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DIFFVAX: OPTIMIZATION-FREE IMAGE IMMUNIZA-

TION AGAINST DIFFUSION-BASED EDITING

Anonymous authors
Paper under double-blind review

Figure 1: DiffVax is an optimization-free image immunization approach designed to protect im-
ages and videos from diffusion-based editing. DiffVax demonstrates robustness across diverse
content, providing protection for both in-the-wild (a) unseen images and (b) unseen video con-
tent while effectively preventing edits across various editing methods, including inpainting (illus-
trated with a human in the left column and a non-human foreground object in the right column) and
instruction-based edits (right column) with InstructPix2Pix (Brooks et al., 2023).

ABSTRACT

Current image immunization defense techniques against diffusion-based editing
embed imperceptible noise into target images to disrupt editing models. How-
ever, these methods face scalability challenges, as they require time-consuming
optimization for each image separately, taking hours for small batches. To ad-
dress these challenges, we introduce DiffVax, a scalable, lightweight, and
optimization-free framework for image immunization, specifically designed to
prevent diffusion-based editing. Our approach enables effective generalization to
unseen content, reducing computational costs and cutting immunization time from
days to milliseconds, achieving a speedup of 250,000×. This is achieved through a
loss term that ensures the failure of editing attempts and the imperceptibility of the
perturbations. Extensive qualitative and quantitative results demonstrate that our
model is scalable, optimization-free, adaptable to various diffusion-based editing
tools, robust against counter-attacks, and, for the first time, effectively protects
video content from editing. Our code and qualitative results are provided in the
supplementary.
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1 INTRODUCTION

Recent advancements in generative models, particularly diffusion models (Sohl-Dickstein et al.,
2015; Ho et al., 2020; Rombach et al., 2022), have enabled realistic content synthesis, which can
be used for various applications, such as image generation (Saharia et al., 2022; Ruiz et al., 2023;
Chefer et al., 2023; Zhang et al., 2023c; Li et al., 2023b; Mou et al., 2024b; Bansal et al., 2023)
and editing (Brooks et al., 2023; Couairon et al., 2023a; Hertz et al., 2023b; Meng et al., 2022).
However, the widespread availability and accessibility of these models introduce significant risks, as
malicious actors exploit them to produce deceptive, realistic content known as deepfakes (Pei et al.,
2024). Deepfakes pose severe threats across multiple domains, from political manipulation (Appel
& Prietzel, 2022) and blackmail (Blancaflor et al., 2024) to biometric fraud (Wojewidka, 2020)
and compromising trust in legal processes (Delfino, 2022). Furthermore, they have become tools
for sexual harassment through the creation of non-consensual explicit content (Jean Mackenzie,
2024; Davies & McDermott, 2022; Cole, 2018). Given the widespread accessibility of diffusion
models, the scale of these threats continues to grow, underscoring the urgent need for robust defense
mechanisms to protect individuals, institutions, and public trust from such misuse.

To address these challenges, one line of research has focused on deepfake detection (Naitali et al.,
2023; Passos et al., 2024) and verification methods (Hasan & Salah, 2019), which facilitate post-hoc
identification. While effective for detection, these approaches do not proactively prevent malicious
editing, as they only identify it after it happens. Another branch modifies the parameters of editing
models (Li et al., 2024) to prevent unethical content synthesis (e.g. NSFW material); however, the
widespread availability of unrestricted generative models limits its effectiveness. A more robust de-
fense mechanism, known as image immunization (Salman et al., 2023; Lo et al., 2024; Yeh et al.,
2021; Ruiz et al., 2020), safeguards images from malicious edits by embedding imperceptible adver-
sarial perturbation. This approach ensures that any editing attempts lead to unintended or distorted
results, proactively preventing malicious modifications rather than depending on post-hoc detection.
The subtlety of this protection is particularly valuable for large-scale, publicly accessible content,
such as social media, where user data is especially vulnerable to malicious attacks. By uploading
immunized images instead of the original ones, users can reduce the risk of misuse by malicious
actors, highlighting the potential of immunization-based methods for real-world impact.

However, current immunization approaches remain inadequate, as they do not simultaneously sat-
isfy the key requirements of an effective defense: (i) scalability for large-scale content, (ii) memory
and runtime efficiency, and (iii) robustness against counter-attacks. PhotoGuard (Salman et al.,
2023) (PG) embeds adversarial perturbations into target images to disrupt components of the dif-
fusion model by solving a constrained optimization problem via projected gradient descent (Madry
et al., 2018a). Although PhotoGuard was the first immunization model targeting diffusion-based
editing, it requires over 10 minutes of runtime per image and at least 15GB of memory, causing both
computational and time inefficiency. To alleviate these demands, DAYN (Lo et al., 2024) proposes a
semantic-based attack that disrupts the diffusion model’s attention mechanism during editing. While
this approach reduces computational load, it remains time-inefficient like PhotoGuard, as it requires
a separate optimization process for each image and cannot generalize to unseen content. Further-
more, both approaches are vulnerable to counter-attacks, such as denoising the added perturbation or
applying JPEG compression (Sandoval-Segura et al., 2023) to the immunized image. Consequently,
neither method is practical for large-scale applications, such as safeguarding the vast volume of
image and video data uploaded daily on social media platforms.

To address these challenges, we introduce DiffVax, an end-to-end framework for training an “im-
munizer model” that learns how to generate imperceptible perturbations to immunize target images
against diffusion-based editing (see Fig 2). This immunization process ensures that any attempt to
edit the immunized image using a diffusion-based model fails. DiffVax is more effective than
prior works in ensuring editing failure, and it demonstrates the feasibility and generalizability of the
image-conditioned feed-forward approach to perturbation generation.

Our training process is guided by two objectives, expressed as separate terms in the loss function: (1)
encouraging the model to generate an imperceptible perturbation, and (2) ensuring that any editing
attempt on the immunized image fails. Our trained immunizer operates with a single forward pass,
completed within milliseconds, eliminating the need for time-intensive per-image optimization. This
efficiency enables scalability to high-volume content protection. Additionally, DiffVax enhances

2



108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

Under review as a conference paper at ICLR 2026

Figure 2: Comparing DiffVax with existing approaches. (a) An attacker performs malicious
editing on an original image. (b) Existing defenses immunize images by solving a costly optimiza-
tion problem for each image individually, taking over 10 minutes per image. (c) DiffVax enables
scalable protection by first training an immunizer model (green box) on a diverse dataset. Once
trained, the model can immunize unseen images with a single forward pass, producing effective
perturbations in approximately 70 milliseconds per image.

memory efficiency by avoiding gradient computation during inference, setting it apart from prior
methods. It also exhibits robustness against common counter-attacks, such as JPEG compression and
image denoising (Sandoval-Segura et al., 2023). In addition, our framework demonstrates superior
generalization with other diffusion-based editing methods (see Fig. 1 for examples on inpainting and
instruction-based editing). Leveraging these strengths, we extend immunization to video content for
the first time, achieving results previously unattainable due to the computational limitations of earlier
approaches. As a result, DiffVax satisfies all key requirements for an effective defense.

To summarize, our contributions are as follows:

• We are the first to introduce a training framework in which the model learns to effectively
immunize a given image against diffusion-based editing, drastically reducing inference
time from days to milliseconds and enabling real-time protection.

• Thanks to its computational efficiency, our model shows promising potential as a founda-
tional step toward immunizing video content.

• Unlike prior methods that require per-image optimization and therefore cannot general-
ize to unseen data, our approach enables generalization to new content through a learned
“image immunizer”.

• DiffVax achieves superior results with substantial degradation of the editing operation,
and minimal memory requirement, demonstrating resistance to counter-attacks, making it
the fastest, most cost-effective, and robust method available.

2 RELATED WORK

Adversarial attacks Adversarial attacks exploit model vulnerabilities by introducing perturbations
that induce misclassification. Early gradient-based methods efficiently generated such examples via
gradient manipulation (Goodfellow et al., 2015; Madry et al., 2018b), later refined to minimize per-
ceptual distortion (Carlini & Wagner, 2017; Moosavi-Dezfooli et al., 2016). Generative approaches
advanced these attacks by synthesizing realistic adversarial inputs (Xiao et al., 2018). Subsequent
work improved transferability and query efficiency using momentum and random search (Dong
et al., 2018; Andriushchenko et al., 2020), while ensemble-based methods strengthened robustness
evaluation (Croce & Hein, 2020). Universal perturbations (Moosavi-Dezfooli et al., 2017; Hayes &
Danezis, 2018) and generative perturbation networks (Poursaeed et al., 2018) further generalized at-
tacks across data and models. Building on these advances, our work focuses on immunizing against
diffusion-based editing, addressing its unique characteristics.
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Preventing image editing The proliferation of Latent Diffusion Models (LDMs) has underscored
the demand for robust immunization strategies against unauthorized image manipulation. Initial
efforts focused on Generative Adversarial Network (GAN)-based models, employing adversarial
perturbations to inhibit edits (Yeh et al., 2021; Aneja et al., 2022). PhotoGuard (Salman et al., 2023)
extended this line of work to diffusion models via encoder- and model-level perturbations but in-
curred substantial computational overhead due to backpropagation across multiple timesteps. To
alleviate this, Lo et al. (2024)1 proposed an attention-disruption strategy that bypasses full gradient
computation, though its reliance on fixed prompts limits robustness. DiffusionGuard (Choi et al.,
2025) enhances PhotoGuard by optimizing over augmented masks, yet remains computationally
intensive. Other approaches, including Mist (Liang & Wu, 2023), AdvDM (Liang et al., 2023),
SDS (Xue et al., 2024), and Glaze (Shan et al., 2023), target text-to-image diffusion or fine-tuned
models, but exhibit high computational demands and limited resilience to adaptive attacks. In con-
trast, DiffVax introduces a model-agnostic immunizer that generalizes to unseen data via a single
forward pass. Furthermore, we present, for the first time, promising results in the direction of video
immunization.

Diffusion-based image editing Diffusion models have emerged as powerful tools for image edit-
ing tasks such as inpainting (Wang et al., 2023; Lugmayr et al., 2022; Zhang et al., 2023a), style
transfer (Wang et al., 2023; Mou et al., 2024a; Yang et al., 2023; Hertz et al., 2023a), and text-
guided transformations (Brooks et al., 2023; Lin et al., 2024; Ravi et al., 2023), by conditioning on
prompts or image regions. Edits are guided through attention manipulation (Parmar et al., 2023) and
multi-step noise prediction. Approaches include both training-based (Couairon et al., 2023b; Kim
et al., 2022) and training-free methods (Mokady et al., 2023; Miyake et al., 2023) requiring minimal
fine-tuning. We use stable diffusion inpainting as our primary editing model and include results with
InstructPix2Pix (Brooks et al., 2023) to show model-agnostic performance.

3 METHODOLOGY

3.1 PRELIMINARIES

Image immunization Adversarial attacks exploit the vulnerabilities of machine learning models by
introducing small, imperceptible perturbations to input data, causing the model to produce incorrect
or unintended outputs (Szegedy et al., 2014; Biggio et al., 2013). In the context of diffusion models,
such perturbations can be crafted to disrupt the editing process, ensuring that attempts to modify an
adversarially perturbed image fail to achieve intended outcomes. Given an image I, the goal is to
transform it into an adversarially immunized version, Iim, by introducing a perturbation ϵim:

Iim = I+ ϵim, subject to: ∥ϵim∥p < κ, (1)

where κ is the perturbation budget that constrains the norm of the perturbation to ensure that it
remains imperceptible. The norm p could be chosen as 1, 2, or∞, depending on the application.

Latent diffusion models LDMs (Rombach et al., 2022) perform the generative process in a lower-
dimensional latent space rather than pixel space, achieving computational efficiency while maintain-
ing high-quality outputs. This design is ideal for large-scale tasks like image editing and inpainting.
Training an LDM starts by encoding the input image I0 into a latent representation z0 = E(I0)
using encoder E(·). The diffusion process operates in this latent space, adding noise over T steps to
generate a sequence z1, . . . , zT , with zt+1 =

√
1− βt zt +

√
βt ϵt, ϵt ∼ N (0, I), where βt is the

noise schedule at step t. The training aims to learn a denoising network ϵθ that predicts the added
noise ϵt by minimizing L(θ) = Et,z0,ϵ∼N (0,I)

[

∥ϵ− ϵθ(zt, t)∥22
]

. In the reverse process, a noisy

latent vector zT ∼ N (0, I) is iteratively denoised via the trained denoising network to recover z0,

which is decoded into the final image Ĩ = D(z0) with decoder D(·).

3.2 PROBLEM FORMULATION

Let I ∈ R
H×W×C represent an image with height H , width W , and C color channels. A malicious

user using a diffusion-based editing tool, SD(·), attempts to maliciously edit the image based on
a prompt P and a binary mask M ∈ {0, 1}H×W×C , which defines the target area for editing,

1Code unavailable despite request.
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Figure 3: Overview of DiffVax. Our end-to-end training framework is illustrated in (a). The
training process consists of two stages. In Stage 1, immunization is applied to the training image I.
In Stage 2, the immunized image Iim is edited using a stable diffusion model SD(·) with the specified
text prompt and mask, during which the Lnoise and Ledit are computed. During inference (b), the
trained immunizer model generates immunization noise (see Inference Stage 1 in (b)) applied to the
original (target) image using an immunization mask. When a malicious user attempts to attack these
immunized images with an editing mask, the editing tool (see Inference Stage 2 in (b)) is unable to
produce the intended edited content.

with a value of 1 indicating the region of interest and 0 denotes the background or irrelevant areas.
Ideally, this target region can represent any meaningful part of the image, such as a human body or
a face. Our objective is to immunize the original (target) image I by carefully producing a noise
ϵim that satisfies two key criteria: (a) ϵim remains imperceptible to the user, and (b) the edited
immunized image Iim,edit fails to accurately reflect the prompt P applied by the malicious users. In
other words, the immunized image disrupts the editing model SD(·) such that any attempt to edit the
image results in unsuccessful or unintended modifications. While our approach is broadly applicable
to any diffusion-based editing tool, such as inpainting models and InstructPix2Pix (Brooks et al.,
2023), this study follows previous work (Salman et al., 2023; Lo et al., 2024) by using inpainting
as the primary editing tool for problem formulation and quantitative experiments. We focus on
scenarios where the sensitive regions such as human body or face remains constant, with other areas
considered editable, reflecting real-world malicious editing scenarios. Additional results for other
objects and tools (e.g. InstructPix2Pix) are provided in Fig. 1, Fig. 4, and in our Appendix A.2.

3.3 OUR APPROACH

End-to-end training framework To overcome the speed limitations of previous methods, which
require solving an optimization problem independently for each image, we propose an end-to-end
training framework. This framework enables an immunizer model f(·; θ) to instantly generate im-
munization noise for a given input image. Our training algorithm (see Appendix A.1, and Fig. 3
(a)) consists of two stages. In the first stage, we employ a UNet++ (Zhou et al., 2018) architecture
for the “immunizer” model f(·; θ), which takes an input image I and generates the corresponding
immunization noise ϵim. Subsequently, ϵim is multiplied by the immunization mask M, which tar-
gets the region of interest (e.g. a person’s face). The resulting masked noise is then added to the
training image to produce the immunized image, computed as Iim = I + ϵim ⊙M. Finally, the
image is clamped to the [0, 1] range. To ensure the noise remains imperceptible to the human eye,
we introduce the following loss:

Lnoise =
1

sum(M)
∥(Iim − I)⊙M∥p (2)

where p is empirically chosen to be 1. Lnoise penalizes deviations within the masked region, ensuring
that the change between the immunized image and the training image is imperceptible. In the second
stage, after generating the immunized image Iim, we apply diffusion-based editing using the editing
tool SD(·). This model takes the immunized image Iim, the training mask M, and the training
prompt P as input, performing edits in the regions specified by the mask. To ensure that the edited
image is effectively distorted, we define the loss function:

Ledit =
1

sum(∼M)
∥SD(Iim,∼M,P)⊙ (∼M)∥1, (3)

where∼M represents the complement of the masked area and SD(·) is the stable diffusion inpaint-
ing model that modifies the region ∼M in Iim according to the prompt P . This loss function is the
key to our method, as it ensures that the immunization noise disrupts the editing process by forcing
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Figure 4: Qualitative results with DiffVax. Our method effectively immunizes (a) seen images
and generalizes to (b) unseen images with diverse text prompts. Additionally, it extends to (c) unseen
human videos, demonstrating its adaptability to new content. Furthermore, it supports various poses
and perspectives, from full-body shots (a) to close-up face shots (c).

the unmasked regions to be filled with 0s. Note that for editing models that do not rely on masks,
we exclude masks from the loss calculations.

To enable training, we curate a dataset of image, mask, and prompt tuples, represented as D =
{(Ik,Mk,Pk)}Nk=1. Specifically, we collect 1000 images of individuals from the CCP (Yang et al.,
2014) dataset and use the Segment Anything Model (SAM) (Kirillov et al., 2023) to generate masks
corresponding to the foreground objects in these images. To ensure diverse text descriptions for
the editing tasks, we utilize ChatGPT OpenAI (2024) (see Appendix A.1). At each training step,
a sample is selected from the dataset and initially processed by the immunizer model f(·; θ) to
generate immunization noise ϵnim, which is added to the masked region of the training image and
then clamped. The resulting immunized image Inim is then passed through the editing model SD(·) to
produce the edited immunized image Inim,edit. The final loss function, L = α ·Lnoise+Ledit, is used

for backpropagation with respect to the immunizer model’s parameters. Backpropagating through
the stable diffusion stages allows the immunizer to learn the interaction between the perturbation
and the generated pixels. Through this iterative process, the immunizer model learns to generate
perturbations that disrupt the editing model. Following the insights from PhotoGuard’s encoder
attack, we do not condition the immunizer model on text prompts, as the noise is empirically shown
to be prompt-agnostic (see Appendix A.6).

Inference During inference, the trained immunizer model generates immunization noise for any
original (target) image using the mask of the region intended for protection. This noise is then
applied to create the immunized image, with the noise restricted to the masked region. The resulting
immunized image can be safely shared publicly. When a malicious user inputs this immunized image
along with an editing mask into a diffusion-based editing tool (the same tool used during training),
the immunization noise disrupts the edited output (see Fig. 3 (b)). Unlike previous approaches that
require the same mask to be used during both training and inference, our method decouples these
phases. This separation allows the immunizer model to generalize to unseen content, addressing the
limitation of previous methods where malicious users could exploit different masks during editing
(e.g. using an immunization mask of full-body but applying an editing mask of face).

4 EXPERIMENTATION

Baselines We compare DiffVax with several existing image immunization methods. As a naive
baseline, we include Random Noise, which applies arbitrary noise to images. We also evaluate
two variants of PhotoGuard (Salman et al., 2023): PhotoGuard-E, which embeds adversarial per-
turbations in the latent encoder, and PhotoGuard-D, which disrupts the entire generative process.

6



324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

Under review as a conference paper at ICLR 2026

Figure 5: Qualitative comparison of edited images across immunization methods. This figure
shows the results of different immunization methods: Random Noise, PhotoGuard-E, PhotoGuard-
D, DiffusionGuard, and our proposed method, DiffVax. Results for (a) seen and (b) unseen images
are shown, with different prompts applied to each (right side). The first column contains the origi-
nal images, while subsequent columns show the edited outputs under different settings, as depicted
on the top. Note that DiffVax is substantially more effective than PhotoGuard-E, -D and Diffu-
sionGuard in degrading the edit.

Additionally, we compare against DiffusionGuard (Choi et al., 2025), an extension of PhotoGuard
that augments masks during optimization. To evaluate robustness against counter-attacks, we de-
velop three additional baselines where editing is applied after immunization: (i) passing the im-
age through a convolutional neural network (CNN)-based denoiser (Li et al., 2023a), denoted as
DiffVax w/ D.; (ii) compressing the image as JPEG (Sandoval-Segura et al., 2023) with a 0.75
compression ratio, denoted as DiffVax w/ JPEG; and (iii) applying the IMPRESS defense (Cao
et al., 2023), denoted as DiffVax w/ IMPRESS.

Evaluation metrics and dataset We focus on four key aspects in evaluation: (a) the amount of
editing failure, where we follow previous approaches (Salman et al., 2023) and utilize SSIM (Wang
et al., 2004), PSNR and FSIM (Zhang et al., 2011) metrics to measure the visual differences between
the edited immunized image and the edited original image; (b) imperceptibility, where the amount
of the immunization noise quantified by measuring the SSIM between the original image and the
immunized image, denoted as SSIM (Noise); (c) the degree of textual misalignment evaluated using
CLIP (Radford et al., 2021) by measuring the average similarity between the edited immunized
image and the text prompt, denoted as CLIP-T; and (d) scalability by reporting the average runtime
and GPU memory required to immunize a single image on average from the dataset. We curate
a dataset of 875 human images from the CCP (Yang et al., 2014) dataset. Of these, 800 images
are used for training (including the 75 seen images in our experiments), and 75 unseen images are
reserved for testing.

Qualitative results Figures 1 and 4 illustrate the qualitative success of our method. DiffVax

effectively immunizes images against various editing techniques, including standard inpainting and
instruction-based models like InstructPix2Pix (Brooks et al., 2023) (Figure 1). As further detailed
in Appendix A.2, the model demonstrates a strong ability to generalize to unseen images and a wide
range of prompts, accommodating various human perspectives from full-body to close-up shots
(Figure 4). Although trained primarily on human subjects, our model also extends its robustness to
non-human objects. When compared to baseline methods (Figure 5), our approach is qualitatively
superior on both seen and unseen images, generating backgrounds that deviate more significantly
from the intended edits. Notably, in many cases with our approach, it is impossible to infer the
original prompt from the immunized image’s background, a stark contrast to PhotoGuard, which
often retains discernible hints of the prompt. More examples, including comparisons and results
with other editing models, are provided in Appendix A.2.

DiffVax is more effective in corrupting edits As shown in Table 1, DiffVax achieves the low-
est SSIM, PSNR, and FSIM values overall, securing second place in the SSIM metric for unseen
data, with a small margin behind PG-D, indicating that malicious edits on immunized images are
significantly distorted, even on previously unseen data, whereas baseline methods, which require
optimization to be re-run for each image, do not differentiate between seen and unseen data. Ad-
ditionally, CLIP-T results, which measure textual misalignment, further verify these findings by
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Table 1: Performance comparisons on images. The SSIM, PSNR, FSIM, SSIM (Noise), and CLIP-T metrics
are reported separately for the seen and unseen splits of the test dataset. Runtime and GPU requirements are
measured as the average time (in seconds) and memory usage (in MiB) needed to immunize a single image.
“N/A” indicates that the corresponding value is unavailable. The symbols ↑ and ↓ indicate the direction toward
better performance for each metric, respectively. Bold values indicate the best scores, while underlined values
denote the second-best scores.

Amount of Editing Failure Imperceptibility Text Misalignment Scalability

Immunization Method SSIM ↓ PSNR ↓ FSIM ↓ SSIM (Noise) ↑ CLIP-T ↓ Runtime (s) ↓ GPU Req. (MiB) ↓
seen unseen seen unseen seen unseen seen unseen seen unseen (Immunization) (Immunization)

Random Noise 0.586 0.585 16.09 16.40 0.460 0.458 0.902 0.903 31.68 31.62 N/A N/A
PhotoGuard-E 0.558 0.565 15.29 15.63 0.413 0.408 0.956 0.956 31.69 30.88 207.00 9,548
PhotoGuard-D 0.531 0.523 14.70 14.92 0.386 0.379 0.978 0.979 29.61 29.27 911.60 15,114
DiffusionGuard 0.551 0.556 14.37 14.71 0.389 0.386 0.965 0.966 26.98 27.10 131.10 6,750
DiffVax (Ours) 0.510 0.526 13.96 14.32 0.353 0.362 0.989 0.989 23.13 24.17 0.07 5,648

Table 2: Performance comparisons on edits with counter-attacks. We report the SSIM, SSIM (Noise) and
CLIP-T metrics for the denoiser (D.), JPEG (compression ratio of 0.75) counter-attacks separately for the seen
and unseen splits of the test dataset.

Method SSIM ↓ PSNR ↓ FSIM ↓ SSIM (Noise) ↑ CLIP-T ↓
seen unseen seen unseen seen unseen seen unseen seen unseen

PG-D w/ D. 0.702 0.709 18.27 18.43 0.528 0.528 0.966 0.965 31.48 31.20
DiffusionGuard w/ D. 0.708 0.719 18.26 18.69 0.530 0.531 0.964 0.964 31.08 30.99
DiffVax w/ D. 0.552 0.565 14.48 14.91 0.388 0.392 0.960 0.960 27.32 27.74

PG-D w/ JPEG 0.664 0.674 17.32 17.68 0.495 0.501 0.956 0.956 32.15 32.48
DiffusionGuard w/ JPEG 0.680 0.684 17.45 17.83 0.505 0.503 0.951 0.951 31.52 31.53
DiffVax w/ JPEG 0.522 0.538 14.17 14.61 0.374 0.382 0.959 0.959 26.04 26.05

PG-D w/ IMPRESS 0.578 0.563 15.89 16.07 0.436 0.426 0.640 0.634 31.35 31.26
DiffusionGuard w/ IMPRESS 0.604 0.595 15.89 16.09 0.453 0.442 0.636 0.630 30.88 30.50
DiffVax w/ IMPRESS 0.488 0.500 14.04 14.38 0.355 0.359 0.644 0.637 24.88 25.27

measuring the misalignment semantically in the edited immunized images. DiffVax outperforms
the baselines by maintaining the highest SSIM (Noise) values for both seen and unseen data, high-
lighting its effectiveness in corrupting malicious edits while keeping the immunized image imper-
ceptible. This superior imperceptibility is achieved because our model learns to generate visually
subtle, low-frequency perturbations, in contrast to the scattered, high-frequency noise produced by
prior methods (see Appendix A.5 for a detailed discussion). Thus, training an immunizer model en-
ables it to learn how to strategically place immunization noise to effectively disrupt diffusion-based
editing, by aggregating over the training set. In contrast, prior optimization-based works only see a
single target image at a time.

DiffVax is more scalable In addition to its strong qualitative performance, DiffVax offers sig-
nificant advantages in speed and memory efficiency. It completes the immunization process in just
0.07 seconds per image on average, compared to 207.0 seconds for PhotoGuard-E, 911.6 seconds for
PhotoGuard-D, and 131.1 seconds for DiffusionGuard. In terms of GPU memory usage, DiffVax
requires only 5,648 MiB, much lower than PhotoGuard-E (9,548 MiB), PhotoGuard-D (15,114
MiB), and DiffusionGuard (6,750 MiB). This makes DiffVax a practical and scalable solution
for large-scale applications.

DiffVax is more robust to counter-attacks Table 2 shows that DiffVax is robust to common
counter-attacks, including CNN-based denoising, JPEG compression, and IMPRESS (Cao et al.,
2023). DiffVax consistently outperforms PhotoGuard-D across all scenarios, as further evidenced
by the detailed results in Appendix A.3.3. This robustness arises from DiffVax’s ability to learn
spatially targeted, low-frequency perturbations. Unlike existing approaches that produce more uni-
form, high-frequency noise, our method’s perturbations are less susceptible to removal by techniques
like JPEG compression, which discards high-frequency content, or by denoisers trained to suppress
uniform noise. Crucially, as shown in Appendix A.3.2, DiffVax achieves superior edit disruption
with a much smaller mean magnitude of noise than baselines with larger fixed budgets. This high-
lights that its strength lies in the strategic placement of noise, not simply its magnitude, supporting
our claim that DiffVax learns a more efficient and targeted noise distribution. Furthermore, our
extensive robustness evaluations in Appendix A.3 show that DiffVax also maintains its effective-
ness against attackers who vary their inference-time settings, consistently outperforming baselines
across different sampling steps and diffusion samplers.

User study results We also conduct a user study with 67 participants on Prolific (2024), in which
participants compare the “unrealisticness” level of baselines, and the edited image across 20 ran-
domly selected image pairs, including both seen and unseen samples. For each model, we report the
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Table 3: Ablation study. We report the SSIM and SSIM (Noise) metrics for each loss term ablation, with
results presented individually for the seen and unseen splits of the dataset.

Method SSIM ↓ PSNR ↓ FSIM ↓ SSIM (Noise) ↑ CLIP-T ↓
s u s u s u s u s u

DiffVax w/o Lnoise 0.508 0.520 13.57 13.82 0.335 0.344 0.785 0.786 24.34 25.78
DiffVax w/o Ledit 0.944 0.932 31.36 31.05 0.821 0.806 0.999 0.999 32.01 32.27

DiffVax 0.510 0.526 13.96 14.32 0.353 0.362 0.989 0.989 23.13 24.17

average rank, with our model achieving the top position with an average rank of 1.64, demonstrating
clear superiority (see Appendix A.3.5), followed by PhotoGuard-D with a rank of 2.63.

Ablation study To assess the contribution of each component in our framework, we conduct an
ablation study by individually removing Ledit and Lnoise. As shown in Table 3, when Lnoise is re-
moved, the model achieves slightly better performance on unseen data in terms of failed immunized
editing (measured by SSIM, PSNR, FSIM and CLIP-T). However, the immunization noise is no
longer imperceptible, as indicated by the change in the SSIM (Noise) metric. Conversely, when
Ledit is removed, the SSIM (Noise) metric reaches its highest value, indicating minimal noise, but
the model fails to prevent malicious editing, as reflected in the SSIM, PSNR, FSIM and CLIP-T met-
rics. Thus, combining both terms in the final loss function is crucial for balancing imperceptibility
and robustness in the training process (see Appendix A.7).

5 CONCLUSION AND DISCUSSION

Discussion on generalization While a universal immunizer remains an open challenge, DiffVax
demonstrates superior generalization over prior optimization-based work across three key dimen-
sions. First, it addresses generalization to unseen models. Universal cross-model transferability is
a difficult open problem, and like prior work, DiffVax is primarily model-specific and does not
perfectly generalize to all unseen models. However, as detailed in Appendix A.4.1, it demonstrates
significantly better performance in the challenging black-box transfer task from a model trained on
Stable Diffusion (SD) v1.5 to an unseen SD v2 model. In this scenario, our learned immunization
successfully transfers its protective effect, whereas optimization-based methods like PhotoGuard
and DiffusionGuard fail completely, showing a clear improvement in cross-model robustness. Sec-
ond, its feed-forward nature enables generalization to unseen content, a significant advantage over
methods requiring costly per-image optimization. As discussed in Appendix A.4.2, the success of
DiffVax proves that the set of effective perturbations has a learnable structure, allowing it to im-
munize new images, prompts, and even videos with a single pass. Finally, DiffVax is uniquely
robust in its generalization to unseen masks. Unlike prior work, it does not overfit to the train-
ing mask’s shape or scale, maintaining its edit-disrupting effectiveness even when test-time editing
masks differ significantly from the immunization mask, as shown in Appendix A.4.3.

Discussion on editing models Following prior work, our main evaluations are conducted using
inpainting-based editing methods. However, we emphasize that our framework is model-agnostic
and can be applied to various editing tools. To demonstrate this, we include additional results using
the instruction-based model InstructPix2Pix (IP2P) (Brooks et al., 2023) (see Figure 8 in the Ap-
pendix) and the training-free model MagicBrush (Zhang et al., 2023b) (see Table 4 in the Appendix).
We find that IP2P is particularly well-suited for complex or localized editing tasks, such as back-
ground modifications, stylistic changes, or edits outside sensitive regions, whereas inpainting-based
approaches are more specialized for background editing tasks. Specifically, inpainting methods can
introduce unintended alterations in sensitive areas like faces when the provided mask only partially
covers the target region. This can conflict with the intent of a malicious user, whose goal is often to
preserve identity while making selective edits.

Conclusion In this work, we present DiffVax, an optimization-free image immunization frame-
work that protects against diffusion-based editing. Central to our approach is a trained “image im-
munizer” model that generates imperceptible perturbations to disrupt the editing process. At infer-
ence, DiffVax requires only a single forward pass, enabling scalability to large-scale deployments.
Leveraging this efficiency, we extend our framework to video, demonstrating promising results for
the first time (see Appendix A.3.6). Moreover, DiffVax is compatible with any diffusion-based
editing tool and demonstrates strong robustness against counter-attacks. Overall, it establishes a new
benchmark for scalable, real-time, and effective content protection.
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Seventh International Joint Conference on Artificial Intelligence, IJCAI 2018, July 13-19, 2018,
Stockholm, Sweden, pp. 3905–3911. ijcai.org, 2018. doi: 10.24963/IJCAI.2018/543. URL
https://doi.org/10.24963/ijcai.2018/543.

Haotian Xue, Chumeng Liang, Xiaoyu Wu, and Yongxin Chen. Toward effective protection
against diffusion-based mimicry through score distillation. In The Twelfth International Confer-
ence on Learning Representations, 2024. URL https://openreview.net/forum?id=

NzxCMe88HX.

Binxin Yang, Shuyang Gu, Bo Zhang, Ting Zhang, Xuejin Chen, Xiaoyan Sun, Dong Chen, and
Fang Wen. Paint by example: Exemplar-based image editing with diffusion models. In IEEE/CVF
Conference on Computer Vision and Pattern Recognition, CVPR 2023, Vancouver, BC, Canada,
June 17-24, 2023, pp. 18381–18391. IEEE, 2023. doi: 10.1109/CVPR52729.2023.01763. URL
https://doi.org/10.1109/CVPR52729.2023.01763.

Wei Yang, Ping Luo, and Liang Lin. Clothing co-parsing by joint image segmentation and labeling.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
IEEE, 2014. Dataset available at https://www.kaggle.com/datasets/balraj98/
clothing-coparsing-dataset.

Chin-Yuan Yeh, Hsi-Wen Chen, Hong-Han Shuai, De-Nian Yang, and Ming-Syan Chen. Attack as
the best defense: Nullifying image-to-image translation gans via limit-aware adversarial attack.
In 2021 IEEE/CVF International Conference on Computer Vision, ICCV 2021, Montreal, QC,
Canada, October 10-17, 2021, pp. 16168–16177. IEEE, 2021. doi: 10.1109/ICCV48922.2021.
01588. URL https://doi.org/10.1109/ICCV48922.2021.01588.

Guanhua Zhang, Jiabao Ji, Yang Zhang, Mo Yu, Tommi S. Jaakkola, and Shiyu Chang. Towards
coherent image inpainting using denoising diffusion implicit models. In Andreas Krause, Emma
Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett (eds.), In-
ternational Conference on Machine Learning, ICML 2023, 23-29 July 2023, Honolulu, Hawaii,
USA, volume 202 of Proceedings of Machine Learning Research, pp. 41164–41193. PMLR,
2023a. URL https://proceedings.mlr.press/v202/zhang23q.html.

Kai Zhang, Lingbo Mo, Wenhu Chen, Huan Sun, and Yu Su. Magicbrush: A manually annotated
dataset for instruction-guided image editing. Advances in Neural Information Processing Systems,
36:31428–31449, 2023b.

Lin Zhang, Lei Zhang, Xuanqin Mou, and David Zhang. Fsim: A feature similarity index for
image quality assessment. IEEE Transactions on Image Processing, 20(8):2378–2386, 2011. doi:
10.1109/TIP.2011.2109730.

15

http://arxiv.org/abs/1312.6199
http://arxiv.org/abs/1312.6199
https://doi.org/10.1109/ICCV51070.2023.00706
https://api.semanticscholar.org/CorpusID:212981964
https://doi.org/10.24963/ijcai.2018/543
https://openreview.net/forum?id=NzxCMe88HX
https://openreview.net/forum?id=NzxCMe88HX
https://doi.org/10.1109/CVPR52729.2023.01763
https://www.kaggle.com/datasets/balraj98/clothing-coparsing-dataset
https://www.kaggle.com/datasets/balraj98/clothing-coparsing-dataset
https://doi.org/10.1109/ICCV48922.2021.01588
https://proceedings.mlr.press/v202/zhang23q.html


810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

Under review as a conference paper at ICLR 2026

Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. Adding conditional control to text-to-image
diffusion models. In Proceedings of the IEEE/CVF International Conference on Computer Vision,
pp. 3836–3847, 2023c.

Zongwei Zhou, Md Mahfuzur Rahman Siddiquee, Nima Tajbakhsh, and Jianming Liang. Unet++:
A nested u-net architecture for medical image segmentation. Deep Learning in Medical Image
Analysis and Multimodal Learning for Clinical Decision Support : 4th International Workshop,
DLMIA 2018, and 8th International Workshop, ML-CDS 2018, held in conjunction with MICCAI
2018, Granada, Spain, S..., 11045:3–11, 2018. URL https://api.semanticscholar.

org/CorpusID:50786304.

16

https://api.semanticscholar.org/CorpusID:50786304
https://api.semanticscholar.org/CorpusID:50786304


864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

Under review as a conference paper at ICLR 2026

A APPENDIX

CONTENTS

A.1 Model Algorithm and Implementation Details . . . . . . . . . . . . . . . . . . . . 18

Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

Training Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

Dataset Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

A.2 Additional Qualitative Results and Comparisons . . . . . . . . . . . . . . . . . . . 19

A.2.1 Additional Results with Inpainting-Based Editing Models . . . . . . . . . 19

A.2.2 Additional Comparisons with Inpainting-Based Editing Models . . . . . . 20

A.2.3 Additional Results with Instruction-Based Editing Model . . . . . . . . . . 21

A.2.4 Additional Evaluation with MagicBrush and Other Editing Models . . . . . 22

A.3 Additional Robustness Evaluations and Studies . . . . . . . . . . . . . . . . . . . 23

A.3.1 Robustness to Different Sampling Steps and Sampler Settings . . . . . . . 23

A.3.2 Immunization Noise Comparison Under Perturbation Budget . . . . . . . . 24

A.3.3 Robustness to Counterattacks . . . . . . . . . . . . . . . . . . . . . . . . 25

A.3.4 Robustness to Non-Human Subjects . . . . . . . . . . . . . . . . . . . . . 27

A.3.5 User Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

A.3.6 Video Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

A.4 Discussion on Generalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

A.4.1 Generalization to Unseen Models . . . . . . . . . . . . . . . . . . . . . . 30

A.4.2 Generalization to Unseen Content . . . . . . . . . . . . . . . . . . . . . . 30

A.4.3 Generalization to Unseen Masks during Test Time . . . . . . . . . . . . . 31

A.5 Imperceptibility Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

A.6 Prompt-Agnostic Immunization Experiment . . . . . . . . . . . . . . . . . . . . . 33

A.7 Loss Weight Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

A.8 Reproducibility Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

A.9 Ethics Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

A.10 LLM Usage Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

You can find our demo code and the complete immunized videos along with their corresponding
video edits in the provided zip file, located in the ‘supp/code’ and ‘supp/videos’ folders, respectively.

17



918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

Under review as a conference paper at ICLR 2026

A.1 MODEL ALGORITHM AND IMPLEMENTATION DETAILS

Implementation Details We train our immunizer model for 350 epochs using a batch size of 5 on
an NVIDIA A100 GPU. We use the Adam optimizer (Kingma & Ba, 2015) with an initial learning
rate of 0.00001 and set the loss weight parameter α = 4. Training takes approximately 22 hours
and leverages 16-bit precision to reduce memory consumption and speed up computation. For the
editing tools, we use a pre-trained Stable Diffusion v1.5 inpainting model (Rombach et al., 2022)
for inpainting-based editing, and InstructPix2Pix (Brooks et al., 2023) for instruction-based editing
tasks.

Training Algorithm Algorithm 1 describes the end-to-end training procedure for our immunizer
model. For each data sample, the model generates an immunized image by injecting noise into the
masked region. This image is then edited using a black-box editing model. The training objective
minimizes both the deviation from the original image in the masked region and the effectiveness of
the edit in the unmasked region.

Algorithm 1 End-to-end Training Framework

Input: Immunizer model f(·; θ), Editing model SD(·), Dataset
D, Dataset size N , Loss weight α

for n = 1 to N do
(In,Mn,Pn)← sample(D, n)
ϵnim ← f(In; θ)
I
n
im ← (In + ϵnim ⊙M

n).clamp(0, 1)
I
n
im,edit ← SD(Inim,∼M

n,Pn)

Lnoise ← normalize(∥(Inim − I
n)⊙M

n∥1)
Ledit ← normalize(∥Inim,edit ⊙ (∼M

n)∥1)
L ← α · Lnoise + Ledit

θ ← update(∇θL)
end for

Dataset Setup Our dataset consists of 1,000 images, each associated with two prompts, resulting
in a total of 2,000 prompts. We split the dataset into 80% for the training set (seen) and 20%
for the validation set (unseen). The prompt set was constructed using ChatGPT (OpenAI, 2024),
specifically by generating prompts designed for background editing. A total of 1,000 prompts were
collected and subsequently split into 80% for the training set (seen) and 20% for the validation set
(unseen). Finally, we sampled two random prompts for each image in the dataset, ensuring the
prompts corresponded to whether the image was categorized as seen or unseen.

Our dataset is comparable in size to the current datasets used in related works, and is therefore
aligned with the current standard of evidence in the field, while more data would always be better.
To place our dataset size in the context of prior work, the closest research for training a generative
adversarial noise generator is the paper ”Generative Adversarial Perturbations” (Poursaeed et al.,
2018). For their experiments on semantic segmentation, they used the focused Cityscapes dataset,
which contains 2,975 training and 500 validation images. Given that this foundational work was
established on a dataset of a few thousand images from a specific domain (urban scenes), we believe
our dataset of 875 human images is in a comparable range for a proof-of-concept study. Neverthe-
less, we believe that extending our method to larger and more diverse datasets is a crucial next step,
and we will highlight this as an important avenue for future work.
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A.2 ADDITIONAL QUALITATIVE RESULTS AND COMPARISONS

A.2.1 ADDITIONAL RESULTS WITH INPAINTING-BASED EDITING MODELS

Figure 6 presents supplementary qualitative results obtained using inpainting-based editing models.
The examples cover a wide range of scenarios and prompts, demonstrating the effectiveness of
our immunization method on previously unseen content. Notably, the model performs well even
on close-up images, maintaining robustness against malicious edits in both broad and fine-grained
contexts.

Figure 6: Additional qualitative results with DiffVax. Each row displays a different prompt and
input image, illustrating DiffVax’s ability to consistently disrupt harmful edits. Despite varying
and challenging prompts, the edited outputs from the protected images show clear signs of disrup-
tion, emphasizing the robustness of our method.
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A.2.2 ADDITIONAL COMPARISONS WITH INPAINTING-BASED EDITING MODELS

Figure 7 shows extended qualitative comparisons between DiffVax and various baseline immu-
nization methods, including Random Noise, PhotoGuard-E, PhotoGuard-D, and DiffusionGuard.
These results are produced using inpainting-based editing models. The comparison highlights how
DiffVax consistently achieves better performance in visually disrupting malicious edits while pre-
serving the semantic integrity of the original image.

We note that other defense methods such as AdvDM (Liang et al., 2023), SDS (Xue et al., 2024), and
Mist (Liang & Wu, 2023) have also been proposed in the literature. However, these techniques are
tailored for specific editing pipelines like SDEdit (Meng et al., 2022) and are not directly applicable
in our inpainting-based setup, thus making direct comparison beyond our experimental scope.

Figure 7: Additional qualitative comparison between baselines and DiffVax. Each row rep-
resents a unique prompt-image pair, while the columns show outputs for different immunization
methods. DiffVax consistently produces better results, effectively disrupting edits while preserv-
ing image quality.
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A.2.3 ADDITIONAL RESULTS WITH INSTRUCTION-BASED EDITING MODEL

To further evaluate the generalizability of DiffVax, we apply it to edits generated using Instruct-
Pix2Pix (Brooks et al., 2023), a widely adopted text-guided diffusion-based editing tool. This setting
differs significantly from inpainting models, as edits are applied based on high-level natural language
instructions. As shown in Figure 8, DiffVax consistently disrupts a broad range of editing intents
across various image types. The examples illustrate the model’s robustness across:

• Human attribute edits (e.g., ”add a hat to her head”, ”add bowtie to person”, ”make
him wear a small scarf”): DiffVax suppresses the addition of these features, effectively
neutralizing changes to facial and clothing attributes.

• Background edits (e.g., ”make the background a chapel”, ”change him to a statue”):
Despite significant changes to the scene, the edits fail to render properly on immunized
images, showcasing DiffVax’s ability to neutralize edits in large non-focal areas.

• Style transfer edits (e.g., ”change the style to starry nights”, ”make the style cubism”,
”van gogh style”): DiffVax prevents global transformations from taking effect, demon-
strating its efficacy in blocking even abstract stylistic alterations.

• Non-ROI edits (e.g., ”add hot-air balloons to back”, ”add necklace to person”, ”add
headphones”): These involve subtle object insertions in the background or around the
subject. Even though the modification targets are not directly in the immunized region,
DiffVax still effectively disrupts the edit.

These results validate the model-agnostic and instruction-resilient nature of DiffVax, confirming
its applicability to both local and global edit intents.

Figure 8: Qualitative results using the InstructPix2Pix (Brooks et al., 2023) editing model with
DiffVax. Each triplet shows an original image, its edited counterpart, and the result after immu-
nization. DiffVax successfully prevents a diverse set of edits, including background replacement,
style transfer, object insertion, and attribute modification, further demonstrating its generalizability
across editing types.
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A.2.4 ADDITIONAL EVALUATION WITH MAGICBRUSH AND OTHER EDITING MODELS

The landscape of generative editing models is vast and rapidly evolving. Our choice of evaluation
models was guided by established benchmarks in the image immunization literature to ensure a fair
and direct comparison with prior state-of-the-art methods. To further strengthen our claims of gen-
eralizability, we conducted an additional experiment comparing our approach against PhotoGuard
on the modern, training-free editing model MagicBrush. As shown in Table 4, our learned perturba-
tions remain effective at disrupting edits, demonstrating that the protection generalizes beyond the
standard inpainting and instruction-based models used in prior benchmarks. Our preliminary results
show that DiffVax achieves superior edit disruption (lower SSIM, PSNR, FSIM, and CLIP-T)
with comparable imperceptibility (SSIM Noise).

Table 4: MagicBrush Comparison

MagicBrush SSIM ↓ PSNR ↓ FSIM ↓ CLIP-T ↓ SSIM (Noise) ↑
PhotoGuard 0.682 18.81 0.546 25.64 0.967

DiffVax 0.635 18.41 0.529 22.18 0.965

Table 5 contextualizes our evaluation scope by comparing the editing tools used across recent im-
munization works. The scope of our evaluation is aligned with current best practices. We acknowl-
edge that methods like Prompt-to-Prompt Hertz et al. (2023b) and Null-text inversion Mokady et al.
(2023) represent a different editing paradigm not directly compatible with the current experimental
setup, and adapting our framework to protect against them is a promising direction for future work.

Table 5: Editing Models Used

Method Editing Models Used

DiffVax (Ours) SD Inpainting, IP2P, MagicBrush
DiffusionGuard Choi et al. (2025) (ICLR 2025) SD Inpainting, IP2P
PhotoGuard Salman et al. (2023) (ICML 2023) SD Inpainting, SDEdit
SDS Xue et al. (2024) (ICLR 2024) SDEdit, SD Inpainting, Textual inversion
Mist Liang & Wu (2023) (ICML 2023) Textual inversion, Dreambooth
AdvDM Liang et al. (2023) (ICML 2023) Textual inversion, SDEdit
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A.3 ADDITIONAL ROBUSTNESS EVALUATIONS AND STUDIES

A.3.1 ROBUSTNESS TO DIFFERENT SAMPLING STEPS AND SAMPLER SETTINGS

To evaluate the robustness of DiffVax against attackers who may vary their inference-time set-
tings, we conduct experiments with different sampling steps and diffusion samplers. The results,
presented in Table 6 and Table 7, demonstrate that DiffVax consistently and effectively disrupts
malicious edits across a range of configurations.

Table 6 shows that DiffVax maintains superior performance across various sampling step counts
(10, 20, 30, and 40). In nearly all scenarios, it achieves the best (lowest) scores for PSNR, FSIM,
and CLIP-T, indicating its protection is not compromised when an attacker uses fewer or more steps
for generation. Similarly, Table 7 illustrates that DiffVax outperforms baselines when different
samplers (PNDMScheduler Liu et al., EulerDiscreteScheduler, LMSDiscreteScheduler Karras et al.
(2022)) are used. This confirms that our learned immunization is not overfitted to a specific genera-
tion algorithm and remains effective in diverse, real-world attack scenarios.

Table 6: Sampling Step Comparison

Sampling Step Model SSIM ↓ PSNR ↓ FSIM ↓ CLIP-T ↓
PG-D 0.637 16.79 0.391 26.54

10 DiffusionGuard 0.651 16.65 0.409 23.84
DiffVax 0.627 16.37 0.366 22.96

PG-D 0.564 15.56 0.379 28.89
20 DiffusionGuard 0.591 15.28 0.393 26.04

DiffVax 0.564 14.96 0.360 24.42

PG-D 0.523 14.92 0.379 29.27
30 DiffusionGuard 0.556 14.71 0.386 27.10

DiffVax 0.526 14.32 0.362 24.17

PG-D 0.507 14.42 0.377 29.68
40 DiffusionGuard 0.539 14.16 0.386 27.84

DiffVax 0.506 13.78 0.356 24.06

Table 7: Sampler Comparison

Sampler Model SSIM ↓ PSNR ↓ FSIM ↓ CLIP-T ↓
PG-D 0.480 14.31 0.404 26.88

PNDMScheduler DiffusionGuard 0.501 14.52 0.404 26.97
DiffVax 0.440 13.41 0.372 21.67

PG-D 0.504 14.93 0.399 28.08
EulerDiscreteScheduler DiffusionGuard 0.530 14.93 0.406 27.28

DiffVax 0.466 13.91 0.361 22.00

PG-D 0.487 14.36 0.403 27.82
LMSDiscreteScheduler DiffusionGuard 0.509 14.47 0.405 27.23

DiffVax 0.449 13.43 0.367 21.70
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A.3.2 IMMUNIZATION NOISE COMPARISON UNDER PERTURBATION BUDGET

We have run experiments comparing DiffVax’s average learned perturbation against baselines with
fixed 16/255, 32/255, 64/255 budgets, and we performed evaluation based on the mean magnitude
(L1) of the immunization noise (perturbation).

The results clearly show that DiffVax achieves superior edit disruption with a much smaller mean
magnitude (L1) perturbation than baselines given a larger budget, highlighting that its strength lies
in the strategic placement of noise, not simply its magnitude. This supports our claim that DiffVax
learns a more efficient and targeted noise distribution rather than applying uniform, high-energy
noise.

Unlike methods that enforce a rigid and uniform Lp budget, DiffVax implicitly learns the perturba-
tion’s properties via the trade-off in our loss function, L = α · Lnoise + Ledit. This allows the model
to strategically allocate its ”budget,” applying stronger noise only where most effective and least
visible.

Table 8: Comparison Across Immunization Strengths (ϵ)

ϵ Method SSIM ↓ PSNR ↓ FSIM ↓ CLIP-T ↓ SSIM (Noise) ↑ Mean Magnitude (L1) of Immunization Noise ↓
64/255 PG-D 0.492 14.13 0.355 27.85 0.947 0.007

DiffusionGuard 0.507 13.98 0.360 24.83 0.900 0.012

32/255 PG-D 0.502 14.23 0.360 29.18 0.950 0.006
DiffusionGuard 0.526 14.30 0.373 26.13 0.927 0.009

16/255 PG-D 0.528 14.60 0.387 30.27 0.978 0.003
DiffusionGuard 0.546 14.46 0.388 26.36 0.965 0.005

– DiffVax 0.496 13.85 0.352 22.96 0.989 0.001
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A.3.3 ROBUSTNESS TO COUNTERATTACKS

JPEG compression and denoising techniques are typically designed to remove high-frequency com-
ponents from images. Since our immunizer model introduces primarily low-frequency perturba-
tions—due to the design of our noise loss—it becomes inherently more robust against such counter-
attacks.

Table 9 reports results under various JPEG compression ratios and when using IMPRESS (Cao
et al., 2023), a model specifically developed for adversarial purification and denoising. Across
all configurations, DiffVax consistently outperforms PhotoGuard-D and DiffusionGuard in terms
of SSIM, SSIM (Noise), and CLIP-T metrics. These results suggest that DiffVax maintains its
protective efficacy even when subjected to aggressive counterattack scenarios.

Figure 9 presents qualitative results of two counterattack strategies: (a) applying a denoiser and
(b) applying JPEG compression. The edited image, along with its attacked counterpart, is shown
for both PhotoGuard-D and DiffVax. While the visual changes for PhotoGuard-D are signif-
icant—indicating its vulnerability to counterattacks—DiffVax retains its robustness, preventing
successful malicious edits.

To further explore robustness, Figure 16 presents additional qualitative comparisons under varying
JPEG compression ratios (from 0.85 to 0.55) and under the IMPRESS purification attack. Even at
high compression levels, DiffVax continues to disrupt the edits, showcasing its superior general-
ization and resistance to counter-editing.

Table 9: Additional counterattack experiments. The SSIM, SSIM (Noise), and CLIP-T metrics are
reported for JPEG compression with ratios of 0.85, 0.65, and 0.55, as well as for the adversarial
purification model IMPRESS. The metrics demonstrate that DiffVax consistently outperforms
PhotoGuard-D (PG) and DiffusionGuard (DG), even when counterattacks are applied to all methods.

Metric
DiffVax
(JPEG .85)

DG
(JPEG .85)

PG
(JPEG .85)

DiffVax
(JPEG .65)

DG
(JPEG .65)

PG
(JPEG .65)

DiffVax
(JPEG .55)

DG
(JPEG .55)

PG
(JPEG .55)

DiffVax
(IMPRESS)

DG
(IMPRESS)

PG
(IMPRESS)

SSIM ↓ 0.517 0.646 0.640 0.530 0.696 0.692 0.534 0.706 0.693 0.489 0.605 0.578
SSIM (Noise) ↑ 0.968 0.955 0.961 0.951 0.946 0.950 0.944 0.940 0.944 0.644 0.636 0.640

CLIP-T ↓ 25.76 30.83 32.00 26.83 31.80 32.15 27.67 31.93 32.20 24.67 30.71 31.35
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Figure 9: Qualitative results of counter-attacks on immunization methods. The first row shows
results when an off-the-shelf denoiser is applied to the immunized image, while the second row dis-
plays results under JPEG compression. Columns 2–3 correspond to PhotoGuard-D, while columns
4–5 show results for DiffVax. PhotoGuard-D is visibly more susceptible to counterattacks,
whereas DiffVax maintains strong protection.

Figure 10: Additional qualitative results of counter-attacks on immunization methods. Each row
corresponds to a different JPEG compression ratio or the IMPRESS model. DiffVax shows robust
behavior across all levels, continuing to suppress harmful edits even under heavy degradation or
purification.
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A.3.4 ROBUSTNESS TO NON-HUMAN SUBJECTS

To evaluate the generalizability of DiffVax beyond human-centric content, we conduct experi-
ments on non-human subjects, such as animals and other inanimate objects. As illustrated in Fig-
ure 11, DiffVax effectively immunizes these non-person regions, preventing malicious edits while
preserving the visual fidelity of the original image. These results further demonstrate the versatility
and zero-shot capabilities of DiffVax across diverse object domains.

Figure 11: Qualitative results for non-human objects edited using DiffVax. These examples
show that DiffVax extends effectively to domains beyond human subjects, maintaining its edit-
resistance and imperceptibility.
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A.3.5 USER STUDY

To assess the human-perceived quality and effectiveness of each immunization method, we con-
ducted a user study with 67 participants recruited via Prolific. Participants were asked to rank edited
images based on how unrealistic or misaligned they appeared.

Each participant was shown a set of five edited images derived from the same input image and
text prompt (see Figure 12). These five outputs corresponded to different immunization strategies:
Random Noise, PhotoGuard-E, PhotoGuard-D, DiffVax, and an unprotected baseline. For each
prompt-image pair, participants were instructed to rank the edits from least aligned to most aligned
with the editing prompt. A lower ranking indicates better disruption of the intended edit (i.e., more
effective immunization), as participants found the result less realistic or aligned with the prompt.

We randomly shuffled the order of methods in each trial to avoid position bias. In total, the study
included 20 image-prompt pairs covering both seen and unseen examples, ensuring a fair and com-
prehensive evaluation.

Table 10: User Study Rankings. Lower values indicate better perceived editing failure prevention, impercep-
tibility, and alignment with the original content.

Immunization Method Average Ranking ↓
Random Noise 3.74
PhotoGuard-E 3.33
PhotoGuard-D 2.63
DiffVax (Ours) 1.64

As shown in Table 10, DiffVax significantly outperforms prior methods, receiving the best average
ranking of 1.64. This demonstrates the effectiveness of our method in fooling editing models in a
way that is perceptually convincing to human observers. The next-best method, PhotoGuard-D,
trails behind with a score of 2.63, while other methods rank even lower.

Figure 12: Instructions provided to user study participants. Users were asked to rank edited im-
ages from least to most aligned with the text prompt. Lower alignment suggests more successful
immunization.
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A.3.6 VIDEO EVALUATION

To our knowledge, this is the first immunization-based video evaluation using a diffusion model for
editing. We construct a video benchmark consisting of 4 human activity videos, each containing
64 frames and paired with 4 unique prompts. Since no prior method directly supports training-free
video immunization using inpainting-based diffusion models, we adopt a naive per-frame editing
pipeline to extend our approach to video. Despite not incorporating any explicit temporal modeling,
our method yields strong results.

As reported in Table 11, DiffVax outperforms all baselines across multiple metrics, including
PSNR, SSIM (Noise), CLIP-T, and runtime. Notably, it achieves a dramatic reduction in run-
time—processing the full dataset in just 0.739 seconds—compared to PhotoGuard-D’s 64-hour
runtime. These results emphasize the efficiency and practicality of our approach in real-time or
large-scale settings.

Importantly, we make no architectural or training modifications for video data. The strong results
achieved without temporal modeling suggest that our method generalizes well across sequential data,
capturing consistent patterns in human identity, pose, and structure across frames. This robustness
is further demonstrated in Fig. 1 and Fig. 4 (c), where the model effectively adapts to changes in
body motion and facial expressions.

Our work targets general-purpose editing protection and is evaluated on diverse, open-domain video
data. The effectiveness of our approach under such settings demonstrates its promise as a scalable
and general immunization strategy for future video editing systems.

Table 11: Results on video editing. We report the average PSNR, SSIM, FSIM, SSIM (Noise), CLIP-T, and
total runtime for Random Noise, PhotoGuard-D, DiffusionGuard, and DiffVax on a video dataset consisting
of 4 videos, each with 4 prompts and 64 frames. Best results per column are bolded.

Method SSIM ↓ PSNR ↓ FSIM ↓ SSIM (Noise) ↑ CLIP-T ↓ Runtime ↓
Random Noise 0.774 21.09 0.547 0.786 29.62 N/A
PhotoGuard-D 0.738 17.31 0.448 0.965 26.52 64 hours
DiffusionGuard 0.750 17.43 0.478 0.922 25.41 10 hours
DiffVax 0.681 16.78 0.374 0.974 22.51 0.739 seconds
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A.4 DISCUSSION ON GENERALIZATION

While a universal immunizer that works zero-shot across all editing model architectures is a
challenging open problem, DiffVax demonstrates superior generalization compared to existing
optimization-based methods across three distinct dimensions: generalization to unseen models, to
unseen content, and to unseen masks. This section details these advantages.

A.4.1 GENERALIZATION TO UNSEEN MODELS

Existing immunization methods, including optimization-based approaches like PhotoGuard, are
model-specific. While developing a universally transferable immunizer is not the primary focus
of this work, DiffVax demonstrates significantly better generalization to unseen models than prior
methods. We conducted an experiment where immunization noise was generated using a model
trained on Stable Diffusion (SD) v1.5 and then tested on an unseen SD v2 model. As shown qual-
itatively in Figure 13, DiffVax successfully transfers its protective effect, whereas PhotoGuard’s
perturbations fail completely, leaving the image vulnerable.

Figure 13: Transferability of perturbations across editing models. Red labels indicate the immu-
nization training model, and blue labels denote the editing model. The results show how well each
immunized image resists edits across different model configurations. When trained on Stable Dif-
fusion (SD) v1.5, DiffVax successfully prevents edits even when tested on SD v2. In contrast,
PhotoGuard’s perturbations trained on SD v1.5 do not generalize to SD v2. These results illustrate
the superior cross-model generalizability of DiffVax.

Table 12 provides quantitative results for this black-box transfer task, confirming that DiffVax
achieves the best performance across all metrics. This provides direct evidence that our learned
immunization strategy is more robust and generalizable across model versions than optimization-
based approaches.

Table 12: Quantitative results for transferring immunization from SD v1.5 to an unseen SD v2.0
model. Lower values are better for all metrics, indicating more effective edit disruption. DiffVax
outperforms all baselines.

SD 2.0 SSIM ↓ PSNR ↓ FSIM ↓ CLIP-T ↓
PG-D 0.566 15.17 0.417 32.00
DiffusionGuard 0.609 15.26 0.454 31.73
DiffVax 0.540 14.02 0.384 27.72

A.4.2 GENERALIZATION TO UNSEEN CONTENT

Optimization-based methods inherently handle unseen images by running a costly, per-image opti-
mization process. A key scientific question this paper addresses is whether it is possible to learn a
single feed-forward model that can directly generate effective perturbations without optimization.
The success of our approach implies that the set of effective perturbations across all possible im-
ages possesses sufficient structure and regularity to be learnable. Our experiments demonstrate that
DiffVax successfully generalizes to unseen images, unseen prompts, and even unseen videos
with a single forward pass, as demonstrated in Fig. 1 and Fig. 4 (b) and (c) and Table 11. This
establishes the learnability of the perturbation set for the first time and enables protection at a scale
and speed previously unattainable.
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A.4.3 GENERALIZATION TO UNSEEN MASKS DURING TEST TIME

Most existing state-of-the-art (SOTA) methods assume that the same mask is used during both the
immunization (training) and editing (testing) phases. While this assumption aligns with standardized
deepfake pipelines—where masks are often fixed to cover specific regions such as the head or full
body—it limits the robustness of these methods to real-world scenarios involving unpredictable or
mismatched editing masks.

To evaluate this limitation, we conduct an experiment where the editing mask during test time differs
from the mask used during immunization. As shown in Figure 14, when the test-time mask diverges
from the training mask, existing methods such as PhotoGuard (PG) and DiffusionGuard fail to main-
tain their edit-disrupting behavior. In contrast, DiffVax remains effective, successfully disrupting
the malicious edits even when significant changes are made to the mask size or region. This ro-
bustness can be attributed to our model’s design, which does not overfit to the spatial shape or scale
of the mask used during training. Instead, it learns to encode more generalizable perturbations that
degrade editing attempts across a range of editing contexts. These findings suggest that DiffVax
offers better real-world applicability where attackers may alter masks to evade immunization.

Figure 14: Comparison of edited immunized images with different immunization and editing
masks. PhotoGuard uses the same mask for both training and testing, making it highly sensitive
to changes in the editing mask. DiffVax, by contrast, is trained with a fixed immunization mask
but remains robust even when the test-time editing mask significantly deviates. The results show
consistent disruption of edits by DiffVax despite large mask variability.
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A.5 IMPERCEPTIBILITY DISCUSSION

To evaluate the imperceptibility of the perturbations introduced by DiffVax, we present qualitative
comparisons against PhotoGuard in Figure 15. Our method generates noise that is concentrated in
the low-frequency components of the image, making it visually more subtle and less disruptive. In
contrast, PhotoGuard introduces high-frequency noise that appears scattered across broader regions.

This low-frequency characteristic of DiffVax offers two key advantages. First, it enhances the per-
ceptual quality of the immunized images by producing smoother perturbations that minimally inter-
fere with semantic content. Second, it contributes to robustness against counterattacks such as JPEG
compression or denoising—these techniques are typically designed to suppress high-frequency in-
formation, which is assumed to correspond to noise. Since DiffVax avoids relying on high-
frequency artifacts, its perturbations are more likely to survive such transformations, preserving
the protective effect.

We further examine the role of the loss norm in shaping the visual quality of the immunization. As
shown in Figure 16, using L2 or L∞ norms leads to less perceptible perturbations than the default L1

formulation. However, this comes at the expense of reduced edit resistance, underscoring a critical
trade-off between imperceptibility and robustness.

Future work will explore more principled approaches to navigating this trade-off, such as incorporat-
ing perceptual similarity metrics or frequency-domain regularization directly into the optimization
objective.

Figure 15: Comparison of immunization noise. Visual comparison of immunized images gener-
ated by PhotoGuard and DiffVax using a face mask. PhotoGuard produces scattered and higher-
frequency noise, while DiffVax generates smoother, low-frequency perturbations.

Figure 16: Additional comparison of immunization noise under different norms. This figure com-
pares immunized images generated using different norm constraints: L1, L2, and L∞, as well as
results from PhotoGuard and DiffusionGuard.
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A.6 PROMPT-AGNOSTIC IMMUNIZATION EXPERIMENT

We conduct additional experiments to demonstrate that the noise produced by our DiffVax (and
consequently the immunized images) is prompt-agnostic. To achieve this, we train DiffVax three
times, using a different image for each training setup. In each experiment, we use a single image
with 100 seen prompts for training and evaluate it on 75 seen prompts and 75 unseen prompts (not
included in the training set). The results are then averaged across all images for each prompt. As
shown in Fig. 17, the quantitative results for seen and unseen metrics are highly similar, and the low
variances further confirm that the noise generalizes effectively across diverse prompt conditions.

Figure 17: Experiment results for prompt-agnostic noise. We present our performance metrics
between prompts for 75 prompts seen in training (blue color) and 75 prompts unseen in training
(orange color). PSNR and CLIP-T values are divided by 50 for visualization purposes. We can see
that the two distributions are almost identical, suggesting that our method performs similarly across
all prompts, suggesting the prompt-agnostic nature of our DiffVax.
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A.7 LOSS WEIGHT SELECTION

The hyperparameter α in DiffVax’s loss function controls the balance between imperceptibility
and edit disruption. It is defined in the overall loss as L = α · Lnoise + Ledit, where a larger α
emphasizes minimizing visible noise, potentially at the cost of reduced editing resistance, and a
smaller α enhances robustness to edits but may introduce more perceptible perturbations.

To determine an optimal value for α, we conduct an ablation study on a subset of 100 images,
evaluating three values: α = 2, 4, and 6. The results are summarized in Table 13. We observe
that while increasing α improves imperceptibility—as indicated by slightly higher SSIM (Noise)
and PSNR scores—the edit disruption becomes weaker, reflected in a deterioration of the SSIM and
PSNR metrics.

We select α = 4 as the optimal configuration. It provides a strong balance between imperceptibility
and disruption: the gain in SSIM (Noise) from α = 4 to α = 6 is marginal, while the drop in editing
robustness is more pronounced. Furthermore, qualitative inspection confirms that the perturbations
at α = 4 are already imperceptible, making further increase in α unnecessary.

Table 13: Ablation study on the loss weight α in L = α · Lnoise + Ledit. Metrics demonstrate the trade-off
between imperceptibility and edit disruption. Best values for SSIM (Noise) are bolded, while lower SSIM and
PSNR indicate stronger editing disruption.

Configuration SSIM ↓ PSNR ↓ SSIM (Noise) ↑
DiffVax w/ α = 2 0.536 14.47 0.987
DiffVax w/ α = 4 0.588 15.38 0.993
DiffVax w/ α = 6 0.625 16.23 0.996
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A.8 REPRODUCIBILITY STATEMENT

The source code of the project is provided in the supplementary. Project can be reproduced by
following the provided guidelines and source code. All experiments can be replicated using the
instructions and datasets referenced in this paper.

A.9 ETHICS STATEMENT

This work does not raise any foreseeable ethical concerns. The experiments were conducted solely
on publicly available datasets.

A.10 LLM USAGE STATEMENT

Large language models (LLMs) were used exclusively for assistance in grammar correction, format-
ting, and improving the clarity of writing. They were not employed for generating research ideas,
designing experiments, or creating results.
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