
Neuro-Symbolic Continual Learning:
Knowledge, Reasoning Shortcuts and Concept Rehearsal

Emanuele Marconato * 1 2 Gianpaolo Bontempo * 1 3 Elisa Ficarra 3 Simone Calderara 3 Andrea Passerini 2

Stefano Teso 4 2

Abstract

We introduce Neuro-Symbolic Continual Learn-
ing, where a model has to solve a sequence of
neuro-symbolic tasks, that is, it has to map sub-
symbolic inputs to high-level concepts and com-
pute predictions by reasoning consistently with
prior knowledge. Our key observation is that
neuro-symbolic tasks, although different, often
share concepts whose semantics remains stable
over time. Traditional approaches fall short: ex-
isting continual strategies ignore knowledge alto-
gether, while stock neuro-symbolic architectures
suffer from catastrophic forgetting. We show that
leveraging prior knowledge by combining neuro-
symbolic architectures with continual strategies
does help avoid catastrophic forgetting, but also
that doing so can yield models affected by rea-
soning shortcuts. These undermine the seman-
tics of the acquired concepts, even when detailed
prior knowledge is provided upfront and infer-
ence is exact, and in turn continual performance.
To overcome these issues, we introduce COOL, a
COncept-level cOntinual Learning strategy tai-
lored for neuro-symbolic continual problems that
acquires high-quality concepts and remembers
them over time. Our experiments on three novel
benchmarks highlights how COOL attains sus-
tained high performance on neuro-symbolic con-
tinual learning tasks in which other strategies
fail.1

*Equal contribution 1University of Pisa, Italy 2DISI, Univer-
sity of Trento, Italy 3University of Modena and Reggio Emilia,
Italy 4CIMeC, University of Trento, Italy. Correspondence to:
Emanuele Marconato <emanuele.marconato@unitn.it>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

1The data and code are available at https://github.com/ema-
marconato/NeSy-CL

1. Introduction
We initiate the study of Neuro-Symbolic Continual Learn-
ing (NeSy-CL), in which the goal is to solve a sequence
of neuro-symbolic tasks. As is common in neuro-symbolic
(NeSy) prediction (Manhaeve et al., 2018; Xu et al., 2018;
Giunchiglia & Lukasiewicz, 2020; Hoernle et al., 2022;
Ahmed et al., 2022a), the machine is provided prior knowl-
edge relating one or more target labels to symbolic, high-
level concepts extracted from sub-symbolic data, and has to
compute a prediction by reasoning over said concepts. The
central challenge of Nesy-CL is that the data distribution
and the knowledge may vary across tasks. E.g., in medical
diagnosis knowledge may encode known relationships be-
tween possible symptoms and conditions, while different
tasks are characterized by different distributions of X-ray
scans, symptoms and conditions. The goal, as in continual
learning (CL) (Parisi et al., 2019), is to obtain a model that
attains high accuracy on new tasks without forgetting what
it has already learned under a limited storage budget.

Existing approaches are insufficient for NeSy-CL: neuro-
symbolic models are designed for offline learning and as
such suffer from catastrophic forgetting (Parisi et al., 2019),
while continual learning strategies are designed for neural
networks that neglect prior knowledge, preventing applica-
tions to tasks where compliance with regulations is key, e.g.,
safety critical tasks (Ahmed et al., 2022a; Hoernle et al.,
2022). It is tempting to tackle NeSy-CL by pairing a SotA
neuro-symbolic architecture, such as DeepProbLog (Man-
haeve et al., 2018), with a proven rehearsal or distillation
strategy, for instance dark experience replay (Buzzega et al.,
2020). This yields immediate benefits, in the sense that prior
knowledge makes the model more robust to catastrophic for-
getting, as we will show. However, we show also that it is
flawed, because it cannot prevent the model from acquiring
reasoning shortcuts (defined in Section 3), through which it
attains high task accuracy by acquiring unintended concepts
with task-specific semantics, as illustrated in Figure 1. In
turn, reasoning shortcuts entail poor cross-task transfer.

Our key observation is that, even though neuro-symbolic
tasks may differ in terms of knowledge and distribution, the
semantics of the concepts they rely on must remain stable

1

Neuro-Symbolic Continual Learning

K same ̱color = 0

(,)

nn

Y = 0 Y = 1 Y = 0 Y = 1 Y = 1

True

Pred
? ?

Task 1 Examples

True

Pred

Task 2 Examples Future Task

☹
Figure 1. Left: DeepProbLog extracts concepts c from a sub-symbolic input x and reasons over prior knowledge K provided upfront to
obtain a prediction y. Right: Simplified illustration of our CLE4EVR benchmark, restricted to color concepts only. The full setting is
reported in Section 5. The goal is to predict whether two objects have the Y = same color. The first task includes examples of gray and
red objects only, and the model classifies them by learning the intended mapping between input colors and concepts. The second one
includes green and blue objects only, and the model can learn a reasoning shortcut mapping the four colors to two concepts, achieving
high accuracy on both tasks but compromising performance on future tasks. This is exactly the issue addressed by our approach, COOL.

over time. For instance, in automated protein annotation
inferred signal peptides entail a catalytic function (Rost
et al., 2003) regardless of the specific protein under exami-
nation, and in vehicle routing presence of pedestrians on the
road is sufficient to rule out certain routes (Xu et al., 2020)
regardless of location and weather conditions.

Prompted by this insight, we propose COOL, a simple but
effective COncept-level cOntinual Learning strategy, that
aims at acquiring high-quality concepts and preserving them
across tasks. COOL makes use of a small amount of concept
supervision to acquire high-quality concepts and explicitly
preserves them with a concept rehearsal strategy, avoiding
reasoning shortcuts in all tasks. COOL is applicable to a
variety of NeSy architectures, and – as shown by our ex-
periments with DeepProbLog (Manhaeve et al., 2018) and
Concept-based Models (Koh et al., 2020) – easily outper-
forms state-of-the-art continual strategies on three novel,
challenging NeSy-CL problems, achieving better concept
quality and predictive accuracy on past and OOD tasks.

Contributions. Summarizing, we:

1. Introduce neuro-symbolic continual learning as a novel
and challenging machine learning problem.

2. We show that knowledge readily improves forgetting
in some scenarios, but also that it is insufficient to pre-
vent reasoning shortcuts – which worsen forgetting and
compromise transfer to new tasks – in others.

3. Propose new NeSy-CL benchmarks for evaluating con-
tinual performance with and without reasoning shortcuts.

4. Introduce COOL, a novel continual strategy that supports
identifying concepts with the intended semantics and
preserves them across tasks.

5. Show empirically that COOL outperforms state-of-the-art
continual strategies on these challenging benchmarks.

2. Neuro-Symbolic Continual Learning
Notation. Throughout, we indicate scalar constants x in
lower-case, random variables X in upper case, and ordered
sets of constants x and random variables X in bold typeface.
The symbol [n] stands for the set {1, . . . , n} and x |= K
indicates that x satisfies a logical formula K. We say that
a distribution p(A | B;K) is consistent with K, written
p |= K, if it holds that p(a | b;K) > 0 implies (a,b) |= K,
i.e., if p associates zero mass to all states that violate K.

2.1. Problem Statement

We are concerned with solving a sequence of neuro-symbolic
prediction tasks, each requiring to learn a classifier mapping
a (partially) sub-symbolic input x ∈ Rd to n ≥ 1 labels
y ∈ Nn. What makes them neuro-symbolic is that: (i) The
labels y depend entirely on the state of k symbolic concepts
c = (c1, . . . , ck)

⊤ capturing high-level aspects of the input
x. (ii) The concepts c depend on the sub-symbolic input
x in an intricate manner and are best extracted using deep
learning techniques. (iii) The way in which the labels y
depend on the concepts c is specified by prior knowledge K,
necessitating reasoning during inference.

We make the natural assumption that the semantics of the
concepts appearing in the various tasks remain constant
over time. This assumption lies at the heart of knowledge
representation and ontology design, where concepts serve
as a lingua franca for the exchange and reuse of knowl-
edge across application boundaries (Gruber, 1995) and with
human stakeholders (Kambhampati et al., 2022).

Formally, each task t ∈ N is defined by a data generating
distribution p(t)(X,C,Y;K(t)) that factorizes as:

p(t)(Y | C;K(t)) · p(C | X) · p(t)(X) (1)

Here, K(t) denotes the knowledge relevant to the t-th task.2

As customary in NeSy, we assume the knowledge to cor-

2The knowledge might depend also on discrete variables in X;
we suppress this dependency in the notation for readability.

2

Neuro-Symbolic Continual Learning

rectly describe the ground-truth generative process and that,
therefore, the label distributions are consistent with their
respective prior knowledge, i.e., p(t)(Y | X;K(t)) |= K(t)

for all t. The key feature of Equation (1) is that p(C | X)
does not depend on t, capturing our assumption that concept
semantics are stable. For instance, if Cdog represents the
notion of “dog”, then p(Cdog | X) only depends on whether
an image x in fact depicts a dog, regardless of context, style,
likelihood of observing a dog, and role of dogs in determin-
ing the label. See Appendix A.3 for an in-depth discussion.
Critically, the distribution of observed inputs, concepts and
labels, and the knowledge are allowed to differ between
tasks. This means that, e.g., known concepts may stop oc-
curring, play different roles in K(t+1) than they did in K(t),
and entirely new concepts may appear.

Handling catastrophic forgetting. At step t, the machine
obtains a task T (t) = (D(t),K(t)) consisting of a data set
D(t), sampled i.i.d. according to Equation (1), and knowl-
edge K(t). The goal is to find parameters θ that achieve low
average risk over all tasks observed so far, defined as:

L(θ, T 1:t) =
1

t

∑
s∈[t]

L(θ, T (s)) (2)

=
1

t
L(θ, T (t)) +

t− 1

t
L(θ, T 1:(t−1)) (3)

where T 1:t = {T (1), . . . , T (t)} is the collection of all tasks
observed so far, L(θ, T) := 1

|D|
∑

(x,y)∈D ℓ(θ, (x,y);K),
and ℓ is a loss function over y.

As in regular continual learning, we assume storage is
insufficient to hold data from all tasks, meaning that
L(θ, T 1:(t−1)) cannot be evaluated exactly. Ignoring this
term, as done by offline approaches, leads to catastrophic
forgetting: by focusing on the loss of the current task, mod-
els tend to forget the information necessary to solve the
previous tasks. CL algorithms mitigate forgetting using
strategies like rehearsal (Buzzega et al., 2020; Parisi et al.,
2019; De Lange et al., 2021; Boschini et al., 2022; Rebuffi
et al., 2017) (i.e., replaying few examples of previous tasks),
regularization (Huszár, 2018; Li & Hoiem, 2017) (i.e., slow-
ing down parameter shift through additional terms in the
loss function), or architectural modifications (Rusu et al.,
2016) (i.e., freezing and adding new parameters at each
task). See Section 6 for an overview.

Importantly, all these strategies focus on optimizing the
accuracy on the labels only. This is sensible in CL but, as
shown in Section 3, insufficient in NeSy-CL.

2.2. DeepProbLog

DeepProbLog (Manhaeve et al., 2018) is a state-of-the-art
model ideally suited to solve tasks of the form in Equa-
tion (1). It decomposes prediction into two steps, cf. Fig-

ure 1 (left). At the lower level, it implements each concept as
a Boolean or categorical random variable Cj , whose distri-
bution pθ(Cj | x) is flexibly parameterized by a neural net-
work nnj(x; θ). This implies that concepts are mutually in-
dependent given the input, i.e., pθ(C | x) =

∏
j∈[k] pθ(Cj |

x). At the upper level, it models the distribution of labels
conditioned on concepts as a uniform distribution over the
support of K, and specifically as:3

uK(y | c) = 1

Z(c;K)
· 1{(c,y) |= K} (4)

where Z(c;K) =
∑

y 1{(c,y) |= K} is a normalization
constant. The overall label distribution is obtained by
marginalizing over C:

pθ(y | x;K) =
∑

c uK(y | c) ·
∏
j∈[k] pθ(cj | x) (5)

Since the indicator function in Equation (4) evaluates to
zero for all values of c that violate K, the label distribution
in Equation (5) is by construction consistent with K.
Example 2.1. MNIST-Addition (Manhaeve et al., 2018)
is a prototypical neuro-symbolic task that requires learning
a mapping from pairs of MNIST digits x = (x1,x2) to their
sum Y , e.g., from x = (,) to y = 5. It can be readily
modelled in DeepProbLog using two concepts C1 and C2

ranging in {0, . . . , 9}, each predicted by a convolutional
network nn(xj), and a constraint K = (C1 + C2 = Y).

Given a task T = (D,K), the parameters θ are usu-
ally learned by maximizing the log-likelihood L(θ,D) :=
1

|D|
∑

(x,y)∈D log pθ(y | x;K) via stochastic gradient de-
scent. Computing the (gradient of the) likelihood pθ(y | x)
and the most likely prediction ŷ ∈ argmaxy pθ(y | x;K)
requires to evaluate Z, which is intractable in general. To
make inference practical, DeepProbLog exploits knowledge
compilation (Darwiche & Marquis, 2002) to convert the
distribution uK into a probabilistic circuit. Once in this for-
mat, the above operations take time linear in the size of the
circuit (Choi et al., 2020; Vergari et al., 2021).

In the remainder of the paper, we focus on DeepProbLog
as it offers a sound probabilistic architecture and exact in-
ference. Our results, however, do transfer to many other
neuro-symbolic architectures, as discussed in Section 6.

3. Knowledge and Reasoning Shortcuts
All neuro-symbolic architectures, including DeepProbLog,
are designed for offline settings, and as such they easily fall
prey of catastrophic forgetting when applied to NeSy-CL
problems. This issue is illustrated by the following example
and demonstrated empirically in Section 5.

3Non-uniform distributions consistent with the knowledge can
also be modelled, as done for instance by Ahmed et al. (2022a).

3

Neuro-Symbolic Continual Learning

Example 3.1. We introduce MNAdd-Seq, a continual exten-
sion of MNIST-Addition in which tasks differ in what
digits are observed. Specifically, each task t = 0, . . . , 8
consists of all pairs of digits x = (x1,x2) whose sum is
either 2t or 2t+1. By construction, sums above 9 cannot be
obtained by adding smaller digits, so these no longer occur
in later tasks. Since DeepProbLog maximizes the likelihood
of the current task, it quickly forgets small digits at t ≥ 5
and can no longer classify sums involving them correctly.

3.1. Knowledge Helps Remembering . . .

A natural first step toward solving NeSy-CL is to bundle
a NeSy predictor – say, DeepProbLog – with any state-of-
the-art CL strategy. Focusing on experience replay, doing
so amounts to storing a handful of well chosen labeled (or
predicted) examples (x,y) from past tasks 1, . . . , t−1, and
replaying them when fitting DeepProbLog on the current
task t together with the corresponding prior knowledge Kt.4

Doing so immediately brings a number of benefits. First and
foremost, the knowledge encodes the valid, stable relation-
ship between the concepts and the labels to be prediction.
This implies that predicted concepts can be always correctly
mapped to a corresponding label, and that this inference
step is immune from forgetting. This is especially signifi-
cant considering that the top layers of neural networks are
those most affected by catastrophic forgetting (Wu et al.,
2019). This effect is clearly visible in our experiments, cf.
Section 5.

Conversely, prior knowledge effectively reduces the space of
candidate concepts, providing further guidance to the model.
If it reduces the space to only those having the intended
semantics, then this simple setup can be very effective at
tackling NeSy-CL problems.

3.2. . . . But Does Not Prevent Reasoning Shortcuts

In general, however, this setup is insufficient. The core issue
is that knowledge might not be enough to identify the right
concept distribution p(C | X) using label annotations alone,
in the sense that – depending on how the knowledge and
training data are structured – it may be possible (in both of-
fline and continual settings) to correctly classify all training
examples even using concepts with unintended semantics.
We refer to these situations as reasoning shortcuts.

This intuition is formalized in Theorem 3.2. Here, we write
Θ to indicate the set of all possible parameters of (the neural
networks implementing) pθ(C | X), and Θ∗(K,D) ⊆ Θ
for the parameters that maximize the log-likelihood L(θ,D).
Also, K[V/v] is the knowledge obtained by substituting all

4The only non-trivial aspect is that, in addition to the replay
buffer, we also has to store the past knowledge, so as to ensure be
able to match the updated concepts with the past labels.

occurrences of variables V with constants v. For instance,
in MNIST-Addition K[Y/2] amounts to C1 + C2 = 2.
Theorem 3.2. A model with parameters θ attains maximal
likelihood, i.e., θ ∈ Θ∗(K,D), if and only if, for all (x,y) ∈
D, it holds that pθ(C | x) |= K[Y/y].

All proofs can be found in Appendix A. Theorem 3.2 states
that, as long as the concept distribution output by the learned
neural network satisfies the knowledge for each training ex-
ample, the log-likelihood is maximal.5 The ground-truth
concept distribution p(C | X) is a possible solution, but it
is not necessarily the only one. In this case, fitting Deep-
ProbLog – and indeed any NeSy approach that optimizes for
label accuracy only – does not guarantee that the learned
concepts have the correct semantics. To see this, consider
the following example.
Example 3.3. Consider MNIST-Addition and take a
subset D including only pairs of examples of four possible
sums: + = 6, + = 10, + = 10, and

+ = 12. Then, there exist many concept distributions
that satisfy the knowledge on all examples, including:

7→ 0, 7→ 2, 7→ 4, 7→ 6, 7→ 8

7→ 5, 7→ 7, 7→ 9, 7→ 1, 7→ 3

where the remaining concepts are allocated arbitrarily and
x 7→ c is a shorthand for p(C = c | x) = 1{C = c}. Only
the first distribution has the intended semantics, whereas
the second one is a reasoning shortcut. We remark that
DeepProbLog does acquire this shortcut in practice, as
illustrated by our experiments. Appendix D explains how
shortcuts emerge in the data sets used in our experiments.

Notice that the Theorem applies to both offline learning (i.e.,
D is fixed) and NeSy-CL (i.e., D indicates the training set
of any given task). Yet, reasoning shortcuts are especially
impactful in the latter. This is exemplified in Figure 1 (right).
Here, DeepProbLog has learned high-quality concepts to
solve the first task, but quickly forgets them when solving
the second task, precisely because it falls pray of a reasoning
shortcut that achieves high training and rehearsal accuracy
on both tasks by satisfying the knowledge using concepts
with unintended semantics. We provide additional concrete
examples in Appendix D. In turn, reasoning shortcuts can
dramatically affect forgetting and performance on future
and OOD NeSy tasks, as shown by our experiments.

4. Addressing NeSy-CL with COOL

To this end, we introduce COOL, a COncept-level cOntinual
Learning that acquires concepts with the intended seman-
tics and preserves them over time, attaining sustained high

5This theorem essentially shows that, from the neural network’s
perspective, the reasoning layer of DeepProbLog has the same
effect as the Semantic Loss (Xu et al., 2018).

4

Neuro-Symbolic Continual Learning

performance. Formally, COOL is designed to satisfy two
desiderata: (D1) pθ(C | X) should quickly approximate
p(C | X), and (D2) pθ(C | X) should remain stable across
tasks. D2 is straightforward, however we stress that it is only
meaningful if D1 also holds: unless the learned concepts
are high-quality, there is little benefit in remembering them.

In order to comply with D1, COOL makes use of a small
number of densely annotated examples to quickly identify
high-quality concepts, which – as we have shown – cannot
always be guaranteed using knowledge alone. In practice,
an average cross-entropy is added to the loss of these exam-
ples. To cope with D2, COOL implements a novel concept
rehearsal strategy that stabilizes pθ(C | X) across tasks.
This is motivated by the fact that concept stability helps to
upper bound the average risk. Specifically,
Theorem 4.1. Consider tasks T 1:t. If the current model
θ and the past one θ(t−1) assign non-zero likelihood to all
examples in D1:t, there exists a finite constant γ, depending
only on the model architecture, knowledge and data, such
that the average risk in Equation (3) is upper bounded by:

1

t
L(θ,D(t)) +

t− 1

t

[
L(θ(t−1),D1:(t−1)) (6)

+ γ
∑
s≤t

∑
(x,y)∈D(s)

∥pθ(C | x)− pθ(t−1)(C | x)∥1
]

In words, this means that if the past model θ(t−1) performs
well on all past tasks (i.e., the middle term in Equation (6) is
small), a new model that performs well on the current task
(the first term is small) and whose concept distribution is
close to that of the old model (the last term is small), also
performs well on past tasks (the average risk in Equation (3)
is small). Critically, this results holds regardless of how the
prior knowledge K1:t of the various task is chosen.

COOL implement this requirement by combining the original
training loss with an extra penalty LCOOL, defined as:

LCOOL :=
1

|M|
∑

(x,q̃c,y)∈M

[
α · KL

(
pθ(C | x) ∥ q̃c) (7)

− β · log pθ(Y = y | x;K(t))
]

Here, M denotes the mini-batch of examples extracted from
the replay buffer, α denotes the scalar weight associated
to the concept-reharsal strategy, and β the weight of the
replay strategy on y. The KL term is evaluated between
the predicted concept distribution and the stored one q̃c =
pθ(t−1)(C | x). Notice that, by Pinsker’s inequality, the KL
upper bounds the (square of the) L1 distance, meaning that
COOL indirectly optimizes the bound in Equation (6).

4.1. Benefits and Limitations

COOL is explicitly designed to acquire high-quality con-
cepts and retain them across tasks by combining knowledge,

concept rehearsal, and a modicum of concept supervision.
This substantially improves performance on past, future,
and OOD tasks sharing these concepts, as demonstrated in
Section 5. COOL works even if the knowledge K(t) changes
across tasks and new concepts appear over time: these can
be encoded as additional neural predicates in DeepProbLog,
and COOL will take care of remembering the known con-
cepts while leaving room to learn the new ones.

One limitation of COOL is that, in the general case, it re-
quires a handful of densely annotated examples. The same
requirement can be found in other settings where concept
quality is critical. For instance, concept supervision is key
in concept-based models – which strive to generate concept-
level explanations for their predictions – to ensure the ac-
quired concepts are interpretable (Koh et al., 2020; Chen
et al., 2020; Marconato et al., 2022b). It is also a prerequi-
site for guaranteeing that learned representations acquired
by general (deep) latent variable models are disentangled,
as shown theoretically (Locatello et al., 2019) and empiri-
cally (Locatello et al., 2020). We stress that concept supervi-
sion is not required if knowledge and data disallow shortcut
solutions, as is the case in MNAdd-Seq (see Section 5),
although it does help avoiding sub-optimal parameters even
in this case. If reasoning shortcuts are possible, however,
concept supervision becomes essential, because – by con-
struction – knowledge and labels alone are insufficient to
pin down the correct semantics, hindering concept quality.
Moreover, in many situations, annotating just some concepts
is sufficient to rule out reasoning shortcuts.

5. Empirical Evaluation
We address empirically the following research questions:

Q1: Does knowledge help to stabilize the continual learning
process and reduce the need for supervision?

Q2: Does COOL help avoid reasoning shortcuts when
knowledge alone fails, thus facilitating past and future
continual performance?

Q3: How much concept supervision does COOL need?

To answer these questions, we compared COOL against sev-
eral representative continual strategies on three novel and
challenging NeSy-CL benchmarks. Additional results and
details on data sets, metrics, and hyperparameters can be
found in the Appendices.

Data sets. Existing NeSy and CL benchmarks are designed
for offline settings or lack any sort of prior knowledge, re-
spectively. Hence, in order to evaluate COOL, we introduce
three novel NeSy-CL benchmarks specifically designed to
evaluate impact of knowledge, concept quality and robust-
ness to reasoning shortcuts, briefly described next.

5

Neuro-Symbolic Continual Learning

MNAdd-Seq is the problem introduced in Example 3.1 and
it is designed not to contain reasoning shortcuts. In short,
inputs x are pairs of MNIST (LeCun, 1998) digits labeled
with their sum y; each digit is mapped to a concept, and
K specifies that their sum must match the label. In each
task t = 0, . . . , 8 includes only examples with labels y ∈
{2 · t, 2 · t+1}, making this problem both label incremental
(only two out of 18 possible labels are observed per task)
and concept incremental (higher digits only appear in later
tasks, while lower digits disappear, see Appendix C). The
data set holds 42k training examples, of which we used 8.4k
for validation, and 6k test examples.

MNAdd-Shortcut is a simple two-task version of
MNIST-Addition used here to illustrate the impact of
reasoning shortcuts. The first task includes only even digits
and the second one only odd ones. In the first task we in-
clude 4 types of examples: (i) + = 6, (ii) + = 10,
(iii) + = 10, and (iv) + = 12. In the second task,
we allow all possible sums of odd digits { , , , , }.
As shown in Example 3.3 and further discussed in Ap-
pendix D, the four sums in the first task are not sufficient to
identify the correct digits, i.e., different shortcuts are possi-
ble. This data consists of 13.8k examples, 2.8k of which are
reserved for validation and 2k for testing. We also include
an additional OOD test set with 4k unseen combinations of
all concepts, like sums involving an odd and an even digit,
allowing us to probe the efficacy on a plausible future task.

CLE4EVR is a challenging new concept-incremental NeSy-
CL benchmark based on CLEVR (Johnson et al., 2017).
Inputs x are renderings of two randomly placed 3D objects
with several possible shapes, colors, materials, and sizes.
The goal is to predict whether the objects have the same
color, same shape, both, or neither. The knowledge simply
defines the three labels using four (one-hot encoded) con-
cepts encoding shape and color of the two objects. There
are 5 tasks. Objects in each task have only two colors out
of ten and two shapes out of ten, with no overlap between
tasks. Knowledge and labels allow for a large number of
reasoning shortcuts, as illustrated in Figure 1 and detailed
in Appendix D. To evaluate quality of learned concepts, we
also define an OOD test set containing unseen combinations
of training objects. Overall, the dataset contains almost 5.5k
training data, 500 data for validation and 2.5k data for test.

Metrics. We evaluate all models using common CL met-
rics (De Lange et al., 2021), namely class-incremental ac-
curacy (Class-IL) of labels Y and concepts C, and for-
ward transfer of labels (FWT). For MNAdd-Shortcut
and CLE4EVR we also measure label and concept accuracy
on the OOD test set.

Competitors. We compare COOL against the following
label-based continual strategies: NAÏVE fine-tunes the old
model on each new task without any continual strategy.

STRATEGY CLASS-IL Y (↑) CLASS-IL C (↑) FWT (↑)

C
B

M
@

1
0
%

NAÏVE 11.71 ± 0.8 36.2 ± 2.6 7.5 ± 0.3
RESTART 10.78 ± 0.1 29.7 ± 0.1 7.3 ± 0.2
LWF 18.08 ± 1.8 63.2 ± 4.4 −4.7 ± 1.1
EWC 11.57 ± 0.6 37.4 ± 0.6 7.6 ± 0.4
ER 13.29 ± 0.4 43.5 ± 2.0 13.4 ± 1.6
DER 18.63 ± 2.5 53.1 ± 1.7 15.7 ± 0.9
DER++ 18.17 ± 1.6 54.1 ± 3.0 16.6 ± 1.8
COOL 38.0 ± 1.9 78.1 ± 2.5 29.0 ± 4.8

D
E

E
P
P

R
O

B
L

O
G

NAÏVE 6.9 ± 0.2 6.7 ± 0.4 6.2 ± 0.2
RESTART 9.6 ± 0.3 0.2 ± 0.1 6.9 ± 0.8
LWF 6.8 ± 0.5 10.8 ± 4.6 18.3 ± 0.2
EWC 6.8 ± 0.4 7.8 ± 0.6 6.1 ± 0.3
ER 44.3 ± 9.7 62.0 ± 8.6 8.2 ± 4.1
DER 68.3 ± 9.4 81.3 ± 6.9 44.5 ± 23.7
DER++ 62.2 ± 5.4 77.1 ± 4.2 27.1 ± 5.2
COOL 71.9 ± 2.9 84.5 ± 1.9 83.2 ± 0.9

Table 1. Knowledge helps, and COOL helps even more. Top
block: results on MNAdd-Seq for all competitors + CBM with
10% concept supervision, averaged over 10 seeds. Bottom block:
same for DEEPPROBLOG with 0% supervision. COOL + Deep-
ProbLog outperforms the neural baseline (despite the gap in super-
vision) and the other continual strategies. The additional results in
Appendix E support these conclusions.

RESTART fits a model from scratch for each task, without
any continual strategy. RESTART and NAÏVE serve as base-
lines to quantify the impact of forgetting. LWF: Learning
without Forgetting (Li & Hoiem, 2017), a regularization
approach that performs knowledge distillation from the past
model. EWC: Elastic Weight Consolidation (Kirkpatrick
et al., 2017), a regularization approach that avoids drastic up-
dates to important parameters based on the Fisher values of
the previous model. ER: Experience Replay (Riemer et al.,
2019), a popular rehearsal approach that stores a random
selection of past examples and replays them when training
on the new task. DER: Dark Experience Replay (Buzzega
et al., 2020), a state-of-the-art rehearsal approach similar
to ER that stores and distills the logits of the past model.
DER++: an improvement of DER that also stores the true
label. We do not compare against prototype-based strategies,
like iCaRL (Rebuffi et al., 2017), because class prototypes
cannot be easily defined in structured representation spaces.
We also consider OFFLINE learning over the union of all
tasks as an ideal upper bound. COOL is implemented as
in Equation (7). Following DER, replay examples are se-
lected with reservoir sampling (Vitter, 1985), an efficient
incremental method for random sampling with uniformity
guarantees. All hyperparameters were chosen to optimize
last-task Class-IL on the validation labels.

Q1: Knowledge helps, COOL helps even more. We evalu-
ate the impact of knowledge on MNAdd-Seq, where short-
cuts are absent. Specifically, we evaluate different contin-
ual strategies paired with DeepProbLog (Manhaeve et al.,
2018) and Concept-bottleneck Models (CBMs) (Koh et al.,
2020). Both architectures extract concepts using a con-
volutional network, but differ in how they infer the label.
DeepProbLog uses a probabilistic-logic layer encoding the
available knowledge (see Section 2.2). CBMs aggregate

6

Neuro-Symbolic Continual Learning

CLASS-IL (Y) CLASS-IL (C) OOD ACCURACY (Y) PREDICTED CONCEPTS
M
N
A
d
d
-
S
h
o
r
t
c
u
t

G
R

O
U

N
D

-T
R

U
T

H

C
L
E
4
E
V
R

G
R

O
U

N
D

-T
R

U
T

H

Figure 2. COOL avoids shortcuts with few concept-annotated examples. (Left) Class-IL (on labels and concepts) and OOD accuracy
for DER and COOL on MNAdd-Shortcut (top) and CLE4EVR (bottom). The x-axis is the % of concept annotated examples per task.
(Right) Confusion matrices of shape (top) and color (bottom), computed on the last task of CLE4EVR, obtained by DeepProbLog
paired with COOL (in blue) vs. DER (in red) with 10% concept supervision. COOL is the only strategy that acquires and maintains the
intended semantics. The complete numerical results are reported in Appendix E.

the concepts using a learnable network independent of the
knowledge, and serve as a purely neural baseline. Addi-
tional architectural choices are reported in Appendix B. The
two models were trained for 25 epochs per task, using a
fixed buffer size of 1000, but received different amounts of
concept supervision: 10% for CBMs, which is enough to
learn the intended concepts in the offline setting, and none
for DeepProbLog.

The offline performance of CBM and DeepProbLog are
excellent, achieving around 96% label accuracy and 99%
concept accuracy, showing that both are capable of solving
the learning task. In the continual setting, however, the gap
between the neural and NeSy models widens noticeably.
The results are reported in Table 1. Despite DeepProbLog
being harder to learn than CBMs (as shown by RESTART
and NAÏVE), all replay strategies – i.e., ER, DER, DER++,
and COOL– perform much better when paired with Deep-
ProbLog than CBMs: remarkably, label Class-IL sees gains
close to 50% for DER, and similarly FWT for COOL. This
highlights the benefits of knowledge, which apply despite
DeepProbLog having access to no concept supervision. The
regularization strategies LWF and EWC are not informative,
as they struggle to improve on the NAÏVE and RESTART
baselines both with and without knowledge.6

Overall, Table 1 indicates that when reasoning shortcuts are
absent, knowledge facilitates identifying better concepts,
and thus better predictions. By retaining these concepts,
COOL manages to outperform all other competitors on both
CBMs and DeepProbLog. The runner-up, DER, keeps up

6The only exception is LWF on CBM, which displayed patho-
logical behavior, see Appendix E.

only when knowledge is available and with a substantial
margin in terms of FWT (45% vs. 83%). In contrast, even
though CBMs can acquire good concepts, this does not
always yield good predictions, chiefly because the top layer
undergoes forgetting, cf. Section 3.1. Thanks to knowledge,
DeepProbLog avoids this issue altogether.

Q2: COOL avoids reasoning shortcuts. Next, we
evaluate the impact of concept quality and rehearsal in
MNAdd-Shortcut and CLE4EVR, which are affected
by reasoning shortcuts. Given the sub-par performance
of CBMs, we focus on DeepProbLog from now on. Also,
we restrict our attention to COOL and DER, the runner up in
the previous experiment. Results for all other competitors
are available in Appendix E. For MNAdd-Shortcut we
set a buffer size of 1000 and 100 epochs per task, and to
250 examples and 50 epochs for CLE4EVR.

The results in Figure 2 shows that, when no concept su-
pervision is in place, the presence of shortcuts complicates
retaining the correct concepts, as displayed by low values of
Class-IL (C). This does not impact directly Class-IL (Y) in
the case of CLE4EVR, but yields extremely low OOD gen-
eralization, around 10% for MNAdd-Shortcut and 25%
for CLE4EVR. The effect on increasing concept supervision
on DER is only seemingly positive, as label accuracy does
improve in both data sets. However, Class-IL on concepts
(about 20–50%) and OOD accuracy (10%–30%) are very
poor, despite the supervision. What happens is precisely
the issue depicted in Figure 1: the model acquires good
concepts for one task, but – due to reasoning shortcuts and
lack of concept rehearsal – these get corrupted when fit-
ting on the next task. Since COOL retains the high quality

7

Neuro-Symbolic Continual Learning

concepts identified via supervision, the latter leads to clear
improvements in label accuracy, concept accuracy and OOD
accuracy for COOL. As a result, COOL improves on DER
by about +30% and +60% in terms of Class-IL (C) and
+40% and +60% in OOD, in the two data sets respectively.

We stress that label-based strategies inevitably fall for rea-
soning shortcuts even if concept supervision is provided.
This is clearly shown by the concept confusion matrices
reported in Figure 2 (right). Notice that, out of all strategies,
only COOL manages to prevent shortcuts. Further details
are available in Appendix E.

Q3: COOL requires minimal concept supervision. Fig-
ure 2 shows that COOL identifies high-quality concepts
when given dense annotations for only 1% of the train-
ing set. This translates to about 30 examples per task in
MNAdd-Shortcut, and to only 12 in CLE4EVR. Increas-
ing concept supervision to 10% improves Class-IL (C) by
3% and shrinks its variance, but 1% is enough to substan-
tially outperform DER in our tests.

6. Related Work
Neuro-symbolic integration. NeSy encompasses a di-
verse family of methods integrating learning and reason-
ing (De Raedt et al., 2021). Here, we focus on approaches
for encouraging neural networks to output structured predic-
tions consistent with prior knowledge.The two main strate-
gies introduce an additional loss penalizing inconsistent
predictions (Xu et al., 2018; Fischer et al., 2019; Ahmed
et al., 2022b) or a top reasoning layer (Manhaeve et al.,
2018; Giunchiglia & Lukasiewicz, 2020; Hoernle et al.,
2022; Ahmed et al., 2022a). Since the former cannot guar-
antee that the model outputs consistent predictions, we focus
on the latter. In either case, end-to-end training requires to
differentiate through the knowledge. One option is to soften
the knowledge using fuzzy logic (Diligenti et al., 2012;
Donadello et al., 2017), but doing so can introduce semantic
and learning artifacts (Giannini et al., 2018; van Krieken
et al., 2022a). An alternative is to cast reasoning in terms
of probabilistic logics (De Raedt & Kimmig, 2015), which
preserves semantics and allows for sound inference and
learning. DeepProbLog is just an example of Nesy strate-
gies (Manhaeve et al., 2021; Huang et al., 2021; Winters
et al., 2022; Ahmed et al., 2022a; van Krieken et al., 2022b).
All NeSy approaches are offline and suffer from catastrophic
forgetting, and existing continual strategies do not protect
them from reasoning shortcuts, as shown in Section 5. Since
these depend only on the latent nature of concepts, they af-
fect probabilistic-logic and fuzzy logic architectures alike.
COOL applies to all these, cf. Appendix A.4.

Continual Learning. CL algorithms attempt to pre-
serve model plasticity while mitigating catastrophic for-

getting (Robins, 1995) using a variety of techniques (van de
Ven et al., 2022; Qu et al., 2021). A first group of strate-
gies, like Experience Replay (Riemer et al., 2019) and
ER-ACE (Caccia et al., 2022), store and rehearse a limited
amount of examples from previous tasks. Doing so ignores
additional “dark knowledge” learned by the past model, so
techniques like DER (Buzzega et al., 2020), DER++, and
others (Rebuffi et al., 2017; Li & Hoiem, 2017; Castro et al.,
2018; Hou et al., 2019), drop rehearsal in favor of distilla-
tion. COOL follows the same strategy. Popular alternatives
include architectural approaches (Rusu et al., 2016), which
freeze or add model parameters as needed, and regulariza-
tion strategies (De Lange & Tuytelaars, 2021; Kirkpatrick
et al., 2017; Aljundi et al., 2018; Zenke et al., 2017). These
introduce extra penalties in the loss function to discourage
changing parameters essential for discriminating classes,
but can struggle with complex data (Aljundi et al., 2019).
To the best of our knowledge, CL has only been tackled
in flat prediction settings (e.g., classification), and existing
strategies focus on preserving label accuracy only. The only
work on forgetting in CBMs is (Marconato et al., 2022a),
which however ignores knowledge altogether.

Reasoning shortcuts. In machine learning, “shortcuts” re-
fer to models that exploit spurious correlations between in-
puts and annotations to achieve high training accuracy (Ross
et al., 2017; Lapuschkin et al., 2019). Proposed solutions in-
clude dense annotations (Ross et al., 2017), out-of-domain
data (Parascandolo et al., 2020), and interaction with an-
notators (Teso et al., 2022). Stammer et al. (2021) have
investigated shortcuts in NeSy and proposed to fix them
using knowledge, under the assumption that concepts are
high-quality. We make no such assumption. Our work is
the first to investigate reasoning shortcuts that knowledge
cannot always prevent and their preminence in NeSy-CL.

7. Conclusion
We initiated the study of Neuro-Symbolic Continual Learn-
ing and showed that knowledge, although useful, can be
insufficient to prevent acquiring reasoning shortcuts that
compromise concept semantics and cross-task transfer. Our
approach, COOL, acquires and preserves high-quality con-
cepts, attaining better concepts and performance than exist-
ing CL strategies in three new NeSy-CL benchmarks.

Acknowledgements
We acknowledge the support of the MUR PNRR project
FAIR - Future AI Research (PE00000013) funded by the
NextGenerationEU. The research of AP and ST was par-
tially supported by TAILOR, a project funded by EU Hori-
zon 2020 research and innovation program under GA No
952215. We acknowledge the CINECA award under the

8

Neuro-Symbolic Continual Learning

ISCRA initiative, for the availability of high performance
computing resources and support. The research of SC was
partially supported by Italian Ministerial grant PRIN 2020
“LEGO.AI: LEarning the Geometry of knOwledge in AI sys-
tems”, n. 2020TA3K9N. The research of EF was partially
supported by the European Union’s Horizon 2020 research
and innovation program DECIDER under Grant Agreement
965193. We acknowledge Angelo Porrello for his useful
discussion with us.

References
Ahmed, K., Teso, S., Chang, K.-W., Van den Broeck, G.,

and Vergari, A. Semantic Probabilistic Layers for Neuro-
Symbolic Learning. In NeurIPS, 2022a.

Ahmed, K., Wang, E., Chang, K.-W., and Van den Broeck,
G. Neuro-symbolic entropy regularization. In UAI,
2022b.

Aljundi, R., Babiloni, F., Elhoseiny, M., Rohrbach, M., and
Tuytelaars, T. Memory aware synapses: Learning what
(not) to forget. In Proceedings of the European Confer-
ence on Computer Vision (ECCV), September 2018.

Aljundi, R., Lin, M., Goujaud, B., and Bengio, Y. Gradi-
ent based sample selection for online continual learning.
Advances in neural information processing systems, 32,
2019.

Blender Online Community. Blender - a 3D modelling
and rendering package. Blender Foundation, Stichting
Blender Foundation, Amsterdam, 2018.

Boschini, M., Bonicelli, L., Buzzega, P., Porrello, A., and
Calderara, S. Class-incremental continual learning into
the extended der-verse. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 2022.

Buzzega, P., Boschini, M., Porrello, A., Abati, D., and
Calderara, S. Dark experience for general continual learn-
ing: a strong, simple baseline. Advances in neural infor-
mation processing systems, 33:15920–15930, 2020.

Caccia, L., Aljundi, R., Asadi, N., Tuytelaars, T., Pineau,
J., and Belilovsky, E. New insights on reducing abrupt
representation change in online continual learning. ICLR,
2022.

Castro, F. M., Marı́n-Jiménez, M. J., Guil, N., Schmid, C.,
and Alahari, K. End-to-end incremental learning. In
Proceedings of the European conference on computer
vision (ECCV), pp. 233–248, 2018.

Chen, Z., Bei, Y., and Rudin, C. Concept whitening for inter-
pretable image recognition. Nature Machine Intelligence,
2020.

Choi, Y., Vergari, A., and Van den Broeck, G. Probabilistic
circuits: A unifying framework for tractable probabilistic
models. UCLA, 2020.

Darwiche, A. and Marquis, P. A knowledge compilation
map. Journal of Artificial Intelligence Research, 17:229–
264, 2002.

De Lange, M. and Tuytelaars, T. Continual prototype evolu-
tion: Learning online from non-stationary data streams.
In Proceedings of the IEEE/CVF International Confer-
ence on Computer Vision, pp. 8250–8259, 2021.

De Lange, M., Aljundi, R., Masana, M., Parisot, S., Jia, X.,
Leonardis, A., Slabaugh, G., and Tuytelaars, T. A contin-
ual learning survey: Defying forgetting in classification
tasks. PAMI, 2021.

De Raedt, L. and Kimmig, A. Probabilistic (logic) program-
ming concepts. Machine Learning, 2015.

De Raedt, L., Dumančić, S., Manhaeve, R., and Marra, G.
From statistical relational to neural-symbolic artificial
intelligence. In Proceedings of the Twenty-Ninth Interna-
tional Conference on International Joint Conferences on
Artificial Intelligence, pp. 4943–4950, 2021.

Diligenti, M., Gori, M., Maggini, M., and Rigutini, L. Bridg-
ing logic and kernel machines. Machine learning, 86(1):
57–88, 2012.

Donadello, I., Serafini, L., and Garcez, A. D. Logic tensor
networks for semantic image interpretation. In IJCAI,
2017.

Fischer, M., Balunovic, M., Drachsler-Cohen, D., Gehr, T.,
Zhang, C., and Vechev, M. Dl2: Training and querying
neural networks with logic. In International Conference
on Machine Learning, pp. 1931–1941. PMLR, 2019.

Giannini, F., Diligenti, M., Gori, M., and Maggini, M. On a
convex logic fragment for learning and reasoning. IEEE
Transactions on Fuzzy Systems, 2018.

Giunchiglia, E. and Lukasiewicz, T. Coherent hierarchical
multi-label classification networks. NeurIPS, 2020.

Gruber, T. R. Toward principles for the design of ontologies
used for knowledge sharing? International journal of
human-computer studies, 43(5-6):907–928, 1995.

Hoernle, N., Karampatsis, R. M., Belle, V., and Gal, K.
Multiplexnet: Towards fully satisfied logical constraints
in neural networks. In AAAI, 2022.

Hou, S., Pan, X., Loy, C. C., Wang, Z., and Lin, D. Learn-
ing a unified classifier incrementally via rebalancing. In
Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 831–839, 2019.

9

Neuro-Symbolic Continual Learning

Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang,
W., Weyand, T., Andreetto, M., and Adam, H. Mobilenets:
Efficient convolutional neural networks for mobile vision
applications. ArXiv, abs/1704.04861, 2017.

Huang, J., Li, Z., Chen, B., Samel, K., Naik, M., Song,
L., and Si, X. Scallop: From probabilistic deductive
databases to scalable differentiable reasoning. NeurIPS,
2021.

Huszár, F. Note on the quadratic penalties in elastic weight
consolidation. Proceedings of the National Academy of
Sciences, 115(11):E2496–E2497, 2018.

Johnson, J., Hariharan, B., Van Der Maaten, L., Fei-Fei, L.,
Lawrence Zitnick, C., and Girshick, R. Clevr: A diag-
nostic dataset for compositional language and elementary
visual reasoning. In CVPR, 2017.

Kambhampati, S., Sreedharan, S., Verma, M., Zha, Y., and
Guan, L. Symbols as a Lingua Franca for Bridging
Human-AI Chasm for Explainable and Advisable AI Sys-
tems. In Proceedings of Thirty-Sixth AAAI Conference
on Artificial Intelligence (AAAI), 2022.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. In Bengio, Y. and LeCun, Y. (eds.), 3rd
International Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Confer-
ence Track Proceedings, 2015.

Kirkpatrick, J., Pascanu, R., Rabinowitz, N., Veness, J., Des-
jardins, G., Rusu, A. A., Milan, K., Quan, J., Ramalho, T.,
Grabska-Barwinska, A., et al. Overcoming catastrophic
forgetting in neural networks. Proceedings of the national
academy of sciences, 114(13):3521–3526, 2017.

Koh, P. W., Nguyen, T., Tang, Y. S., Mussmann, S., Pierson,
E., Kim, B., and Liang, P. Concept bottleneck models. In
ICML, 2020.

Lapuschkin, S., Wäldchen, S., Binder, A., Montavon, G.,
Samek, W., and Müller, K.-R. Unmasking clever hans pre-
dictors and assessing what machines really learn. Nature
communications, 10(1):1–8, 2019.

LeCun, Y. The mnist database of handwritten digits.
http://yann. lecun. com/exdb/mnist/, 1998.

Li, Z. and Hoiem, D. Learning without forgetting. IEEE
transactions on pattern analysis and machine intelligence,
2017.

Li, Z. and Søgaard, A. Qlevr: A diagnostic dataset for quan-
tificational language and elementary visual reasoning. In
Findings of NAACL, 2022.

Locatello, F., Bauer, S., Lucic, M., Raetsch, G., Gelly, S.,
Schölkopf, B., and Bachem, O. Challenging common
assumptions in the unsupervised learning of disentangled
representations. In ICML, 2019.

Locatello, F., Tschannen, M., Bauer, S., Rätsch, G.,
Schölkopf, B., and Bachem, O. Disentangling factors
of variations using few labels. In International Confer-
ence on Learning Representations, 2020.

Manhaeve, R., Dumancic, S., Kimmig, A., Demeester, T.,
and De Raedt, L. DeepProbLog: Neural Probabilistic
Logic Programming. NeurIPS, 2018.

Manhaeve, R., Marra, G., and De Raedt, L. Approximate
inference for neural probabilistic logic programming. In
KR, 2021.

Marconato, E., Bontempo, G., Teso, S., Ficarra, E., Calder-
ara, S., and Passerini, A. Catastrophic forgetting in con-
tinual concept bottleneck models. In Image Analysis and
Processing. ICIAP 2022 Workshops: ICIAP International
Workshops, Lecce, Italy, May 23–27, 2022, Revised Se-
lected Papers, Part II, pp. 539–547. Springer, 2022a.

Marconato, E., Passerini, A., and Teso, S. Glancenets: In-
terpretabile, leak-proof concept-based models. NeurIPS,
2022b.

Misino, E., Marra, G., and Sansone, E. VAEL: Bridging
Variational Autoencoders and Probabilistic Logic Pro-
gramming. NeurIPS, 2022.

Parascandolo, G., Neitz, A., ORVIETO, A., Gresele, L., and
Schölkopf, B. Learning explanations that are hard to vary.
In International Conference on Learning Representations,
2020.

Parisi, G. I., Kemker, R., Part, J. L., Kanan, C., and Wermter,
S. Continual lifelong learning with neural networks: A
review. Neural Networks, 113:54–71, 2019.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,
L., et al. Pytorch: An imperative style, high-performance
deep learning library. Advances in neural information
processing systems, 32, 2019.

Qu, H., Rahmani, H., Xu, L., Williams, B., and Liu, J.
Recent advances of continual learning in computer vision:
An overview. arXiv preprint arXiv:2109.11369, 2021.

Rebuffi, S.-A., Kolesnikov, A., Sperl, G., and Lampert, C. H.
icarl: Incremental classifier and representation learning.
In Proceedings of the IEEE conference on Computer
Vision and Pattern Recognition, pp. 2001–2010, 2017.

10

Neuro-Symbolic Continual Learning

Ren, S., He, K., Girshick, R., and Sun, J. Faster r-cnn:
Towards real-time object detection with region proposal
networks. Advances in neural information processing
systems, 28, 2015.

Riemer, M., Cases, I., Ajemian, R., Liu, M., Rish, I., Tu, Y.,
and Tesauro, G. Learning to learn without forgetting by
maximizing transfer and minimizing interference. 2019.

Robins, A. Catastrophic forgetting, rehearsal and pseudore-
hearsal. Connection Science, 1995.

Ross, A. S., Hughes, M. C., and Doshi-Velez, F. Right for
the right reasons: training differentiable models by con-
straining their explanations. In Proceedings of the 26th
International Joint Conference on Artificial Intelligence,
pp. 2662–2670, 2017.

Rost, B., Liu, J., Nair, R., Wrzeszczynski, K. O., and Ofran,
Y. Automatic prediction of protein function. Cellular
and Molecular Life Sciences CMLS, 60(12):2637–2650,
2003.

Rusu, A. A., Rabinowitz, N. C., Desjardins, G., Soyer, H.,
Kirkpatrick, J., Kavukcuoglu, K., Pascanu, R., and Had-
sell, R. Progressive neural networks. arXiv preprint
arXiv:1606.04671, 2016.

Stammer, W., Schramowski, P., and Kersting, K. Right for
the Right Concept: Revising Neuro-Symbolic Concepts
by Interacting with their Explanations. In Proceedings
of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 3619–3629, 2021.

Teso, S., Alkan, Ö., Stammer, W., and Daly, E. Lever-
aging explanations in interactive machine learning: An
overview. arXiv preprint arXiv:2207.14526, 2022.

van de Ven, G. M., Tuytelaars, T., and Tolias, A. S. Three
types of incremental learning. Nature Machine Intelli-
gence, pp. 1–13, 2022.

van Krieken, E., Acar, E., and van Harmelen, F. Analyzing
differentiable fuzzy logic operators. Artificial Intelli-
gence, 2022a.

van Krieken, E., Thanapalasingam, T., Tomczak, J. M., van
Harmelen, F., and Teije, A. t. A-nesi: A scalable approxi-
mate method for probabilistic neurosymbolic inference.
arXiv preprint arXiv:2212.12393, 2022b.

Vergari, A., Choi, Y., Liu, A., Teso, S., and Van den Broeck,
G. A compositional atlas of tractable circuit operations for
probabilistic inference. Advances in Neural Information
Processing Systems, 34, 2021.

Vitter, J. S. Random sampling with a reservoir. ACM
Transactions on Mathematical Software (TOMS), 11(1):
37–57, 1985.

Winters, T., Marra, G., Manhaeve, R., and De Raedt, L.
DeepStochLog: Neural Stochastic Logic Programming.
In AAAI, 2022.

Wu, Y., Chen, Y., Wang, L., Ye, Y., Liu, Z., Guo, Y., and Fu,
Y. Large scale incremental learning. In CVPR, 2019.

Xu, J., Zhang, Z., Friedman, T., Liang, Y., and Broeck, G.
A semantic loss function for deep learning with symbolic
knowledge. In ICML, 2018.

Xu, Y., Yang, X., Gong, L., Lin, H.-C., Wu, T.-Y., Li, Y.,
and Vasconcelos, N. Explainable object-induced action
decision for autonomous vehicles. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 9523–9532, 2020.

Zenke, F., Poole, B., and Ganguli, S. Continual learning
through synaptic intelligence, 2017.

11

Neuro-Symbolic Continual Learning

A. Proofs
A.1. Proof of Theorem 3.2

Taking Equation (5) as reference, the log-likelihood of D can be rewritten as:∑
(x,y)∈D

log pθ(y | x;K) =
∑

(x,y)∈D

log ⟨uK(y | ·), pθ(· | x)⟩ (8)

Here, the inner product runs over all possible values of c. To see what the optima of this quantity look like, fix a single
example (x,y) ∈ D and let Cy be the set of values c that satisfy the knowledge K[Y/y] and Cȳ be those that violate the
knowledge. The likelihood of (x,y) amounts to:

⟨uK(y | ·), pθ(· | x)⟩ =
∑
c∈Cy

uK(y | c)pθ(c | x) +
∑
c∈Cȳ

uK(y | c)︸ ︷︷ ︸
=0

pθ(c | x) (9)

The inner product is maximized whenever pθ(C | x) allocates all probability mass to values c that satisfy K[Y/y], because
the remaining ones do not contribute anything to the likelihood. Hence, in order to maximize Equation (8) it is sufficient that,
for every (x,y) ∈ D, pθ(C | x) assigns zero probability to all concept configurations c that are ruled out by the knowledge
K[Y/y].

□

Remarks: This result essentially states that DeepProbLog’s reasoning layer has the same effect as the Semantic Loss (Xu
et al., 2018) on the underlying neural network, and it is of independent interest. Notice that Theorem 3.2 also holds for
non-uniform label distributions without any change to the proof.

A.2. Proof of Theorem 4.1

We start by proving a general lemma:

Lemma A.1. Consider tasks T 1, . . . , T (t) and two parameter configurations φ,ψ ∈ Θ. If both models assign non-zero
likelihood to all examples in D1:t, there exists a finite constant γ, depending only on the model architecture, knowledge and
data, such that:

|L(φ, T 1:t)− L(ψ, T 1:t)| ≤ γ
∑
s≤t

∑
(x,y)∈D(s)

∥pφ(C | x)− pψ(C | x)∥1 (10)

Proof. The left-hand side can be expanded to:

1

t

∣∣∣∣∣∣
∑
s≤t

1

|D(s)|
∑

(x,y)∈D(s)

(
log pφ(y | x;K(s))− log pψ(y | x;K(s))

)∣∣∣∣∣∣ (11)

≤ 1

t

∑
s≤t

1

|D(s)|
∑

(x,y)∈D(s)

∣∣∣log pφ(y | x;K(s))− log pψ(y | x;K(s))
∣∣∣ (12)

Recall that, for any a, b ∈ [β,∞], it holds that | log a− log b| ≤ 1
β |a− b|. For any (x,y) and task s ≤ t, it holds that:

| log pφ(y | x;K(s))− log pψ(y | x;K(s))| ≤ 1

β

∣∣pφ(y | x;K(s))− pψ(y | x;K(s))
∣∣ (13)

=
1

β

∣∣⟨uK(s)(y | ·), pφ(· | x)− pψ(· | x)⟩
∣∣ ≤ 1

β
∥uK(s)(y | ·)∥∞ · ∥pφ(· | x)− pψ(· | x)∥1 (14)

The first step follows by choosing β := min(x,y)∈D1:t minθ∈{φ,ψ} pθ(y | x;K(s)) > 0, the second one from Equation (5),
and the last one from Hölder’s inequality. By Equation (4), the max norm of uK(s) amounts to:

∥uK(s)(y | ·)∥∞ = max
c

1
{
(c,y) |= K(s)

}
Z(c;K(s))

=
1

minc Z(c;K(s))
≤ 1

ζ
≤ 1 (15)

12

Neuro-Symbolic Continual Learning

where we chose ζ = minc mins≤t Z(c;K
(s)). Therefore,

1

β
∥uK(s)(y | ·)∥∞ · ∥pφ(· | x)− pψ(· | x)∥1 ≤ 1

βζ
∥pφ(· | x)− pψ(· | x)∥1 (16)

Taking γ = maxs
1

βζ|D(s)|t and replacing the above in Equation (12) yields the claim.

In order to prove Theorem 4.1, let θ(t−1) be the parameters learned after observing t− 1 tasks and θ to be learned at the
current iteration. Applying Lemma A.1 with φ = θ(t−1) and ψ = θ to Equation (3) yields the desired result.

Remark: In the worst case ζ can be as small as 1, which occurs if in all tasks s ≤ t the knowledge K(s) accepts a single
concept configuration c for every example (x,y); more commonly, ζ is exponential in the number of concepts k. Also, β,
which is the minimum likelihood attained by either pφ or pψ on the data sets D(1), . . . ,D(t), is actively maximized during
learning.

A.3. What Are Correct Semantics?

Strictly speaking, the only concept distribution with the actual correct semantics is the ground-truth distribution p(C | x).

Our assumption is that the ground-truth concept distribution we are given is always consistent with the knowledge, in the
sense that p(C | x) |= K(t)[X/x,Y/y] for every possible task T (t) = (D(t),K(t)) and example (x,y) ∈ D(t). In other
words, we assume that the knowledge correctly reflects how the world works. Under this assumption, having the correct
semantics is useful in practice because, when paired with the knowledge, the ground-truth distribution by construction always
yields correct labels in every possible task the learner can in principle receive. This is a form of systematic generalization.

Naturally, if the learned distribution pθ(C | x) matches the ground-truth distribution exactly, then it will also achieve
systematic generalization. This condition, however, is very restrictive. Pragmatically, we can relax this requirement, and
say that a distribution encodes the correct semantics if it is indistinguishable from the ground-truth distribution in terms
of what concepts it predicts. Formally, we say that a distribution pθ(C | x) is semantically equivalent to the ground-truth
distribution on data D if it allows us to infer the same concept configuration for all data points, or formally:

∀x ∈ D . argmax
c

p(c | x) ≡ argmax
c

pθ(c | x) (17)

where we used ≡ to indicate set equivalence. This is quite intuitive: any distribution satisfying Equation (17) will yield the
same concepts c as p(C | x) for every x, and therefore also the same MAP states y under any choice of knowledge K.

The opposite is not generally true: the knowledge K might have multiple possible solutions, in the sense that different
choices of concepts c might yield the same label y. In this case, the label does not carry enough information to recover the
ground-truth concepts argmaxc p(c | x), and therefore also a concept distribution pθ(C | x) semantically equivalent to
p(C | x). This is exactly what we mean by reasoning shortcuts: concept distributions that achieve high performance on the
observed task(s) but have no guarantee of systematically generalizing to future tasks, or more formally:

argmax
y

p(y | x;K) ≡ argmax
y

pθ(y | x;K) ∧ argmax
c

p(c | x) ̸≡ argmax
c

pθ(c | x) (18)

A.4. Reasoning Shortcuts in other NeSy Architectures

While Theorem 3.2 shows that reasoning shortcuts do affect DeepProbLog, which maximizes for label likelihood, we remark
that they are a general phenomenon. It is easy to see that reasoning shortcuts occur whenever the prior knowledge admits
deducing the correct label y from concepts c that do not have the correct semantics, as this makes it is impossible for a
model to distinguish between concepts with “correct” vs. “incorrect” semantics by maximizing accuracy alone. This impacts
offline NeSy prediction tasks and NeSy-CL problems alike; indeed, Theorem 3.2 makes no assumption on how the training
set D has been generated.

Reasoning shortcuts are not specific to DeepProbLog. On the contrary, this situation can be triggered by a variety of other
NeSy architectures, including but not limited to:

(i) NeSy predictors that rely on a top reasoning layer to ensure predictions are consistent with prior knowledge, which
are typically trained to maximize some surrogate of the label accuracy, including (Ahmed et al., 2022a; Giunchiglia &
Lukasiewicz, 2020; Hoernle et al., 2022; Huang et al., 2021; Winters et al., 2022; van Krieken et al., 2022b).

13

Neuro-Symbolic Continual Learning

(ii) NeSy predictors that rely on relaxed reasoning layers obtained by softening the logical prior knowledge (Diligenti et al.,
2012; Donadello et al., 2017), because this transformation usually preserves existing optima of the label accuracy. As
such, it also preserves unintended optima – that is, reasoning shortcuts.

(iii) Neural networks trained to maximize accuracy and consistency with prior knowledge using the Semantic Loss and similar
techniques (Xu et al., 2018; Fischer et al., 2019; Ahmed et al., 2022b). In fact, Theorem 3.2 shows that DeepProbLog is
affected by shortcuts precisely because, from the neural network’s perspective, its reasoning layer acts exactly like the
Semantic Loss; see our remark in Appendix A.

More generally, reasoning shortcuts impact NeSy tasks and architectures beyond these, at least as long as models are trained
by optimizing loss functions that do not measure or correlate with concept quality. We leave a detailed analysis of specific
cases to future work.

B. Implementation Details
In this Section, we report useful details for the models and the metrics adopted in the evaluation.

B.1. Hardware and Software Implementation

The code for the project was developed on top mammoth (Boschini et al., 2022), a well-known CL framework. We included
the implementation of DeepProbLog for MNIST-Addition from VAEL (Misino et al., 2022). The generation of CLE4EVR
was adapted from (Stammer et al., 2021). All experiments were implemented using Python 3 and Pytorch (Paszke et al.,
2019) and run on a server with 128 CPUs, 1TiB RAM, and 8 A100 GPUs.

B.2. Metrics

We adopted standard CL measures, namely task-incremental (Task-IL) and class-incremental (Class-IL) accuracy, applied
here to both labels and concepts predictions, as well as forward transfer (FWT) and backward transfer (BWT) on the labels,
see also (Buzzega et al., 2020). Below we write T to indicate the last task.

• Class-IL measures the average accuracy on the test sets of all tasks T . In Table 1, we report Class-IL at the very last
task T , defined as:

CLASS-ILY(θT) =
1

T

T∑
s=1

AY(θT , s) (19)

where AY(θt, s) denotes the accuracy on the labels evaluated on the test set of task s. Class-IL for concepts is
analogous, but builds on the average accuracy over all concepts.

• Task-IL is the average accuracy over the test sets of all tasks up to t, evaluated only on examples annotated with the
classes or concepts appearing in task t. The definition is identical to Equation (19) except that we mask the prediction
of model so as to place mass only on the labels appearing in Ds, with s ≤ t.

• FWT evaluates the adaptability of the model at each time-step to the successive task. Formally, at each t, FWT
measures the average gain in accuracy between θt and a random baseline θrand when predicting the labels of the task
t+ 1. This can be written as:

FWT =
1

T − 1

T−1∑
t=1

AY(θt, t+ 1)−AY(θrand, t+ 1) (20)

where θrand denotes the initialized model with random weights.

• BWT measures how much forgetting the model undergoes by looking at how much accuracy for each task t is retained
after the last task. Formally:

BWT =
1

T

T∑
t=1

AY(θt, t)−AY(θT , t) (21)

14

Neuro-Symbolic Continual Learning

For the sake of brevity, in the main paper we reported only Class-IL on labels and concepts, and FWT. Task-IL was omitted
because it does not account for accuracy on past concepts that no longer occur in the last task, and BWT because it does not
as informative as Class-IL. All results for these extra metrics on MNAdd-Seq are reported in Appendix E.

B.3. Architectures & Models Details

MNIST-Addition: For both CBMs and DeepProbLog we adopted the same architecture for extracting concepts –
henceforth, encoder – and we implemented it as a standard convolutional neural network, with dropout set at 50% after each
convolution module. We also inject a noise term ϵ ∼ N (0, 0.1) after the encoder to stabilize the overall training process.
The complete structure is reported in Table 2.

Table 2. CNN Encoder for MNIST-Addition
INPUT SHAPE LAYER TYPE PARAMETERS ACTIVATION

(28, 28, 1) Convolution depth=64, kernel=4, stride=2, padding=1 ReLU
(14, 14, 64) Dropout p = 0.5
(14, 14, 64) Convolution depth=128, kernel=4, stride=2, padding=1 ReLU
(7, 7, 128) Dropout p = 0.5
(7, 7, 128) Convolution depth=256, kernel=4, stride=2, padding=1 ReLU
(3, 3, 256) Flatten
(2304) Linear dim=10, bias = True

In both CBMs and DeepProbLog, each input digit x(i) is predicted independently and mapped to a 10-dimensional
bottleneck z(i). Then, the two encodings are stacked together, obtaining the overall representation z = (z(1), z(2)).

The classifier (top layer) of the CBM is designed to predict the sum the z(1) and z(2). A simple linear layer, which is the
standard choice in CBM (Koh et al., 2020), is insufficient to successfully address the task. Therefore, we implemented the
classifier via a bi-linear operation on the encodings, i.e.,:

pθ(y|z(1), z(2)) = softmax
(
z(1) ·W yz(2)

)
where W y is a learnable class-specific 10× 10 tensor of real entries, and the softmax is over all classes y ∈ {0, . . . , 17}.

Conversely, the reasoning (top) layer of DeepProbLog is implemented as in Equation (5). Specifically, each z(i) encodes the
logits of the probability pθ(Ci|x(i)) for the i-th digit, which we convert into a categorical probability distribution through a
softmax activation.

CLE4EVR: In a first step, we used Faster-RCNN (Ren et al., 2015) to extract the bounding boxes associated to objects in all
images. The bounding box predictor is a pretrained MobileNet (Howard et al., 2017) fine-tuned on training images from the
first task only, using the ground-truth bounding boxes of CLE4EVR images. The bounding box predictor is kept frozen in
all successive tasks. We discarded all examples xi with less than 2 predicted bounding boxes. Concept supervision was
transferred from the ground-truth bounding boxes to the predicted ones based on overlap.

We scale each predicted bounding box to an image of size 28×28×3 which is then passed to the encoder, implemented once
again using a CNN with dropout with p = 50% after each convolution layer and normal noise ϵ ∼ N (0, 0.1) added to the
final output. The architecture is the same as in Table 2, except that the input has depth 3 instead of 1 and that the bottleneck
is 20-dimensional, with 10 dimensions allocated for the shape and 10 for the color of the input object, each with its own
softmax to produce shape and color probability distributions. The DeepProbLog reasoning layer is as in Equation (5).

During inference, the prediction returns invalid (⊥) whenever the number of predicted bounding boxes is less than 2. We
counted invalid predictions as wrong predictions in all metrics evaluated in the test set.

B.4. Hyper-parameter Selection

All continual strategies have been trained with the same number of epochs and buffer dimension. The actual values depend
on the specific benchmark: 25 epochs per task and a buffer size of 1000 examples for MNAdd-Seq, 100 epochs and
1000 examples for MNAdd-Shortcut, and 50 epochs each task and 250 examples for CLE4EVR. In all experiments, we
employed the Adam optimizer (Kingma & Ba, 2015) combined with exponential decay (γ = 0.95). The initial learning rate
is restored at the beginning of a new task.

15

Neuro-Symbolic Continual Learning

For each data set, we optimized the weight of the concept supervision wc based on the Class-IL (Y) performance of ER
using grid-search on the validation set (union of all tasks). Then, for each strategy, we selected the best learning rate and
strategy-specific hyperparameters through a grid-search on the validation set, so as to optimize Class-IL (Y) on a single
random seed. The learning rate was chosen from the range of [10−5, 10−2]. The exact values can be found in the source
code.

C. NeSy-CL Benchmarks
In this section, we provide a more detailed description of the benchmarks introduced in Section 5.

C.1. MNAdd-Seq

We derived MNAdd-Seq from the MNIST-Addition data set of Manhaeve et al. (2018). Here, the knowledge encodes
the following constraint:

K = ∀c1, c2 ∈ {0, . . . , 9} (C1 = c1 ∧ C2 = c2) =⇒ Y = (c1 + c2) (22)

for a total of 19 possible sums. MNAdd-Seq is both label-incremental and concept-incremental; in each task only two
possible sums appear, obtaining in total 9 tasks. Specifically:

Task 1: Y ∈ {0, 1} and C ∈ { , };

Task 2: Y ∈ {2, 3} and C ∈ { , , , };

Task 3: Y ∈ {4, 5} and C ∈ { , , , , , };

Task 4: Y ∈ {6, 7} and C ∈ { , , , , , , , };

Task 5: Y ∈ {8, 9} and C ∈ { , , , , , , , , , };

Task 6: Y ∈ {10, 11} and C ∈ { , , , , , , , , };

Task 7: Y ∈ {12, 13} and C ∈ { , , , , , , };

Task 8: Y ∈ {14, 15} and C ∈ { , , , , };

Task 9: Y ∈ {16, 17} and C ∈ { , , };

In total, the data set counts 42k training and 6k test examples.

C.2. MNAdd-Shortcut

This benchmark is a case-study composed of two task, built considering the following constraints:

• In the first task, we present only even digits and four possible sums: (i) + = 6, (ii) + = 10, (iii) + = 10,
and (iv) + = 12.

• In the second task, only odd numbers are considered, i.e., C ∈ { , , , , }, and all their possible sums.

The rationale behind this construction is that it makes it possible to satisfy the knowledge in both tasks by leveraging
reasoning shortcuts, and specifically those described in Appendix D.

The overall data set contains 13.8k training examples and 2k test data. We also collected an OOD test set containing
examples not appearing in the training, validation and test sets, which comprise sums of odd and even digits, e.g., + = 1,
and unseen combinations of even numbers, e.g., + = 16.

16

Neuro-Symbolic Continual Learning

TASK= 0 TASK = 1 TASK=2 TASK=3 TASK=4

Figure 3. Examples images for each tasks in the CLE4EVR benchmark.

C.3. CLE4EVR

Following Stammer et al. (2021), the CLE4EVR data set was generated using Blender (Blender Online Community, 2018),
using additional objects from (Li & Søgaard, 2022) as well as three custom shapes.

We generated different objects with 10 possible shapes and colors, and with 2 free variations on material {rubber, metal}
and size {small, big}, that play no role in determining the label. Each image is of size 256× 430× 3, and contains two
non-overlapping objects over a light-gray background.

Table 3 reports what combinations of objects appear in each task. All tasks are composed of 1.1k training examples, 100
validation examples, and 500 test examples. Each task includes only two possible shapes (out of ten) and two colors (out of
ten), without any overlap between tasks. An illustration is given in Figure 3.

The knowledge K = K′ ∧ K′′ ∧ K′′′ encodes the following constraints:

K′ = (Cshape,1 = Cshape,2) ⇐⇒ same shape (23)
K′′ = (Ccolor,1 = Ccolor,2) ⇐⇒ same color (24)
K′′′ = (same shape ∧ same color) ⇐⇒ same (25)

with three output variables Y1 = same shape, Y2 = same color and Y3 = same, giving rise to four mutually exclusive
classes: 0 = different shape and color, 1 = same shape and different color, 2 = different shape and same color, 3 = same
shape and same color.

We also generated an additional OOD test set, comprising 300 images depicting unseen combination of training objects, e.g.,
redsquares and pinkdiamonds (which occur in none of the tasks). All OOD examples all have label Y = (0, 0, 0).

All generated images come with ground-truth bounding boxes annotated with the properties (i.e., concepts) of the objects
they contain, as well as annotations for Y1, Y2, and Y3. The concept annotations are transferred to the bounding boxes
predicted by Faster R-CNN during pre-processing, cf. Appendix B.

Table 3. Task Organization in CLE4EVR

TASK COLORS SHAPES

1 red, gray sphere, cube
2 green, blue cylinder, tetrahedron
3 brown, purple cone, triangular prism
4 yellow, cyan pyramid, toroid
5 orange, pink diamond, star prism

17

Neuro-Symbolic Continual Learning

OFFLINE @ 0% REPLAY METHODS @ 10%

Figure 4. Confusion matrices of the learned concepts at the end of the very last task, for a single run. Left: The confusion matrix on
concepts for OFFLINE without concept supervision. It shows that it is very likely to opt for a reasoning shortcut. Right: Confusion
matrices on a single run for all replay-based methods. Here, COOL is pictured in red, while DER, DER++, and ER in shades of blue. Only
COOL retains the correct semantics of the concepts, whereas the other replay methods are very likely to pick the shortcut of OFFLINE.

D. Shortcut Solutions in MNAdd-Shortcut and CLE4EVR
In this section, we provide a more detailed account on the shortcut solutions for the continual scenarios introduced.

D.1. Reasoning Shortcuts Due to Low-Level Correlations

Before proceeding, we observe that simply predicting multiple concepts jointly by a single neural network is sufficient to
enable reasoning shortcuts. Intuitively, this happens because, since the network has access to all properties of all objects, it
can automatically exploit correlations between them to satisfy the knowledge without the need for extracting any “proper”
concepts. For instance, in MNIST-Addition the knowledge can simply group pairs of digits (both of which it has access
to) into two single combinations of concepts that always yield the right labels. To see this, consider the following example:
Example D.1. Consider a single MNIST-Addition task consisting of digits summing to either 2 or 3. By Theorem 3.2,
Θ∗(K,D) contains φ with pφ(C | x) ̸≡ p(C | x), such that:

pφ(C1 | x) = 1{C1 = 2}

pφ(C2 | x) =

{
1{C2 = 0} if x = (,) or (,)

1{C2 = 1} otherwise

This distribution fits the data perfectly and is consistent with the knowledge, and thus cannot be distinguished from the
ground-truth distribution based on likelihood alone.

Notice that the two learned concepts ignore the value of the individual digits, and rather depend on the correlation between
them. in MNIST-Addition, it is straightforward to avoid this situation by construction by simply processing the two
digits independently. The same can be done when processing objects in CLE4EVR. This partially motivates our choice of
neural architecture, described in Appendix B. More precisely, in MNIST-Addition the adopted architecture factorizes
the joint probability distribution on the concepts in:

p(c1, c2|x(1),x(2)) = p(c1|x(1)) · p(c2|x(2)) (26)

While this is sufficient to guarantee independence among distinct objects, the prior knowledge can still admit reasoning
shortcuts. Next, we describe the concrete reasoning shortcuts appearing in MNAdd-Shortcut and CLE4EVR.

D.2. Shortcuts in MNAdd-Shortcut

In order to understand reasoning shortcuts in MNAdd-Shortcut, it is useful to view the sums as constraints on the possible
values attributed to each concept Cj . From this perspective, reasoning shortcuts occur whenever the combinations of digits
present in the training data (which are five in each task) are insufficient to uniquely determine the four possible sums.

18

Neuro-Symbolic Continual Learning

In particular, the problem of assigning the intended semantics of each learned concept can be expressed as a system of 4
linear equations with 5 variables, which in task 1 of MNAdd-Seq can be written as:

c0 + c6 = 6

c4 + c6 = 10

c2 + c8 = 10

c4 + c8 = 12

(27)

The first equation states that whatever values are assigned to the concepts that fire when a and a are present in the input
x, have to satisfy the condition that their sum is 6 (in all examples in which they appear). It should be clear that the linear
system is undetermined and infinitely many real solutions can be found for ci, all of which except one do not capture the
intended semantics of digits.

One of these unintended solutions is very often picked by label-replay strategies. Specifically, the input can be easily
confused for a 9, due to input similarity, which brings the model towards the assignment c4 = 9. This immediately yields
the following unintentional mappings for all other digits: c0 = 5, c2 = 7, c6 = 1, and c8 = 3. This reasoning shortcut is
often found when training offline on this task and also when training on both tasks of MNAdd-Shortcut, as done in our
experiments, by ER, DER, and DER++, as shown in Figure 4.

D.3. Shortcuts in CLE4EVR

Several shortcut exist in CLE4EVR. Recall that:

• CLE4EVR is composed of 5 tasks, with four possible outcomes (different objects, same shapes, same colors, and same
objects).

• In each task only two possible shapes and colors are observed, and are never seen again in other tasks.

In order to correctly classify the same color and same shape labels, the model must acquire at least two distinct concepts
for shape and two distinct concepts for colors in each task, but the knowledge provides little guidance as to which shapes or
colors need to be associated to the input objects. This leaves ample room for reasoning shortcuts.

Let us focus on shapes only. Letting S be the set of the 10 possible shapes si, the model needs at least 10 · (10 − 1)/2
different negative examples of the knowledge to uniquely identify all possible shapes (up to permutation), one for each pair
of mismatching shapes. Consider the map π : S → S mapping from ground-truth shape of the input object to the learned
concept for shape. Ideally, we would like π to be injective, so that no two distinct ground-truth shapes are mapped to the
same learned shape.

Consider a task with 4 possible shapes s1 = cube, s2 = cone, s3 = cylinder, and s4 = toroid. In order to guarantee
injectivity, the data has to include enough combinations of shapes so that the map π satisfies the following condition:

π(s1) ̸= π(s2), π(s1) ̸= π(s3), π(s1) ̸= π(s4),

π(s2) ̸= π(s3), π(s2) ̸= π(s4),

π(s3) ̸= π(s4)

(28)

Notice that this map is injective, in the sense that si ̸= sj =⇒ π(si) ̸= π(sj), ∀i ̸= j. All tasks in CLE4EVR, however,
are designed to distinguishing between only two possible shapes (and colors), hence the condition in Equation (28) is never
satisfied. This is what allows for reasoning shortcuts.

As a matter of fact, without concept supervision, all values for shapes and colors are equally likely to be picked up to solve
the task. We observed this phenomenon in the case of 0% supervision reported in Figure 5.

19

Neuro-Symbolic Continual Learning

SHAPES COLORS LABELS

G
R

O
U

N
D

-T
R

U
T

H

PREDICTED PREDICTED PREDICTED

Figure 5. Confusion matrices for COOL (in red) and the other replay strategies (in shades of blue) in CLE4EVR with no concept
supervision, at the end of all tasks. All methods fails to attribute the correct semantics to the concepts and learn, instead, a shortcut which
optimizes the Class-IL (Y).

MNAdd-Seq CLE4EVR
(BUFFER SIZE = 1000) (BUFFER SIZE = 250)

TIME PER EPOCH MEMORY OCCUPATION TIME PER EPOCH MEMORY OCCUPATION
NAÏVE 0.238 s - 0.335 s -
ER 0.385 s 6.280 Mb 0.344 s 1.570 Mb
DER 0.475 s 6.348 Mb 0.412 s 1.587 Mb
DER++ 0.667 s 6.356 Mb 0.482 s 1.589 Mb
COOL 0.476 s 6.360 Mb 0.439 s 1.590 Mb

Table 4. Time per epoch and memory occupation for MNIST-Addition and CLE4EVR.

E. Additional Results and Metrics
E.1. Time Overhead and Memory Occupation of COOL

We evaluate the time overhead and the memory requirements of COOL compared to other replay-based strategies in Table 4.
All these strategies impose an additional time overhead due to the selection and replay of past examples.

We measured the time required for completing a single epoch in the first task of MNIST-Addition and CLE4EVR.
NAÏVE provides the lower bound for the computation time, as it just fine-tunes the model on the new examples. ER in
MNIST-Addition strategy requires almost ∼ 0.1 s more than NAÏVE for storing and replaying. In CLE4EVR, however,
the gap is less evident between the two strategies. For MNAdd-Seq, the time per epoch of COOL amounts to ∼ 0.476 s,
which is comparable to that of DER ∼ 0.475 s and lower than that of DER++ ∼ 0.667 s. For CLE4EVR COOL requires
0.439 s per epoch, slightly increasing compared to DER ∼ 0.412 s, but still being lower w.r.t. DER++ ∼ 0.482 s.

In terms of memory occupation, COOL requires slightly more memory than other replay strategies, due to the need of storing
the logits of the learned concepts. However, most of the overhead is due to storing the instances x themselves, which is the
very same for all strategies and amounts to 6.272 Mb for MNIST-Addition and 1.568 Mb for CLE4EVR.

E.2. MNAdd-Seq

We report in Table 5 results for all competing strategies and performance measures used (including those omitted in the
main text), namely Class-IL and Task-IL on labels and concepts (denoted as Y and C, respectively), backward transfer
(BWT), and forward transfer (FWT).

These results confirm the ones reported in Section 5. Specifically, COOL attains higher performance w.r.t. all metrics in both
CBM and DeepProbLog. They also show that COOL outperforms all other approaches in terms of BWT when paired with
DeepProbLog, and is the runner-up with CBMs.

The method with the best BWT on CBM is LWF, which however displays a pathological learning behavior, as made clear by
the fact that it is the only method to have negative forward transfer. The reason is that LWF struggles to learn the first few
tasks properly, but performs reasonably on the latter ones.

20

Neuro-Symbolic Continual Learning

LABELS (Y) CONCEPTS (C)

STRATEGY CLASS-IL (↑) TASK-IL (↑) CLASS-IL (↑) TASK-IL (↑) BTW (↑) FWT (↑)

C
B

M
@

1
0
%

NAÏVE 11.71 ± 0.8 27.5 ± 3.9 36.2 ± 2.6 50.8 ± 1.7 −91.1 ± 1.2 7.5 ± 0.3
RESTART 10.78 ± 0.1 32.9 ± 2.1 29.7 ± 0.1 43.1 ± 0.6 −98.2 ± 0.1 7.3 ± 0.2
LWF 18.08 ± 1.8 55.7 ± 5.3 63.2 ± 4.4 78.6 ± 2.5 −18.5 ± 1.8 −4.7 ± 1.1
EWC 11.57 ± 0.6 38.3 ± 11.2 37.4 ± 0.6 52.1 ± 1.7 −90.4 ± 0.8 7.6 ± 0.4
ER 13.29 ± 0.4 32.5 ± 3.2 43.5 ± 2.0 67.7 ± 3.3 −88.0 ± 0.7 13.4 ± 1.6
DER 18.63 ± 2.5 50.3 ± 3.4 53.1 ± 1.7 73.1 ± 2.0 −88.6 ± 2.9 15.7 ± 0.9
DER++ 18.17 ± 1.6 48.9 ± 2.4 54.1 ± 3.0 73.1 ± 4.5 −89.2 ± 1.8 16.6 ± 1.8
COOL 38.0 ± 1.9 78.4 ± 3.8 78.1 ± 2.5 90.4 ± 1.6 −68.3 ± 2.1 29.0 ± 4.8

D
E

E
P
P

R
O

B
L

O
G

@
0
% NAÏVE 6.9 ± 0.2 7.6 ± 0.2 6.7 ± 0.4 16.4 ± 1.0 −63.1 ± 0.6 6.2 ± 0.2

RESTART 9.6 ± 0.3 22.2 ± 0.8 0.2 ± 0.1 11.6 ± 0.5 −69.5 ± 1.9 6.9 ± 0.8
LWF 6.8 ± 0.5 11.0 ± 1.6 10.8 ± 4.6 21.7 ± 8.3 −71.2 ± 5.2 18.3 ± 0.2
EWC 6.8 ± 0.4 7.8 ± 0.4 7.8 ± 0.6 18.3 ± 0.6 −62.9 ± 0.4 6.1 ± 0.3
ER 44.3 ± 9.7 81.2 ± 6.5 62.0 ± 8.6 82.8 ± 5.1 −48.3 ± 8.8 8.2 ± 4.1
DER 68.3 ± 9.4 94.8 ± 3.2 81.3 ± 6.9 93.8 ± 3.0 −30.5 ± 8.5 44.5 ± 23.7
DER++ 62.2 ± 5.4 93.5 ± 2.1 77.1 ± 4.2 92.8 ± 2.9 −34.8 ± 5.6 27.1 ± 5.2
COOL 71.9 ± 2.9 96.6 ± 0.8 84.5 ± 1.9 95.4 ± 0.4 −28.7 ± 3.2 83.2 ± 0.9

Table 5. Additional results for MNAdd-Seq.

Surprisingly, this oddball behavior is sufficient for LWF to beat the baselines (NAÏVE and RESTART) in terms of Class-IL Y
(at around 18%), but not enough to outperform COOL, and also yields the aforementioned issue with FWT. We stress that
this implies that LWF generalizes to forward tasks worse than random.

E.3. MNAdd-Shortcut

We report here in Table 6, all results obtained for all strategies in MNAdd-Shortcut. We performed the comparison
adopting only DeepProbLog with increasing amount of concept supervision.

SUPERVISION 0% SUPERVISION 1% SUPERVISION 10%

CLASS-IL(Y) CLASS-IL(C) OOD (Y) CLASS-IL(Y) CLASS-IL(C) OOD (Y) CLASS-IL(Y) CLASS-IL(C) OOD (Y)
NAÏVE 59.9 ± 3.2 49.4 ± 0.4 10.7 ± 2.3 57.5 ± 0.5 49.2 ± 0.1 12.9 ± 0.4 59.9 ± 0.9 49.4 ± 0.1 12.3 ± 0.5
RESTART 59.1 ± 0.6 49.7 ± 0.1 12.9 ± 0.4 58.1 ± 1.6 49.3 ± 0.1 12.9 ± 0.5 59.1 ± 0.9 49.6 ± 0.1 13.2 ± 0.6
EWC 55.9 ± 8.9 45.6 ± 11.4 12.5 ± 1.4 59.2 ± 1.5 49.5 ± 0.1 12.6 ± 0.8 59.7 ± 0.8 49.6 ± 0.1 12.4 ± 0.3
LWF 62.2 ± 1.8 49.1 ± 0.2 11.1 ± 1.2 55.8 ± 1.4 48.7 ± 0.1 12.5 ± 0.7 58.0 ± 1.2 49.2 ± 0.1 12.6 ± 0.6
ER 45.0 ± 24.7 23.8 ± 19.1 3.0 ± 2.5 70.0 ± 7.4 48.9 ± 0.3 7.6 ± 1.5 77.6 ± 1.8 49.3 ± 0.1 6.9 ± 0.5
DER 41.4 ± 13.1 19.6 ± 17.4 7.9 ± 1.7 76.2 ± 1.9 49.3 ± 0.1 7.3 ± 0.4 77.5 ± 3.6 49.5 ± 0.1 6.8 ± 0.9
DER++ 36.3 ± 21.7 23.6 ± 18.0 3.7 ± 3.5 76.8 ± 7.3 49.0 ± 0.6 5.9 ± 0.5 82.1 ± 7.1 49.4 ± 0.2 5.0 ± 1.6
COOL 38.8 ± 26.3 24.1 ± 18.1 4.9 ± 2.0 67.9 ± 2.0 77.67 ± 1.9 53.2 ± 3.9 70.7 ± 2.1 80.2 ± 1.9 57.1 ± 3.9

Table 6. MNAdd-Shortcut Additional results.

With 0% concept supervision, all methods perform poorly, i.e., worse or comparably to NAÏVE and RESTART in terms of
Class-IL. Variance is also quite large for EWC, ER, DER, DER++, and COOL. The sole exception is LWF, which obtains
higher performance and small variance in label classification. On the other hand, the results in OOD accuracy are all below
13%, indicating that no strategy can successfully identify high-quality concepts that transfer across tasks.

The picture at 1% and 10% supervision is very similar: COOL outperforms all approaches in terms of concept quality and
OOD accuracy by a large margin, while the other approaches pick up the reasoning shortcut, thus achieving high label
accuracy only.

E.3.1. CLE4EVR

The complete results for CLE4EVR, reported in Table 7, show the same trend as those on MNAdd-Shortcut. For
completeness, we report the evolution across tasks of concept confusion matrices for all methods in Figure 6. The impact of
the reasoning shortcut on DER, and its lack of impact on COOL, are clearly visible.

21

Neuro-Symbolic Continual Learning

SUPERVISION 0% SUPERVISION 1% SUPERVISION 10%

CLASS-IL(Y) CLASS-IL(C) OOD (Y) CLASS-IL(Y) CLASS-IL(C) OOD (Y) CLASS-IL(Y) CLASS-IL(C) OOD (Y)
NAÏVE 44.9 ± 0.7 9.2 ± 1.2 25.0 ± 0.9 43.5 ± 2.6 19.9 ± 2.6 27.9 ± 11.4 39.9 ± 1.6 17.8 ± 0.1 16.9 ± 3.6
RESTART 39.1 ± 0.9 10.5 ± 1.4 11.1 ± 3.7 39.9 ± 1.0 17.8 ± 0.1 14.8 ± 4.1 39.2 ± 1.1 17.9 ± 0.1 13.7 ± 3.8
EWC 41.5 ± 7.1 8.3 ± 3.2 15.7 ± 8.4 38.5 ± 6.4 17.2 ± 1.4 23.5 ± 8.6 41.8 ± 1.8 17.8 ± 0.1 16.8 ± 4.3
LWF 47.1 ± 0.8 6.6 ± 2.2 27.2 ± 2.8 41.9 ± 1.8 19.1 ± 2.9 29.0 ± 15.2 39.5 ± 7.5 17.4 ± 3.9 44.8 ± 24.3
ER 85.3 ± 0.3 10.2 ± 5.5 26.3 ± 3.5 72.8 ± 4.9 20.5 ± 3.9 28.8 ± 9.9 66.8 ± 8.4 18.3 ± 1.3 23.3 ± 4.0
DER 77.7 ± 1.4 7.7 ± 2.8 27.5 ± 2.7 73.3 ± 3.0 19.1 ± 1.9 24.9 ± 3.4 75.1 ± 3.9 19.2 ± 2.0 26.1 ± 5.0
DER++ 85.5 ± 0.2 11.1 ± 4.4 23.2 ± 1.8 83.0 ± 1.1 20.9 ± 3.9 32.4 ± 12.1 81.3 ± 2.3 20.1 ± 3.9 28.4 ± 9.3
COOL 70.7 ± 5.7 8.5 ± 4.5 25.6 ± 2.3 83.2 ± 0.5 85.9 ± 2.9 91.1 ± 1.5 85.2 ± 0.3 87.9 ± 0.1 91.9 ± 0.2

Table 7. CLE4EVR Full results

task= 1 task= 2 task= 3 task= 4 task= 5

s
h
a
p
e
s

c
o
l
o
r
s

Figure 6. Dynamics of confusion matrices for shapes and colors encodings on CLE4EVR with 10% concept supervision. COOL in red
preserves the correct concepts, while DER (in blue) suffers for shortcuts. Shape and color range in {0, . . . , 9}.

22

