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ABSTRACT

This paper introduces a framework that utilizes large language model (LLM)
agents to extract and convert mathematical models from engineering literature
into executable code. Autonomous or semi-autonomous conversion of literature
into code facilitates downstream tasks such as hypothesis generation, verification,
and benchmarking. Focusing on heat exchanger design, our approach efficiently
integrates model extraction, code generation, and performance optimization, with
minimal human intervention. The system’s knowledge base is continuously refined
with each new paper, leading to ongoing improvements. Experiments conducted
on 115 research articles using the HxAgent approach demonstrate substantial
improvements over the previous non-agentic baseline, HxLLM. Although the work
is still in progress, the results highlight the potential of agent-driven workflows in
advancing scientific discovery.

1 INTRODUCTION

Heat exchangers are a crucial component in various industries, including chemical processing, power
generation, HVAC systems, automotive, and renewable energy, where efficient heat transfer is
essential for improving energy efficiency, reducing operational costs, and promoting environmental
sustainability. However, the design and optimization of heat exchangers pose significant challenges,
particularly in complex and demanding environments such as power plants, where issues like fouling
can significantly reduce heat transfer efficiency.

The design and optimization of heat exchangers as shown in the Figure 5, involve a series of
systematic steps, including problem definition, selection of a mathematical model, optimization,
validation, testing, refinement, and final implementation. The core of the process lies in the selection
of mathematical models that describe heat transfer mechanisms and the identification of optimal
design parameters by evaluating various heat transfer metrics in conjunction with corresponding
design constraints. The literature on heat exchanger design and optimization encompasses various
methods aimed at improving performance, cost-effectiveness, and energy efficiency (see details on
Appendix section B). In addition to the basic model, the optimization process involves different
algorithms such as PSO, Genetic Algorithms (GA), and other techniques (see Appendix section - C)
to further enhance the cost function optimization.

The use of Large Language Models (LLMs) and AI agents in design and optimization is changing
engineering practices, creating new possibilities for improving the performance and efficiency of
industrial equipments (see Appendix section - A). Inspired by these advancements, we propose an
LLM based multi-agent system, ’HxAgent’, for optimizing industrial heat exchangers. This approach
is inspired by the principles of human collaboration and decision-making, where agents autonomously
make decisions, adapt to dynamic conditions, and collaborate to optimize heat exchanger designs
more effectively.
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The evaluation of Large Language Model (LLM)-generated code has been explored in several recent
studies see details in Appendix section - A.1. These studies collectively motivate the development of
our evaluation framework. We also compare the performance of our proposed HxAgent framework
with the with HxLLM framework (Mishra et al., 2024) that provided the considered dataset. HxAgent
consistently improves the overall quality of the generated code. Our research has significant implica-
tions for various industries, including chemical processing, power generation, and renewable energy,
where efficient heat transfer is critical for improving energy efficiency and reducing operational costs.

2 HXAGENT FRAMEWORK

The HxAgent framework introduces an approach that integrates self-reflection, human-in-the-loop
(HITL) interaction, and RAG techniques. Designed to enhance decision-making processes, this
framework iteratively refines outcomes by incorporating expert feedback, optimizing results, and
continuously reassessing them using evaluation metrics. At its core, the framework utilizes a Self-
Reflection Information Dataset (see Appendix - F), which includes a collection of mathematical
models, optimization algorithms, and related processes, providing a robust foundation for ongoing
improvement and adaptation. To perform the design and optimization using HxAgent framework, we
have divided the process in subprocess like

1. Mathematical model identification

2. Code generation for mathematical model and optimization algorithm

3. Code refinement and validation

Each of these subprocess tasks are performed by set of agents ( described in Appendix E) and
repositories (described in Appendix F) are explained below:

Mathematical Model Identification: The HxAgent framework uses a summary creator agent (AS)
to extract mathematical models from research articles. The TF-IDF Agent (AT ) in the HxAgent
framework enhances this process by comparing the extracted model with existing models in the
repository, improving the accuracy of model matching and retrieval of relevant code.

Code Generation and Optimization: In the HxAgent framework, the Planner Agent (AP ) and
Designer Agent (AD) collaborate to plan and build the mathematical code, while the Optimizer Agent
(AO) independently generates optimization algorithm. In the HxLLM framework, optimization code
was created alongside the mathematical model. However, in this case, there is a dedicated agent that
generates the optimization code independently, making it easier to analyze the code separately in
later stages.

Self-Reflection and Code Refining: The Code Refiner Agent (AC) in the HxAgent Framework
introduces a self-reflection mechanism that reviews and suggests improvements for generated code
based on a self-reflection dataset. This mechanism enhances the quality of code refinement and
reduces the need for human intervention, a feature not present in HxLLM frameworks.

Code Correction and Validation: The code generated by the HxAgent is executed, and if the
execution results in an error, the RAG-based technique is used to find a similar error and its resolution.
The Code Correction Agent (ACC) and Validator Agent (AV ) in the HxAgent framework add an
extra layer of quality control to ensure the final optimized code is accurate and functional. This
systematic approach includes dedicated agents for validation, providing a thorough and reliable
process for code correction.

The pseudo-code of the whole HxAgent framework is illustrated in algorithm 1, which outlines a
comprehensive process for optimized code generation, involving multiple agents and steps to ensure
the creation of accurate and efficient code (illustrated in Figure 1). For this study, we have considered
research article (P ) as source of mathematical model and optimization algorithm, however in practice,
this can also be obtained from user. The process begins with the Summary Creator Agent (AS),
which generates a summary (S) of the mathematical models in a given research article (P ) using
a large language model. The TF-IDF Agent (AT ) then compares this summary (S) with existing
mathematical model summaries (S1, S2, S3, . . .) stored in the mathematical model repository M ,
where each Si represents the summary of a mathematical model from articles in the repository. It
calculates a similarity score, and if the score exceeds 0.75, the Planner Agent-1 (AP 1) and Designer

2



Published as a conference paper at ICLR 2025

Agent-1 (AD1) are engaged to generate the mathematical model code. Otherwise, the Planner
Agent-2 (AP 2) and Designer Agent-2 (AD2) take part in an alternative planning process, which
also results in the creation of mathematical model code. The Optimization Agent (AO) generates
optimization algorithm code independently, which is then refined and merged with the mathematical
model code by the Code Refiner Agent (AC ) with human in the loop(HITL) and Code Merger Agent
(AM ), respectively. Finally, it checks if the execution of the output finalised code (FC) results in
an error (Er). If the error is identified as ”RAG-E” (Errors that already stored in the RAG) , then
the error is considered complex and has already been solved and stored in the code error repository.
In this case, the code correction agent (ACC) is invoked, using the error (Er) and its corresponding
solution (RAG− S) (solution to those RAG-E errors that already stored in the RAG) as a reference.
Otherwise, the code is corrected using only the error (Er). If the corrected code executes successfully,
the output code (OC) is accepted as correct, and the process ends without needing further correction.
This iterative process ensures the generation of high-quality, optimized code that meets the required
standards.

Figure 1: Algorithm of Agentic Framework

2.1 EVALUATION METHOD

A multifaceted evaluation framework was developed to assess the quality of LLM and agent-generated
code based on six criteria: Accuracy, Functionality, Completeness, Readability, Robustness, and
Maintainability. The code was scored on a scale of 1 to 5 across these criteria, evaluated by multiple
reviewers on 115 articles. Specific evaluation metrics were defined for each criterion, and further
details are available in the Appendix section - D.

3 RESULTS

The HxAgent framework processes user inputs (research articles) through four key steps: model
identification, optimization algorithm generation, self-reflection, and final output generation with
code correction. This framework was tested on 115 research articles, utilizing the Llama 3.1 model as
the language model and the Lang-graph (lan) framework as the agentic structure. In order to compare
performance with a non-agentic baseline, the HxLLM framework was re-implemented on the same
115 articles by using Llama 3.1 model.

The evaluation of 115 research articles across the two frameworks, HxLLM and HxAgent, revealed
varying performance levels on six criteria: accuracy, functionality, completeness, readability, robust-
ness, maintainability, and overall evaluation. Group 1 and Group 3 emerge as the top performers
(illustrated in Figure - 2) due to their comprehensive data and well-structured methodologies. These
groups are marked by nearly complete data sets, and where there is missing data, we have developed
optimization algorithms, variables, and mathematical codes to compensate for the gaps. This enables a
more complete analysis, which contributes significantly to their high ratings in most of the evaluation
criteria.

In this section we describe our observations. Additionally, to enable subjective judgment, Appendix
section G demonstrates how the HxAgent framework outperforms the HxLLM framework by provid-
ing examples from three different papers. It illustrates how HxAgent improves the correct selection
of variables, ensures the correct selection of optimization algorithms, and enhances functionality
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Algorithm 1 Optimized Code Generation
while true do

Input: Research article P
Summary Creation: AS(P ) → S
TF-IDF-based Retrieval: AT (S,M) → T (Compares S with S′ present in M and gives a
score T )
Mathematical Model Code Generation:
if T > 0.75 then

Path-1: Similar model found
P1 = AP 1(P )
D1 = AD1(P1)

else
Path-2: No similar model found
P2 = AP 2(P )
D2 = AD2(P2)

end if
Optimization algorithm code generation: AO(P ) → O
Code Refining with HITL: AC(D,O) → C (Where D is either D1 or D2)
Code Merging: AM (D,O,C) → FC (Final Optimized Code)
Code Correction: Er = Exec(FC)
if Er = RAG-E then

OC = ACC(Er,RAG−S) {(Where RAG-S is the solution corresponding to error RAG-E)}
else
OC = ACC(Er)

end if
if Exec(OC) = Code output then

OC = FC {Code is already correct, no need to enter the code correction loop}
end if
Validation: AV (OC) → V

end while

Figure 2: Comparison of HxAgent and HxLLM Frameworks Across Multiple Metrics

and robustness. Meanwhile, in Appendix H, we provide an example from one paper to illustrate the
step-by-step process of how the HxAgent framework operates.

It was evident that the HxAgent framework consistently outperforms the HxLLM framework across
most metrics, especially in accuracy, functionality, and maintainability. For instance (refer Figure
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- 2), Group 1 (Agent: 3.953 vs. HxLLM: 3.628), Group 3 (Agent: 3.714 vs. HxLLM: 3.000), and
Group 5 (Agent: 3.500 vs. HxLLM: 3.444) exhibit clear advantages in these areas. The Agent
framework also shows higher ratings in Completeness and Readability, demonstrating that it offers a
more comprehensive and understandable approach to solving complex problems.

Figure 3: Score of HxAgent Framework Across All Groups and Parameters

In contrast, the HxLLM framework shows weaker performance, particularly in accuracy and func-
tionality, with noticeable gaps in Groups 1 and 3. The HxAgent framework’s superior handling of
data integration, optimization algorithms, and mathematical models leads to more accurate and func-
tional outcomes. This is likely due to the HxAgent’s better data structuring and model development
capabilities, while the HxLLM framework appears limited in data handling and adaptability. From
the Figure 3 it can be seen that Groups 2, 4, 5, and 6 face distinct challenges. Group 4, for instance,
struggles with the complex structure of heat exchanger networks, and many articles fail to define these
structures adequately, resulting in lower evaluation scores. Group 2’s reliance on simulation tools
such as CFD complicates the evaluation process. In Groups 5 and 6, models are often insufficiently
validated or rely on incomplete datasets, which negatively impacts their performance in accuracy and
robustness. The key points can be summarized as follows: Inconsistent Methodologies, where many
articles in these groups use non-standard or hard-to-replicate methods, leading to variability and
reduced reliability; and Limited Practical Application, as the lack of real-world data integration and
insufficient testing under practical conditions prevent these groups from achieving the same levels of
maintainability and functionality as Groups 1 and 3. Further details on limitations and future work
can be found in Appendix J.

In conclusion, Groups 1 and 3 outperform others due to well-structured methodologies and nearly
complete datasets, while Groups 2, 4, 5, and 6 are hindered by complex requirements, undefined
structures, and inconsistent methodologies.

4 CONCLUSION

This study introduced the HxLLM HxAgent frameworks, which utilize nine specialized agents
powered by Large Language Models (LLMs) to automate the design and optimization of heat
exchangers. By integrating key mechanisms such as mathematical model extraction, code generation,
and error correction via Retrieval-Augmented Generation (RAG), self-reflection, and human-in-the-
loop processes, our approach demonstrated the ability to produce error-free code for 115 research
articles across six different groups. The HxAgent framework achieved an impressive overall score
based on a comprehensive six-metric evaluation, outperforming the HxLLM framework. Our findings
highlight that the HxAgent framework, with its advanced automation capabilities, holds significant
potential for automating the complex design and optimization tasks of heat exchangers. This could
lead to substantial improvements in energy efficiency and cost reduction in the process industry.
However, the study also revealed limitations within the current framework, particularly in areas
involving data completeness and the need for external simulations, where the framework often falls
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short. Looking ahead, future research should focus on enhancing the agent’s ability to parse and
process complex information from various document formats. Additionally, reducing the dependency
on user input and improving integration with external data repositories and simulation tools will
further optimize the framework’s capabilities, enabling more robust and comprehensive automation
in heat exchanger design and optimization.
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A LITERATURE REVIEW ON APPLICATION OF LLM AND AI AGENTS ON DESIGN
AND APPLICATIONS OF DIFFERENT ENTITIES

For example Ni et al.(Ni & Buehler, 2023) introduces MechAgents, a platform where LLM agents
collaborate autonomously to solve mechanics problems using finite element methods. This system,
designed for solving elasticity problems, integrates the intelligence of language models with the relia-
bility of physics-based modeling.Guo et al. (Guo et al., 2024) proposes ControlAgent, a framework
that integrates LLM agents with control system domain expertise to automate the controller design
process. This system is capable of gradually refining controller parameters to meet specific require-
ments for stability, performance, and robustness. Jadhav et al. (Jadhav & Farimani, 2024) presents
an approach where pre-trained LLMs are integrated with a Finite Element Method (FEM) module
for mechanical design (truss structure) optimization. This system allows LLMs to autonomously
generate and refine designs from natural language specifications demonstrating the potential of LLMs
to streamline the design process. Tao et al.’s (Tao et al., 2024) MAGIS framework focuses on using
LLM agents to resolve issues in software repositories. The system leverages multiple types of agents
to enhance LLM performance, achieving significant improvements in issue resolution rates. Liu et al.
(Liu et al., 2024a)introduces LayoutCopilot, a framework that empowers LLMs to assist in analog
layout design by converting natural language instructions into executable script commands. This
system simplifies the interaction between designers and tools. Ma et al. (Ma et al., 2023) explores
the use of LLMs in conceptual design, emphasizing how these models generate feasible and useful
solutions. The study compares LLM-generated solutions to crowdsourced ones, showing that LLMs
can produce designs that are more feasible and useful, while crowdsourced solutions tend to be more
novel.Zheng et al. (Zheng et al., 2023) highlights how LLMs have shown significant potential in
transforming scientific discovery, offering solutions to complex problems like molecular property
prediction and scientific data interpretation.

Gao and Li (Liu et al., 2024b) introduce AgentHPO, a system leveraging LLMs for autonomous
hyperparameter optimization. By iterating on historical trial data, this approach reduces the number
of experiments required, simplifies the setup process, and improves interpretability. Empirical results
show that AgentHPO often outperforms human-driven optimization.Mostajabdaveh (Mos) presents a
framework for converting natural language descriptions into optimization models. This framework
uses multiple LLM agents to autonomously generate and verify models, surpassing traditional
methods in efficiency and accuracy. Pluhacek et al. (Pluhacek et al., 2023) explores the use of
LLMs, particularly GPT-4, to create hybrid swarm intelligence algorithms for optimization tasks.
The approach showcases the potential for LLMs to generate innovative and effective optimization
algorithms. Ma et al,(Ma et al., 2024) introduces LLaMoCo, a framework for tuning LLMs for
optimization tasks. This method reduces sensitivity to prompt design, improving performance across
various optimization challenges. OptiMUS is introduced by Ahmadi Teshnizi et al.(AhmadiTeshnizi
et al., 2023), using LLMs to solve linear programming problems. The system iteratively generates
and refines solutions, outperforming human-designed prompts. Chen et al. (Chen et al., 2023) present
OptiChat, which is a system designed to diagnose infeasible optimization models. It identifies sources
of infeasibility and offers suggestions to make models feasible, helping optimize the process. Finally,
Erikstad (Erikstad, 2024) explores the integration of multi-agent LLMs with Model-Based Systems
Engineering (MBSE) to streamline the development of design optimization models, significantly
improving the efficiency of the optimization process. The reviewed studies demonstrate that LLMs
and AI agents can significantly enhance optimization and design tasks. They can automate the
creation of optimization models, improve convergence during optimization, generate novel solutions,
and diagnose design issues. HxLLM framework proposed by Mishra et al.(Mishra et al., 2024)
leverages LLMs to generate mathematical models and optimization algorithms based on user inputs.
However, this framework has limitations that hinder its overall performance. Firstly, it requires
human intervention at various stages, reducing its autonomy. The code generation process depends
on the quality of the input prompts, which can lead to inconsistencies in the output. Additionally,
the framework lacks access to external datasets, limiting its ability to generate solutions beyond
the provided articles. It also lacks a self-reflection mechanism to evaluate and improve its output,
increasing the likelihood of errors. The framework struggles with selecting appropriate optimization
algorithms, addressing functionality issues, and making accurate variable selections. Furthermore, the
generated results are not evaluated for accuracy or effectiveness, which compromises the reliability
and robustness of the solutions. These limitations highlight key areas for improvement in the
framework’s development.
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A.1 LITERATURE ON CODE EVALUATION

Cano et al. (Çano & Bojar, 2020) introduced an automated human-likeliness score for natural
language generation, highlighting the potential of LLMs to automate complex evaluations. Chen et al.
(Chen et al., 2024) emphasized the need for a multi-dimensional evaluation of LLM performance,
suggesting that combining metrics like code correctness, efficiency, and readability provides a more
comprehensive assessment. Tong et al. (Tong & Zhang, 2024) presented CODEJUDGE, a framework
that uses LLMs to evaluate semantic correctness without test cases, emphasizing the importance of
deeper, more reliable evaluations.

B HEAT EXCHANGER DESIGN AND OPTIMIZATION METHODS: TECHNIQUES,
AND OPTIMIZATION ALGORITHMS

This study categorizes the approaches into six main groups(see Figure 6):

1. Group - 1 : Minimization of Cost Based on Geometrical Parameters Using a Mathematical
Model and Optimization of Heat Exchanger Design Using Nature-Inspired Techniques

2. Group - 2 :Thermal Design and Simulation
3. Group - 3 :Exergy Analysis and Life Cycle Assessment
4. Group - 4 :Optimization of Heat Exchanger Networks
5. Group - 5 :Hybrid Mathematical Models
6. Group - 6 :Minimization of Life Cycle Irreversibility and Maximization of Heat Transfer

Figure 4: Groups vs Number of articles

Among these, the primary focus is Group 1 having the highest number of research articles (see Figure
4), which involves minimizing costs based on geometrical parameters using a mathematical model
and optimizing heat exchanger design with nature-inspired techniques.

The mathematical model for heat exchanger design begins with the calculation of the tube-side
heat transfer coefficient (ht) in a shell and tube heat exchanger. This coefficient is computed using
correlations based on the Reynolds number (Ret) and Prandtl number (Prt), with different formulas
for laminar, turbulent, and very turbulent flow regimes. The flow velocity (vt) is derived from
the fluid properties and tube dimensions, while the number of tubes (Nt) is calculated using an
empirical relation based on the tube pitch and number of passes. For the shell side, the heat transfer
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Figure 5: Design and Optimization steps of a heat exchanger

coefficient (hs) is calculated using Kern’s formulation, considering fluid properties and the hydraulic
diameter. The overall heat transfer coefficient (U ) is derived by combining both the shell and tube-side
heat transfer coefficients, fouling resistances, and the tube diameter ratio. The logarithmic mean
temperature difference (LMTD) is used to evaluate temperature variation across the heat exchanger,
with a correction factor (F) applied based on the flow configuration. The heat exchanger surface
area (A) is determined from the heat transfer rate and the overall heat transfer coefficient (U), while
pressure drop calculations for both the tube and shell sides are performed to ensure an efficient
system design. The optimization process focuses on minimizing the total cost, which includes capital
investment, energy costs, and annual operating costs. Capital investment is directly related to the
heat exchanger surface area, and the total discounted operating cost accounts for pumping power to
overcome friction losses. In addition to the basic model, various heat transfer models and pressure
drop correlations are considered, including Nusselt number-based and flow regime-based approaches
for the tube side, as well as Kern’s method and Bell-Delaware method for the shell side.

Figure 6: Design and Optimization steps of a heat exchanger of Group -1
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B.1 MODELLING EQUATIONS

The equations used for modeling are provided in Table 1.

Table 1: Literature on Heat Exchanger design and optimization - equations used for modelling

Design Cate-
gory

Design
Vari-
able

Types Description Illustrative PDE/Equation

Tube side
Reynolds num-
ber

Ret

Ret =
ρt · vt · di

µt

Serth & Lestina (2014)
Prandtl’s num-
ber of the tube

Prt

Prt =
µt · Cpt

kt
Serth & Lestina (2014)

number of tubes Nt n1 is the number of tube
passes,C and n1 are coeffi-
cients that are taking values
according to flow arrange-
ment and number of passes

Nt = C ·
(
Ds

do

)n1

Serth & Lestina (2014)

Tube Inside Di-
ameter

di
di = 0.8 · do

Serth & Lestina (2014)
Flow velocity
for tube side

vt
vt =

mt(
π
4

)
· d2i · ρt ·

Nt
n

Serth & Lestina (2014)
Nusselt Num-
ber

Nu
Nu = 0.023 ·Re0.8 · Pr0.4

Lahiri & Khalfe (2015),Selbaş et al. (2006)
Darcy Friction
Factor

f
f = (1.82 · log10(Re)− 1.64)−2

Serth & Lestina (2014)
Tube Side Heat
Transfer Coeffi-
cient

ht Based on
Nusselt
number

htube =
Nu · k
di

Lahiri & Khalfe (2015),Selbaş et al. (2006),?
Tube side heat
transfer coeffi-
cient

ht Based on
flow regime

For Ret < 2300 (laminar
flow)

ht =
kt
di

3.657 +

0.0677 ·
(
Ret · Prt ·

(
di
L

)1.33)0.33

1 + 0.1 · Prt ·
(
Ret ·

(
di
L

))0.3


For 2300 < Ret < 10000
(transitional flow)

Numerator =
ft
8

· (Ret − 1000) ·Prt ·

(
1 +

(
di
L

)0.67
)

Denominator = 1 + 12.7 ·
(
ft
8

)0.5

·
(
Pr0.667t − 1

)
ht =

kt
di

· Numerator
Denominator
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Design Cate-
gory

Design
Vari-
able

Types Description Illustrative PDE/Equation

For Ret > 10000 (turbu-
lent flow)

ht = 0.027 · kt
di

·
(
Re0.8t

)
·
(
Pr0.33t

)
·
(

µt

µwt

)0.14

Serth & Lestina (2014)
Reynolds num-
ber for shell
side

Res

Res =
msde
µsAs

Serth & Lestina (2014)
Prandtl number
for shell side

Prs

Prs =
µsCps

Ks

Serth & Lestina (2014)
Flow velocity
for the shell
side

vs
vs =

ms

ρsAs

Serth & Lestina (2014)
Shell Side Heat
Transfer Coeffi-
cient

hshell Kern’s
Method

Kern’s formulation for seg-
mental baffle shell-and-tube
exchanger hshell =

k

De
· 0.36 ·Re0.55 · Pr

1
3 ·
(
µshell

µtube

)0.14

Serth & Lestina (2014)
hshell Bell-

Delaware
method

ideal cross-flow heat-
transfer coefficient (hc)
Baffle window flow CF (Jc)
Baffle leakage CF (JL)
Tube bundle bypass CF
(JB) Unequal baffle spac-
ing CF (JS) Laminar flow
CF (JR) Wall viscosity (J)

hs = hcJCJLJBJSJRJµ

hc = jicpGPr−
2
3

ji = a1

(
1.33
Ltp
Dt

)a

Rea2

a =
a3

1 + 0.14Rea4

Equivalent
Diameter for
Square Pitch Deq Deq, square =

4 · P 2
t − π·d2o

4

π · do
Serth & Lestina (2014)

Equivalent Di-
ameter for Tri-
angular Pitch

Deq

Deq, triangular =
4 ·
(
0.43 · P 2

t − 0.5 · π · d2o
)

0.5 · π · do
Serth & Lestina (2014)

Overall Heat
Transfer Coeffi-
cient

Uoverall Depends on both the tube
side and shell side heat
transfer coefficients and
fouling resistances

Uoverall =
1

1
hs

+Rfs +
do
di
(Rft +

1
ht
)

Serth & Lestina (2014)
Logarithmic
mean tempera-
ture difference
(LMTD)

LMTD

LMTD =
∆T1 −∆T2

ln
(

∆T1
∆T2

)
Serth & Lestina (2014)

Heat exchanger
surface area

A
A =

Q

UFLMTD
Serth & Lestina (2014)

Tube Length Lt Based on total heat ex-
changer surface area A Lt =

A

π · do ·Nt

Serth & Lestina (2014)
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Design Cate-
gory

Design
Vari-
able

Types Description Illustrative PDE/Equation

Pressure drop ∆P Based on
Kern’s
Method

∆Pt = ∆Ptube length +∆Ptube elbow

Serth & Lestina (2014)
∆Ptube Tube side pressure drop

∆Ptube =
ρ · v2

2
·
(
L

di
· f + 4 · n

)
Serth & Lestina (2014)

∆Pshell Shell Side Pressure Drop

∆Pshell =
ρ · v2

2
· f · L ·Ds

B ·De

Patel & Rao (2010),Hanafi et al. (2021),Mariani et al.
(2012),Hadidi et al. (2013),Abed et al. (2016)

∆P Based
on Bell-
Delaware
Method

, pressure drop in the central
baffle spaces (∆Pc ), baffle
windows (∆Pw), entrance
and exit baffle spaces (∆Pe)

∆Pf = ∆Pc +∆Pw +∆Pe

∆P Based
on Flow
stream-
analysis
method

For the calculation of the
pressure drop, the ∆P be-
tween two points is assumed
to be the same, regardless
of the paths joining these
points. The pressure drop
for all the streams is calcu-
lated in terms of the coeffi-
cient ni and the respective
mass flow rate ṁi

∆Pi = niṁ
2
i

The total shell-side pressure drop, neglecting the inlet and
exit nozzles, is calculated as:

∆P = npṁ2(Nb + 1)

where: - n represents the flow coefficients, which are con-
stants. - These coefficients are independent of the flow rate
and are a function of the geometry.

Pumping Power Ppumping

Ppumping =
1

η

(
mtube

ρtube ·∆Ptube
+

mshell

ρshell ·∆Pshell

)
Serth & Lestina (2014)

Capital Invest-
ment Cost

Ci where, a1,a2 and a3 are con-
stants for exchanger made
with stainless steel for both
shell-and-tubes

Ci = a1 + a2 · Sa3

Serth & Lestina (2014)

Total Dis-
counted Operat-
ing Cost

COD

COD =

ny∑
k=1

Co

(1 + i)k

Serth & Lestina (2014)
Annual Operat-
ing Cost

Cannual
Cannual = P · CE ·H

Serth & Lestina (2014)
Total Cost Ctotal Total cost Ctotal is taken

as the objective function,
which includes capital in-
vestment (Ci), energy cost
(Ce), annual operating cost
(Co) and total discounted
operating cost (COD)

Ctotal = Ci + CoD

Serth & Lestina (2014)
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C OPTIMIZATION TECHNIQUES

The types of optimization techniques employed are listed in Table 2.

Table 2: Types of optimization technique

NUMBER OPTIMIZATION TECHNIQUE
1 PARTICLE SWARM OPTIMIZATION TECHNIQUE

PATEL & RAO (2010)
2 WATER CYCLE ALGORITHM TECHNIQUE

HANAFI ET AL. (2021)
3 ARTIFICIAL BEE COLONY (ABC) ALGO-

RITHM ŞAHIN ET AL. (2011)
4 BIOGEOGRAPHY-BASED (BBO) ALGORITHM

HADIDI & NAZARI (2013)
5 CUCKOO-SEARCH-ALGORITHM ASADI ET AL.

(2014)
6 ANT COLONY OPTIMIZATION TECHNIQUE

LAHIRI & KHALFE (2015)
7 JAYA ALGORITHM RAO & SAROJ (2017A)
8 ELECTROMAGNETISM-LIKE ALGORITHM

(EM) ABED ET AL. (2016)
9 ELITIST-JAYA ALGORITHM RAO & SAROJ

(2017B)
10 GRAVITATIONAL SEARCH ALGORITHM MO-

HANTY (2016A)
11 NSGA-II HAJABDOLLAHI ET AL. (2012)
12 MIXED-INTEGER LINEAR PROGRAMMING

GONÇALVES ET AL. (2016)
13 TEACHING-LEARNING-BASED OPTIMIZATION

RAO & PATEL (2013)
14 IMPROVED INTELLIGENT TUNED HARMONY

SEARCH ALGORITHM TURGUT ET AL. (2014)
15 ELITIST-JAYA ALGORITHM RAO & SAROJ

(2017B)
16 TSALLIS DIFFERENTIAL EVOLUTION SE-

GUNDO ET AL. (2016)
17 BACTERIA FORAGING ALGORITHM SAI & RAO

(2019)
18 RAO ALGORITHM VENKATA RAO & PAWAR

(2023)
19 GREY WOLF OPTIMISATION TECHNIQUE MA-

JUMDER ET AL. (2017)
20 GENETIC ALGORITHM RAVAGNANI ET AL.

(2005)
21 HARMONY SEARCH ALGORITHM FESANG-

HARY ET AL. (2009)
22 FIREFLY ALGORITHM MOHANTY (2016B)
23 COHORT INTELLIGENCE ALGORITHM DHAVLE

ET AL. (2018)
24 HEAT TRANSFER SEARCH ALGORITHM RAJA

ET AL. (2017)
25 SINE COSINE ALGORITHM TURGUT (2017)
26 SYMBIOTIC ORGANISMS SEARCH TECHNIQUE

MAKADIA & SANKHAVARA (2020)
27 BIO-INSPIRED ARTIFICIAL INTELLIGENCE

METHODS KRZYWAŃSKI (2019)
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D EVALUATION METRICS

In order to comprehensively assess the quality and performance of LLM and agent generated
code, a multifaceted evaluation framework was devised. This framework encompasses six pivotal
criteria, namely Accuracy/Correctness, Functionality, Completeness, Readability, Robustness, and
Maintainability, which collectively reflect both the technical and practical dimensions of code
implementation. Each of these criteria was evaluated based on predefined, specific metrics, with
the code being scored on a scale of 1 to 5, where 1 denotes the lowest performance and 5 signifies
the highest. This meticulous evaluation process was applied across optimization code generated by
HxLLM as well as HxAgent framework on 115 articles, with multiple evaluators conducting detailed
assessments of the LLM-generated code for each article.

The evaluation metrics for each criterion were carefully defined to ensure a thorough assessment. For
instance, Accuracy/Correctness was evaluated by assessing the code’s adherence to the logical flow
and steps outlined in the reference article, with any deviations categorized as minor, moderate, or
major. Functionality was measured by executing the code with test data and comparing the outputs
with the expected results, while Completeness was assessed by comparing the generated code with
the reference article to identify any missing or partially implemented components. Readability was
evaluated based on the code’s clarity, organization, and use of comments and documentation, whereas
Robustness was tested by examining the code’s ability to handle edge cases, errors, and unexpected
inputs. Lastly, Maintainability was assessed based on factors such as modularity, code reuse, and
the presence of inline comments and documentation.Further details of the evaluation process are
provided in the table below (Table - 3).

E AGENT DESCRIPTION WITH FLOW

Here are the definitions of the agents as shown in figure -7.

1. Summary Creator Agent (AS): Reviews the given research article and generates a summary
of the mathematical models using a large language model with a predefined system prompt.

2. TF-IDF Agent (AT ): Compares the generated summary with the Mathematical Model
Repository and generates a similarity score, which helps determine the next steps based on a
predefined threshold.

3. Planner Agent-1 (AP 1): Creates a plan to modify the code if the similarity score suggests
the model is new and not found in the repository.

4. Designer Agent-1 (AD1): Constructs the mathematical code based on the plan provided by
Planner Agent-1.

5. Planner Agent-2 (AP 2): If the similarity score is still below 75%, this agent repeats the
planning process for a second path.

6. Designer Agent-2 (AD2): Builds the mathematical code based on the plan generated by
Planner Agent-2.

7. Optimization Agent (AO): Independently generates the optimization code without in-
corporating the mathematical model, allowing for separate analysis of the optimization
code.

8. Code Refiner Agent (AC): Reviews both the mathematical and optimization code using
self-reflection principles and dataset, suggesting improvements if any gaps or missing details
are found.

9. Code Merger Agent (AM ): Merges the optimization code and mathematical model code
into the final existing code.

10. Code Correction Agent (ACC ): Iterates through the code to detect and resolve errors using
the RAG (Relevant Answer Generator) techniques from the code repository.

F REPOSITORY

HxAgent framework relies on three repositories:
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Table 3: Evaluation Metrics

Metric Name Metric Description Evaluation Criteria
Accuracy evaluates whether the LLM-generated code cor-

rectly follows the steps, logic, and methodology
described in the reference article

1 - Completely deviates from the article’s steps
and methodology

2 - Several deviations from the methodology;
significant errors
3 - Some deviations but mostly follows the cor-
rect logic and steps
4 - Minor deviations; almost perfectly follows
the described methodology
5 - Fully adheres to the steps, logic, and method-
ology outlined in the article

Functionality measures whether the generated code produces
the correct results when executed

1 - Code fails to execute or causes runtime errors

2 - Code executes but produces incorrect or in-
consistent results
3 - Code executes with some correct results, but
issues or inconsistencies remain
4 - Code executes correctly with minor inaccura-
cies or edge cases
5 - Code executes perfectly, and all results match
the expected outputs

Completeness assessed whether the generated code covered all
aspects of the implementation described in the
reference article

1 - Major components or steps are missing

2 - Several parts of the implementation are ab-
sent or incomplete
3 - Some minor components are missing or only
partially implemented
4 - Almost complete; only minor details are miss-
ing
5 - Fully complete; covers all aspects as de-
scribed in the article

Readability Readability refers to how well-structured and
easy to understand the code is

1 - Very unclear, difficult to follow

2 - Somewhat unclear, poor structure
3 - Understandable, but with minor readability
issues
4 - Mostly clear, well-organized
5 - Very clear, easy to understand, well-
structured, with excellent comments and doc-
umentation

Robustness Robustness evaluates how well the code handles
edge cases, errors, and unexpected inputs

1 - No error handling, fails on most edge cases

2 - Limited error handling, fails on many edge
cases
3 - Some error handling, covers basic edge cases
4 - Good error handling, manages most edge
cases well
5 - Excellent error handling, robust against all
edge cases and unexpected inputs

Maintainability Maintainability assesses how easy it is to update
and modify the generated code in the future

1 - Very hard to maintain or update, no modular-
ity
2 - Somewhat hard to maintain, minimal modu-
larity
3 - Reasonably maintainable with some effort,
some modularity
4 - Mostly easy to maintain and update, good
modularity
5 - Very easy to maintain, well-structured with
excellent modularity
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Figure 7: Agentic Framework

1. Mathematical model and code repository (M )
2. Code error repository (CE)
3. Self reflection repository (SR)

Here are the details of each repositories.

F.1 MATHEMATICAL MODEL REPOSITORY :

The Mathematical Model Repository is a CSV-based database containing over 115 distinct entries,
each organized into three columns: ID, Summary (S), and Code (C). The Summary column includes
brief overviews of research articles, which were derived using structured prompts. For each mathe-
matical model, an expert-developed Python script was written to evaluate the associated equations.
These scripts were processed through an error-correction framework to ensure their accuracy and
reliability before being added to the Code section of the repository.

F.2 CODE ERROR REPOSITORY:

The Code Error Repository is a specialized collection documenting errors encountered by the LLM
during the generation of optimization code. These errors are typically complex in nature and represent
challenges in the translation of theoretical models into executable code. Each error entry in the
repository includes a description of the error (RAG-E) and the corresponding solution (RAG-S),
providing a valuable resource for debugging and improving the LLM’s code-generation capabilities.

F.3 SELF-REFLECTION INFORMATION DATA REPOSITORY:

The Self-Reflection Information Dataset consists of a collection of Word documents that include
a variety of mathematical models along with their associated equations. Additionally, this dataset
contains a comprehensive list of optimization algorithms and their respective processes, which are
essential for refining and optimizing heat exchanger designs. This dataset serves as the foundation for
the HxAgent framework, facilitating the iterative improvement of generated solutions by combining
LLM output with human expertise.

G ILLUSTRATIVE EXAMPLES COMPARING THE PERFORMANCE OF HXAGENT
AND HXLLM FRAMEWORK

In this section, we compare the code generation capabilities of the HxLLM framework and the
HxAgent framework. This comparison reveals significant advantages of the HxAgent framework
over the HxLLM framework. The HxAgent framework consistently ensures the correct selection of
optimization algorithms (see G.2), enhances functionality and robustness (see G.3) , ensures accurate
variable selection (see G.1), and produces more complete and usable code. While the HxLLM
framework is functional, it often deviates from the original article’s specifications, resulting in errors
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and incomplete solutions. In contrast, the HxAgent framework leverages a self-reflection mechanism
and specialized agents to refine and improve the generated code, leading to more accurate, robust,
and complete results.

G.1 CORRECT SELECTION OF VARIABLES:

The HxAgent framework accurately defines key variables, such as tube outside diameter and shell
inside diameter, in alignment with the original article ’Adaptive Range Genetic Algorithm: A Hybrid
Optimization Approach’ by Iyer et al. (2019). In contrast, the HxLLM framework fails to do so when
generating optimization code. HxLLM framework does not correctly define important variables like
tube outside diameter, shell inside diameter, and baffle spacing, resulting in discrepancies with the
original specifications. On the other hand, HxAgent framework ensures proper identification and
definition of these variables, maintaining consistency with the original article (see 4).

Table 4: Correct Selection of Variables

Variable selection by HxLLM Framework Variable selection by HxAgent framework

# Define the optimization algorithm
def adaptive_range_genetic_algorithm(objective_function,
bounds, population_size=100, generations=100, mutation_
rate=0.1, reduction_factor=0.96):

population = [[random.uniform(bounds[i][0], bounds
[i][1]) for i in range(len(bounds))] for _ in range
(population_size)]
for _ in range(generations):

fitness = [objective_function(*individual) for
individual in population]
parents = [population[i] for i in np.argsort
(fitness) [:int(population_size/2)]]
offspring = []
for _in range(population_size - len(parents)):

parent1, parent2 = random.sample(parents,2)
child = [(parent1[i] + parent2[i]) / 2 for
i in range (len(parent1))]
if random.random() < mutation_rate:

child = [child[i] + random.uniform
(-bounds[i][1] * reduction_factor,
bounds[i][1] * reduction_factor)
for i in range(len(child))]

offspring.append(child)
population = parents + offspring

return population[0]

# Define the bounds for the design variables
bounds =[(1.0, 2.0),(0.05, 0.1),(4,6),(0.5, 1.0),(4,6)]

# Run the optimization algorithm
optimized_design = adaptive_range_genetic_algorithm
(linking_function, bounds)

# Print the optimized design
print("Optimized design:", optimized_design)

#Evaluate the objective function at optimized design
optimized_cost = linking_function(*optimized_design)
print("Optimized cost:", optimized_cost)

# Define the optimization algorithm
def optimization_algorithm(Ds,do,B,mt,rho_t,rho_s, ...):

# Initialize population
population = [{’Ds’: random.uniform(0.1, 1.5), ’do’:
random. uniform(0.015, 0.051), ’B’: random.uniform
(0.05, 0.5), ’fitness’: float(’inf’)} for _
in range(100)]
# Optimization parameters
Cr, Mr, max_iterations = 0.5, 0.1, 100
for _ in range(max_iterations):

# Evaluate fitness (simplified)
for individual in population:

hs, ht = Shell_Side_heat_transfer
_coefficient(...),
Tube_side_heat_transfer
_coefficient(...)
U = 1 / (hs + ...)
A = (mt * Cp_c * ...) / (U * ...)
Ctot = total_cost(..., ...) # Simplified
cost function
individual[’fitness’] = Ctot

# Select fittest individual
fittest_individual = min(population, key=lambda
individual: individual[’fitness’])
# Crossover and mutation
for individual in population:

if random.random() < Cr:
parent1, parent2 = random.choice
(population), random.choice(population)
individual.update({’Ds’:(parent1[’Ds’] +
parent2[’Ds’])/ 2,’do’:(parent1[’do’] +
parent2[’do’]) / 2, ’B’:
(parent1[’B’] + parent2[’B’]) / 2})

if random.random() < Mr:
individual[’Ds’]+=random.uniform
(-0.1,0.1)
individual[’do’]+=random.uniform
(-0.01,0.01)
individual[’B’]+=random.uniform
(-0.01,0.01)

population = population[:100]
return fittest_individual

# Run the algorithm
Ds, do, B = 1.5, 0.051, 0.5
fittest_individual =optimization_algorithm(Ds,do,B,...)

# Display fittest result
print(’Fittest individual:’, fittest_individual)

G.2 CORRECT SELECTION OF OPTIMIZATION ALGORITHM:

The HxAgent framework correctly identifies and applies the MOPSO algorithm, whereas the HxLLM
framework incorrectly uses SciPy for optimization. The HxLLM framework initially selects the
wrong optimization algorithm, opting for SciPy instead of the intended MOPSO (Multi-Objective
Particle Swarm Optimization), deviating from the method outlined by Ghanei et al. (2014) in the

20



Published as a conference paper at ICLR 2025

original article. In contrast, the HxAgent framework accurately identifies and applies the MOPSO
algorithm after interacting with specialized agents and incorporating self-reflection, ensuring precise
code generation (see 5).

Table 5: Correct Selection of Optimization Algorithm

Optimization code by HxLLM Framework Optimization code by HxAgent framework

import math
import numpy as np
from scipy.optimize import minimize

# ...

# Optimization function
def optimize_heat_exchanger_performance():

# Define the bounds for the design variables
bounds = [

(0.0112, 0.0153), # Tube diameter
(1.25, 2), # Tube pitch
(3, 8), # Tube length
(100, 600), # Number of tubes
(0.19, 0.32), # Baffle cut
(0.2, 1.4), # Baffle spacing
(3, 12), # Number of baffles

]

# Define the objective function
def objective(x):

di, pt, L, N_t, BC, bs, N = x
performance = calculate_heat_exchanger_
performance(

di,pt,
.........

0.9, # Efficiency of the heat exchanger
)
return -performance["effectiveness"] +
performance["C_tot"]

# Perform the optimization
result = minimize(objective, [0.013, 1.5, 5, 300,
0.25, 0.6, 6], method="SLSQP", bounds=bounds)

return result.x

# Perform the optimization
optimized_design = optimize_heat_exchanger_performance()
print(optimized_design)

def MOPSO(objective_function, num_particles,
num_iterations, num_dimensions, bounds):

# Initialize particles
particles = []
for _ in range(num_particles):

particle = []
.......

# Initialize velocities
velocities = []
for _ in range(num_particles):

velocity = []
for _ in range(num_dimensions):

velocity.append(random.uniform(-1, 1))
..........
# Initialize personal best positions
personal_best_positions = particles[:]

# Initialize global best position
global_best_position = particles[0]

# Run algorithm
for _ in range(num_iterations):

for i in range(num_particles):
# Calculate fitness
fitness = objective_function(particles[i])

# Update personal best position

# Update global best position
if fitness < objective_function(global
_best_position):

global_best_position = particles[i]

# Update velocity
velocities[i] = [velocities[i][j] + 0.5 *
random.random() * (personal_best_positions
[i][j]
..........

# Update position
particles[i] = [particles[i][j] + ......

# Define objective function
def objective_function(x):

k_t, di, Re_t, Pr_t, h_id, J_c, J_l, J_b,
J_s, J_r,... =return effectiveness, C_tot

# Define bounds for each dimension
bounds = [(10, 100), (0.01, 0.1), (1000, 10000),
.......... (1000, 10000)]

# Run MOPSO algorithm
pareto_front = MOPSO(objective_function, 100, 100, 23,
bounds)

# Print Pareto front
for solution in pareto_front:

print(solution)

G.3 IMPROVING FUNCTIONALITY AND ROBUSTNESS:

The HxAgent framework generates functional, executable code, while the HxLLM framework
sometimes produces code that remains non-runnable even after correction attempts. In the case
of the article Roy & Majumder (2019) on economic optimization and energy analysis in shell
and tube heat exchangers, the HxLLM framework generates code that is not runnable, even after
undergoing a correction loop. The HxAgent framework, however, successfully generates executable
code, demonstrating its superior ability to create functional and robust solutions (see 6). Explanation
of changes:

1. Modified the krill herd motion function to perform element-wise multiplication
between N max and n ∗ N old.
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2. Updated the krill herd optimization algorithm function to incorporate the
new krill herd motion function and perform element-wise operations.

H EXAMPLE ILLUSTRATING THE PROCESS OF HXAGENT

We have applied the HxAgent framework to 115 articles, and in this subsection, we highlight one
example, by Rao et al. (Patel & Rao, 2010) from Group 1, which focuses on minimization of cost
based on geometrical parameters using a mathematical model and optimization of Heat Exchanger
design.

H.1 MATHEMATICAL MODEL EXTRACTION

The first step involves the summary creator agent(AS). Scientific articles (P) containing the mathe-
matical model for heat exchanger design is provided as context to the summary creator agent, which
generates a summary of all the mathematical model equations present in the article. The output of
this step is shown below.

Here is the list of unique equations used to construct the model:
1. **Particle Velocity Update**: Calculates the new velocity of a particle based on its previous velocity, the
best location it has achieved, and the global best location, using acceleration constants and random terms.
2. **Particle Position Update**: Updates the position of a particle in the solution hyper space based on its
new velocity.
..................
25. **Exchanger Length (L)**: Calculates the exchanger length based on the heat exchanger surface area, tube
diameter, and number of tubes.

H.2 BASE CODE RETRIEVAL FOR MATHEMATICAL MODEL

The extracted model was compared to similar models in the mathematical model repository using the
TF-IDF agent(AT ) . Here in this example the framework achieved a similarity score of 0.61 (below
the threshold of 0.75), indicating that the generated code was based on a non-relevant reference
model. Based on the closest match index, the most similar mathematical code was retrieved and
sent to the next step as a base code for the planner agent(AP ) . The framework then determines the
appropriate path based on the score and directs it to Path-2, involving both Planner Agent-2(AP 2)
and Designer Agent-2(AD2) .

Code example:
0.6089355563042992
25

"Code for reference":
import math
def total_annual_cost_PFHE(Cin, Cop):

"""Equation (13)"""
return a * Cin + Cop

...............
# Function for all the rest equations of mathematical model

def optimize_heat_exchanger(NTU, C, CA, Atot, n, kel, s, DPc, Vc, gc, DPh, Vh, gh, r, q, At, ny, i, Cop, gp,
DPt, Vt, DPs, Vs, Z1_max, Z2_min, w1, R1, hh, hc):

# Calculate effectiveness of PFHE
eff_PFHE = effectiveness_PFHE(NTU, C)
# Calculate capital and operating costs of PFHE
Cin_PFHE = capital_cost_PFHE(CA, Atot, n)
a = annual_cost_coefficient(r, q)
Cop_PFHE = operating_cost_PFHE(kel, s, DPc, Vc, gc, DPh, Vh, gh)
# Calculate total annual cost of PFHE
total_cost_PFHE = total_annual_cost_PFHE(Cin_PFHE, Cop_PFHE)

................
# Example usage
NTU = 2.5
C = 0.8
................
eff_PFHE, total_cost_PFHE, eff_STHE, total_cost_STHE, Z = optimize_heat_exchanger(NTU, C, CA, Atot, n, kel,
s, DPc, Vc, gc, DPh, Vh, gh, r, q, At, ny, i, Cop, gp, DPt, Vt, DPs, Vs, Z1_max, Z2_min, w1, R1, hh, hc)

H.3 CONSTRUCTING THE MATHEMATICAL MODEL

The planner agent - 2(AP 2), with the help of the base code, first identifies the unique equations (see
code example A) used in the mathematical model. It then creates a plan for implementing these
equations to build an objective function, which will be used in the optimization process. The plan is
then passed to Designer Agent-2(AD2) for further action.Following the planning phase, the Designer
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Agent takes on the task of constructing the overall objective function, as described in the article. It
includes all the distinct equations outlined in the article by using the base code as a reference for
constructing an objective function. The agent’s output is presented in equation (see code example B).

Code Example - A:
---DECISION: THERE IS NO SIMILAR article FOUND IN THE
DATABASE---
---STEP-1:IDENTIFYING THE UNIQUE EQUATIONS---
I’ll start by creating the functions for the mathematical models described in the article. Here’s the initial
code:
‘‘‘python
import math

def Prandtl_number(mew, Cp, Kt):
Pr = (mew * Cp) / Kt
return Pr

def calculate_fs(b0, Re):
fs = 2 * b0 * Re**(-0.15)
return fs

def Number_of_tubes(C, n1, Ds, d0):
Nt = C * ((Ds / d0)**n1)
return Nt

...............
# Function for all the rest equations of mathematical model

def calculate_DPs(ms, mew_s, rho_s, pitch, d0, L, B, Ds):
St = 1.25 * d0
As = Cross_section_area(Ds, B, d0)
de = Shell_hydaulic_diameter(pitch, d0)
Re_s = Reynolds_number_shell(ms, de, As, mew_s)
b0 = 0.72
fs = calculate_fs(b0, Re_s)
vs = Flow_velocity_shell(ms, rho_s, As)
DPs = fs * (rho_s * (vs**2) / 2) * (L / B) * (Ds / de)
return DPs

‘‘‘
Please let me know if this is correct and if I should proceed with the rest of the code. Also, I noticed that
the article mentions the Particle Swarm Optimization (PSO) algorithm, but it doesn’t provide the specific
implementation details. If you’d like me to implement the PSO algorithm, please provide more information on
how you’d like it to be implemented. Please provide the next prompt to guide me through the process.

Code Example - B:
import math
import numpy as np

# Constants
a1 = 8000
a2 = 259.2
.........
i = 0.1 # Annual discount rate (%)

def calculate_ht(mt, rho_t, n, Nt, di, L, mew_t, Cp_t, kt):

vt = mt / ((math.pi / 4) * (di**2) * rho_t * n * Nt)
Ret = (rho_t * vt * di) / mew_t
Prt = (mew_t * Cp_t) / kt

if Ret < 2300:
ht = (kt / di) * (3.657 + (0.0677 * (Ret * Prt * (di / L)

**1.33)**0.33) / (1 + (0.1 * Prt * (Ret * (di / L)))**0.3))
.................
def calculate_Ctot(Ci, Cod):

Ctot = Ci + Cod
return Ctot

def calculate_total_cost(
C, n1, Ds, mt, rho_t, rho_s, n, mew_t, L, Kt, pitch, d0, B, ms, mew_s, Ks, Rfs, Rft, Th_i, Th_o, Tc_i,
Tc_o, Cp_h, Cp_c, etta, ny, H, Ce, i):
p = 4
di = 0.8 * d0
hs = Shell_Side_heat_transfer_coefficient(Kt, pitch, d0, Ds, B,
ms, mew_s, Cp_h, Ks)
ht = Tube_side_heat_transfer_coefficient(C, n1, Ds, mt, rho_t,
n, mew_t, Cp_c, d0, L, Kt)
U = 1 / ((1 / hs) + Rfs + (d0 / di) * (Rft + (1 / ht)))
lmtd = LMTD(Th_i, Th_o, Tc_i, Tc_o)
....
C_tot = total_cost(C_i, C_od)
return C_tot

# Example usage
C = 0.158
...
Ce = 0.12
i = 10

Cost = calculate_total_cost(
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C, n1, Ds, mt, rho_t, rho_s, n, mew_t, L, Kt, pitch, d0, B, ms, mew_s, Ks, Rfs, Rft, Th_i, Th_o, Tc_i,
Tc_o, Cp_h, Cp_c, etta, ny, H, Ce, i)

print(f"Total cost: {Cost}")

H.4 CONSTRUCTING THE OPTIMIZATION ALGORITHM

To further refine the code, the Optimization Agent (AO) focuses exclusively on optimization algorithm
code generation. As shown in output (see code example - C), the Optimizer Agent first selects the
type of optimization algorithm, followed by the objective function, constraints, and variables. It then
creates a dummy objective function based on these elements and attempts the optimization process.

Code Example - C:

**Optimization Algorithm: Particle Swarm Optimization (PSO)**

The research article describes a Particle Swarm Optimization (PSO) algorithm for optimizing the design of a
heat exchanger. The objective function is to minimize the total cost, which includes capital investment, energy
cost, and annual operating cost.

**Optimization Problem**
* Objective function: Minimize the total cost ‘Ctot‘

* Constraints:
+ Shell internal diameter ‘Ds‘ between 0.1 m and 1.5 m
+ Outer tube diameter ‘do‘ between 0.015 m and 0.051 m
+ Baffle spacing ‘B‘ between 0.05 m and 0.5 m

* Variables:
+ ‘Ds‘: Shell internal diameter
+ ‘do‘: Outer tube diameter
+ ‘B‘: Baffle spacing

**PSO Algorithm**

The PSO algorithm can be implemented using the following steps:

1. Initialize the population of particles with random positions and velocities.
2. Evaluate the objective function for each particle.
3. Update the velocity and position of each particle using the following equations:

* ‘V_i+1 = w * V_i + c1 * r1 * (pBest_i - X_i) + c2 * r2 *
(gBest - X_i)‘

* ‘X_i+1 = X_i + V_i+1‘
4. Update the ‘pBest‘ and ‘gBest‘ values.
5. Repeat steps 2-4 until the maximum number of iterations is reached.

**Code Implementation**

Here is a Python implementation of the PSO algorithm:
‘‘‘python
import numpy as np

def objective_function(X):
# Calculate the total cost
Ds, do, B = X
# Calculate the heat exchanger surface area
A = calculate_surface_area(Ds, do, B)
# Calculate the capital investment
Ci = calculate_capital_investment(A)
# Calculate the energy cost
Co = calculate_energy_cost(Ds, do, B)
# Calculate the total cost
Ctot = Ci + Co
return Ctot

.............
def pso(objective_function, bounds, num_particles,
num_iterations):

# Initialize the particles
particles = np.random.uniform(bounds[0], bounds[1],
size=(num_particles, len(bounds[0])))
velocities = np.random.uniform(-1, 1, size=(num_particles, len(bounds[0])))
pBest = particles
gBest = np.mean(particles, axis=0)
# Iterate through the generations
for i in range(num_iterations):

# Evaluate the objective function for each particle
fitness = np.array([objective_function(p) for p in particles])
# Update the pBest and gBest values
for j in range(num_particles):

if fitness[j] < objective_function(pBest[j]):
pBest[j] = particles[j]

gBest = np.mean(pBest, axis=0)
# Update the velocities and positions of the particles
for j in range(num_particles):

velocities[j] = 0.729 * velocities[j] + 1.494 * np.random.uniform(0, 1) * (pBest[j] -
particles[j]) + 1.494 * np.random.uniform(0, 1) * (gBest -
particles[j])
particles[j] = particles[j] + velocities[j]

return gBest

# Define the bounds for the variables
bounds = [(0.1, 1.5), (0.015, 0.051), (0.05, 0.5)]
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# Define the number of particles and iterations
num_particles = 100
num_iterations = 100

# Run the PSO algorithm
gBest = pso(objective_function, bounds, num_particles, num_iterations)

print("Optimal solution:", gBest)
print("Optimal cost:", objective_function(gBest))
‘‘‘
Note that this is a simplified implementation of the PSO algorithm and may not include all the features and
nuances of the original algorithm. Additionally, the objective function and constraints are based on the
equations provided in the research article and may not be accurate or up-to-date.

H.5 APPLYING SELF-REFLECTION

In this stage, we utilize a self-reflection agent (AC ) alongside a dedicated dataset to evaluate whether
the generated code meets the required criteria. As described in (see code example - D) The interaction
focuses on potential issues within the mathematical model, objective function, and optimization
algorithm. This evaluation process allows the system to identify areas that may require improvement.
A human-in-the-loop (HITL) then reviews and approves the outcome of this reflection, ensuring
the validity of the suggestion. If the suggestion appears to be incorrect, the system will perform
self-reflection again until the output meets the requirements. However, this step is optional for the
human reviewer as well.

Code Example - D:

**Review of Mathematical Model Code**
The mathematical model code provided appears to be a comprehensive implementation of the heat exchanger design
equations and formulas presented in the research article. The code includes functions for calculating the heat
transfer coefficients, overall heat transfer coefficient, heat exchanger area, investment cost, operating cost,
and total cost.

However, upon closer inspection, there are a few areas where the code could be improved:

1. **Variable naming**: Some variable names, such as ‘C‘, ‘n1‘, ‘Ds‘, ‘mt‘, ‘rho_t‘, ‘rho_s‘, ‘n‘, ‘mew_t‘,
‘L‘, ‘Kt‘, ‘pitch‘, ‘d0‘, ‘B‘, ‘ms‘, ‘mew_s‘, ‘Ks‘, ‘Rfs‘, ‘Rft‘, ‘Th_i‘, ‘Th_o‘, ‘Tc_i‘,’Tc_o‘, ‘Cp_h‘, ‘Cp_c‘
, ‘etta‘,‘ny‘, ‘H‘, ‘Ce‘, and ‘i‘, are not very descriptive. It would be better to use more descriptive names
to improve code readability.
2. **Function organization**: The code has many functions, but they are not organized in a logical manner.
3.**Error handling**: The code does not include any error handling mechanisms. It would be a good idea to add
try except blocks to handle potential errors, such as division by zero or invalid input values.
4. Code comments: The code could benefit from additional comments to explain the purpose of each function and
how it is used in the overall calculation.

**Review of Optimization Algorithm Code** There are a few areas where the code could be improved:

1. **Objective function**: The objective function is not clearly defined in the code. It would be better to
define the objective function explicitly,so that it is clear what the optimization algorithm is trying to
minimize.
2. **Optimization algorithm**: The code uses a simple PSO implementation, but the logic for selecting the best
solution is not clearly defined.
3. **Code comments**: The code could benefit from additional comments to explain the purpose of each section
and how it is used in the overall optimization process.

**Check for Missing or Incomplete Information**Upon reviewing the code, it appears that there are a few areas
where information is missing or incomplete:

1. **Heat exchanger design specifications**: The code does not include any information about the heat exchanger
design specifications, such as the type of heat exchanger, the fluids used, or the operating conditions.
2. **Optimization algorithm settings**: The code does not include any information about the optimization
algorithm settings, such as population size, the number of generations, or the crossover and mutation rates.
3.Objective function definition: The code does not include a clear definition of the objective function, which
is used to evaluate the fitness of each solution.

**Evaluate Logic and Consistency** The code appears to be logically consistent, but there are a few areas where
the logic could be improved:

1. **Heat transfer coefficient calculations**: The code uses different equations to calculate the heat transfer
coefficients, depending on the flow regime. However, the logic for selecting the correct equation is not clearly
defined.
2. **Optimization algorithm**: The code uses a simple PSO implementation,but the logic for selecting the best
solution is not clearly defined.
3 **Error handling**: The code does not include any error handling mechanisms, which could lead to errors or
inconsistencies in the results.

**Provide Feedback and Recommendations**
Based on the review of the code, the following feedback and recommendations are provided:
1. **Improve variable naming**: ....
2. **Organize functions**: ....
3. **Add error handling**: ....
4. **Define objective function**: ....
5. **Include heat exchanger design specifications**: ....
6. **Define optimization algorithm settings**: ....

By addressing these areas, the code can be improved to provide a more accurate and efficient solution to the heat
exchanger design problem.
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H.6 FINAL CODE CORRECTION AND GENERATION

Next, the Code Merger Agent (AM ) combines the mathematical model code with the optimization
algorithm code, incorporating any feedback or adjustments suggested during the self-reflection
process. Then the Code Correction Agent(ACC) conducts a thorough validation check to ensure the
generated code is accurate and error-free before it is finalized. Simple errors are corrected using LLM
prompts, while known and complex issues are addressed through a RAG-based approach, resulting in
a clean, error-free code. At this stage, a human reviewer is involved to assess the quality of the code.
If the quality does not meet expectations, the self-reflection agent again provides suggestions, and the
code merger agent rewrites the code. The output of code merger agent is presented below (see code
example - E).

Code Example - E:
import math
import random as rd

# Constants
w = 0.9 # Inertia weight
c1 = 2 # Cognitive parameter
c2 = 2 # Social parameter
Vmax = 1 # Maximum velocity
num_particles = 50 # Number of particles
num_generations = 100 # Number of generations

# Define the heat exchanger model functions
def Prandtl_number(mew, Cp, Kt):

Pr = (mew * Cp) / Kt
return Pr

#Rest of the model ....

# Define the objective function
def objective_function(x):

Ds, do, B = x
hs = Shell_Side_heat_transfer_coefficient(0.13, 4, do, Ds, B, 5.52,0.0004, 2.47, 0.13)
ht = Tube_side_heat_transfer_coefficient(0.158, 2.263, Ds, 18.80, 995, 4, 0.00358, 2.05, do, 4.88, 0.13)
U = 1 / ((1 / hs) + 0.00061 + (do / (do * 0.8)) * (0.00061 +
(1 / ht)))
....
return Ctot

# Define the PSO algorithm
def pso(bounds, num_particles, num_generations):

particles = []
for _ in range(num_particles):

particle = {
’position’: [rd.uniform(bounds[0], bounds[1]) for _ in range(3)],
’velocity’: [rd.uniform(-Vmax, Vmax) for _ in range(3)],
’best_position’: [rd.uniform(bounds[0], bounds[1]) for _ in range(3)],
’best_cost’: float(’inf’)

}
particles.append(particle)

global_best_position = [rd.uniform(bounds[0], bounds[1]) for _ in range(3)]
global_best_cost = float(’inf’)

....
return global_best_position, global_best_cost

# Run the PSO algorithm
bounds = [0.1, 1.5]
best_position, best_cost = pso(bounds, num_particles,
num_generations)
print(’Best position:’, best_position)
print(’Best cost:’, best_cost)

Code Example - F
...PRESENTING GENERATED CODE TO HUMAN VALIDATOR...
Is the code valid? (Yes/No):Only answer in Yes/No
Suggestion given by human validator...
Yes
---ASSESS GENERATED CODE---
---DECISION: CODES ARE RELEVANT TO QUESTION, CONTINUE---

Code has no error
Best position: [1.5, 0.1, 1.5]
Best cost: 9326.672051995894

I DETAILS OF EVALUATION PROCESS

In this section, we discuss how we evaluated the code for 115 research articles generated by HxLLM
and HxAgent framework using and the six predefined evaluation metrics.
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I.1 ACCURACY/CORRECTNESS

We demonstrated our evaluation (see details in Table - 7) approach by assessing the code generated for
Papers ”A” (Selbaş et al., 2006), ”B” (Abbasian Arani & Moradi, 2019), and ”C” (University & Shaik,
2007). The paper-A introduces a new design approach for shell-and-tube heat exchangers using
genetic algorithms from an economic perspective, and the generated code accurately implements the
genetic algorithm as described. It earned a score of 4, exhibits only minor deviations and closely
follows the methods outlined in the paper. Paper C, which scored 3 out of 5, showed some deviations
from the original content. This paper explores differential evolution strategies for the optimal design of
shell-and-tube heat exchangers, involving several complex steps. While the generated code generally
follows the methods, there are areas, particularly in the classification steps, where improvements
could be made. Finally, Paper B discusses shell-and-tube heat exchanger optimization using a new
baffle and tube configuration, leveraging CFD tools for optimization. Since CFD is outside the scope
of our framework, the framework used PSO techniques instead, which were not mentioned in the
paper. As a result, the code received a score of 2 out of 5, reflecting several deviations from the
described methodology.

I.2 FUNCTIONALITY

Test cases and scenarios designed in the original paper were used to validate the functionality of
the code. Additional edge cases were also considered to evaluate the behavior of the code under
less common conditions. The goal was to identify not only correctness in output but also reliability
and consistency during execution. As shown in the table (8) below, we have taken three papers as
examples: Paper ”A”, Paper ”B”, and Paper ”C”. For Paper A, after the code is generated, it fails to
execute and produces a run time error with the following message:

return (1.82 * math.log10(Re) - 1.64)**-2
TypeError: must be real number, not complex

As a result, it received a score of 1 out of 5. For Paper B, the code executes correctly, yielding the
following output:

Best position: [1.5, 0.015, 0.5]
Best cost: 4878150935878.0

Since the code executes as expected, it received a score of 4 out of 5. Lastly, for Paper C, the code
produces the output:

Best country: None

This indicates that while the code runs, some correct results are produced, but there are still issues or
inconsistencies. Therefore, it received a score of 3 out of 5.

I.3 COMPLETENESS

The Completeness criterion assessed whether the generated code covered all aspects of the imple-
mentation described in the reference paper. Missing or incomplete implementations can significantly
reduce the overall effectiveness of the code, limiting its real-world applicability. In cases where
portions of the code were incomplete, the evaluators identified whether those omissions were crucial
to the code’s functionality or whether they had a minimal impact on the overall outcome. As shown
in the table (9) below, we have taken three papers as examples: Paper ”A” (Asadi et al., 2014), Paper
”B”(Selbaş et al., 2006), and Paper ”C” (Lahiri & Khalfe, 2015). Paper C discusses the use of Hybrid
Particle Swarm Optimization (PSO) and Ant Colony Optimization (ACO) techniques for the optimal
design of shell-and-tube heat exchangers. However, the final code primarily focuses on the PSO
algorithm, with only minimal implementation of ACO techniques. As a result, it received a score of
3 out of 5, as it falls under the category of ”Some minor components are missing or only partially
implemented.” Paper B presents a new design approach for shell-and-tube heat exchangers using ge-
netic algorithms from an economic perspective. The code perfectly implements the genetic algorithm
and includes almost all the equations mentioned in the paper’s mathematical model. Therefore, it
falls under the category of ”Fully complete; covers all aspects as described in the paper,” and received
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a score of 5 out of 5. Finally, Paper A discusses the economic optimization design of shell-and-tube
heat exchangers using a cuckoo-search algorithm. The code provided in the table implements the
cuckoo-search algorithm almost perfectly as described in the paper. Since only some minor details
are missing from math model as well as from optimization model, it received a score of 4 out of 5,
falling under the category of ”Almost complete; only minor details are missing.”

I.4 READABILITY AND MAINTAINABILITY

Readability refers to how well-structured and easy to understand the code is. Well-written code
that is easy to follow is essential for future modifications, collaboration, and debugging. This
criterion also emphasizes how the code is formatted and whether proper variable names, comments,
and documentation are used. Specific elements like the use of descriptive variable names, logical
indentation, and comments explaining complex code sections were key factors in determining
readability. Code that was easy to navigate and modify in the future was rated higher. Maintainability
assesses how easy it is to update and modify the generated code in the future. Maintainable code is
modular, well-commented, and follows good coding practices, making it easier for others to enhance
or debug. Code that was modular, with functions and methods that could be easily updated or reused,
scored higher in terms of maintainability. Additionally, clear documentation and inline comments that
explained the purpose and usage of different sections of the code were considered positive aspects.
For this comparison, we selected Paper ”A” (Asadi et al., 2014) and Paper ”B” (Jamil et al., 2020).
Paper B is well-organized, with clearly defined variables and functions. The code follows a logical
structure: it begins with the mathematical model, followed by the objective function, and concludes
with the optimization algorithm. This organization contributes to a rating of 4 out of 5, categorized as
”Mostly clear, well-organized.” In contrast, Paper A lacks clear descriptions of the variables and could
benefit from improved structure, particularly by separating the optimization and objective functions.
While the code remains understandable and accurate, the lack of modularity reduces its clarity. As a
result, it receives a score of 3 out of 5, categorized as ”Understandable, but with minor organizational
and readability issues(see details in Table - 10).”

I.5 ROBUSTNESS

Robustness evaluates how well the code handles edge cases, errors, and unexpected inputs. Code
that is robust can maintain functionality and provide meaningful error messages when facing edge
conditions, which is crucial for its real-world deployment. Code that failed to handle specific edge
cases or crashed upon receiving unexpected inputs was rated lower. On the other hand, code that
effectively managed exceptions and returned helpful error messages scored higher. For this example
(details in Table - 11), we have selected Papers ”A” (Lahiri & Khalfe, 2015), ”B” (Şahin et al., 2011),
and ”C” (University & Shaik, 2007). For Paper C, it works for almost all cases. The output is as
follows:

Best position: [1.5, 0.051, 0.5]
Best cost: 18239.5649722467

Therefore, it has good error handling, manages most edge cases well, and received a rating of 4 out
of 5. For Paper B, the output only appears after defining the following function:

def LMTD(Th_i, Th_o, Tc_i, Tc_o):
deltaT1 = Th_i - Tc_o
deltaT2 = Th_o - Tc_i
lmtd = (deltaT1 / deltaT2)
return lmtd

This simplifies lmtd to deltaT1 / deltaT2. However, in the case of the formula lmtd =
(deltaT1 - deltaT2) / math.log(deltaT1 / deltaT2), a mathematical domain error occurs. As a result,
this paper falls under the category of ”Some error handling, covers basic edge cases,” and received a
rating of 3 out of 5. For Paper A, it fails to handle errors properly and struggles with most edge cases.
Consequently, it received a rating of 2 out of 5.
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J LIMITATIONS AND FUTURE WORK

The evaluation was limited to predefined criteria, including accuracy, functionality, completeness,
readability, robustness, maintainability, and overall performance. Other important aspects, such
as computational efficiency and scalability, were not thoroughly examined. Additionally, while
the challenges faced by Groups 2, 4, 5, and 6 were discussed, the specific methodologies and data
limitations impacting these groups were not explored in detail. The agentic framework did not
incorporate external simulation tools, such as CFD tools, which could have supported the simulation
process. Furthermore, the study lacked a structured approach, predefined datasets, and established
methodologies for situations involving heat exchangers within complex networks.

Future research should focus on broadening the analysis by integrating additional frameworks and
more varied datasets to better understand the strengths and limitations of the HxAgent framework. A
deeper examination of computational efficiency and scalability could also provide valuable insights
for real-world applications. Moreover, it would be beneficial to investigate the incorporation of
real-world data and more rigorous validation techniques to address the data handling and model
development challenges identified in Groups 2, 4, 5, and 6.
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Table 6: Improving Functionality and Robustness

Code by HxLLM Framework Code by HxAgent framework

Code {
import math
import random

def Prandtl_number(mew, Cp, Kt):
...

def krill_herd_motion(N_max,n,N_old,i_local,i_target):
...
return N_max * (n * N_old + i_local + i_target)

def krill_herd_foraging(F_i, m, F_food, F_best):
...
return F_i * (m * F_food + F_best)

def krill_herd_diffusion(P_max, lambda_):
...
return P_max * lambda_

def krill_herd_optimization_algorithm(C, n1, Ds, mt,
rho_t,
rho_s, n, mew_t, L, Kt, pitch, d0, B, ms, mew_s, Ks, Rfs,
Rft,Th_i,Th_o,Tc_i,Tc_o, Cp_h, Cp_c, etta, ny, H, Ce, i):

...
krill_herd = [[random.uniform(0, 1) for _
in range(10)] for _ in range(100)]
fitness = [krill_herd_optimization(C,n1,Ds,mt,rho_t,
rho_s, n, mew_t,L,Kt,pitch,d0,B, ms, mew_s, Ks, Rfs,
Rft, Th_i, Th_o,Tc_i,Tc_o,Cp_h,Cp_c,etta, ny, H, Ce,
i)for krill in krill_herd]

for _ in range(100):
for i, krill in enumerate(krill_herd):

N_old = krill_herd_motion(0.1, 0.5, krill
herd[i-1], 0.5, 0.5)
F_food = krill_herd_foraging(0.1, 0.5, 0.5,
0.5)
lambda_ = krill_herd_diffusion(0.1, 0.5)
krill_herd[i] = [krill[j] + N_old[j] +
F_food[j] + lambda_[j] for j in range(10)]

fitness = [krill_herd_optimization(C, n1, Ds,
mt, rho_t,
rho_s, n, mew_t, L, Kt, pitch, d0, B, ms, mew_s,
Ks, Rfs, Rft, Th_i, Th_o, Tc_i, Tc_o, Cp_h,
Cp_c, etta, ny,H,Ce,i) for krill in krill_herd]

return krill_herd[fitness.index(min(fitness))]

def linking_function(C,n1,Ds,mt,rho_t,rho_s,n,mew_t, L,
Kt, pitch, d0, B, ms, mew_s, Ks,Rfs,Rft,Th_i,Th_o,Tc_i,
Tc_o, Cp_h, Cp_c, etta, ny, H, Ce, i):

...
return krill_herd_optimization_algorithm(C,n1,Ds,mt,
rho_t, rho_s, n, mew_t, L, Kt,pitch,d0,B,ms,mew_s,
Ks, Rfs, Rft, Th_i, Th_o, Tc_i,Tc_o,Cp_h,Cp_c,etta,
ny, H, Ce, i)

# Example usage
C = 0.158
n1 = 2.263
...

best_krill = linking_function(C, n1, Ds, ...)
print(f"Best krill: {best_krill}")
Error {

Cell In[9], line 466
452 def krill_herd_motion(N_max, n,N_old,i_local,
i_target):
453 """
454 Calculate the krill herd motion.
455

(...)
464 float: New krill position.
465 """

--> 466 return N_max * (n * N_old+i_local+i_target)

TypeError: can’t multiply sequence by non-int of type
’float’

Code-
import random

# Define the heat exchanger model functions
def Prandtl_number(mew, Cp, Kt):

...

# Define the optimization algorithm
def kho_parameters():

n = 50 # Number of krill individuals
d = 3 # Number of dimensions
...
return n, d, N_max, V_f, D_max, C_t, C_n, C_d, I_a

def initialize_krill(n, d):
return [[random.uniform(0.1, 1.5), random.uniform
(0.015,
0.051), random.uniform(0.05, 0.5)] for _ in range(n)]

def calculate_fitness(krill, mt, rho_t, rho_s, n,mew_t,L,
Kt, pitch, d0, ms, mew_s, Ks, Rfs, Rft, Th_i, Th_o, Tc_i,
Tc_o, Cp_h, Cp_c, etta, ny, H, Ce, i):

fitness = []
for individual in krill:

Ds, do, B = individual
hs = Shell_Side_heat_transfer_coefficient(Kt,
pitch, d0, Ds, B, ms, mew_s, Cp_c, Ks)
...
Ctot = total_cost(Ci, Cod)
fitness.append(Ctot)

return fitness

def calculate_motion(krill, N_max, C_t, I_a, I):
...

def calculate_foraging(krill, V_f, C_n, I_a, I):
foraging = []
...

def calculate_diffusion(krill, D_max, C_d, I_a, I):
...

def update_krill(krill, motion, foraging, diffusion):
return [[krill[i][0] + motion[i] + foraging[i] +
diffusion[i], krill[i][1], krill[i][2]]
for i in range(len(krill))]

def kho_linking_function(mt, rho_t, rho_s,n, mew_t, L,
Kt,pitch, d0, ms, mew_s, Ks, Rfs, Rft, Th_i, Th_o,Tc_i,
Tc_o, Cp_h,Cp_c, etta, ny, H, Ce, i):

n, d, N_max, V_f, D_max, C_t, C_n, C_d, I_a =
kho_parameters()
krill = initialize_krill(n, d)
for I in range(I_a):

fitness = calculate_fitness(krill, mt, rho_t,
rho_s, n, mew_t, L, Kt, pitch, d0, ms, mew_s,
Ks, Rfs, Rft, Th_i, Th_o, Tc_i, Tc_o, Cp_h,
Cp_c, etta, ny, H, Ce, i)
motion = calculate_motion(krill, N_max, C_t,
I_a, I)
foraging = calculate_foraging(krill, V_f, C_n,
I_a, I)
diffusion = calculate_diffusion(krill,D_max,C_d,
I_a, I)
krill = update_krill(krill, motion,foraging,
diffusion)

return krill

# Run the KHO algorithm
mt, rho_t,rho_s,n,mew_t,L, Kt, pitch, d0, ms, mew_s, Ks,
Rfs, Rft, Th_i, Th_o, Tc_i, Tc_o, Cp_h, Cp_c,etta,ny, H,
Ce, i = 18.80, 995, 850, 4, 0.00358, 4.88,0.13,4, 0.051,
5.52, 0.0004, 0.13, 0.00061, 0.00061,199,93.3,37.80,76.7,
2.47, 2.05, 0.9, 10, 7000, 0.12, 0.1
krill = kho_linking_function(mt, rho_t,rho_s,n,mew_t, L,
Kt, pitch, d0, ms, mew_s, Ks,Rfs,Rft,Th_i,Th_o, Tc_i,
Tc_o, Cp_h, Cp_c, etta,ny, H, Ce, i)
print(krill)

Results-
[1.28238599971764, 0.015768897423495, 0.42015856034693]
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Table 7: Accuracy/Correctness Evaluation

Code Generated by Paper - A Code Generated by paper - C Code Generated by paper - B

import math
import random

# Define the heat exchanger model
functions
def Prandtl_number(mew, Cp, Kt):

Pr = (mew * Cp) / Kt
return Pr

def total_cost(Ci, CoD):
return Ci + CoD

# Define the optimization algorithm
def genetic_algorithm(Ds,do,B,mt, rho_t,
rho_s, n, mew_t, L, Kt, pitch, d0, ms,
mew_s, Ks, Rfs, Rft, Th_i, Th_o, Tc_i,
Tc_o, Cp_h, Cp_c, etta, ny, H, Ce, i):

# Initialize the population
population = []
for _ in range(50):

individual = {
’Ds’:random.uniform(0.1,1.5),
’do’:random.uniform(0.015,
0.051),
’B’:random.uniform(0.05, 0.5),
’fitness’:float(’inf’)
}
population.append(individual)

# Define the optimization parameters
mutation_rate = 0.1
crossover_rate = 0.5
selection_rate = 0.5
generations = 100

# Run the genetic algorithm
for _ in range(generations):

# Evaluate the fitness of each
individual

....

# Select the fittest individuals
population = sorted(population,
key....

# Replace the least fit
individuals with the new
offspring population = population
+ offspring

# Return the fittest individual
return population[0]

# Run the genetic algorithm
Ds, do, B = 1.5, 0.051, 0.5
mt, rho_t, ...= 18.80, 995, ...
best_individual=genetic_algorithm(Ds,do,
B, ...)
print(’Best individual:’,best_individual)

import math
import random

# Define the heat exchanger model functions
...
# Define the optimization algorithm
...
def linking_function(constant, exponent,
shell_diameter, mass_flow_rate_tube,...):

# ... (rest of the linking function code
remains the same)

def differential_evolution(strategy, NP, F,
CR, MAXGEN, seed):

# Initialize population
population = []
...

# Evaluate initial population
fitness = []
...

# Evolve population
for gen in
...

# Select best individual
if trial_fitness < fitness[i]:

population[i] = trial
fitness[i] = trial_fitness

return population, fitness

# Run differential evolution
strategy = "DE/best/1/exp"
NP = 70
F = 0.5
CR = 0.9
MAXGEN = 30
seed = 10
population, fitness = differential_evolution
(strategy, NP, F, CR, MAXGEN, seed)

# Print best individual
best_individual = population[fitness.index
(min(fitness))]
x1 = best_individual[0] * 2.5 + 0.25 # tube
outer diameter
x2 = best_individual[1] * 2 + 1 # tube pitch
...
print("Best individual:", x1, x2, x3, x4,
x5, x6, x7)
print("Best fitness:", min(fitness))

import math
import random

# Define the heat exchanger model functions
def Prandtl_number(mew, Cp, Kt):

Pr = (mew * Cp) / Kt
return Pr

# Define the objective function
def objective_function(Ds, do, B):

mt, rho_t, rho_s, n, mew_t, L, Kt, pitch,
d0, ms, mew_s, Ks, Rfs, Rft, Th_i, Th_o,
Tc_i, Tc_o, Cp_h, Cp_c, etta, ny, H, Ce,
i = 18.80, 995, 850,...
Ctot = total_cost(Ci, Cod)

return Ctot

# Define the optimization algorithm(PSO)
def optimization_algorithm(Ds, do, B):

# Initialize the particles
particles = []
for _ in range(50):

particle = {
’Ds’:random.uniform(0.1, 1.5),
’do’:random.uniform(0.015,
0.051),
’B’:random.uniform(0.05, 0.5),
’velocity’: [random.uniform
(-1, 1), random.uniform(-1, 1)
, random.uniform(-1, 1)],
’best_position’: [random.uniform
(0.1, 1.5), random.uniform
(0.015, 0.051), random.uniform
(0.05, 0.5)],
’best_cost’: float(’inf’)

}
particles.append(particle)

# Define the PSO parameters
w = 0.9
c1 = 2
c2 = 2
Vmax = 1

# Run the PSO algorithm
for _ in range(100):

....
# Run the optimization algorithm
Ds, do, B = 1.5, 0.051, 0.5
best_position, best_cost = optimization_
algorithm(Ds, do, B)
print(’Best position:’, best_position)
print(’Best cost:’, best_cost)
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Table 8: Functionality Evaluation

Code Generated by Paper - B Code Generated by paper - C Code Generated by paper - A

import math
import random

# Define the heat exchanger model functions
def Prandtl_number(mew, Cp, Kt):

Pr = (mew * Cp) / Kt
return Pr

....
return Ci + CoD

# Define the QPSOZ algorithm
def qPSOZ(Ds, do, B,...):

# Initialize the particles
particles = []
for _ in range(50):

particle = {
’Ds’: random.uniform(0.1, 1.5),
’do’:random.uniform(0.015,
0.051),
’B’: random.uniform(0.05, 0.5),
’velocity’:

_cost’: float(’inf’)
}
particles.append(particle)

# Define the QPSOZ parameters
w = 0.9
c1 = 2
c2 = 2
Vmax = 1

# Run the QPSOZ algorithm
for _ in range(100):

for particle in particles:
# Calculate the cost of the
current position
hs = Shell_Side_heat_transfer
_coefficient(Kt, pitch, d0,
particle[’Ds’], particle[’B’],
ms, mew_s, Cp_h, Ks)

......
# Run the QPSOZ algorithm
Ds, do, B = 1.5, 0.051, 0.5
mt, rho_t, ..., = 18.80, 995, 850, ...
best_position, best_cost = qPSOZ(Ds, do, B,
mt,...)
print(’Best position:’, best_position)
print(’Best cost:’, best_cost)

import math
import random

# Define the heat exchanger model functions
def Prandtl_number(mew, Cp, Kt):

Pr = (mew * Cp) / Kt
return Pr

....
return Ci + CoD

# Define the ICA algorithm functions
defcreate_initial_countries(Nvar, NCountry):

....

def calculate_cost(country, Ds, do, B, ....i):
hs = Shell_Side_heat_transfer_coefficient
(Kt, pitch, d0, Ds, B, ms, mew_s, Cp_h)
....
Ctot = total_cost(Ci, Cod)
return Ctot

def assimilation_policy(country, imperialist,
Ds, do, B, mt,
....

return new_country

def revolution(country, Ds, do, B, mt, rho_t,
rho_s, n, mew_t, L, Kt, pitch
....

return new_country

def imperialistic_competition(countries, Ds
....

return new_countries

def ICA(Nvar, NCountry, Ds, do, B, mt,
....

return best_country

# Run the ICA algorithm
Nvar = 3
NCountry = 50
Ds, do, B = 1.5, 0.051, 0.5
mt, rho_t, .... Ce, i = 18.80, 995, 850, ....
0.12, 0.1
best_country = ICA(Nvar, NCountry, Ds, do,
B, mt, rho_t, rho_s, n, mew_t, L, Kt,
pitch, d0, ms, mew_s, Ks, Rfs, Rft,
Th_i, Th_o, Tc_i, Tc_o, Cp_h, Cp_c, etta,
ny, H, Ce, i)
print(’Best country:’, best_country)

import math
import random

# Define the heat exchanger model functi
-ons
def Prandtl_number(mew, Cp, Kt):

Pr = (mew * Cp) / Kt
return Pr

....
return Ci + CoD

# Define the optimization algorithm
def optimization_algorithm(Ds, do, B, ....
Ce, i):

# Initialize the population
....
#Define the optimization parameters
Cr = 0.5
Mr = 0.1
r = 0.96
max_iterations = 100

# Run the optimization algorithm
for _ in range(max_iterations):

....
# Select the fittest individual

fittest_individual = min
(population,
key=lambda individual:
individual[’fitness’])

....
# Return the fittest individual
return fittest_individual

# Run the optimization algorithm
Ds, do, B = 1.5, 0.051, 0.5
mt, rho_t, rho_...., Ce, i = 18.80,
995, 850....0.12, 0.1
fittest_individual = optimization
_algorithm(Ds, do, B, ....Ce, i)
print(’Fittest individual:’,
fittest_individual)
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Table 9: Completeness Evaluation

Code Generated by Paper - A Code Generated by paper - B Code Generated by paper - C

import math
import random

# Define the heat exchanger model functions
....

return Ci + CoD

# Define the Cuckoo Search Algorithm (CSA)
functions
def CSA(Ds, do, B, mt, rho_t, rho_s, n,
mew_t, L, Kt, pitch, d0, ms, mew_s, Ks, Rfs,
Rft, Th_i, Th_o, Tc_i, Tc_o, Cp_h, Cp_c,
etta, ny, H, Ce, i):

# Initialize the population
population = []
for _ in range(50):

individual = {
’Ds’: random.uniform(0.1, 1.5),
’do’: random.uniform(0.015,
0.051),
’B’: random.uniform(0.05, 0.5),
’fitness’: float(’inf’)

}
population.append(individual)

# Define the CSA parameters
Pa = 0.25
alpha = 1.0

# Run the CSA algorithm
for _ in range(100):

for individual in population:
# Calculate the fitness of the
individual
hs = Shell_Side_heat_transfer_
coefficient(Kt, pitch, d0,
individual[’Ds’],individual[’B’]
, ms, mew_s, Cp_h, Ks)
...

# Update the fitness of the
individual
individual[’fitness’] = Ctot

# Perform the Levy flight
for individual in population:

....

# Run the CSA algorithm
Ds, do, B = 1.5, 0.051, 0.5
mt, rho_t, rho_...., Ce, i = 18.80, 995,
850....0.12, 0.1
best_individual = CSA(Ds, do, B, ....Ce, i)
print(’Best Ds:’, best_Ds)
...
print(’Best fitness:’, best_fitness)

import math
import random

#Define heat exchanger model functions
def Prandtl_number(mew, Cp, Kt):

....
def total_cost(Ci, CoD):

return Ci + CoD

# Define the optimization algorithm
def genetic_algorithm(Ds, do, B, mt, rho_t,
rho_s, n, mew_t, L, Kt, pitch, d0, ms, mew_s,
Ks, Rfs, Rft, Th_i, Th_o, Tc_i, Tc_o, Cp_h,
Cp_c, etta, ny, H, Ce, i):

# Initialize the population
population = []
for _ in range(50):

individual = {
’Ds’: random.uniform(0.1, 1.5),
’do’: random.uniform(0.015,
0.051),
’B’: random.uniform(0.05, 0.5),
’fitness’: float(’inf’)

}
population.append(individual)

# Define the optimization parameters
mutation_rate = 0.1
crossover_rate = 0.5
selection_rate = 0.5
generations = 100

# Run the genetic algorithm
for _ in range(generations):

# Evaluate fitness of each individual
....

Cod = discounted_operating_cost(Co,
ny, i)
Ctot = total_cost(Ci, Cod)
individual[’fitness’] = Ctot

# Select the fittest individuals
...

# Return the fittest individual
...

return population[0]

# Run the genetic algorithm
Ds, do, B = 1.5, 0.051, 0.5
mt, rho_t, rho_...., Ce, i = 18.80, 995,
850....0.12, 0.1
best_individual = genetic_algorithm(Ds, do, B
, ....Ce, i)

print(’Best individual:’, best_individual)

import math
import random

# Define the heat exchanger model functi
-ons
def Prandtl_number(mew, Cp, Kt):

....
def total_cost(Ci, CoD):

return Ci + CoD

# Define the PSO algorithm functions
def particle_swarm_optimization(Ds, do,
B, mt, ....)

....

# Define the PSO parameters
w = 0.9
c1 = 2
c2 = 2
Vmax = 1

# Run the PSO algorithm
for _ in range(100):

for particle in particles:
# Calculate the cost of
current position

# Run the PSO algorithm
Ds, do, B = 1.5, 0.051, 0.5
mt, rho_t, rho_...., Ce, i = 18.80, 995,
850... .0.12, 0.1
fittest_individual = optimization_
algorithm (Ds, do, B, ....Ce, i)
print(’Fittest individual:’,
fittest_individual)

#But nothing described here about the
Ant Colony Optimization (ACO) technique
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Table 10: Readability and Maintainability Evaluation

Code Generated by Paper B Code Generated by paper A

def tube_side_reynolds_number(vt, di, mew_t):
"""Equation 3: Tube side Reynolds number"""
return vt * di / mew_t

def tube_side_prandtl_number(mew_t, Cp_t, kt):
"""Equation 6: Tube side Prandtl number"""
return mew_t * Cp_t / kt

def tube_side_convective_coefficient(kt, di,vt,mew_t, Cp_t, L):
"""Equation 1: Tube side convective coefficient"""
Ret = tube_side_reynolds_number(vt, di, mew_t)
Prt = tube_side_prandtl_number(mew_t, Cp_t, kt)

if Ret < 2300:
return (kt / di) * (3.657 + (0.0677 * (Ret * Prt *
(di / L)**1.33)**0.33) / (1 + (0.1 * Prt * (Ret *
(di / L)))**0.3))

elif 2300 < Ret < 10000:
...

else:
return 0.027 * (kt / di) * (Ret**0.8) * (Prt**0.33)

...
def total_cost(Ci, CoD):

return Ci + CoD
# Define the master objective function
def master_linking_function(**kwargs):

return calculate_heat_transfer_coefficients(
kwargs[’Dt’],
kwargs[’Ds’],
kwargs[’Lt’],
1, # tube_side_velocity
...
303 # cold_outlet_temperature

)
# Define the optimization functions
...
# Define the fitness function
def fitness(individual):
...
# Define the genetic algorithm parameters
population_size = 100
generations = 100
mutation_rate = 0.1
crossover_rate = 0.5
# Define the design variables and their limits
design_variables = {

’Dt’: [0.01, 0.05], # Tube diameter
’Ds’: [0.1, 1.5], # Shell diameter
’Lt’: [0.05, 0.5], # Tube length

}
# Initialize the population
population = []
...
# Evaluate the fittest individual using the master linking
function
results = master_linking_function(**fittest_individual)
print("Results:")
for key, value in results.items():

print(f"{key}: {value}")

# Define the heat exchanger model functions
def Prandtl_number(mew, Cp, Kt):

Pr = (mew * Cp) / Kt
return Pr

...
def Tube_side_heat_transfer_coefficient(C, n1, Ds, mt, rho_t, n,
mew_t, Cp, d0, L, Kt):

di = d0 * 0.8
Nt = num_tubes(Ds, d0, C, n1)
vt = tube_velocity(mt, di, rho_t, n, Nt)
Re = reynolds_number(vt, di, mew_t)
ft = darcy_friction_factor(Re)
Pr = Prandtl_number(mew_t, Cp, Kt)

if Re <= 2300:
ht = (Kt / di) * (3.657 + (0.0677 * (Re * Pr * (di / L)

**1.33)**0.33) / (1 + (0.1 * Pr * (Re * (di / L)))**0.3))
elif 2300 < Re <= 10000:

...
else:

...
return ht

...
def total_cost(Ci, CoD):

return Ci + CoD
# Define the Cuckoo Search Algorithm (CSA) functions
def CSA(Ds, do, B,...):

# Initialize the population
population = []
for _ in range(50):

individual = {
’Ds’: random.uniform(0.1, 1.5),
’do’: ...
’fitness’: float(’inf’)

}
population.append(individual)

# Define the CSA parameters
Pa = 0.25
alpha = 1.0
# Run the CSA algorithm
for _ in range(100):

for individual in population:
# Calculate the fitness of the individual
hs = Shell_Side_heat_transfer_coefficient(Kt,
pitch, d0, individual[’Ds’], individual[’B’],
ms, mew_s, Cp_h, Ks)
ht = Tube_side_heat_transfer_coefficient(0.158,
....
Ctot = total_cost(Ci, Cod)
# Update the fitness of the individual
individual[’fitness’] = Ctot
...

# Run the CSA algorithm
Ds, do, B = 1.5, 0.051, 0.5
mt, rho_t, rho_...., Ce, i = 18.80, 995, 850....0.12, 0.1
best_individual = CSA(Ds, do, B, ....Ce, i)
...
print(’Best fitness:’, best_fitness)
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Table 11: Robustness Evaluation

Code Generated by Paper C Code Generated by paper B Code Generated by paper A

import math
import random

# Define the heat exchanger model functions
def Prandtl_number(mew, Cp, Kt):

Pr = (mew * Cp) / Kt
return Pr

...

def LMTD(Th_i, Th_o, Tc_i, Tc_o):
deltaT1 = Th_i - Tc_o
deltaT2 = Th_o - Tc_i
lmtd = (deltaT1 - deltaT2) / math.log
(deltaT1 / deltaT2)
return lmtd

...

def total_cost(Ci, CoD):
return Ci + CoD

# Define the PSO algorithm functions
def particle_swarm_optimization(Ds, do, B,
mt, rho_t, rho_s, n, mew_t, L, Kt, pitch,
d0, ms, mew_s, Ks, Rfs, Rft, Th_i, Th_o,
Tc_i, Tc_o, Cp_h, Cp_c, etta, ny, H,Ce,i):

# Initialize the particles
...
return best_particle[’best_position’],
best_particle[’best_cost’]

# Run the PSO algorithm
best_position, best_cost = particle_swarm_
optimization (Ds, do, B, mt, rho_t, rho_s,
n, mew_t, L, Kt, pitch, d0, ms, mew_s, Ks,
Rfs, Rft, Th_i, Th_o, Tc_i, Tc_o, Cp_h,
Cp_c, etta, ny, H, Ce, i)
print(’Best position:’, best_position)
print(’Best cost:’, best_cost)

import math
import random

# Define the heat exchanger model functions
def Prandtl_number(mew, Cp, Kt):

Pr = (mew * Cp) / Kt
return Pr

...

def LMTD(Th_i, Th_o, Tc_i, Tc_o):
deltaT1 = Th_i - Tc_o
deltaT2 = Th_o - Tc_i
lmtd = (deltaT1 / deltaT2)
return lmtd

...

def total_cost(Ci, CoD):
return Ci + CoD

# Define the optimization algorithm
def optimization_algorithm(Ds, do, B, mt,
rho_t, rho_s, n, mew_t, L, Kt, pitch, d0,
ms, mew_s, Ks, Rfs, Rft, Th_i, Th_o, Tc_i,
Tc_o, Cp_h, Cp_c, etta, ny, H, Ce, i):
...

# Run the PSO algorithm
for _ in range(100):

for particle in particles:
# Calculate the cost of the
current position
hs = Shell_Side_heat_transfer
_coefficient(Kt, pitch, d0,
particle[’Ds’], particle[’B’],
ms, mew_s, Ks)

...
best_position, best_cost = optimization_
algorithm(Ds, do, B, mt, rho_t, rho_s, n,
mew_t, L, Kt, pitch, d0, ms, mew_s, Ks,
Rfs, Rft, Th_i, Th_o, Tc_i, Tc_o, Cp_h,
Cp_c, etta, ny, H, Ce, i)
print(’Best position:’, best_position)
print(’Best cost:’, best_cost)

import math
import random

# Define the heat exchanger model functi
-ons
def Prandtl_number(mew, Cp, Kt):

Pr = (mew * Cp) / Kt
return Pr

...

def LMTD(Th_i, Th_o, Tc_i, Tc_o):
deltaT1 = Th_i - Tc_o
deltaT2 = Th_o - Tc_i
lmtd = (deltaT1 / deltaT2)
return lmtd

...

def total_cost(Ci, CoD):
return Ci + CoD

# Define the optimization algorithm
...
def linking_function(constant, exponent,
shell_diameter, mass_flow_rate_tube,...):

...
return population, fitness

# Run differential evolution
strategy = "DE/best/1/exp"
NP = 70
F = 0.5
CR = 0.9
MAXGEN = 30
seed = 10
population, fitness = differential_
evolution(strategy, NP, F, CR, MAXGEN,
seed)

# Print best individual
best_individual = population[fitness.
index(min(fitness))]
x1 = best_individual[0] * 2.5 + 0.25
# tube outer diameter
x2 = best_individual[1] * 2 + 1
# tube pitch
...
print("Best individual:", x1, x2, x3,
x4, x5, x6, x7)
print("Best fitness:", min(fitness))
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