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Generative Multimodal Data Augmentation for Low-Resource
Multimodal Named Entity Recognition

Anonymous Authors

ABSTRACT
As an important task in multimodal information extraction, Multi-
modal Named Entity Recognition (MNER) has recently attracted
considerable attention. One key challenge of MNER lies in the lack
of sufficient fine-grained annotated data, especially in low-resource
scenarios. Although data augmentation is a widely used technique
to tackle the above issue, it is challenging to simultaneously gener-
ate synthetic text-image pairs and their corresponding high-quality
entity annotations. In this work, we propose a novel Generative
Multimodal Data Augmentation (GMDA) framework for MNER,
which contains two stages: Multimodal Text Generation and Mul-
timodal Image Generation. Specifically, we first transform each
annotated sentence into a linearized labeled sequence, and then
train a Label-aware Multimodal Large Language Model (LMLLM) to
generate the labeled sequence based on a label-aware prompt and its
associated image. After using the trained LMLLM to generate syn-
thetic labeled sentences, we further employ a Stable Diffusionmodel
to generate the synthetic images that are semantically related to
these sentences. Experimental results on three benchmark datasets
demonstrate the effectiveness of the proposed GMDA framework,
which consistently boosts the performance of several competitive
methods for two subtasks of MNER in both full-supervision and
low-resource settings.

CCS CONCEPTS
• Computing methodologies → Information extraction; • In-
formation systems → Multimedia and multimodal retrieval.

KEYWORDS
multimodal named entity recognition, grounded multimodal named
entity recognition, data augmentation, generative framework

1 INTRODUCTION
Recent years have witnessed an exponential growth of multimodal
user posts on various social media platforms such as Twitter, Face-
book, and Instagram. As a large amount of multimodal content
often contains much important structured information such as
named entities and their relations that are crucial for multimodal
knowledge graph construction, multimodal information extraction
has attracted increasing attention in recent years [23, 25, 43]. As
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MNER:
Stephen Curry (PER) Makes NBA (ORG) History Once Again

GMNER:
Stephen Curry (PER, box-1) Makes NBA (ORG, None) History Once Again

Stephen Curry Makes NBA History Once Again

Image:

Text:

MNER:
Stephen Curry (PER) Makes NBA (ORG) History Once Again

GMNER:
Stephen Curry (PER, box-1) Makes NBA (ORG, None) History Once Again

FGMNER:
Stephen Curry (Athlete, box-1) Makes NBA (Sport League, None) History 
Once Again

Stephen Curry Makes NBA History Once Again

Figure 1: An annotation example of Multimodal Named Entity Recognition
(MNER) and Grounded Multimodal Named Entity Recognition (GMNER).

a fundamental task in multimodal information extraction, Mul-
timodal Named Entity Recognition (MNER) aims to extract the
named entities mentioned in an image-text pair and classify them
into pre-defined types, such as person (PER), location (LOC), and
organization (ORG) [41]. For example, given the multimodal tweet
in Figure 1, an MNER system is expected to extract two entities, i.e.,
Stephen Curry and NBA, and their corresponding entity types are
PER and ORG, respectively.

Existing approaches on the MNER task primarily include se-
quence labeling-based methods [4, 32, 38, 40], index generation-
based methods [39], paraphrase generation-based methods [30],
and in-context learning-based methods [3, 5]. Due to the emerging
demand formultimodal knowledge graph construction, Yu et al. [39]
recently introduced an extension task of MNER named Grounded
MNER (GMNER). As shown in Figure 1, the goal of GMNER is to
extract named entities, entity types and the bounding boxes of their
grounded visual objects from text-image pairs. To address the GM-
NER task, existing studies mainly focus on either using a pipeline
approach to decompose the task into several subtasks and solve
them one by one [22, 26] or proposing an end-to-end approach to
directly generate the entity-type-object triplets [30, 39].

One key challenge of the aforementioned methods is their heavy
reliance on annotated data. As illustrated in Figure 1, both MNER
and GMNER tasks require fine-grained annotation of textual named
entities and their entity types, while GMNER further requires anno-
tating the bounding box of visual objects that are corresponding to
the named entities. In real applications, it is often time-consuming
and costly to obtain such human annotation, which hinders the
effectiveness of existing MNER and GMNER models in many low-
resource scenarios.

One attractive solution to address the data sparsity issue is to au-
tomatically generate annotated data by data augmentation (DA). Ex-
isting DA methods for NER can be summarized into two groups: 1)
using rule-based methods such as word replacement, shuffling, and
cropping to obtain similar sentences [11, 29]; 2) using generation-
based methods to directly generate the labeled sentences [12, 44].

https://doi.org/10.1145/nnnnnnn.nnnnnnn


117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

ACM MM, 2024, Melbourne, Australia Anonymous Authors

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

However, all these DAmethods solely focus on the textual modality,
which cannot be directly applied to generate labeled text-image
pairs. Compared with these text DA methods for NER, data aug-
mentation for MNER and GMNER is more challenging for several
reasons. First, it is necessary to generate both text and images, and
each text-image pair should be semantically related. Second, each
generated text-image pair is required to have the textual and visual
entity annotations.

To address these challenges, in this paper, we propose a two-
stage Generative Multimodal Data Augmentation framework for
MNER named GMDA, which contains a Multimodal Text Genera-
tion stage to produce synthetic sentences with labeled entities and
a Multimodal Image Generation stage to generate the correspond-
ing image for each synthetic labeled sentence. Specifically, given
a training sample, we first transform the input text and its entity
labels into a linearized sentence, and then devise a Label-aware
Multimodal Large Language Model (LMLLM) based on one of the
representative MLLMs InstructBLIP [10], which is trained to gener-
ate the linearized sentence based on the input image and an entity
label-aware instruction. During inference, for each training sample,
we feed the input image and its entity label-aware instruction to the
trained LMLLM and use a probability-based sampling strategy to
generate a synthetic labeled sentence in an autoregressive manner.
Based on the synthetic labeled sentence, the Multimodal Image Gen-
eration stage further employs a widely used latent diffusion model
named Stable Diffusion [28] to generate a corresponding synthetic
image conditioning on the synthetic sentence-based prompt and
the original image.

The main contributions of our work can be summarized as fol-
lows:

• We propose a novel Generative Multimodal Data Augmenta-
tion framework named GMDA, which can generate a large
number of text-image pairs with fine-grained entity annota-
tions for both MNER and GMNER tasks.

• Under the GMDA framework, we devise a Label-aware Multi-
modal Large LanguageModel (LMLLM) to generate synthetic
labeled sentences, followed by employing a latent diffusion
model to generate the synthetic image for each labeled sen-
tence.

• Extensive experiments on both MNER and GMNER tasks
show that the proposedGMDA framework consistently boosts
the performance of several competitive methods in both full-
supervision and low-resource settings.

2 RELATEDWORK
2.1 Multimodal Named Entity Recognition
Multimodal Named Entity Recognition (MNER) aims to recognize
named entities in text and classify them into predefined categories
based on text-image pairs. Pioneering works [23, 25, 41] focus on
fusing visual information for improved word representation learn-
ing. With the use of the multimodal transformer architecture, a
variety of attention-based mechanisms [1, 6, 7, 35–38] are designed
to model the interactions between textual and visual modalities.
In addition, converting images into natural languages [32] and
retrieving external knowledge [21, 31] are used to enhance the tex-
tual information. Different from sequence labeling-based methods

mentioned above, machine reading comprehension (MRC)-based
methods [2, 19], in-context learning-based methods [3, 5], index
generation- based methods [39], and paraphrase generation-based
methods [30] have been recently adapted to the MNER task.

Due to the emerging demand for multimodal knowledge graph
construction, Grounded MNER (GMNER) is introduced as an exten-
sion of MNER, which aims to extract named entities, entity types
and the bounding boxes of their grounded visual objects from text-
image pairs. Existing end-to-end approaches [30, 39] formulate the
GMNER task as multimodal index generation [39] and paraphrase
and visual object generation [30], while pipeline approaches decom-
pose GMNER into MNER, visual entailment and visual grounding
task to solve one by one [22]. However, all these methods above
heavily rely on a large amount of annotated data, which requires
the fine-grained annotation of named entities and their entity types
for MNER and the annotation of the bounding box of visual objects
that are corresponding to the named entities for GMNER. Since
obtaining such human annotation is time-consuming and costly,
this work aims to propose an effective data augmentation method
for MNER to enrich the annotated text-image pairs, particularly in
low-resource settings.

2.2 Data Augmentation
Data Augmentation (DA) aims to increase the training data via
slight changes of existing training data [34], which is widely used
in various NLP tasks, especially in low-resource scenarios. In the lit-
erature, rule-based techniques were commonly employed, and typi-
cal approaches include word and mention replacement, segments
shuffling [11], cropping, span rotation [29], random deletion [34],
and subject/object inversion [24]. However, slight alterations in
words may potentially disrupt the fluency of the sentence or com-
promise the coherent interpretation of annotation tags associated
with labeled words. Thus, in recent years, many generation ap-
proaches [12, 44] have been proposed to enhance the diversity and
preserving the label integrity in sentences.

For image data augmentation, Copy-Paste [15] is a simple but
useful data augmentation method in object-aware tasks. For vision-
language representation, MixGen [16] linearly interpolates images
and concatenates text sequences to generate a new training sample.
Nonetheless, data augmentation in MNER is more challenging due
to the necessity of maintaining the semantic relatedness between
image-text pairs and generating fine-grained entity annotations
in both text and images. Therefore, this work aims to propose a
new multimodal data augmentation method to generate paired
multimodal synthetic data to address these challenges.

3 METHODOLOGY
In this section, we first introduce the task formulation and the
overview of the proposed Generative Multimodal Data Augmen-
tation (GMDA) framework, and then present the details of each
module of GMDA.

3.1 Task Formulation
Given a sentence with 𝑛 words 𝒔 = (𝑤1, . . . ,𝑤𝑛) and an associated
image 𝒗 as the input, the goal of the MNER task is to extract a set
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Figure 2: Overview of the proposed Label-aware Multimodal Language Model that generates synthetic labeled sentences in the Multimodal Text Generation stage.

of multimodal entity tuples:

𝒚 = {(𝑒1, 𝑡1), . . . , (𝑒𝑚, 𝑡𝑚)}, (1)

and the goal of the GMNER task is to further extract the bounding
boxes of the corresponding visual objects for each entity:

𝒚 = {(𝑒1, 𝑡1, 𝑟1), . . . , (𝑒𝑚, 𝑡𝑚, 𝑟𝑚)}, (2)

where 𝑒𝑖 , 𝑡𝑖 and 𝑟𝑖 refer to the text span, the entity type, and the
bounding box of the 𝑖-th entity in the input sentence 𝒔. In both
MNER and GMNER tasks, 𝑡𝑖 is one of the four pre-defined entity
types, i.e., Person (PER), Location (LOC), Organization (ORG), and
Miscellaneous (MISC). For the 𝑖-th entity, if there is no correspond-
ing bounding box in the image, 𝑟𝑖 is None. Otherwise, 𝑟𝑖 consists
of a 4-D spatial feature containing the top-left and bottom-right
positions of the grounded bounding box, i.e., (𝑟𝑥1

𝑖
, 𝑟
𝑦1
𝑖
, 𝑟
𝑥2
𝑖
, 𝑟
𝑦2
𝑖
).

In this work, we mainly focus on a low-resource setting, in which
there is a small set of labeled training data. LetD =

{(
𝒔𝑖 , 𝒗𝑖 ,𝒚𝑖

)}𝑁
𝑖=1

denote the training set. Our goal is to leverage D to generate an-

other set of synthetic data D𝑔 =

{(
𝒔
𝑔

𝑖
, 𝒗
𝑔

𝑖
,𝒚
𝑔

𝑖

)}𝐾
𝑖=1

.

3.2 Overview
As mentioned before, the proposed GMDA framework consists of
two stages, i.e., Multimodal Text Generation and Multimodal Image
Generation. As shown in Figure 2, in the first stage, we linearize the
labeled sentence in each sample into a natural sequence, and then
train a Label-aware Multimodal Large Language Model (LMLLM),
which decodes the linearized sequence based on the image and the
entity label of each sample as the inputs of the encoder. With the
trained LMLLM, a probability-based sampling strategy is employed
to generate a synthetic labeled sentence for each training sample

in an autoregressive manner. As shown in Figure 3, in the second
stage, a widely used latent diffusion model is employed to generate
a corresponding synthetic image conditioning on the synthetic
sentence-based prompt and the original image.

3.3 Multimodal Text Generation
Given a sample

(
𝒔𝑖 , 𝒗𝑖 ,𝒚𝑖

)
in the training setD, the goal of this stage

is to generate a new sentence 𝒔𝑔
𝑖
together with its entity labels𝒚𝑔

𝑖
. To

ensure that the generated sentence is relevant to the original image
and the generated entity labels have a high quality, we propose an
encoder-decoder based conditional generation technique, which
generates the linearized labeled sentence from the original image
𝒗𝑖 and the original label 𝒚𝑖 .

3.3.1 Linearized Labeled Sentences. Firstly, we perform sentence
linearization [12] by converting the labeled sentence into a natural
sequence, in which the token labels are inserted before their corre-
sponding words. For example, in Figure 2, the BIO tags of Stephen,
Curry and NBA (i.e., B-PER, I-PER, and B-ORG) are inserted before
each word. Note that since the tag O frequently occurs, we remove
it to keep the linearized sentence more fluent.

3.3.2 Label-aware Multimodal Large Language Model. To generate
the linearized sentence conditioning on the image and the entity la-
bels, we propose a Label-aware Multimodal Large Language Model
(LMLLM) based on a widely used MLLM named InstructBLIP [10].

Label-Aware Instruction. To guide the MLLM to better gener-
ate the linearized sentence, we first design an entity label-aware
instruction, which contains the task description and the entity la-
bels as “Generate a text segment for a tweet based on the image,
incorporating the following entities: 𝑒 𝑗 which is a(n) 𝑡 𝑗 ”, where 𝑒 𝑗
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and 𝑡 𝑗 denote the 𝑗-th entity and its type, respectively. For example,
in Figure 2, we linearize all labeled entities into a natural language
sentence “Stephen Curry which is a(an) person, NBA which is a(an)
organization”. This implies that the entities are Stephen Curry and
NBA, with their entity types being PER and ORG, respectively.

Image Encoder. To enable the image encoder of the pre-trained
InstructBLIP model to acquire task-specific knowledge, we inte-
grate LoRA adapter layers [18] for parameter-efficient fine-tuning.
Specifically, given an input image 𝒗, we feed it to the image encoder
with LoRA adapters to obtain the image representation H𝑣 :

H𝑣 = Image-Encoder(𝒗;𝜽 img
LoRA), (3)

where 𝜃 img
LoRA is the set of parameters to learn in LoRA.

Q-Former. The lightweight Querying Transformer (Q-Former)
consists of an image transformer and a text transformer as submod-
ules that share the same self-attention layers. LoRA adapter layers
are also added to the attention layers as follows:

E𝑣 = Q-Former(concat(Q, E𝑷 ),H𝑣 ;𝜽Q-Former
LoRA ) (4)

where Q and E𝑷 refer to the learned queries and text embedding of
label-aware instruction. In cross attention layers, H𝑣 is regarded as
the key and value while concat(Q, E𝑷 ) is regarded as the query.

LLM Encoder. In contrast to InstructBLIP which solely fine-
tunes the Q-former to align textual and visual features, our goal is to
fine-tune the LLM to generate the linearized labeled sentence. Thus,
we incorporate LoRA layers into the LLM for parameter-efficient
fine-tuning. Specifically, the textual embeddings E𝒑 of the label-
aware instruction and the visual embeddings E𝒗 are concatenated
together and then fed into the LoRA-based LLM encoder to derive
the hidden representation of the multimodal input:

H𝑒 = LLM-Encoder
(
concat(E𝒑, E𝒗);𝜽 encoderLoRA

)
, (5)

LLM Decoder. The representation of the encoder H𝑒 is then fed
to the LoRA-based LLM decoder to model the probability distribu-
tion of the linearized labeled sentence, denoted by 𝒙 . Specifically,
at the 𝑖-th step, the probability distribution of the output token
𝑝 (𝒙𝑖 ) is calculated based on the encoded representation H𝑒 and the
previous decoder output 𝒙<𝑖 as follows:

h𝑖 = LLM-Decoder(H𝑒 ; 𝒙<𝑖 , 𝜽 encoderLoRA ) (6)

𝑝 (𝒙𝑖 |𝒙<𝑖 ) = Softmax(W⊤h𝑖 + b) (7)

where h𝑖 ∈ R𝑑 is the hidden representation of the 𝑖-th step, W ∈
R𝑑×|V | and b ∈ R |V | are learnable parameters, and |V| denotes
the whole vocabulary size.

During the training stage, the parameters are optimized by mini-
mizing the cross-entropy loss based on the teacher forcing method
as follows:

L𝑇 = − 1
𝑁𝑀

𝑁∑︁
𝑗=1

𝑀∑︁
𝑖=1

|V |∑︁
𝑘=1

𝒕 𝑗
𝑖𝑘
log 𝑝 (𝒙 𝑗

𝑖𝑘
), (8)

where 𝑁 denotes the total number of samples, 𝑀 indicates the
length of the linearized labeled sentence, |V| is the size of vocabu-
lary, and 𝒕 𝑗

𝑖
refers to the ground-truth label distribution of the 𝑖-th

word in the linearized labeled sentence of the 𝑗-th sample.

3.3.3 Labeled Sentence Generation. After training the Label-aware
Multimodal Large Language Model, we utilize it to generate syn-
thetic labeled sentences.

As shown in Figure 2, given the image and entity labels of a
training sample, we feed its corresponding label-aware instruc-
tion and visual representations into the multimodal encoder of the
trained LMLLM. For the LLM decoder, its initial input token is the
<s> token representing the beginning of the decoded sentence, and
the subsequent tokens are generated in an autoregressive manner
based on a probability-based sampling strategy.

When sampling the next token, we use top-k [13] and top-p
(nucleus) [17] sampling strategies to generate a synthetic labeled
sentence. Firstly, the top-k method is utilized to retain the top-k
tokens with the highest probabilities, and the sampling space is
denoted as follows:

V (𝑘 )
𝑖

= arg max
𝑆⊆V

∑︁
𝑥∈𝑆

(𝑝 (𝑥 |𝒙<𝑖 )) (9)

where V (𝑘 )
𝑖

represents the vocabulary set comprising 𝑘 candidate
tokens at time step 𝑖 . Subsequently, within this subset of tokens, the
top-p method is employed to retain those tokens with cumulative
probabilities reaching the top-p threshold 𝑝𝑝 :

V𝑖 = arg min
𝑆⊆V (𝑘 )

𝑖

|𝑆 | s.t.
∑︁
𝑥∈𝑆

(𝑝 (𝑥 |x<𝑖 )) ≥ 𝑝𝑝 (10)

whereV𝑖 represents the vocabulary set at time step 𝑖 , encompassing
all possible tokens that could occur in the sequence. Let 𝑝𝑝′ =∑
𝑥∈V𝑖

𝑝 (𝑥𝑖 |x<𝑖 ). The original distribution is re-scaled to a new
distribution as follows:

𝑝′ (𝑥𝑖 |x<𝑖 ) =
{

𝑝 (𝑥𝑖 |x<𝑖 )/𝑝𝑝′ if 𝑥𝑖 ∈ V𝑖
0 otherwise (11)

As the candidate tokens inV𝑖 are predicted with higher probabili-
ties, the generated sentence typically exhibits fluency andmaintains
proximity to the original training sample. Furthermore, owing to
the inherent randomness in the sampling process, GMDA can sam-
ple different tokens as the next token, which enriches the diversity
in the generated text.

The above process of token generation will be stopped when the
next token is predicted as </s>. After decoding a linearized labeled
sentence, we can extract its entities 𝒚𝑔 based on the embedded
labels within the sentence and obtain the synthetic sentence 𝒔𝑔 .

3.4 Multimodal Image Generation
In this stage, our goal is to generate a corresponding image for
each synthetic sentence. As the synthetic sentence is semantically
related to the original image, we employ both the synthetic sentence
and the original image as inputs for synthetic image generation,
which can guide the model to refer to the original image during
generation.

Specifically, given the synthetic sentence 𝒔𝑔 and its original im-
age 𝒗, we utilize Stable Diffusion [28], a popular latent diffusion
model, to generate a corresponding synthetic image 𝒗𝑔 . Firstly,
given an original image 𝒗 ∈ R𝐻×𝑊 ×3 in the RGB space, we feed it
into the encoder of the variational autoencoder (VAE) in the Stable
Diffusion model to obtain the latent representation:

𝒙 = E(𝒗) (12)
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Figure 3: Overview of the Multimodal Image Generation stage.

where E refers to the VAE encoder and 𝒙 ∈ Rℎ×𝑤×𝑐 . At a specific
time 𝑡0 ∈ (0, 1), the Gaussian noise with a standard deviation
denoted as 𝜎2 (𝑡0) is added to 𝒙 , resulting in a perturbed latent
representation 𝒙𝒕 for denoising.

Secondly, given the synthetic sentence 𝒔𝑔 , we design a task in-
struction containing 𝒔𝑔 as “A photo of 𝒔𝑔”, which is used to guide the
generation of the synthetic image. Next, a CLIP text encoder [27]
is utilized to project the task instruction to an intermediate repre-
sentation, which is then mapped to the intermediate layers of the
conditional denoising autoencoder. With the conditional denoising
autoencoder, we can infer the denoised latent variant: 𝑥 ∈ Rℎ×𝑤×𝑐

and employ the decoder of the VAE model D to generate the syn-
thetic image:

𝒗𝑔 = D(𝑥) (13)

where 𝒗𝑔 ∈ R𝐻×𝑊 ×3 denotes the synthetic image.
It is worth noting that for the GMNER task, it is required to

annotate the bounding box of each entity. In our preliminary exper-
iments, we observe that the synthetic image is generally similar to
the original image, and thus propose to replicate the ground-truth
bounding boxes in the original image to cover the corresponding
regions in the synthetic image, which are regarded as the bounding
box annotation of each entity in the synthetic sentence.

3.5 Synthetic Data Filtering
To improve the quality of the synthetic labeled text-image pairs,
we apply the following post-processing steps for data filtering: 1)
We remove the text-image pairs whose text has less than 5 words.
2) We use the original training set D to train a base MNER or
GMNER model and employ it to make predictions on the synthetic
text-image pairs. If the predicted labels from the base model are
inconsistent with the labels in the synthetic data, these text-image
pairs will be removed. 3) We further remove the redundant text-
image pairs with identical token and label sequences.

After data filtering, we can obtain a set of synthetic labeled data

D𝑔 =

{(
𝒔
𝑔

𝑖
, 𝒗
𝑔

𝑖
,𝒚
𝑔

𝑖

)}𝐾
𝑖=1

, which is then combined with the original
training set for model training in each downstream task.

Table 1: Basic statistics of the three benchmark datasets

Twitter-15 Twitter-GMNER
Entity Type Train Dev Test Train Dev Test

Person 2,217 552 1,816 5,019 1,072 1,104
Location 2,091 522 1,697 1,918 407 404

Organization 928 247 839 3,035 595 638
Miscellaneous 940 225 726 1,807 376 397

Total 6,176 1,546 5,078 11,779 2,450 2,543
# Tweet 4,000 1,000 3,257 7,000 1,500 1,500

Twitter-FMNERG
Split # Tweet # Entity # Entity Type # Groundable # Box

Train 7,000 11,779 51 4,733 5,723
Dev 1,500 2,450 51 991 1,171
Test 1,500 2,543 51 1,046 1,254

Total 10,000 16,772 51 6,770 8,148

4 EXPERIMENTS
4.1 Experimental Settings
4.1.1 Datasets. To evaluate the effectiveness of the proposedGMDA
framework, we conduct experiments on three publicly available
Twitter datasets, i.e., Twitter-15 [41] for the MNER task and Twitter-
GMNER [39] and Twitter-FMNERG [30] for the GMNER task. The
basic statistics of each dataset are presented in Table 1. Note that
Twitter-FMNERG is an extension of the Twitter-GMNER dataset,
which extends the four coarse-grained entity types to 51 fine-
grained entity types.

In addition to evaluating the GMDA framework on the standard
full-supervision setting, we also construct three low-resource set-
tings by randomly sampling 10%, 20%, and 40% data from the full
training and development sets as the training and development sets.
The whole test set is kept for model evaluation.

4.1.2 Implementation Details. For the Label-aware Multimodal
Large Language Model (LMLLM), we employ the pre-trained In-
structBLIP model released by Dai et al. [10], in which we adopt
FlanT5-XL(3B) [9] as the LLM and ViT-g/14 [14] as the image en-
coder. For the LoRA [18] adapter in LMLLM, we adopt a rank of 8
and a dropout rate of 0.1. The batch size and the learning rate are
set to 2 and 5e-5, respectively. For Multimodal Image Generation,
we utilize the pre-trained Stable Diffusion v1.5 model [28], with a
strength and guidance scale set to 0.8 and 10, respectively. All the
models are implemented with PyTorch, and the Adam optimizer
is adopted in the training stage. We run all the experiments on an
NVIDIA RTX 3090 GPU.

4.1.3 Evaluation Metrics. Following previous studies [39, 41], we
use Precision (Pre.), Recall (Rec.), and F1 Score (F1) as the evalu-
ation metric for both MNER and GMNER tasks. The formula for
computing the F1 Score is presented below:

𝐹1 =
2 × 𝑃𝑟𝑒. × 𝑅𝑒𝑐.

𝑃𝑟𝑒. + 𝑅𝑒𝑐.
, (14)

where Pre. refers to the proportion of correctly predicted entity
tuples among all predicted entity tuples, and Rec. denotes the pro-
portion of correctly predicted entity tuples among all the ground-
truth entity tuples. Note that for entity and type predictions, the
predictions are regarded as correct only if they exactly match the
ground-truth labels. For the object prediction in GMNER, if the
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Table 2: Performance comparison between mixGen and the proposed GMDA framework on both MNER and GMNER tasks in low-resource settings.

Task Dataset Methods 10% 20% 40%
Pre. Rec. F1 Pre. Rec. F1 Pre. Rec. F1

MNER Twitter-15

MMT5 63.91 63.86 63.88 68.70 70.90 69.79 73.16 75.38 74.25
-w/ mixGen 68.19 63.70 65.87 70.47 71.73 71.10 73.04 75.46 74.23
-w/ GMDA 69.59 67.31 68.43 72.94 73.00 72.97 73.87 76.38 75.10

PGIM 72.58 71.74 72.15 73.16 77.09 75.07 75.15 78.32 76.70
-w/ mixGen 71.40 74.12 72.74 75.39 77.20 76.29 76.74 77.90 77.32
-w/ GMDA 73.15 74.57 73.85 75.85 76.51 76.18 76.78 78.43 77.60

GMNER

Twitter-GMNER

H-Index 47.54 47.39 47.46 50.90 52.10 51.49 53.08 54.53 53.80
-w/ mixGen 45.72 50.84 48.15 50.70 52.65 51.66 53.75 53.44 53.59
-w/ GMDA 48.99 49.47 49.23 52.99 51.90 52.44 54.35 55.20 54.77

TIGER 47.84 51.66 49.67 50.54 55.14 52.74 52.29 57.03 54.56
-w/ mixGen 45.72 50.84 48.15 48.79 49.38 49.08 50.42 53.64 51.98
-w/ GMDA 49.28 53.12 51.13 52.00 56.01 53.93 54.81 57.75 56.24

Twitter-FMNERG

H-Index 36.33 37.94 37.11 40.1 42.45 41.24 44.77 43.86 44.31
-w/ mixGen 38.46 39.11 38.79 41.36 42.64 41.99 43.00 44.57 43.77
-w/ GMDA 38.52 39.74 39.12 41.58 42.72 42.14 44.84 45.00 44.92

TIGER 34.77 36.96 35.83 41.2 43.48 42.31 41.96 46.02 43.89
-w/ mixGen 36.26 39.80 37.95 40.07 42.58 41.29 42.39 45.58 43.93
-w/ GMDA 38.31 41.00 39.61 41.26 44.81 42.96 43.71 46.32 44.97

object is groundable, we regard the prediction as correct when
the maximum IoU score between the predicted object and all the
ground truth bounding boxes exceeds 0.5; otherwise, if the object
is not groundable, the prediction is correct only if it is None.

4.2 Comparison Systems
4.2.1 Data Augmentation Baselines. To evaluate the effectiveness
of our GMDA framework, we consider two data augmentation
methods for comparison: 1) Mix Generation (mixGen) [16] is a mul-
timodal data augmentation method, which generates new image-
text pairs by linearly interpolating images and concatenating text
sequences from two existing image-text pairs. 2) Easy Data Aug-
mentation (EDA) [34] is a text-only data augmentation method,
which randomly performs one of the following operations on the
original sentences: synonym replacement, random insertion, ran-
dom swap, and random deletion. Since EDA can solely generate
the synthetic sentence without incorporating a synthetic image,
we pair the synthetic sentences with their corresponding original
images to obtain synthetic text-image pairs.

4.2.2 MNER and GMNER Baselines. To show the effectiveness of
the synthetic labeled data generated by GMDA, we adopt several
competitive methods for MNER and GMNER as the base models: 1)
PGIM [21] is the current state-of-the-art method on the MNER task,
which leverages ChatGPT as an implicit knowledge base to gen-
erate auxiliary knowledge to enhance the performance of MNER.
2) MMT5 [30] formulates the MNER task as a paraphrase genera-
tion task and employs a pre-trained Seq2Seq model VL-T5 [8] to
generate the entity-type pairs based on the textual and visual in-
puts. 3) H-Index [39] is a hierarchical index generation framework
for GMNER, which generates the entity-type-region triplets in a
hierarchical manner with a pre-trained Seq2Seq model BART. 4)
TIGER [30] is a T5-based multimodal Generation framework for
GMNER, which directly generates the paraphrased target sequence
containing entity-type-region triples from an image-text input pair.

In addition to the aforementioned base models, we further con-
sider a number of representative MNER and GMNER methods for

comparison in the full-supervision setting: 1) UMT [38] is a uni-
fied Transformer framework for MNER, which captures the inter-
modal interactions. 2) UMGF [40] is a unified multi-modal graph
fusion approach for MNER. 3) MNER-QG [19] is an end-to-end
MRC-based MNER method with query grounding. 4) R-GCN [42]
is a relation-enhanced Graph convolutional network for MNER. 5)
CAT-MNER [33] is a Transformer-based MNER framework, which
refines the cross-modal attention with expanding entity label words.
6) ICL-MNER [3] explores the potential of the in-context learning
paradigm for few-shot MNER. 6) GVATT-RCNN-EVG [23], UMT-
VinVL-EVG [38], UMGF-VinVL-EVG [40] and ITA-VinVL-EVG [32]
are sequence labeling-based multimodal approaches for GMNER,
which stack the EVG model over existing MNER methods intro-
duced by Yu et al. [39].

4.3 Results in Low-Resource Settings
In Table 2, we compare the results of two multimodal data augmen-
tation methods, i.e., mixGen and the proposed GMDA model in
different low-resource settings.

4.3.1 Results on MNER. Based on the first six rows of Table 2, we
can observe that the two multimodal data augmentation methods
can generally bring improvements to the performance of the cor-
responding base models, especially in the extremely low-resource
setting, i.e., only with 10% training data. Secondly, by comparing
mixGen and GMDA, it is clear that using the augmented data gen-
erated from GMDA generally performs better. For example, in the
10% setting, when employing MMT5 as the base model, GMDA out-
performs mixGen by 2.56 absolute percentage points in the F1 score.
Lastly, for our GMDA framework, we can find that its performance
improvement over PGIM is much smaller than that over MMT5.
This is because the PGIM model leverages ChatGPT to generate
auxiliary knowledge, which can perform much better than MMT5
in low-resource scenarios. Nevertheless, GMDA still improves the
performance of PGIM by 1.7, 1.05, and 0.9 percentage points in 10%,
20%, and 40% settings, respectively.



697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Generative Multimodal Data Augmentation for Low-Resource Multimodal Named Entity Recognition ACM MM, 2024, Melbourne, Australia

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Table 3: Results of different MNER methods in full-supervision settings.

Methods
Twitter-15

Single Type(F1) Overall
PER LOC ORG OTH Pre. Rec. F1

UMT [38] 85.24 81.58 63.03 39.45 71.67 75.23 73.41
UMGF [40] 84.26 83.17 62.45 42.42 74.49 75.21 74.85
MNER-QG [19] 85.68 81.42 63.62 41.53 77.76 72.31 74.94
R-GCN[42] 86.36 82.08 60.78 41.56 73.95 76.18 75.00
CAT-MNER [33] 88.04 84.70 68.04 52.33 78.75 78.69 78.72
ICL-MNER [3] - - - - 51.24 67.20 58.14

MMT5 [32] 86.37 83.32 66.00 46.52 74.57 78.13 76.31
-w/ EDA 86.08 82.28 63.90 50.15 75.56 77.20 76.37
-w/ mixGen 85.93 83.02 65.99 46.66 74.48 77.68 76.05
-w/ GMDA 87.26 83.38 67.73 49.08 75.82 78.89 77.33

PGIM [21] 88.04 84.19 69.58 52.88 77.28 80.22 78.72
-w/ EDA 88.13 84.09 70.32 52.03 76.69 80.97 78.78
-w/ mixGen 87.73 84.00 68.45 51.50 77.17 78.90 78.03
-w/ GMDA 88.39 84.35 69.77 53.70 78.32 80.07 79.19

4.3.2 Results on GMNER. As shown in the last 12 rows of Table 2,
the comparison results on the GMNER task show similar trends to
those on the MNER task. Specifically, for both H-Index and TIGER,
using the data generated by GMDA brings consistent improve-
ments in the F1 score in all the low-resource settings. For both
Twitter-GMNER and Twitter-FMNERG datasets, the most signifi-
cant improvements occur in the 10% setting, with an average F1
improvement of approximately 2% across different base models.
Moreover, we find that in some cases, mixGen hardly yields any
improvement. One possible reason is that linearly interpolating
images and concatenating text sequences may disrupt the data dis-
tribution and thus introduce slight noise. In comparison to mixGen,
our GMDA framework shows a more significant and consistent
improvement, indicating that the augmented data generated from
GMDA can well complement the original data.

These observations demonstrate the efficacy of the proposed
data augmentation framework in low-resource settings.

4.4 Results in Full-Supervision Settings
In Table 3 and Table 4, we further compare the results of different
models in the full-supervision setting.

Firstly, we can see from Table 3 that the base model MMT5
performs much better than most baseline MNER methods except
CAT-MNER, while the other base model PGIM achieves the best
performance among all the baseline methods. Secondly, when using
synthetic data generated by mixGen, the F1 score even decreases,
indicating that its data augmentation strategy may bring much
noisy data. Lastly, it is easy to find that EDA and GMDA generally
bring further improvements to the performance ofMMT5 and PGIM.
Concretely, EDA only obtains a veryminor improvement (i.e., 0.06%)
on both MMT5 and PGIM, while GMDA achieves 1.02 and 0.47
percentage points improvement in F1 score based on MMT5 and
PGIM, respectively.

Similar to the performance trend in the MNER task, we can
observe from Table 4 that the proposed GMDA framework consis-
tently enhances the performance of H-Index and TIGER on both
Twitter-GMNER and Twitter-FMNERG datasets. In contrast, it is
clear that in the full-supervision setting, the two data augmenta-
tion baseline methods, i.e., EDA and mixGen, even lead to a slight

Table 4: Results of different GMNER methods in full-supervision settings.

Methods Twitter-GMNER Twitter-FMNERG
Pre. Rec. F1 Pre. Rec. F1

GVATT-RCNN-EVG [23] 49.36 47.80 48.57 42.02 38.75 40.32
UMT-VinVL-EVG [38] 50.15 52.52 51.31 40.67 41.99 41.32
UMGF-VinVL-EVG [40] 51.62 51.72 51.67 41.73 42.11 41.92
ITA-VinVL-EVG [32] 52.37 50.77 51.56 43.05 42.51 42.78

H-Index [39] 56.16 56.67 56.41 46.83 46.28 46.55
-w/ EDA 55.31 55.78 55.78 46.74 46.92 46.83
-w/ mixGen 56.46 55.91 56.18 46.60 46.49 46.54
-w/ GMDA 56.27 57.44 56.85 47.29 46.61 46.95

TIGER [30] 55.52 59.58 57.48 47.57 46.85 47.20
-w/ EDA 57.06 57.48 57.27 45.10 48.08 46.54
-w/ mixGen 55.53 59.40 57.40 44.86 48.18 46.46
-w/ GMDA 57.09 60.21 58.61 45.58 49.30 47.37

Table 5: Ablation Study of H-Index with GMDA on the Twitter-GMNER
dataset in the 10% low-resource setting.

Methods Pre. Rec. F1

H-Index with GMDA 48.99 49.47 49.23
- w/o Multimodal Text Generation 47.56 47.90 47.73
- w/o Multimodal Image Generation 49.36 48.61 48.98
training only Q-Former 48.41 47.82 48.11

performance drop on the GMNER task, probably because their aug-
mented data introduces excessive noise. This further demonstrates
the advantage of GMDA over existing data augmentation methods.

4.5 In-Depth Analysis
4.5.1 Ablation study. To investigate the effectiveness of each com-
ponent in the proposed GMDA framework, we choose to conduct
an ablation study of GMDA on the Twitter-GMNER dataset in a 10%
low-resource setting by using H-Index as the base model. Specifi-
cally, we compare the full GMDA model with its three ablations: 1)
removing the Multimodal Text Generation stage; 2) removing the
Multimodal Image Generation stage; 3) following the common prac-
tice to only fine-tune the Q-Former without adding LoRA adapters
in the LMLLM.

As shown in Table 5, we can see that all the components in
GMDAplay an indispensable role in the overall performance. Firstly,
removing the Multimodal Text Generation stage will significantly
drop the performance, which shows that text data augmentation
can increase the diversity of the sentences and is essential to GMDA.
Secondly, discarding the Multimodal Image Generation stage also
leads to a performance drop, which indicates that generating the
synthetic image for each synthetic sentence can reduce the noise
that arises from inconsistencies between the synthetic text and
the original image. Lastly, only fine-tuning the Q-Former of the
LMLLM also leads to a decrease in performance. This indicates the
necessity of incorporating LoRA adapters for parameter-efficient
fine-tuning.

4.5.2 Case Study. To better understand the GMDA framework, we
conduct a qualitative analysis of two synthetic examples generated
fromGMDA. For comparison, we show the synthetic data generated
from mixGen and GMDA in Table 6.

For the Original Sample A, sincemixGen essentially concatenates
it with another sample mentioning building entities, the synthetic
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Table 6: Comparison between synthetic samples generated from mixGen and those generated from GMDA.

Original Sample A Synthetic Sample A Original Sample B Synthetic Sample B

mixGen GMDA mixGen GMDA

RT @tennis _ photos :
Welcome back to No . 2 ,
[Roger Federer, PER] .
http://t.co/OxQEOR7mKh

RT @tennis _ photos :
Welcome back to No . 2 ,
[Roger Federer, PER] .
http://t.co/OxQEOR7mKh
The Best way to visit the
[Louvre Museum, LOC]
. http://t.co/EqF2L87pw5
[#paris, LOC]
http://t.co/CVdJN9BTEi

RT @ESPN : Con-
gratulations to
@NRL_Hoopsplayer,
[Roger Federer,
PER] on winning
#13 final! #BeLiveTNT
http://t.co/G7bo5efVJL

Oh I am just so
excited ! # [London-
BurlesqueFestival,
OTHER]

RT @MailChimp: [Slate,
PER] wrote about the
wonderful murals @Mon-
Campana curated for
our new office: Oh I am
just so excited! # [Lon-
donBurlesqueFestival,
OTHER]

@ [LondonBurles-
queTheater, OTHER]
The # [London-
BurlesqueFestival,
OTHER] will be an
exciting week full of
music and dancing!

Table 7: Comparison results on the generated synthetic sentences in GMDA
and those in EDA and mixGen.

Criterion Methods Twitter-15 Twitter-GMNER Twitter-FMNERG

Similarity
EDA 0.9283 0.9112 0.9109
MixGen 0.6893 0.5998 0.6010
GMDA 0.2898 0.2158 0.2156

Diversity
EDA 0.6838 0.6616 0.6608
MixGen 0.5540 0.5436 0.5433
GMDA 0.8915 0.8303 0.8399

Perplexity

Origin 133.76 569.23 569.23
EDA 194.15 1070.28 1014.21
MixGen 114.12 420.73 419.65
GMDA 104.96 466.79 522.78

image tends to be noisy, containing unclear persons and buildings.
In contrast, since our GMDA method revolves around the entity
mentioned in the original sample, its synthetic sentence not only
mentions the original entity, but also contains a different context,
and the synthetic image is also quite relevant to the synthetic
sentence.

Similarly, for the Original Sample B, the mixture sample gener-
ated from mixGen contains both PER entities and OTHER entities,
which makes the mixed image unclear and may introduce noise to
the original data. By contrast, the sample generated from GMDA
focuses on keeping the original entity in the generated sentence
and preserving the important visual regions in the original image.
Moreover, the GMDA method also generates a new entity London-
BurlesqueTheater and assigns a OTHER label to the entity, which
shows the diversity of the synthetic data generated by GMDA.

4.5.3 Analysis on Synthetic Sentences. To evaluate the quality of
sentences generated by GMDA, we conduct additional experiments
in full-supervision settings and report the results in Table 7.

Diversity. Generating diverse contexts for entities can generally
improve the model’s robustness in entity recognition. To show the
diversity of the generated data, we propose to measure the cosine
similarity between the synthetic sentence and the original sentence,
and calculate a Diversity score [20] denoting the percentage of

unique n-grams in all the synthetic sentences. It can be observed
from the first six rows of Table 7 that for EDA and mixGen, the
synthetic sentences are generally similar to the original sentences
and the percentage of unique n-grams is relatively low, while our
GMDAmethod can generate diverse synthetic sentences with many
unique n-grams, mainly due to the probability-based sampling
strategy.

Perplexity. To evaluate the coherence of synthetic sentences,
we further calculate the perplexity1 of data generated from each
compared method based on a pre-trained language model GPT-2
with 𝑒 as the base of the exponential function. In the last four rows of
Table 7, we can observe that the perplexity of our GMDA framework
is generally close to that of mixGen and the original sentences, while
significantly lower than that of the EDA method. This shows that
performing word replacement or insertion may disrupt the fluency
of the original sentence and lead to high perplexity. In contrast,
the Label-aware Multimodal Large Language Model in our GMDA
method can help generate coherent sentences.

These observations demonstrate the superiority of the proposed
GMDA framework over existing data augmentation methods re-
garding the diversity and fluency of the generated sentences.

5 CONCLUSION
In this paper, we proposed a Generative Multimodal Data Aug-
mentation framework named GMDA to simultaneously generate
synthetic text-image pairs and their corresponding high-quality
entity annotations. GMDA contains two stages, i.e., a Multimodal
Text Generation stage to generate synthetic labeled sentences with
a Label-aware Multimodal Large Language Model (LMLLM) and a
Multimodal Image Generation stage to generate the corresponding
image for each synthetic sentence. Experiments on three bench-
mark datasets show that our GMDA framework consistently boosts
the performance of several competitive methods for two subtasks of
MNER in both standard and low-resource settings. Further analysis
demonstrates the advantage of GMDA over existing data augmen-
tation methods in terms of data diversity and fluency.

1https://huggingface.co/docs/transformers/perplexity
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