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Abstract

Humans often think of complex tasks as combinations of simpler subtasks in or-1

der to learn those complex tasks more efficiently. For example, a backflip could2

be considered a combination of four subskills: jumping, tucking knees, rolling3

backwards, and thrusting arms downwards. Motivated by this line of reasoning,4

we propose a new algorithm that trains neural network policies on simple, easy-5

to-learn skills in order to cultivate latent spaces that accelerate imitation learning6

of complex, hard-to-learn skills. We focus on the case in which the complex task7

comprises a concurrent (and possibly sequential) combination of the simpler sub-8

tasks, and therefore our algorithm can be seen as a novel approach to concurrent9

hierarchical imitation learning. We evaluate our algorithm on difficult tasks in a10

high-dimensional environment and see that it consistently outperforms a state-of-11

the-art baseline in training speed and overall performance.12

1 Introduction13

Humans have the power to reason about complex tasks as combinations of simpler, interpretable14

subtasks. There are many hierarchical reinforcement learning approaches designed to handle tasks15

comprised of sequential subtasks [14, 8], but what if a task is made up of concurrent subtasks?16

For example, someone who wants to learn to do a backflip may consider it to be combination of17

sequential and concurrent subtasks: jumping, tucking knees, rolling backwards, and thrusting arms18

downwards. Little focus has been given to designing algorithms that decompose complex tasks19

into distinct concurrent subtasks. Even less effort has been put into finding decompositions that are20

made up of independent yet interpretable concurrent subtasks, even though analogous approaches21

have been effective on many challenging artificial intelligence problems [3, 2].22

We propose a new generative model for encoding and generating arbitrarily complex trajectories. We23

augment the VAE objective used in [15] in order to induce latent space structure that captures the24

relationship between a behavior and the subskills that comprise this behavior in a disentangled and25

interpretable way. We evaluate both the original and modified objectives on a moderately complex26

imitation learning problem, in which agents are trained to perform a behavior after being trained on27

subskills that qualitatively comprise that behavior.28

2 Embedding and reconstructing trajectories29

We use a conditional variational autoencoder (CVAE) [13, 7] to learn a semantically-meaningful30

low-dimensional embedding space that can (1) help an agent learn new behaviors more quickly, (2)31

be sampled from to generate behaviors, (3) and shed light on high-level factors of variation (e.g.32

subskills) that comprise complex behaviors.33

Illustrated by Figure 1, our CVAE has a bi-directional LSTM (BiLSTM) [6, 12] state-sequence34

encoder qφ(z|s1:T ), an attention module [1, 17] that maps the BiLSTM output to values that35
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parametrize the distribution from which the latent (i.e. trajectory) embedding z is sampled, a36

conditional WaveNet [10] state decoder Pψ(st+1|st, z), which serves as a dynamics model, and37

a multi-layer perceptron (MLP) action decoder πθ(at|st, z), which serves as a policy whose outputs38

parametrize the normal distribution from which at is sampled. The bidirectional-LSTM captures39

sequential information over the states of the trajectories, and the conditional WaveNet allows for40

exact density modeling of the possibly multi-modal dynamics.41

Figure 1: The conditional VAE we use to encode and generate trajectories.

We can train this CVAE by maximizing the following objective42

L(θ, φ, ψ; τ i) = Ez∼qφ(z|si1:Ti )

[
Ti∑
t=1

log πθ(a
i
t|sit, z) + logPψ(sit+1|sit, z)

]
+DKL

(
qφ(z|si1:Ti) ‖ p(z)

)
. (1)

In Section 3 we will modify this objective in order to encourage the latent space to capture semanti-43

cally meaningful relationships between a behavior and the subskills that comprise this behavior.44

3 Shaping the latent (i.e. trajectory embedding) space45

Some skills can be seen as approximate combinations of certain subskills. Training a VAE to embed46

and reconstruct demonstrations of these skills and subskills using (1) would generally result in an47

embedding space with no clear relationship between skill and subskill embedding, especially if the48

dimensionality of the latent space is large or the number of demonstrated behaviors is small.49

Motivated by semantically meaningful latent representations found in other work [9], we aim to50

induce a latent space structure so that a behavior embedding is the sum of the its subskill embed-51

dings. Concretely, if zA is a backflip embedding and za, zb, zc, zd are embeddings corresponding52

to jumping, tucking knees, rolling backwards, and thrusting arms downwards, we want to have53

zA = za + zb + zc + zd. An example of such latent space restructuring is shown in Figure 2.54

However, the VAE models probability distributions, so enforcing equality between one instance of55

a behavior and one instance of its subskills is insufficient. Instead, we want the random variables56

(RVs) representing the embeddings of the subskills to relate to the RV representing the embedding57

of the behavior comprised of those subskills. Another way to do this is to relate the subskill embed-58

ding RVs with the RV representing the trajectory generated by decoder networks Pψ and πθ when59

conditioned on an embedding of the behavior.60

Suppose τA is a behavior comprised of M subskills {τ(1), τ(2), . . . , τ(M)}. Let τ̃A =61

(s1, a1, s2, a2, . . . , sT , aT ) represent the trajectory generated from an embedding corresponding to62

τA. Define V = z1 + z2 + · · ·+ zM , where zi ∼ qφ(z|s(i), 1:T(i)
). To train the encoder qφ(z|s1:T ),63

state decoder Pψ(st|st−1, z), and action decoder πθ(at|st, z) simultaneously, we aim to maximize64
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Figure 2: An example of latent space restructuring. Left: original latent space. Right: Hypothetical
latent space induced by our approach (created intentionally for illustrative purposes).

the mutual information between V and τ̃ , which can be expressed as65

I(V ; τ̃) = H(V )−H(V |τ̃)
= −EV∼p(V )

[
log p(V )

]
− EV∼p(V |τ̃)

[
log p(V |τ̃)

]
. (2)

If the latent variable prior distribution p(zi) is Gaussian,H(V ) is easy to compute, with an analytical66

solution under minor assumptions. We describe how to evaluate H(V ) in Appendix B.67

3.1 Lower bounding mutual information through variational inference68

However, we don’t have access to the true posterior distribution p(V |τ̃). We instead introduce a69

distribution Q(V |τ̃) as a variational approximation to p(V |τ̃) to get LI(τ̃ , Q), a variational lower70

bound of I(V ; τ̃)71
LI(τ̃ , Q) = EV∼p(V ),τ∼τ̃ |V

[
logQ(V |τ)

]
+H(V )

= Eτ∼τ̃
[
EV∼p(V |τ)

[
logQ(V |τ)

]]
+H(V )

≤ I(V ; τ̃)

in an approach similar to that of [3].72

However, unlike in [3], Q(V |τ̃) is not the same as q(z|s1:T ), the distribution approximated by73

the encoder network in our CVAE. Furthermore, even though embedding variables z1, z2, ..., zM74

are independent, they are not conditionally independent given τ̃ . Therefore, we cannot simply75

replace Q(V |τ̃) with
∑M
i=1 q(zi|τ̃) and would instead need to again use variational inference to find76

Q(V |τ̃), which would require training an additional VAE.77

3.2 Lower bounding mutual information without variational inference78

We derive a simpler lower bound to I(V ; τ̃) that allows us to circumvent the time and memory costs79

associated with training a VAE to model Q(V |τ̃). We show the main result (3) here, and provide80

our derivation of this result in Appendix A.81

I(V ; τ̃) ' −EV∼p(V )

[
log p(V )

]
+

1

N

N∑
n=1

M∑
i=1

log qφ(zn,i|τ̃) (3)

82 By maximizing the lower bound in (3), we (approximately) maximize I(V ; τ̃)83

3.3 Regularization with variational approximation84

To encourage a semantically meaningful relationship between a behavior embedding and this be-85

havior’s subskill embeddings, we regularize the objective in (1) with LI(τ̃ , Qα) to get86

L(θ, φ, ψ; τ i) = Ez∼qφ(z|si1:Ti )

[
Ti∑
t=1

log πθ(a
i
t|sit, z) + logPψ(sit+1|sit, z)

]
+DKL

(
qφ(z|si1:Ti) ‖ p(z)

)
+ λLI(τ̃ , Qα), (4)

where λ > 0 is a hyperparameter that controls the trade-off between original objective and degree87

of shaping the latent space.88
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3.4 Regularization without variational approximation89

If we want to avoid performing potentially expensive variational inference, we can use (6), the result90

we derived earlier in place of LI(τ̃ , Q),91

L(θ, φ, ψ; τ i) = Ez∼qφ(z|si1:Ti )

[
Ti∑
t=1

log πθ(a
i
t|sit, z) + logPψ(sit+1|sit, z)

]

+DKL

(
qφ(z|si1:Ti) ‖ p(z)

)
+ λ

(
−EV∼p(V )

[
log p(V )

]
+

1

N

N∑
n=1

M∑
i=1

log qφ(zn,i|τ̃)

)
. (5)

As shown in Appendix B, the inner expectation in (5) can be evaluated analytically if the latent92

variables {zi}Mi=1 are independent and normally distributed—the standard case with VAEs.93

4 Experiments and results94

We evaluate our approach on a 197-dimensional state and 34-dimensional action space humanoid95

simulated in Bullet [4]. We use policies that were pre-trained by [11] to perform kick, spin, and96

jump, as subskills that qualitatively comprise the behavior spin kick. We also take a similar ap-97

proach for the behavior backflip. We train three sets of five VAEs on the subskills: one set optimizes98

for the original VAE objective (1), another set optimizes for the objective regularized by the varia-99

tional approximation (4), and the third set optimizes for the objective regularized without variational100

inference. To compare the proposed approach with the original, we evaluate the training process of101

each set of VAEs by considering the similarity between the generated trajectories and the pre-trained102

spin kick and backflip policy demonstrations. Results of the mean squared error (MSE) between the103

generated and demonstration states averaged over 5 different random seeds are shown in Figure 3.104

Figure 3: MSE (lower is better) between demonstration states and generated states on the Deep-
Mimic spin kick and backflip tasks averaged over 5 different random seeds. Regularized denotes
our approaches (4), (5), and Original denotes the state-of-the-art baseline (1).

We see that our proposed approaches attain better overall performance and train faster than the base-105

line algorithm. This suggests that we can bootstrap learning of difficult tasks by training agents on106

simpler, related subtasks while inclining their representations toward certain hierarchical structures.107

5 Discussion and future work108

We explored the idea of inducing certain latent structure through the maximization of mutual in-109

formation between generated behaviors and embeddings of the subskills that qualitatively comprise110

those behaviors, which, to the best of our knowledge, has not yet been investigated. Though our al-111

gorithm outperformed the state-of-the-art baseline, there is much room for future work. The CVAE112

could be replaced with a β-CVAE [5] to control disentanglement of z. The proposed approach could113

be evaluated on behaviors and subskills that more strictly adhere to concurrent relationship desired.114

A larger number of behaviors, such as those put forth by [16], could be trained at once, both to115

constrain the latent space and to enrich the pool of subskills from which to train on and inspect116

relationships between. The non-variational mutual information approximation could be compared117

to the variational one in order to quantify accuracy. Interpolations within the convex hull of subskill118

embeddings could be used to fine-tune known behaviors or generate completely new behaviors.119
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A Derivation of mutual information lower bound without variational164

approximation165

For clarity in the following derivation, let Vp =
∑M
i=p zi. Then we have166

H(V |τ̃) = H(V1|τ̃)
= H(z1 + z2 + · · ·+ zM |τ̃)
= H(z1|τ̃) +H(z1 + z2 + · · ·+ zM |z1, τ̃)−H(z1|z1 + z2 + · · ·+ zM , τ̃)

= H(z1|τ̃) +H(z2 + z3 + · · ·+ zM |z1, τ̃)−H(z1|z1 + z2 + · · ·+ zM , τ̃)

≤ H(z1|τ̃) +H(z2 + z3 + · · ·+ zM |τ̃)−H(z1|z1 + z2 + · · ·+ zM , τ̃)

= H(z1|τ̃) +H(V2|τ̃)−H(z1|V1, τ̃)

By rolling out H(Vp|τ̃) recursively for p = 1, 2, 3, ...,M − 1, we get167

H(V |τ̃) ≤
M∑
i=1

[H(zi|τ̃)−H(zi|Vi, τ̃)]

≤
M∑
i=1

H(zi|τ̃)

=

M∑
i=1

−Ezi∼p(zi|τ̃) [log p(zi|τ̃)]

≈
M∑
i=1

−Ezi∼qφ(zi|τ̃) [log qφ(zi|τ̃)]

if p(z|τ̃) ≈ qφ(z|τ̃). Plugging this result into (2) allows us to lower bound I(V ; τ̃) as follows,168

I(V ; τ̃) ≥ −EV∼p(V )

[
log p(V )

]
+

M∑
i=1

Ezi∼p(zi|τ̃) [log p(zi|τ̃)]

≈ −EV∼p(V )

[
log p(V )

]
+

M∑
i=1

Ezi∼qφ(zi|τ̃) [log qφ(zi|τ̃)] ,

and we can obtain an unbiased estimate of the second term by sampling zi ∼ qφ(zi|τ̃) to get169

I(V ; τ̃) ' −EV∼p(V )

[
log p(V )

]
+

1

N

N∑
n=1

M∑
i=1

log qφ(zn,i|τ̃), (6)

where x ' y denotes that x is approximately greater than or equal to y.170
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B Evaluating entropy of sum of subskill embeddings171

Computing the entropy for an arbitrary distribution may be difficult, but by setting X to be a Gaus-172

sian RV—the standard choice for VAE encoders—the entropy H(X) has the simple, closed-form173

expression174

H(X) =
1

2
(1 + ln(2πσ2

X)),

where σX is the standard deviation of X . We choose qφ(z|s1:T ) to parametrize a Gaussian dis-175

tribution and assume that state sequences from different subskills are sufficiently unrelated so that176

they can be considered statistically independent. This is generally a safe assumption because even177

minor differences in subskills will tend to place trajectories corresponding to different skills in very178

different locations within the trajectory space. It follows that V is the sum of Gaussian RVs and has179

the simple form180

V ∼ N (µza + µzb + · · ·+ µzM , σ
2
za + σ2

zb
+ · · ·+ σ2

zM ),

and the entropy of V is181

H(V ) =
1

2
(1 + ln(2π(σ2

za + σ2
zb

+ · · ·+ σ2
zM ))). (7)
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