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Abstract: Imitation learning, and robot learning in general, emerged due to break-
throughs in machine learning, rather than breakthroughs in robotics. As such,
evaluation metrics for robot learning are deeply rooted in those for machine learn-
ing, and focus primarily on data efficiency. We believe that a better metric for
real-world robot learning is time efficiency, which better models the true cost to
humans. This is a call to arms to the robot learning community to develop our own
evaluation metrics, tailored towards the long-term goals of real-world robotics.
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1 Introduction

How do we define the term robot learning? Let us consider two options. Firstly, the study of ma-
chine learning methods for applications to robotics. And secondly, the study of methods to enable
robots to learn. The choice between these two can be distilled down to whether robot learning is
considered fundamentally to be a field within machine learning, or a field within robotics, respec-
tively. But whilst this distinction may appear to be arbitrary, the implication is in fact profound,
for the following reason. It determines the evaluation metrics used by the community to judge the
performance of new methods, and therefore, it determines the long-term impact that the field is
shaping itself around. In this paper, we argue that metrics which guide development of a technology
should be driven by the target application of that technology, irrespective of the methods used by
that technology. And therefore, we argue that robot learning metrics should be driven by real-world
robotics applications, rather than the underlying machine learning algorithms. However, this is not
what we observe in the robot learning community today: evaluation is dominated by traditional ma-
chine learning metrics. In this paper, we expose some problems with this, which deserve foresight,
attention, and debate.

Robot learning emerged from machine learning, not robotics. Whilst the fields of both ma-
chine learning and robotics have existed for decades, the field of robot learning is a more recent
development, such as with the arrival of our first CoRL in 2017. But its growth in popularity can
largely be attributed to breakthroughs in machine learning, and in particular, breakthroughs in deep
learning and reinforcement learning, rather than breakthroughs in classical robotics. And during this
emergence, the robot learning community has brought with it evaluation metrics that were designed
by the machine learning community, for machine learning problems. For example, a typical rein-
forcement learning paper published at a machine learning conference today, will present graphs of
Success Rate vs Number of Environment Interactions. And we see these same graphs dominating
papers published at CoRL. Now, for the machine learning community, this metric is sensible: it en-
courages data efficiency, which is arguably the most fundamental aim in machine learning research.
But is data efficiency the most fundamental aim in robotics research?

2 Back to Reality

The curse of simulators. To answer the above question, we now examine the differences between
the simulation benchmarks typically evaluated on in machine learning papers, and the real-world
environments of robotics applications. Our first observation is that, whilst simulation benchmarks
often assume prior existence of a task definition, such as a reward function, in reality each new task
must be manually defined by the human teacher. And if we are aiming for robots to learn from
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everyday humans in everyday environments, rather than from engineers coding hand-crafted reward
functions, then this should be an intuitive and natural process, such as a human demonstration of the
task. As such, when we move away from simulators and into the real world, a large number of robot
learning problems can be considered as a form of imitation learning. This is particularly the case for
robot manipulation, where the huge diversity of tasks makes it impractical to manually define each
one in code. Our second observation is that, whilst simulators facilitate rapid prototyping and large-
scale quantitative benchmarking, this comes at the cost of making two problematic assumptions:
(1) environment resetting comes for free, and (2) low-dimensional ground-truth states (e.g. object
poses) are readily available. In real-world robotics, however, (1) automatic environment resetting
requires significant human supervision or construction of task-specific apparatus, and (2) obtaining
low-dimensional states requires additional development of a state estimator for each new task.

From data efficiency to time efficiency. The above observations lead to our main argument: data
efficiency should not be the most fundamental aim in robot learning research, and instead, we should
be optimising our methods for time efficiency. We define time efficiency as how quickly a robot can
learn a new task in a period of time, regardless of the amount of data collected during that time,
and we argue that time is a much better approximation of the true cost to human teachers. Time has
historically been itself approximated by the amount of data required, but as we have observed, this
approximation is limited. If a method requires regular environment resetting, then the additional
time to reset the environment should be a penalty, when that method is evaluated relative to other
methods that require less environment resetting. Similarly, if a method requires object poses, then
the additional time taken to train that pose estimator should be accounted for. But this is not to say
that data efficiency should not be encouraged; data efficiency is always beneficial as long as it does
not come at the cost of time efficiency. Instead, we argue for a more comprehensive metric than
only data efficiency: the best imitation learning method is one which optimally trades off all aspects
that contribute to time efficiency, and data efficiency is just one of those aspects. We believe that
this new metric will encourage researchers to develop methods which are more useful to humans in
practice, when moving away from the simulators and the lab, and back into the real world.

Two flavours of time efficiency. Imitation learning involves humans teaching robots. This takes
time, but it also takes effort, and an ideal imitation learning method would be one which minimises
both time and effort. However, these factors are not independent. For example, a reinforcement
learning method seeded with a larger number of demonstrations may learn more quickly, but at the
cost of more human effort. As such, we now propose two flavours of the time efficiency metric.

Clock time efficiency. We define clock time efficiency as the speed at which a robot learns a new
task with respect to the amount of wall clock time. This could be the metric of choice in a factory
setting, for example, where an engineer would like a robot to learn a new task as quickly as possible
to then begin a manufacturing job, even if the engineer needs to supervise the learning throughout.

Human time efficiency. We define human time efficiency as the speed at which a robot learns a new
task with respect to the amount of time a human spends supervising the learning. This could be the
metric of choice in a domestic setting, for example, where a consumer would like the robot to learn
a new task as autonomously as possible and with minimal human effort, even if the robot takes a
long time to learn.
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Figure 1: A comparison of two hypothetical methods using data efficiency (left) and time efficiency
(right) metrics.
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A choice of two futures. Figure 1 left shows how robot learning methods are typically evaluated
today. According to the data efficiency metric, the red method is superior. But hypothetically, let
us now consider that the blue method requires no environment resetting and learns end-to-end from
images, whilst the red method requires regular environment resetting and ground-truth object poses.
Figure 1 right then shows how these two methods would be evaluated with a time efficiency metric.
Here, whilst the data efficiency of the blue method is proportional to its time efficiency, the red
method is significantly less time efficient than it is data efficient. Today, we are being encouraged
to develop the red method. Through this paper, we aim to motivate the robot learning community
towards a future where we are instead developing the blue method.

3 Meta-analysis of CoRL 2020

Methodology. Having established our criteria for good imitation learning metrics, we can now
take a look at evaluation methods used by the robot learning community today. To do this, we per-
formed a meta-analysis of imitation learning papers published at CoRL 2020. To select these papers,
we first searched for all papers which contained either “imitation” or “demonstration” in the paper’s
abstract. From these, we inspected each paper and retained those which actually involved providing
a demonstration to learn a new task, which resulted in 19 papers. We then analysed each paper to
determine whether it evaluated success rate as a function of either clock time or human time. We
also recorded whether a paper assumed ground-truth object poses, and whether it required environ-
ment resetting. In some cases, the experiments themselves did not require environment resetting but
only because the tasks were simple target reaching tasks, and in these cases we made a judgement
as to whether environment resetting would be required with more typical, everyday tasks. For each
paper, we also recorded whether any real-world experiments were done.

Results. Table 1 shows the results of this meta-analysis. Papers are grouped into 8 groups, where
all the papers in one group contained the same yes/no answers across all 5 columns. The first
observation we make is that not a single paper evaluated the clock time efficiency or human time
efficiency, with most methods instead evaluating data efficiency. Some papers did involve studying
success rate as a function of the number of demonstrations, but in those cases, the overall clock
time or human time was not evaluated. The second observation we make is that 10 out of the 19
papers assumed access to ground-truth object poses, and 13 papers required regular environment
resetting. Neither of these properties make for practical, real-world imitation learning. To obtain
these poses, some papers required manually pre-training an object pose estimator for each new task
[1, 2], but timing information for this was not provided nor included when comparing the method
to alternatives. A final observation we make is that 8 out of the 19 papers only include simulation
experiments, an unfortunate trend at all CoRL conferences which results in authors focussing mainly
on machine learning metrics, rather than those more appropriate to real-world robotics.

# Papers Clock Time Efficiency? Human Time Efficiency? Assumes Object Poses? Environment Resetting? Real-World?

4 [3, 4, 5, 6] No No Yes Yes No
3 [7, 8, 2] No No Yes Yes Yes

3 [9, 10, 11] No No No Yes No
3 [12, 1, 13] No No No Yes Yes
3 [14, 15, 16] No No Yes No Yes

1 [17] No No No No Yes
1 [18] No No No No No
1 [19] No No No No Yes

Table 1: Meta-analysis of 19 imitation learning papers at CoRL 2020.

4 Moving Forwards

Simulators are still important. We have established our argument for the use of time efficiency
instead of data efficiency as an evaluation metric. But in practice, both clock time efficiency and
human time efficiency are difficult to objectively evaluate with real-world experiments. For exam-
ple, if the authors themselves are the robot teachers, then there are likely to be implicit or explicit
biases in the time taken, depending on whether the authors’ own method, or a baseline, are being
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evaluated. As such, we still recommend the use of simulation benchmarks for large-scale objective
evaluation, but with some significant changes that will mitigate the aforementioned problems with
these benchmarks. Specifically, these changes should model any aspects of task learning which re-
quire time to perform. For example, each time an environment would be manually reset, a fixed
amount of time should be added to both the method’s clock time and it’s human time counters. As
another example, each task can optionally be provided with ground-truth object poses, but a fixed
amount of time must then be added to the method’s clock time counter, to model the user or robot
collecting data for an object pose estimator. Given benchmarks such as these, we believe that the
community will begin to develop methods which more optimally trade off all the different aspects
of real-world robot learning.

Visualising time efficiency. In Figure 2, we present various options for visualising these metrics,
on hypothetical data. Figure 2a compares three different methods by plotting success rates as a
function of human time. Whilst Method D has the highest human time efficiency, it is not necessarily
the most data efficient. Therefore, it would not necessarily be considered a desirable method if
traditional machine learning metrics were used. Figure 2b then presents a more complete evaluation
of one individual method. Here, each line represents a particular success rate and trades off the
amount of human time required, and the overall clock time required. This is a useful visualisation for
choosing an operating point during deployment, where a user may have a particular preference for
minimising overall training time, compared to minimising overall human effort or expertise. Figure
2c then shows the trade-off between pre-training time and fine-tuning time across three different
methods. For example, meta-learning methods typically require a large amount of pre-training,
whereas behavioural cloning methods typically learn from scratch. Here, each line represents one
success rate (e.g. the amount of time needed for 90 % success rate). This graph provides an intuitive
way to compare methods across entirely different families of imitation learning approaches, which is
typically not possible when considering only one of these dimensions. Here, Method I outperforms
both Methods G and H, and we can see that Method H is faster than Method G at learning new tasks
when there is an abundance of pre-training time, whereas Method G is better when learning from
scratch.

(a) (b) (c)

Figure 2: Examples of how evaluations could be visualised using our proposed clock time efficiency
and human time efficiency metrics.

5 Conclusions

In this paper, we have argued that data efficiency is not the optimal evaluation metric for robot
learning, when the long-term goal is real-world robotics. Instead, two alternative aspects should be
considered: the overall time taken for learning a new task, and the amount of time spent by the hu-
man supervising the learning. Methods which are the most data efficient may not necessarily be the
most time efficient, and may sacrifice consideration of real-world practicalities in an attempt to beat
the state-of-the-art on simulation benchmarks. Our intention through this paper, is to stimulate the
community to develop benchmarks which more accurately reflect the costs to humans in real-world
imitation learning. Re-thinking evaluation in the real-world, outside of simulation environments,
has inspired our own recent work on imitation learning: from just a single human demonstration,
with just a single environment reset, and without any prior object knowledge [20, 21].
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