the forward SDE till some random time t and store an (additional) intermediate iterate for every
trajectory to obtain xt and x̃τ (τ = t/2). The two iterates are then used to set the training objective based
on Eqn. (5) with our proposed regularizer in Eqn. (6). As per Figure 1, the intermediate iterate x̃τ has its
own intermediate pathway sτ into our overall model s.
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Prediction Extrapolation

Decoder

Hidden Dimension

(a) Incorporation of intermediate iterates in Mixed Effect
Neural ODE for analyzing the dynamics of panel data.

(b) One of the Hopper samples: Top is the true data, Bottom
is the prediction. Before the black line is observed data; after
it are the extrapolated samples previously not seen by the
model.

Figure 3: IGO on Panel Data, Sec. 6.3

6.2.2 Experimental results

We choose the CelebA dataset to test the generative capabilities of our IGO formulation. Similar to Song
et al. (2021) we also use a U-net Ronneberger et al. (2015) architecture as the backbone of our model. The
parameters of which are shared across time using sinusoidal position embeddings Vaswani et al. (2017).
During the forward pass, our simulated iterates xt and x̃τ are passed into the network, using their specific
pathways, refer Figure 1. For the iterate x̃τ we use the intermediate encoder Eτ and an intermediate decoder
Dτ . The iterates xt and x̃τ are jointly used to train the network using a convex combination of loss. We use
the scalar 1 − α to refer to the weight given to the gradient of the regularization function R, Equation (6).
Thus, the lesser the value of α, the more the weight of the intermediate iterates in the objective function for
training the score network. The trained score model is then provided to the RK45 ODE Solver (scipy) for
sampling. The top row of Figure 2 - (b) shows the progressive samples generated using the intermediate
layers, while the bottom row shows the samples from the usual layers. The rightmost images in Figure 2 - (b)
are the closest to noise. The model used to generate images in Figure 2 - (b) was trained using α = 0.5. We
utilize the PyTorch implementation of Fretchet Inception Distance (FID) Heusel et al. (2017) score provided
by Seitzer (2020). The images from the intermediate layers have an average FID of 3.5, while the images
from the usual layers have an FID of 3.3, similar to Song et al. (2021). All the comparisons were made using
192 feature dimension and the model with 4 residual blocks per resolution. We provide results on the effect
of α, using results on MNIST data in the supplement.

Takeaway. Our results show the advantage of using the IGO framework, as the intermediate layers are
able to generate images of almost similar quality (FID) as the usual layers, while providing a shorter pathway
for lesser corrupted iterates of a noise process.

6.3 IGO on Panel Data

6.3.1 Setup Details

One of the applications of our proposed Intermediate Generator Optimization is modeling the trajectory of a
Differential Equation, which describes a dynamic process. We use the setup in Nazarovs et al. (2021). That
is, we consider that the dynamic process is modeled by changes in the latent space z as ż(t) = D(z, t)w,
where D(z, t) is a neural network and w is a corresponding mixed effect (a random projection describing
flexibility (stochasticity) of dynamics). We propose to extend D(z, t) with our IGO, as D(zt, zτ ) using a
neural network f , see Figure 3 - (a) for details on loss computation with zτ .

6.3.2 Experimental results

We evaluate our approach on two temporal vision datasets, representing the dynamics of panel data. Namely,
we apply our proposed method to the variations of MuJoCo Hopper and Rotation MNIST. As baseline
methods, we choose ODE2VAE for MuJoCo Hopper, and NODE & MEODE for Rotation MNIST, as per
Nazarovs et al. (2021). All the baselines use an ODE backbone to analyze panel data, but with a different
approach of modeling the uncertainty. We evaluate our model against those baselines on interpolation and
extrapolation, and use MSE for comparison.

9
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(a) IGO Model for 3D point cloud denoising. (b) Cosine Similarity (c) Pairwise Euclidean distance

Figure 4: IGO in 3D Processing. Figure (a) shows the utilized architecture.; Figures (b) and (c) compare
the weights of ET against Eτ , and DT against Dτ .

MuJoCo Hopper The dataset represents the process with simple Newtonian physics, which is defined
by the initial position, velocity, and the number of steps. To generate data we randomly choose an initial
position and a sample velocity vector uniformly from [−2, 2]. We evaluate our model on interpolation (3
steps) and extrapolation (3 steps) and provide a visualization of one of the experiments in Figure 3 - (b). The
MSE for interpolation was 0.0289, while for Extrapolation it was 0.2801. In comparison ODE2VAE Nazarovs
et al. (2021)’s interpolation MSE is at 0.0648.

Rotation MNIST We evaluate our approach on a more complicated version of the Rotating MNIST
dataset. We construct the dataset by rotating the images of different handwritten digits and reconstructing
the trajectory of the rotation in interpolation and extrapolation setups. For a sampled digit we randomly
choose an angle from the range [−π/4, π/4] and apply it at all time steps. In addition, to make our evaluation
more robust and closer to a practical scenario, we spread out the initial points of the digits, by randomly
rotating a digit by angles from −π/2 to π/2. The generated 10K samples of different rotating digits for 20
time steps were split into two equal sets: interpolation and extrapolation. Like the previous experiment,
MuJoCo Hopper, we evaluate our model on interpolation (10 steps) and extrapolation (10 steps). In this
case, the MSE for interpolation and extrapolation were 0.0082 and 0.1545 respectively. In comparison NODE
Nazarovs et al. (2021), the MSE is 0.0074 and 0.1661 respectively. Whereas MEODE Nazarovs et al. (2021),
the MSE is 0.0057 and 0.1641 respectively. Refer to the supplement for implementation details.

Takeaway. Clearly, by introducing IGO in the model, we achieve good generation ability even for extrapo-
lation in the future time steps.

6.4 IGO in 3D Processing

6.4.1 Setup Details

We use a standard deep learning-based point cloud denoiser that comprises a Feature Extraction Unit and
a Score Estimation Unit. The feature extractor is tasked to learn local as well as non-local features for
each point in the noisy point cloud data, provided as the input. The score estimator provides point-wise
scores, using which the gradient of the log-probability function can be computed. We adopt the same feature
extraction unit as well as the Score Estimation Unit used in Luo & Hu (2021). Here we introduce intermediate
iterates to test if we can generate different versions of the denoised samples using a pretrained score-based
model provided by Luo & Hu (2021), see Figure 4 - a).

6.4.2 Experimental results

At the beginning of the denoising step, we have the given noisy input, xt and its intermediate iterate x̃τ .
Our architecture is modelled using a 3-layer MLP as in Luo & Hu (2021), and the newly added intermediate
layers, Eτ and Dτ . The newly added layers replicate the already present first and last layer perceptrons
but are only dedicated to the intermediate layers. We initialize the weights of Eτ and Dτ to be half of the
weights of the pre-trained layers. The training was done using a convex combination of loss, defined using the
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intermediate and final iterate, xt and x̃τ . The architecture can be seen in Figure 4 - (a). We use α to denote
this convex combination hyperparameter. The smaller the value of α, the more the weight of the intermediate
iterates in the objective function for training the score network. The network was tested using the PU-Net
test set provided by Luo & Hu (2021). We provide comparisons to different baselines using Chamfer Distance
(CD) Fan et al. (2016) and Point-to-Mesh Distance (P2M) Ravi et al. (2020) as metrics in the supplement.

6.4.3 Finding new Generators using Xτ

Here we validate our hypothesis that we can train diverse generators using the intermediate iterate. In order
to quantify the spread of our overall model, we use the cosine similarity metric suggested for generalization
purposes in Jin et al. (2020). Here, we compute the cosine similarities between the weights of ET and Eτ and
between DT and Dτ . Recall, DT is the usual decoder, which is the last layer, and Dτ is its corresponding
intermediate decoder. We also calculate the pair-wise Euclidean distance between the respective weights; see
Figure 4 - (b), (c).

Takeaway. We observed that as we fine-tune our model the cosine similarity between DT and Dτ decreases
by 10% and the Euclidean between ET and Eτ increases by 15%, in 50k iterations —two dissimilar decoders
that perform well on the training dataset.

7 Conclusions
From a theoretical perspective, our results indicate that it is indeed possible to be more sample efficient
while solving inverse problems using our IGO construction by slightly modifying the standard assumptions
made on DGMs. We can implement our regularizer on any end-to-end differentiable DGM with minor code
modifications as shown in two 2D images and one 3D point cloud setting. Our experiments in the case
of eigenvalue problems also show that our framework and the landscape of its parameters has interesting
properties and can be exploited for efficient optimization purposes and parameter savings. We believe that
abstract ideas from dynamical systems are very much relevant in decision-making in vision settings as more
and more pretrained models are deployed on form factor and/or edge devices to make on-the-fly decisions.
Our results provide us with a shred of affirmative evidence that ideas from dynamical systems will be of
utmost importance when each such decision has nontrivial consequences (say due to the presence of adversarial
noise).
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Appendix

We include several appendices with proofs, additional details and results of our experiments. First, in
Appendix A we show the proof for Lemma 1. We then provide the implementation details for using our
proposed non-Gaussian drift functions in Appendix B. In Appendix C, we show additional results, along with
pseudocode for the experiments in Sec. 6. We also provide results from an additional experiment on training
DGMs with IGO on the MNIST dataset in Appendix C.2.2.

A Proof of signal recovery Lemma 1

Proof. Our proof follows the strategy detailed in Daras et al. (2021). In particular, we will use the metric
entropy concentration inequality for ℓ2 balls, and Maurey’s empirical method (the Sudokov minorization
inequality) for ℓ1 ball, which are more accurate than the standard ϵ-net argument. We now explain the
details.

In order to make any sample complexity guarantee using a pretrained generator, we have to assume that we
have access to an algorithm that can solve inverse problem using a pretrained generator. For this purpose,
we will use the CSGM method for solving inverse problems using the generators that we have trained (that
includes the intermediate iterates). Observe that the intermediate generator has its own noise source that
can be optimized using the CSGM method for solving inverse problems. Hence, after training, we obtain two
separate generators, i.e., two independent noise sources. Following the notations in the main paper, for any
decomposition of the overall G = G1 ◦ G2, we can define the respective true optimum in the extended range
of the intermediate generator Gτ := sτ ◦ Dτ be given as,

z̄p
τ = arg min

zp∈Gτ (Bk
2 (r1))⊕Bp

1 (r2)
∥x − G2(zp)∥, (12)

and its corresponding measurements optimum in the extended range of Gτ be given by z̃p
τ . We will drop the

superscript p to avoid notation clutter. Then our results follow by noting that this intermediate generator Gτ

satisfies the S-REC condition since the corresponding intermediate encoder Eτ and decoder Dτ are Lipschitz.
That is, following inequality (78) in Daras et al. (2021), we have that,

∥G2(z̄τ ) − G2(z̃)∥ ≤ 4∥G2(z̄) − x∥ + δτ

γ
, (13)

where δτ is a constant that depends (at most polynomially) only on latent dimensions and p. We can now
take the minimum of the sample complexities of both generators since they each have independent noise
sources. Finally, we have the desired result as claimed due to the S-REC property for the nested ℓ1 ball of
the intermediate generator.

B Euler–Maruyama Algorithm to aid Data Augmentation

Here we show the application of EM Algorithm on two simulatable processes, Lotka-Volterra and Arnold’s
Cat Map. We use scipy.integrate.solve_ivp Virtanen et al. (2020) to integrate our differential equations
and get the trajectory for each pixel in the image, thereby finding the trajectory of the image as a whole.
The resulting images are then plotted using Matplotlib Hunter (2007). An image with 2 colored balls and
2 non-colored balls following the trajectory of Arnold’s Cat Map is shown in Figure 5 - a.). Figure 5 - b)
shows the simulation of a Dog following the trajectory of Lotka-Volterra. The code to reproduce the images
in Figure 5 can be found in the provided zipped folder.

C Experiments

In this section we showcase additional results from the experiments performed to explore the applications of
IGO.
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(a) Arnold’s Cat Map Simulation - Top left image is the
original image.

(b) Lotka-Volterra Simulation - Top left image is the original
image.

Figure 5: Data augmentation schemes.

C.1 Generative PCA with IGO

C.1.1 Implementation Details

We show the reconstructed images for digits 0, 1, 5 and 9 from ZT , Zτ and Zτ ′ in Figure 6. Figure 7 shows
the graphs comparing the explained variance against the number of Principal Components, using all the
MNIST digits. As seen, the images generated using a smaller dimension of noise vector Zτ ′ use fewer principal
components to explain variance as compared to ZT , Zτ .

We also provide a python script which implements the projection step to optimize the noise vectors in all
three different cases mentioned in our main paper (ZT , Zτ and Zτ ′). We used a generative model trained
on MNIST images to perform the projection step, but the script can be utilized to do the same for any
generative model.

C.2 IGO for training Diffusion models

C.2.1 Generated Samples for CelebA dataset

The generated samples using the progressive generation method used by Ho et al. (2020) can be seen in
Figure 8 and Figure 9. It can be observed from the samples in Figure 8, we utilize our intermediate layer
route to sample images from a lesser starting corruption point compared to the final layer. Our code to
incorporate the IGO can be found in our submitted code repository.

C.2.2 Implementation Details for MNIST dataset

To analyze the effect of α, we perform another experiment, similar to Sec. 6.2 from the main paper, using
MNIST dataset. During the forward pass, our simulated iterates xt and x̃τ (τ = t/2) are passed into the
network, as shown in Figure 1. We use a convolution layer with a kernel of size 5 and stride 2 as the
intermediate encoder Eτ and a deconvolution layer with a kernel of size 6 and stride 2 as the intermediate
decoder Dτ . The training is done using a convex combination of loss, the same as done in the case of CelebA
dataset. Figure 10 summarises the PyTorch implementation of IGO in a U-net based Generative setting for
the MNIST dataset.

C.2.3 Generated Samples for MNIST dataset

For quantitative comparisons of the images generated from models using different values of α, we utilized the
PyTorch implementation of Fretchet Inception Distance (FID) Heusel et al. (2017) score provided by Seitzer
(2020). The results can be seen in Figure 11. We can see that the values of α can be chosen depending on the
trade-off between range expansion and the FID.

Figure 12 shows the Generated samples with the perturbation kernel, using Arnold’s Cat Map as its drift
function, for different values of α. The generated samples do have some structural deformities, indicating that
the range of the generators is improved due to our setup. Moreover, note that our IGO scheme is robust with
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Figure 6: Reconstructed Images for Generative PCA with IGO. First row: from ZT , Second row: from
Zτ , Third row: from Zτ ′

respect to α as shown by the gradual degradation in performance as we place more weight on the gradients
provided by the intermediate iterates. Thus suggesting that using a combinatorial objective function can help
increase the range of generative models.

C.3 IGO on Panel Data

C.3.1 Implementation Details

Experiments were run on NVIDIA 2080ti GPU for 300 epochs. First 100 epochs were used to train the
encoder/decoder only, without any temporal component. For Rotating MNIST (2D data), the encoder-decoder
model that we used in our experiments are described in Figure 13.
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Figure 7: Number of Principal Components required for explaining variance.

C.4 IGO in 3D Processing

C.4.1 Qualitative Results

Figure 14, 15 and 16 show the qualitative results from the experiment in Sec. 6.4, for different values of the
hyperparameter α.

# Points 10K (Sparse) 50K (Dense)
Noise 1% 2% 1% 2%
Model CD P2M CD P2M CD P2M CD P2M

Bilateral Fleishman et al. (2003) 3.646 1.342 5.007 2.018 0.877 0.234 2.376 1.389
Jet Cazals & Pouget (2005) 2.712 0.613 4.155 1.347 0.851 0.207 2.432 1.403
MRPCA Mattei & Castrodad (2017) 2.972 0.922 3.728 1.117 0.669 0.099 2.008 1.033
GLR Zeng et al. (2020) 2.959 1.052 3.773 1.306 0.696 0.161 1.587 0.830
PCNet Rakotosaona et al. (2020) 3.515 1.148 7.467 3.965 1.049 0.346 1.447 0.608
DMR Luo & Hu (2020) 4.482 1.722 4.982 2.115 1.162 0.469 1.566 0.800
Score-Based PCD Luo & Hu (2021) 2.521 0.463 3.686 1.074 0.716 0.150 1.288 0.566
Ours (α = 0.8) 2.710 0.593 4.292 1.524 0.954 0.320 2.456 1.517

Table 1: Comparison against other denoising algorithms. The CD as well as the P2M scores are multiplied
by 1e+4.
C.4.2 Quantitative Results

The comparison with the baselines for noise levels 1% and 2% are shown in Table 1 for the model trained
with α = 0.8. We can see that our model’s performance is close to the state of the art model in the lower
noise settings, while beating a lot of other baselines.
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Figure 8: Samples generated from the Intermediate Layer (the right-most column being the closest to noise.)
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Figure 9: Samples generated from the Final Layer (the right-most column being the closest to noise.)
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Encoder structure for IGO on MNIST
encoder = nn. Sequential (

nn. Conv2d (1, 32, ks = (3 ,3) ,
stride =(1 ,1)) ,

nn. Conv2d (32 , 64, ks = (3 ,3) ,
stride =(2 ,2)) ,

# Intermediate Encoder
nn. Conv2d (1, 64, ks = (5 ,5) ,

stride =(2 ,2)) ,

nn. Conv2d (64 , 128 , ks = (3 ,3) ,
stride =(2 ,2)) ,

nn. Conv2d (128 , 256 , ks = (3 ,3) ,
stride =(2 ,2))

)

Decoder structure used for IGO on MNIST

decoder = nn. Sequential (
nn. ConvTranspose2d (256 , 128 , ks = (3 ,3) ,

stride =(2 ,2)) ,
nn. ConvTranspose2d (128 , 64, ks = (3 ,3) ,

stride =(2 ,2)) ,

# Intermediate Decoder
nn. ConvTranspose2d (64 , 1, ks = (6 ,6) ,

stride =(2 ,2)) ,

nn. ConvTranspose2d (64 , 32, ks = (3 ,3) ,
stride =(2 ,2)) ,

nn. ConvTranspose2d (32 , 1, ks = (3 ,3) ,
stride =(1 ,1))

)

Figure 10: Implementing IGO on Pytorch involves encoding intermediate x̃ with Eτ , which eventually gets
decoded by Dτ .
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Figure 11: FID scores for Images generated using models trained using different values of α
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Figure 12: Samples for different values of α
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Encoder structure used in ROTATING MNIST
encoder = nn. Sequential (

nn. Conv2d (input_dim , 12, ks ,
stride =1, padding =1) ,

nn.ReLU (),
nn. Conv2d (12 , 24, ks ,

stride =2, padding =1) ,
nn.ReLU (),
nn. Conv2d (24 , output_dim , ks ,

stride =2, padding =1) ,
nn. Flatten (2) ,
nn. Linear (49 , 1),
nn. Flatten (1)
)

Decoder structure used in ROTATING MNIST
extend_to_2d = nn. Linear (input_dim ,

49 * input_dim )
decoder = nn. Sequential (

nn. ConvTranspose2d (input_dim ,
24,
ks ,
stride =2,
padding =1,
output_padding =1) ,

nn. ConvTranspose2d (24 ,
12,
ks ,
stride =2,
padding =1,
output_padding =1) ,

nn. ConvTranspose2d (12 , output_dim , ks ,
stride =1, padding =1) ,

nn. Sigmoid (),
)

Figure 13: Description of Encoder and Decoder used in experiment with 2D data structure: Rotating MNIST.

Figure 14: Denoised Image using a) Intermediate layer b) Final layer, α = 0.98
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Figure 15: Denoised Image using a) Intermediate layer b) Final layer, α = 0.9

Figure 16: Denoised Image using a) Intermediate layer b) Final layer, α = 0.5
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