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Figure 1: DiffVax is an optimization-free image immunization approach designed to protect im-
ages and videos from diffusion-based editing. DiffVax demonstrates robustness across diverse
content, providing protection for both in-the-wild (a) unseen images and (b) unseen video con-
tent while effectively preventing edits across various editing methods, including inpainting (illus-
trated with a human in the left column and a non-human foreground object in the right column) and
instruction-based edits (right column) with InstructPix2Pix (Brooks et al., 2023).

ABSTRACT

Current image immunization defense techniques against diffusion-based editing
embed imperceptible noise into target images to disrupt editing models. How-
ever, these methods face scalability challenges, as they require time-consuming
optimization for each image separately, taking hours for small batches. To ad-
dress these challenges, we introduce DiffVax, a scalable, lightweight, and
optimization-free framework for image immunization, specifically designed to
prevent diffusion-based editing. Our approach enables effective generalization to
unseen content, reducing computational costs and cutting immunization time from
days to milliseconds, achieving a speedup of 250,000×. This is achieved through a
loss term that ensures the failure of editing attempts and the imperceptibility of the
perturbations. Extensive qualitative and quantitative results demonstrate that our
model is scalable, optimization-free, adaptable to various diffusion-based editing
tools, robust against counter-attacks, and, for the first time, effectively protects
video content from editing. More details are available in our Project Webpage.
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1 INTRODUCTION

Recent advancements in generative models, particularly diffusion models (Sohl-Dickstein et al.,
2015; Ho et al., 2020; Rombach et al., 2022), have enabled realistic content synthesis, which can
be used for various applications, such as image generation (Saharia et al., 2022; Ruiz et al., 2023;
Chefer et al., 2023; Zhang et al., 2023c; Li et al., 2023b; Mou et al., 2024b; Bansal et al., 2023)
and editing (Brooks et al., 2023; Couairon et al., 2023a; Hertz et al., 2023b; Meng et al., 2022).
However, the widespread availability and accessibility of these models introduce significant risks, as
malicious actors exploit them to produce deceptive, realistic content known as deepfakes (Pei et al.,
2024). Deepfakes pose severe threats across multiple domains, from political manipulation (Appel
& Prietzel, 2022) and blackmail (Blancaflor et al., 2024) to biometric fraud (Wojewidka, 2020)
and compromising trust in legal processes (Delfino, 2022). Furthermore, they have become tools
for sexual harassment through the creation of non-consensual explicit content (Jean Mackenzie,
2024; Davies & McDermott, 2022; Cole, 2018). Given the widespread accessibility of diffusion
models, the scale of these threats continues to grow, underscoring the urgent need for robust defense
mechanisms to protect individuals, institutions, and public trust from such misuse.

To address these challenges, one line of research has focused on deepfake detection (Naitali et al.,
2023; Passos et al., 2024) and verification methods (Hasan & Salah, 2019), which facilitate post-hoc
identification. While effective for detection, these approaches do not proactively prevent malicious
editing, as they only identify it after it happens. Another branch modifies the parameters of editing
models (Li et al., 2024) to prevent unethical content synthesis (e.g. NSFW material); however, the
widespread availability of unrestricted generative models limits its effectiveness. A more robust de-
fense mechanism, known as image immunization (Salman et al., 2023; Lo et al., 2024; Yeh et al.,
2021; Ruiz et al., 2020), safeguards images from malicious edits by embedding imperceptible adver-
sarial perturbation. This approach ensures that any editing attempts lead to unintended or distorted
results, proactively preventing malicious modifications rather than depending on post-hoc detection.
The subtlety of this protection is particularly valuable for large-scale, publicly accessible content,
such as social media, where user data is especially vulnerable to malicious attacks. By uploading
immunized images instead of the original ones, users can reduce the risk of misuse by malicious
actors, highlighting the potential of immunization-based methods for real-world impact.

However, current immunization approaches remain inadequate, as they do not simultaneously sat-
isfy the key requirements of an effective defense: (i) scalability for large-scale content, (ii) memory
and runtime efficiency, and (iii) robustness against counter-attacks. PhotoGuard (Salman et al.,
2023) (PG) embeds adversarial perturbations into target images to disrupt components of the dif-
fusion model by solving a constrained optimization problem via projected gradient descent (Madry
et al., 2018a). Although PhotoGuard was the first immunization model targeting diffusion-based
editing, it requires over 10 minutes of runtime per image and at least 15GB of memory, causing both
computational and time inefficiency. To alleviate these demands, DAYN (Lo et al., 2024) proposes a
semantic-based attack that disrupts the diffusion model’s attention mechanism during editing. While
this approach reduces computational load, it remains time-inefficient like PhotoGuard, as it requires
a separate optimization process for each image and cannot generalize to unseen content. Further-
more, both approaches are vulnerable to counter-attacks, such as denoising the added perturbation or
applying JPEG compression (Sandoval-Segura et al., 2023) to the immunized image. Consequently,
neither method is practical for large-scale applications, such as safeguarding the vast volume of
image and video data uploaded daily on social media platforms.

To address these challenges, we introduce DiffVax, an end-to-end framework for training an “im-
munizer model” that learns how to generate imperceptible perturbations to immunize target images
against diffusion-based editing (see Fig 2). This immunization process ensures that any attempt to
edit the immunized image using a diffusion-based model fails. DiffVax is more effective than
prior works in ensuring editing failure, and it demonstrates the feasibility and generalizability of the
image-conditioned feed-forward approach to perturbation generation.

Our training process is guided by two objectives, expressed as separate terms in the loss function: (1)
encouraging the model to generate an imperceptible perturbation, and (2) ensuring that any editing
attempt on the immunized image fails. Our trained immunizer operates with a single forward pass,
completed within milliseconds, eliminating the need for time-intensive per-image optimization. This
efficiency enables scalability to high-volume content protection. Additionally, DiffVax enhances
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Figure 2: Comparing DiffVax with existing approaches. (a) An attacker performs malicious
editing on an original image. (b) Existing defenses immunize images by solving a costly optimiza-
tion problem for each image individually, taking over 10 minutes per image. (c) DiffVax enables
scalable protection by first training an immunizer model (green box) on a diverse dataset. Once
trained, the model can immunize unseen images with a single forward pass, producing effective
perturbations in approximately 70 milliseconds per image.

memory efficiency by avoiding gradient computation during inference, setting it apart from prior
methods. It also exhibits robustness against common counter-attacks, such as JPEG compression and
image denoising (Sandoval-Segura et al., 2023). In addition, our framework demonstrates superior
generalization with other diffusion-based editing methods (see Fig. 1 for examples on inpainting and
instruction-based editing). Leveraging these strengths, we extend immunization to video content for
the first time, achieving results previously unattainable due to the computational limitations of earlier
approaches. As a result, DiffVax satisfies all key requirements for an effective defense.

To summarize, our contributions are as follows:

• We are the first to introduce a training framework in which the model learns to effectively
immunize a given image against diffusion-based editing, drastically reducing inference
time from days to milliseconds and enabling real-time protection.

• Thanks to its computational efficiency, our model shows promising potential as a founda-
tional step toward immunizing video content.

• Unlike prior methods that require per-image optimization and therefore cannot general-
ize to unseen data, our approach enables generalization to new content through a learned
“image immunizer”.

• DiffVax achieves superior results with substantial degradation of the editing operation,
and minimal memory requirement, demonstrating resistance to counter-attacks, making it
the fastest, most cost-effective, and robust method available.

2 RELATED WORK

Adversarial attacks Adversarial attacks exploit model vulnerabilities by introducing perturbations
that induce misclassification. Early gradient-based methods efficiently generated such examples via
gradient manipulation (Goodfellow et al., 2015; Madry et al., 2018b), later refined to minimize per-
ceptual distortion (Carlini & Wagner, 2017; Moosavi-Dezfooli et al., 2016). Generative approaches
advanced these attacks by synthesizing realistic adversarial inputs (Xiao et al., 2018). Subsequent
work improved transferability and query efficiency using momentum and random search (Dong
et al., 2018; Andriushchenko et al., 2020), while ensemble-based methods strengthened robustness
evaluation (Croce & Hein, 2020). Universal perturbations (Moosavi-Dezfooli et al., 2017; Hayes &
Danezis, 2018) and generative perturbation networks (Poursaeed et al., 2018) further generalized at-
tacks across data and models. Building on these advances, our work focuses on immunizing against
diffusion-based editing, addressing its unique characteristics.
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Preventing image editing The proliferation of Latent Diffusion Models (LDMs) has underscored
the demand for robust immunization strategies against unauthorized image manipulation. Initial
efforts focused on Generative Adversarial Network (GAN)-based models, employing adversarial
perturbations to inhibit edits (Yeh et al., 2021; Aneja et al., 2022). PhotoGuard (Salman et al., 2023)
extended this line of work to diffusion models via encoder- and model-level perturbations but in-
curred substantial computational overhead due to backpropagation across multiple timesteps. To
alleviate this, Lo et al. (2024)1 proposed an attention-disruption strategy that bypasses full gradient
computation, though its reliance on fixed prompts limits robustness. DiffusionGuard (Choi et al.,
2025) enhances PhotoGuard by optimizing over augmented masks, yet remains computationally in-
tensive. Similarly, PCA (Guo et al., 2024) proposes a grey-box attack by inducing posterior collapse
in the VAE encoder to disrupt editing. Addressing instruction-guided editing, EditShield (Chen
et al., 2023) introduces perturbations to shift latent representations, causing semantic mismatches in
the edited output. Meanwhile, Shih et al. (2025) bypass the reliance on VAE encoders by proposing
a feature-based attack effective against pixel-domain diffusion models. Other approaches, including
Mist (Liang & Wu, 2023), AdvDM (Liang et al., 2023), SDS (Xue et al., 2024), and Glaze (Shan
et al., 2023), target text-to-image diffusion or fine-tuned models, but exhibit high computational de-
mands and limited resilience to adaptive attacks. In contrast, DiffVax introduces a model-agnostic
immunizer that generalizes to unseen data via a single forward pass. Furthermore, we present, for
the first time, promising results in the direction of video immunization.

Diffusion-based image editing Diffusion models have emerged as powerful tools for image edit-
ing tasks such as inpainting (Wang et al., 2023; Lugmayr et al., 2022; Zhang et al., 2023a), style
transfer (Wang et al., 2023; Mou et al., 2024a; Yang et al., 2023; Hertz et al., 2023a), and text-
guided transformations (Brooks et al., 2023; Lin et al., 2024; Ravi et al., 2023), by conditioning on
prompts or image regions. Edits are guided through attention manipulation (Parmar et al., 2023) and
multi-step noise prediction. Approaches include both training-based (Couairon et al., 2023b; Kim
et al., 2022) and training-free methods (Mokady et al., 2023; Miyake et al., 2023) requiring minimal
fine-tuning. We use stable diffusion inpainting as our primary editing model and include results with
InstructPix2Pix (Brooks et al., 2023) to show model-agnostic performance.

3 METHODOLOGY

3.1 PRELIMINARIES

Image immunization Adversarial attacks exploit the vulnerabilities of machine learning models by
introducing small, imperceptible perturbations to input data, causing the model to produce incorrect
or unintended outputs (Szegedy et al., 2014; Biggio et al., 2013). In the context of diffusion models,
such perturbations can be crafted to disrupt the editing process, ensuring that attempts to modify an
adversarially perturbed image fail to achieve intended outcomes. Given an image I, the goal is to
transform it into an adversarially immunized version, Iim, by introducing a perturbation ϵim:

Iim = I+ ϵim, subject to: ∥ϵim∥p < κ, (1)

where κ is the perturbation budget that constrains the norm of the perturbation to ensure that it
remains imperceptible. The norm p could be chosen as 1, 2, or∞, depending on the application.

Latent diffusion models LDMs (Rombach et al., 2022) perform the generative process in a lower-
dimensional latent space rather than pixel space, achieving computational efficiency while maintain-
ing high-quality outputs. This design is ideal for large-scale tasks like image editing and inpainting.
Training an LDM starts by encoding the input image I0 into a latent representation z0 = E(I0)
using encoder E(·). The diffusion process operates in this latent space, adding noise over T steps to
generate a sequence z1, . . . , zT , with zt+1 =

√
1− βt zt +

√
βt ϵt, ϵt ∼ N (0, I), where βt is the

noise schedule at step t. The training aims to learn a denoising network ϵθ that predicts the added
noise ϵt by minimizing L(θ) = Et,z0,ϵ∼N (0,I)

[
∥ϵ− ϵθ(zt, t)∥22

]
. In the reverse process, a noisy

latent vector zT ∼ N (0, I) is iteratively denoised via the trained denoising network to recover z0,
which is decoded into the final image Ĩ = D(z0) with decoder D(·).

1Code unavailable despite request.
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Figure 3: Overview of DiffVax. Our end-to-end training framework is illustrated in (a). The
training process consists of two stages. In Stage 1, immunization is applied to the training image I.
In Stage 2, the immunized image Iim is edited using a stable diffusion model SD(·) with the specified
text prompt and mask, during which the Lnoise and Ledit are computed. During inference (b), the
trained immunizer model generates immunization noise (see Inference Stage 1 in (b)) applied to the
original (target) image using an immunization mask. When a malicious user attempts to attack these
immunized images with an editing mask, the editing tool (see Inference Stage 2 in (b)) is unable to
produce the intended edited content.

3.2 PROBLEM FORMULATION

Let I ∈ RH×W×C represent an image with height H , width W , and C color channels. A malicious
user using a diffusion-based editing tool, SD(·), attempts to maliciously edit the image based on
a prompt P and a binary mask M ∈ {0, 1}H×W×C , which defines the target area for editing,
with a value of 1 indicating the region of interest and 0 denotes the background or irrelevant areas.
Ideally, this target region can represent any meaningful part of the image, such as a human body or
a face. Our objective is to immunize the original (target) image I by carefully producing a noise
ϵim that satisfies two key criteria: (a) ϵim remains imperceptible to the user, and (b) the edited
immunized image Iim,edit fails to accurately reflect the prompt P applied by the malicious users. In
other words, the immunized image disrupts the editing model SD(·) such that any attempt to edit the
image results in unsuccessful or unintended modifications. While our approach is broadly applicable
to any diffusion-based editing tool, such as inpainting models and InstructPix2Pix (Brooks et al.,
2023), this study follows previous work (Salman et al., 2023; Lo et al., 2024) by using inpainting
as the primary editing tool for problem formulation and quantitative experiments. We focus on
scenarios where the sensitive regions such as human body or face remains constant, with other areas
considered editable, reflecting real-world malicious editing scenarios. Additional results for other
objects and tools (e.g. InstructPix2Pix) are provided in Fig. 1, Fig. 4, and in our Appendix A.2.

3.3 OUR APPROACH

End-to-end training framework To overcome the speed limitations of previous methods, which
require solving an optimization problem independently for each image, we propose an end-to-end
training framework. This framework enables an immunizer model f(·; θ) to instantly generate im-
munization noise for a given input image. Our training algorithm (see Appendix A.1, and Fig. 3
(a)) consists of two stages. In the first stage, we employ a UNet++ (Zhou et al., 2018) architecture
for the “immunizer” model f(·; θ), which takes an input image I and generates the corresponding
immunization noise ϵim. Subsequently, ϵim is multiplied by the immunization mask M, which tar-
gets the region of interest (e.g. a person’s face). The resulting masked noise is then added to the
training image to produce the immunized image, computed as Iim = I + ϵim ⊙M. Finally, the
image is clamped to the [0, 1] range. To ensure the noise remains imperceptible to the human eye,
we introduce the following loss:

Lnoise =
1

sum(M)
∥(Iim − I)⊙M∥p (2)

where p is empirically chosen to be 1. Lnoise penalizes deviations within the masked region, ensuring
that the change between the immunized image and the training image is imperceptible. In the second
stage, after generating the immunized image Iim, we apply diffusion-based editing using the editing
tool SD(·). This model takes the immunized image Iim, the training mask M, and the training
prompt P as input, performing edits in the regions specified by the mask. To ensure that the edited
image is effectively distorted, we define the loss function:

Ledit =
1

sum(∼M)
∥SD(Iim,∼M,P)⊙ (∼M)∥1, (3)
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Figure 4: Qualitative results with DiffVax. Our method effectively immunizes (a) seen images
and generalizes to (b) unseen images with diverse text prompts. Additionally, it extends to (c) unseen
human videos, demonstrating its adaptability to new content. Furthermore, it supports various poses
and perspectives, from full-body shots (a) to close-up face shots (c).

where∼M represents the complement of the masked area and SD(·) is the stable diffusion inpaint-
ing model that modifies the region ∼M in Iim according to the prompt P . This loss function is the
key to our method, as it ensures that the immunization noise disrupts the editing process by forcing
the unmasked regions to be filled with 0s. Note that for editing models that do not rely on masks,
we exclude masks from the loss calculations.

To enable training, we curate a dataset of image, mask, and prompt tuples, represented as D =
{(Ik,Mk,Pk)}Nk=1. Specifically, we collect 1000 images of individuals from the CCP (Yang et al.,
2014) dataset and use the Segment Anything Model (SAM) (Kirillov et al., 2023) to generate masks
corresponding to the foreground objects in these images. To ensure diverse text descriptions for
the editing tasks, we utilize ChatGPT OpenAI (2024) (see Appendix A.1). At each training step,
a sample is selected from the dataset and initially processed by the immunizer model f(·; θ) to
generate immunization noise ϵnim, which is added to the masked region of the training image and
then clamped. The resulting immunized image Inim is then passed through the editing model SD(·) to
produce the edited immunized image Inim,edit. The final loss function, L = α ·Lnoise+Ledit, is used
for backpropagation with respect to the immunizer model’s parameters. Backpropagating through
the stable diffusion stages allows the immunizer to learn the interaction between the perturbation
and the generated pixels. Through this iterative process, the immunizer model learns to generate
perturbations that disrupt the editing model. Following the insights from PhotoGuard’s encoder
attack, we do not condition the immunizer model on text prompts, as the noise is empirically shown
to be prompt-agnostic (see Appendix A.6).

Inference During inference, the trained immunizer model generates immunization noise for any
original (target) image using the mask of the region intended for protection. This noise is then
applied to create the immunized image, with the noise restricted to the masked region. The resulting
immunized image can be safely shared publicly. When a malicious user inputs this immunized image
along with an editing mask into a diffusion-based editing tool (the same tool used during training),
the immunization noise disrupts the edited output (see Fig. 3 (b)). Unlike previous approaches that
require the same mask to be used during both training and inference, our method decouples these
phases. This separation allows the immunizer model to generalize to unseen content, addressing the
limitation of previous methods where malicious users could exploit different masks during editing
(e.g. using an immunization mask of full-body but applying an editing mask of face).
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4 EXPERIMENTATION

Baselines We compare DiffVax with several existing image immunization methods. As a naive
baseline, we include Random Noise, which applies arbitrary noise to images. We also evaluate
two variants of PhotoGuard (Salman et al., 2023): PhotoGuard-E, which embeds adversarial per-
turbations in the latent encoder, and PhotoGuard-D, which disrupts the entire generative process.
Additionally, we compare against DiffusionGuard (Choi et al., 2025), an extension of PhotoGuard
that augments masks during optimization. To evaluate robustness against counter-attacks, we de-
velop three additional baselines where editing is applied after immunization: (i) passing the im-
age through a convolutional neural network (CNN)-based denoiser (Li et al., 2023a), denoted as
DiffVax w/ D.; (ii) compressing the image as JPEG (Sandoval-Segura et al., 2023) with a 0.75
compression ratio, denoted as DiffVax w/ JPEG; and (iii) applying the IMPRESS defense (Cao
et al., 2023), denoted as DiffVax w/ IMPRESS.

Evaluation metrics and dataset We focus on four key aspects in evaluation: (a) the amount of
editing failure, where we follow previous approaches (Salman et al., 2023) and utilize SSIM (Wang
et al., 2004), PSNR and FSIM (Zhang et al., 2011) metrics to measure the visual differences between
the edited immunized image and the edited original image; (b) imperceptibility, where the amount
of the immunization noise quantified by measuring the SSIM between the original image and the
immunized image, denoted as SSIM (Noise); (c) the degree of textual misalignment evaluated using
CLIP (Radford et al., 2021) by measuring the average similarity between the edited immunized
image and the text prompt, denoted as CLIP-T; and (d) scalability by reporting the average runtime
and GPU memory required to immunize a single image on average from the dataset. We curate
a dataset of 875 human images from the CCP (Yang et al., 2014) dataset. Of these, 800 images
are used for training (including the 75 seen images in our experiments), and 75 unseen images are
reserved for testing.

Qualitative results Figures 1 and 4 illustrate the qualitative success of our method. DiffVax
effectively immunizes images against various editing techniques, including standard inpainting and
instruction-based models like InstructPix2Pix (Brooks et al., 2023) (Figure 1). As further detailed
in Appendix A.2, the model demonstrates a strong ability to generalize to unseen images and a wide
range of prompts, accommodating various human perspectives from full-body to close-up shots
(Figure 4). Although trained primarily on human subjects, our model also extends its robustness to
non-human objects. When compared to baseline methods (Figure 5), our approach is qualitatively
superior on both seen and unseen images, generating backgrounds that deviate more significantly
from the intended edits. Notably, in many cases with our approach, it is impossible to infer the
original prompt from the immunized image’s background, a stark contrast to PhotoGuard, which
often retains discernible hints of the prompt. More examples, including comparisons and results
with other editing models, are provided in Appendix A.2.

DiffVax is more effective in corrupting edits As shown in Table 1, DiffVax achieves the low-
est SSIM, PSNR, and FSIM values overall, securing second place in the SSIM metric for unseen
data, with a small margin behind PG-D, indicating that malicious edits on immunized images are
significantly distorted, even on previously unseen data, whereas baseline methods, which require
optimization to be re-run for each image, do not differentiate between seen and unseen data. Ad-
ditionally, CLIP-T results, which measure textual misalignment, further verify these findings by
measuring the misalignment semantically in the edited immunized images. DiffVax outperforms
the baselines by maintaining the highest SSIM (Noise) values for both seen and unseen data, high-
lighting its effectiveness in corrupting malicious edits while keeping the immunized image imper-
ceptible. This superior imperceptibility is achieved because our model learns to generate visually
subtle, low-frequency perturbations, in contrast to the scattered, high-frequency noise produced by
prior methods (see Appendix A.5 for a detailed discussion). Thus, training an immunizer model en-
ables it to learn how to strategically place immunization noise to effectively disrupt diffusion-based
editing, by aggregating over the training set. In contrast, prior optimization-based works only see a
single target image at a time.

DiffVax is more scalable In addition to its strong qualitative performance, DiffVax offers sig-
nificant advantages in speed and memory efficiency. It completes the immunization process in just
0.07 seconds per image on average, compared to 207.0 seconds for PhotoGuard-E, 911.6 seconds for
PhotoGuard-D, and 131.1 seconds for DiffusionGuard. In terms of GPU memory usage, DiffVax
requires only 5,648 MiB, much lower than PhotoGuard-E (9,548 MiB), PhotoGuard-D (15,114
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Figure 5: Qualitative comparison of edited images across immunization methods. This figure
shows the results of different immunization methods: Random Noise, PhotoGuard-E, PhotoGuard-
D, DiffusionGuard, and our proposed method, DiffVax. Results for (a) seen and (b) unseen images
are shown, with different prompts applied to each (right side). The first column contains the origi-
nal images, while subsequent columns show the edited outputs under different settings, as depicted
on the top. Note that DiffVax is substantially more effective than PhotoGuard-E, -D and Diffu-
sionGuard in degrading the edit.

Table 1: Performance comparisons on images. The SSIM, PSNR, FSIM, SSIM (Noise), and CLIP-T metrics
are reported separately for the seen and unseen splits of the test dataset. Runtime and GPU requirements are
measured as the average time (in seconds) and memory usage (in MiB) needed to immunize a single image.
“N/A” indicates that the corresponding value is unavailable. The symbols ↑ and ↓ indicate the direction toward
better performance for each metric, respectively. Bold values indicate the best scores, while underlined values
denote the second-best scores.

Amount of Editing Failure Imperceptibility Text Misalignment Scalability
Immunization Method SSIM ↓ PSNR ↓ FSIM ↓ SSIM (Noise) ↑ CLIP-T ↓ Runtime (s) ↓ GPU Req. (MiB) ↓

seen unseen seen unseen seen unseen seen unseen seen unseen (Immunization) (Immunization)

Random Noise 0.586 0.585 16.09 16.40 0.460 0.458 0.902 0.903 31.68 31.62 N/A N/A
PhotoGuard-E 0.558 0.565 15.29 15.63 0.413 0.408 0.956 0.956 31.69 30.88 207.00 9,548
PhotoGuard-D 0.531 0.523 14.70 14.92 0.386 0.379 0.978 0.979 29.61 29.27 911.60 15,114
DiffusionGuard 0.551 0.556 14.37 14.71 0.389 0.386 0.965 0.966 26.98 27.10 131.10 6,750
DiffVax (Ours) 0.510 0.526 13.96 14.32 0.353 0.362 0.989 0.989 23.13 24.17 0.07 5,648

MiB), and DiffusionGuard (6,750 MiB). This makes DiffVax a practical and scalable solution
for large-scale applications.

DiffVax is more robust to counter-attacks Table 2 shows that DiffVax is robust to common
counter-attacks, including CNN-based denoising, JPEG compression, and IMPRESS (Cao et al.,
2023). DiffVax consistently outperforms PhotoGuard-D across all scenarios, as further evidenced
by the detailed results in Appendix A.3.3. This robustness arises from DiffVax’s ability to learn
spatially targeted, low-frequency perturbations. Unlike existing approaches that produce more uni-
form, high-frequency noise, our method’s perturbations are less susceptible to removal by techniques
like JPEG compression, which discards high-frequency content, or by denoisers trained to suppress
uniform noise. Crucially, as shown in Appendix A.3.2, DiffVax achieves superior edit disruption
with a much smaller mean magnitude of noise than baselines with larger fixed budgets. This high-
lights that its strength lies in the strategic placement of noise, not simply its magnitude, supporting
our claim that DiffVax learns a more efficient and targeted noise distribution. Furthermore, our
extensive robustness evaluations in Appendix A.3 show that DiffVax also maintains its effective-
ness against attackers who vary their inference-time settings, consistently outperforming baselines
across different sampling steps and diffusion samplers.

User study results We also conduct a user study with 67 participants on Prolific (2024), in which
participants compare the “unrealisticness” level of baselines, and the edited image across 20 ran-
domly selected image pairs, including both seen and unseen samples. For each model, we report the
average rank, with our model achieving the top position with an average rank of 1.64, demonstrating
clear superiority (see Appendix A.3.5), followed by PhotoGuard-D with a rank of 2.63.
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Table 2: Performance comparisons on edits with counter-attacks. We report the SSIM, SSIM (Noise) and
CLIP-T metrics for the denoiser (D.), JPEG (compression ratio of 0.75) counter-attacks separately for the seen
and unseen splits of the test dataset.

Method SSIM ↓ PSNR ↓ FSIM ↓ SSIM (Noise) ↑ CLIP-T ↓
seen unseen seen unseen seen unseen seen unseen seen unseen

PG-D w/ D. 0.702 0.709 18.27 18.43 0.528 0.528 0.966 0.965 31.48 31.20
DiffusionGuard w/ D. 0.708 0.719 18.26 18.69 0.530 0.531 0.964 0.964 31.08 30.99
DiffVax w/ D. 0.552 0.565 14.48 14.91 0.388 0.392 0.960 0.960 27.32 27.74
PG-D w/ JPEG 0.664 0.674 17.32 17.68 0.495 0.501 0.956 0.956 32.15 32.48
DiffusionGuard w/ JPEG 0.680 0.684 17.45 17.83 0.505 0.503 0.951 0.951 31.52 31.53
DiffVax w/ JPEG 0.522 0.538 14.17 14.61 0.374 0.382 0.959 0.959 26.04 26.05
PG-D w/ IMPRESS 0.578 0.563 15.89 16.07 0.436 0.426 0.640 0.634 31.35 31.26
DiffusionGuard w/ IMPRESS 0.604 0.595 15.89 16.09 0.453 0.442 0.636 0.630 30.88 30.50
DiffVax w/ IMPRESS 0.488 0.500 14.04 14.38 0.355 0.359 0.644 0.637 24.88 25.27

Table 3: Ablation study. We report the SSIM and SSIM (Noise) metrics for each loss term ablation, with
results presented individually for the seen and unseen splits of the dataset.

Method SSIM ↓ PSNR ↓ FSIM ↓ SSIM (Noise) ↑ CLIP-T ↓
s u s u s u s u s u

DiffVax w/o Lnoise 0.508 0.520 13.57 13.82 0.335 0.344 0.785 0.786 24.34 25.78
DiffVax w/o Ledit 0.944 0.932 31.36 31.05 0.821 0.806 0.999 0.999 32.01 32.27

DiffVax 0.510 0.526 13.96 14.32 0.353 0.362 0.989 0.989 23.13 24.17

Ablation study To assess the contribution of each component in our framework, we conduct an
ablation study by individually removing Ledit and Lnoise. As shown in Table 3, when Lnoise is re-
moved, the model achieves slightly better performance on unseen data in terms of failed immunized
editing (measured by SSIM, PSNR, FSIM and CLIP-T). However, the immunization noise is no
longer imperceptible, as indicated by the change in the SSIM (Noise) metric. Conversely, when
Ledit is removed, the SSIM (Noise) metric reaches its highest value, indicating minimal noise, but
the model fails to prevent malicious editing, as reflected in the SSIM, PSNR, FSIM and CLIP-T met-
rics. Thus, combining both terms in the final loss function is crucial for balancing imperceptibility
and robustness in the training process (see Appendix A.7).

5 CONCLUSION AND DISCUSSION

Discussion on generalization While a universal immunizer remains an open challenge, DiffVax
demonstrates superior generalization over prior optimization-based work across three key dimen-
sions. First, it addresses generalization to unseen models. Universal cross-model transferability is
a difficult open problem, and like prior work, DiffVax is primarily model-specific and does not
perfectly generalize to all unseen models. However, as detailed in Appendix A.4.1, it demonstrates
significantly better performance in the challenging black-box transfer task from a model trained on
Stable Diffusion (SD) v1.5 to an unseen SD v2 model. In this scenario, our learned immunization
successfully transfers its protective effect, whereas optimization-based methods like PhotoGuard
and DiffusionGuard fail completely, showing a clear improvement in cross-model robustness. Sec-
ond, its feed-forward nature enables generalization to unseen content, a significant advantage over
methods requiring costly per-image optimization. As discussed in Appendix A.4.2, the success of
DiffVax proves that the set of effective perturbations has a learnable structure, allowing it to im-
munize new images, prompts, and even videos with a single pass. Finally, DiffVax is uniquely
robust in its generalization to unseen masks. Unlike prior work, it does not overfit to the train-
ing mask’s shape or scale, maintaining its edit-disrupting effectiveness even when test-time editing
masks differ significantly from the immunization mask, as shown in Appendix A.4.3.

Discussion on applications To further validate the versatility of DiffVax, we evaluate its effec-
tiveness across a broad spectrum of real-world editing scenarios, as illustrated in Figure 6. Our
experiments demonstrate robust protection against diverse manipulation types, ranging from global
transformations such as artistic style transfer (e.g., converting an image to Cubism) to localized
edits like facial expression changes and object attribute modification. Furthermore, the framework
proves effective in complex settings involving multiple object editing, object replacement, and tex-
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Figure 6: DiffVax performance across diverse editing applications. Our method effectively immu-
nizes images against various manipulation types, including (A) multiple object editing, (B) facial
expression changes, (C) object replacement, (D) texture editing, (E) artistic style transfer, and (F)
attribute editing.

ture alteration. This wide applicability confirms that DiffVax does not merely memorize specific
noise patterns for simple inpainting but learns to disrupt the underlying semantic guidance required
for various high-level editing tasks.

Discussion on editing models Following prior work, our main evaluations are conducted using
inpainting-based editing methods. However, we emphasize that our framework is model-agnostic
and can be applied to various editing tools. To demonstrate this, we include additional results using
the instruction-based model InstructPix2Pix (IP2P) (Brooks et al., 2023) (see Figure 10 in the Ap-
pendix) and the training-free model MagicBrush (Zhang et al., 2023b) (see Table 4 in the Appendix).
We find that IP2P is particularly well-suited for complex or localized editing tasks, such as back-
ground modifications, stylistic changes, or edits outside sensitive regions, whereas inpainting-based
approaches are more specialized for background editing tasks. Specifically, inpainting methods can
introduce unintended alterations in sensitive areas like faces when the provided mask only partially
covers the target region. This can conflict with the intent of a malicious user, whose goal is often to
preserve identity while making selective edits.

Conclusion In this work, we present DiffVax, an optimization-free image immunization frame-
work that protects against diffusion-based editing. Central to our approach is a trained “image im-
munizer” model that generates imperceptible perturbations to disrupt the editing process. At infer-
ence, DiffVax requires only a single forward pass, enabling scalability to large-scale deployments.
Leveraging this efficiency, we extend our framework to video, demonstrating promising results for
the first time (see Appendix A.3.6). Moreover, DiffVax is compatible with any diffusion-based
editing tool and demonstrates strong robustness against counter-attacks. Overall, it establishes a new
benchmark for scalable, real-time, and effective content protection.
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