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ABSTRACT

Large language models (LLMs) have demonstrated strong capabilities in pro-
gramming and mathematical reasoning tasks, but are constrained by limited high-
quality training data. Synthetic data can be leveraged to enhance fine-tuning out-
comes, but several factors influence this process, including model size, synthetic
data volume, pruning strategy, and number of fine-tuning rounds. We explore
these axes and investigate which conditions enable model self-improvement. We
introduce the Think, Prune, Train process, a scalable framework that iteratively
fine-tunes models on their own reasoning traces, using ground-truth pruning to en-
sure high-quality training data. This approach yields improved performance: on
GSM8K, Gemma2-2B achieves a Pass@1 of 57.6% (from 41.9%), Gemma2-9B
reaches 82%, matching LLaMA-3.1-70B, and LLaMA-3.1-70B attains 91%, even
surpassing GPT-4o, demonstrating the effectiveness of self-generated reasoning
and systematic data selection for improving LLM capabilities.

1 INTRODUCTION

State-of-the-art LLMs have been extensively trained on public text, yielding diminishing returns
from additional web-scraped data. One promising approach is leveraging curated synthetic data
to improve reasoning, an essential part of advancing code generation and mathematical problem-
solving.

Recent frontier models like LLaMA 3.1 Dubey et al. (2024) and DeepSeek R1 DeepSeek AI Team
(2024) demonstrate that post-training on reasoning traces coupled with supervised fine-tuning (SFT)
on filtered (pruned) data works well to improve models. Their strong performance on coding and
math benchmarks highlights how properly curated synthetic data can drive substantial performance
gains. For smaller models such as LLaMA (1B, 3B) and Gemma (2B) (9B) Team et al. (2024b),
distillation Hinton et al. (2015) coupled with fine-tuning on reasoning trace datasets has become the
dominant post-training paradigm. However, distillation depends on the availability of larger models,
while reasoning training relies on extensive external datasets.

This raises a fundamental question: Can small models learn to reason using only self-generated
data? Prior attempts at recursive fine-tuning on unfiltered text data Shumailov et al. (2024) have ob-
served model collapse: model degradation, including knowledge forgetting Kirkpatrick et al. (2017)
and hallucination. However, those works explored simple text generation, a task without a ground
truth metric for pruning. In contrast, mode collapse refers to a model converging on a narrower set
of high-probability outputs, reducing diversity at the cost of exploration. Mode collapse and model
collapse are distinct yet interconnected risks in iterative fine-tuning. Our approach, recursive SFT on
self-generated reasoning traces, might seem prone to mode collapse, as models increasingly favor
confident, correct solutions, but results show that while Pass@1 improves significantly, Pass@50
and Pass@20 remain relatively stable, indicating that the model maintains diversity while prioritiz-
ing reliability. By incorporating correctness-based pruning, we aim to avoid both model and mode
collapse while leveraging the benefits of iterative refinement for scalable reasoning improvement.

We investigate the conditions that enable self-improvement, particularly in smaller models, to un-
derstand when and how models can refine their reasoning abilities without external supervision.
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Our analysis demonstrates that reasoning trace selection through pruning can yield significant per-
formance gains. Several factors influence this process, including the size of the model used for
generating data, the amount of synthetic data incorporated during training, the pruning strat-
egy employed for selecting reasoning traces, and the number of fine-tuning rounds conducted
throughout the improvement process. We categorize this process into three components: Think,
Prune, Train, where models are iteratively fine-tuned on their own correct step-by-step reasoning
solutions.

1. Prompt models to reason in a structured way.
2. Prune incorrect outputs using ground-truth correctness filtering.
3. Perform SFT on the current model with its own unique validated solutions.

Figure 1: Recurrent process for model training. Data generation, pruning, and supervised fine-
tuning (SFT), with the arrow indicating the feedback loop to the tuned model.

By applying our process, as illustrated in Figure 1 , on small models, they achieve reasoning perfor-
mance comparable to larger ones on coding and math benchmarks. In particular, on GSM8K Cobbe
et al. (2021b), and CodeContests Li et al. (2022), we achieve the following performance gains:

• On GSM8K, Gemma2-2B improves from 41.9% to 57.6% for Pass@1
• On GSM8K, Gemma2-9B reaches 82% Pass@1, surpassing LLaMA3.1-70B-Instruct’s

78% for Pass@1.
• On GSM8K, LLaMA3.1-70B climbs from 78% to 91% Pass@1, outperforming even GPT-

4o (2024-08-06).
• On Code Contest, Pass@1 improves from 0.90% to 1.14% for the Gemma2-2B model and

from 5.10% to 7.90% for the Gemma2-9B model.

Our Contributions:

1. Avoids model collapse in self-training: Prior works show that unfiltered recursive fine-
tuning can degrade model performance, leading to catastrophic forgetting and halluci-
nation. We demonstrate that correctness-based pruning stabilizes training, preserving
knowledge while enhancing reasoning.

2. Insights for iterative reasoning refinement: We analyze how data volume, model size,
pruning strategies, and fine-tuning iterations influence self-improvement and identify the
conditions for effective self-improvement.

3. Think, Prune Train framework: We evaluate the Think, Prune, Train (TPT) framework,
demonstrating that structured reasoning prompting, correctness-based pruning, and super-
vised fine-tuning on validated solutions enables self-improvement.

2 RELATED WORK

Prior work on improving reasoning in small models includes distillation using synthetic data from
larger models, self-improvement strategies, and reinforcement learning (RL)-based optimization. In
contrast, we evaluate whether self-improvement can be achieved without relying on teacher models,
complex frameworks, or RL.
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Distillation:

Previous work has shown success in fine-tuning base models with synthetic data from large models,
a form of distillation: Alpaca Taori et al. (2023), MagicCoder Wei et al. (2024), and CodeGemma
Team et al. (2024a) demonstrate effective single-round supervised fine-tuning (SFT) using data from
larger models. Research in math reasoning has focused on structured solutions and synthetic data:
GSM8K Cobbe et al. (2021a) provides high-quality grade-school word problems requiring step-by-
step solutions, though we found that training solely on this dataset proved insufficient for scaling
performance. TinyGSM Liu et al. (2024) creates 12.3M synthetic math problems using GPT-3.5-
turbo, achieving 63.1% pass@1 even with a 125M parameter model. MetaMath Lewkowycz et al.
(2022) demonstrates the effectiveness of training models on multi-step forward and backward rea-
soning traces generated by GPT-3.5-Turbo, highlighting the effect of structured problem-solving
data in fine-tuning outcomes.

Self-Improvement:

Achieving iterative self-improvement using data from the same model presents a challenge. LLaMA
3.1 Dubey et al. (2024) implements multi-round fine-tuning and reports that iterative training on
synthetic data from their 405B model improves its 8B and 70B counterparts, but training on its own
outputs without pruning led to performance degradation. To address this, they adopted a pipeline
consisting of supervised fine-tuning (SFT), followed by direct preference optimization (DPO), ad-
ditional data generation, and data pruning. ReST Uesato et al. (2023) proposes an offline RL frame-
work that optimizes model behavior using a growing batch of self-generated training data pruned
by a reward model, their algorithm aligns the language model’s outputs with human preferences,
which are modeled using a learned reward function. Self-Instruct, Wang et al. (2023) introduces a
scalable method for bootstrapping instruction-following models without requiring human-annotated
datasets, by prompting GPT3 to generate diverse instruction-response pairs. Self-Taught Reasoner
(STaR) Zelikman et al. (2022) proposes an iterative fine-tuning approach where a model learns to
generate its own rationales while progressively improving its problem-solving ability. STaR con-
structs rationalized solutions through rejection sampling and fine-tunes a base model on both correct
and corrected (giving the model answer working backwards) rationales.

Reinforcement Learning:

Reinforcement learning (RL) has played a significant role in improving the reasoning, decision-
making, and alignment of large-scale language models. Traditional RL-based approaches such as
Proximal Policy Optimization (PPO) ? and Reinforcement Learning from Human Feedback (RLHF)
? have been widely used to fine-tune models for better instruction-following and alignment. How-
ever, newer RL methods have introduced refinements. Vine-PPO ? enhances policy optimization
by incorporating variance reduction techniques, improving convergence stability and sample effi-
ciency. DeepSeek R1 DeepSeek AI Team (2024) applies RL-based rejection sampling to filter and
refine reasoning paths. Their pipeline first pre-trains a model with structured reasoning objectives,
followed by RL optimization to improve output quality. ReST-EM ? extends ReST by incorpo-
rating Expectation Maximization, dynamically adjusting the weight of self-generated training data
based on model confidence. Unlike RL-based methods like DeepSeek R1 and LLaMA 3.1 Dubey
et al. (2024) we focus exclusively on recursive correctness-based fine-tuning, demonstrating that
self-improvement is possible without RL by leveraging structured prompting and validation.

Approach Uses CoT Only Ground Truth
Pruning

Starts from
Fine-tune

Multiple
Iterations

TPT (Ours) ✓ ✓ ✓ ✓

LLaMA 3.1 Dubey et al. (2024) ✓ ✗ ✓ ✓
DeepSeek R1 DeepSeek AI Team (2024) ✓ ✗ ✗ ✓
ReSTem Huang et al. (2023) ✗ ✓ ✗ ✓
MagicCoder Wei et al. (2024) ✗ ✗ ✗ ✗
Self-Instruct Wang et al. (2023) ✗ ✗ ✗ ✗
STaR Zelikman et al. (2022) ✓ ✓ ✗ ✓

Table 1: Comparison of TPT with Related Approaches. Compares if each approach uses Chain-
of-Thought (CoT), applies ground truth pruning, starts from a fine-tuned model, as opposed to the
base model, and performs multiple fine-tuning iterations.
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2.1 SFT ON PRUNED DATA AS A SPECIAL CASE OF POLICY GRADIENT

Recent work suggests that supervised fine-tuning (SFT) and reinforcement learning (RL) share key
similarities. RESTEM Huang et al. (2023) reframes RL as an Expectation-Maximization (EM) pro-
cess, where policy updates occur on fixed data rather than dynamically evolving policies. This
aligns with our approach, which fine-tunes on correctness-filtered data without explicit policy opti-
mization. In policy gradient RL, which optimizes a parameterized policy πθ to maximize expected
return J(πθ):

∇J(πθ) = Eτ∼πθ

[
T∑

t=0

∇θ log πθ(at|st)R(τ)

]

For language modeling, states correspond to token sequences st = (x0, ..., xt) and actions to next-
token choices at = xt+1. Sparse rewards R(τ), such as binary correctness in code generation, are
−1 for negative xl examples and +1 for positive ones xw.

Because errors in math problems are localized we notice that the gradient of the negative example is
of equal magnitude but opposite sign to the positive example on those steps where they differ. Under
this assumption, separating out the positive from the negative examples, the gradient simplifies to:

∇θ log π(x
w
t+1|x0:t)−∇θ log π(x

l
t+1|x0:t)

= 2∇θ log π(x
w
t+1|x0:t).

This mirrors the standard cross-entropy loss in SFT for just the positive examples:

L(πθ) = −
T∑

t=0

log πθ(xt+1|x0:t)

Thus, filtering for correctness and fine-tuning on self-generated sequences approximates policy gra-
dient updates. This suggests that SFT on correct outputs is not just a heuristic but an implicit RL
formulation, where correctness serves as a reward signal guiding model improvement.

3 THINK, PRUNE, TRAIN:

We systematically investigate the key components that enable effective self-improvement without
dependence on external models or datasets. Many variables contribute to the effectiveness of self-
improvement techniques, such as:

• Choice of Base Model: We focus on the Gemma and Llama families, particularly smaller
models.

• Prompting Strategy: Utilize CoT prompting with a temperature of 0.8 to generate data
from the training sets.

• Dataset Size: Explore how varying amounts of synthetic data impact fine-tuning outcomes.

• Comparison with Distillation: We compare the performance of self-generated data with
data generated by larger models.

• Fine-Tuning Rounds: Examine the effects of fine-tuning the base model once versus iter-
atively fine-tuning over multiple rounds

• Pruning Strategy: Compare the performance of selecting data based on ground truth,
partially correct solutions, and using unfiltered generated solutions.

While prior work often formulates self-improvement as a reinforcement learning (RL) problem,
requiring explicit reward models and policy optimization. We apply supervised fine-tuning (SFT) to
a model using its own generated outputs, selectively filtering for correctness. Our analysis explores
whether iterative refinement can be achieved purely through structured data selection.
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3.1 CHOOSING DATA FOR SELF-IMPROVEMENT

A key challenge in evaluating iterative self-improvement is disentangling gains due to actual re-
finement of the model’s reasoning capabilities from those caused by training on an increasingly
large accumulated dataset Gerstgrasser et al. (2024). To systematically investigate this, we explored
different data retention strategies across fine-tuning rounds. Initially, we considered accumulating
multiple solutions per question over successive rounds, allowing the model to learn from a more
diverse set of responses. While this yields performance improvements, the model’s enhancement
could be attributed to data size augmentation rather than genuine iterative refinement.

To isolate the effects of self-improvement, we retain only a single, unique example per question
per round, ensuring that the dataset size remains constant across iterations. Moreover, instead of
accumulating data across rounds, we replaced each round’s dataset entirely with newly generated
solutions, so every model is strictly trained on only self-generated data. Our findings suggest that
with strict data constraints, iterative fine-tuning can lead to meaningful gains, demonstrating that
model improvement is not solely a function of dataset expansion. Our experiments converged to a
simple yet effective method for model self-improvement, illustrated in Algorithm 1.

3.2 HOW TPT IS DIFFERENT

Prior self-improvement methods, such as ReST Uesato et al. (2023) and the post-training setup of
LLaMA 3.1 Dubey et al. (2024), refine models iteratively by applying their process to an already
fine-tuned model. ReST prunes self-generated data using a learned reward function, while LLaMA
3.1 applies direct preference optimization (DPO) and prunes data using both reward models and
ground-truth filtering.

STaR Zelikman et al. (2022) uses rejection sampling and fine-tunes the base model on both correct
and corrected rationales, incorporating backward reasoning where the model reasons from a given
answer. However, STaR does not iteratively fine-tune on its improved model.

Our approach focuses solely on supervised fine-tuning (SFT) to examine whether a model can itera-
tively improve from its own generated outputs using correctness-based filtering as the only selection
mechanism. By focusing soley on SFT, while forgoing, RL, reward models, and external correction,
we isolate the role of structured data selection in self-improvement.

Algorithm 1 Think, Prune, Train

Input: Base model M0, pruning strategy P , amount of data |n| = f used for supervised fine-
tuning
for i = 1 to N do

SFT Mi−1 on pruned data fi−1 → Mi

Generate 10 solutions for all problems in the train set using model Mi to construct S, the set
of all generated solutions

Apply pruning strategy P to all new solutions S
Randomly sample fi ⊂ S as examples for fine-tuning on Mi

end for
Output: Improved model MN

3.3 EXPERIMENTAL SETUP

We study the effectiveness of instruction fine-tuned variants of the Llama and Gemma
model families. Specifically, we experiment with gemma2-2b-it, gemma2-9b-it,
Llama-3.2-1B-Instruct, and Llama-3.3-70B-Instruct. Our SFT runs use a learn-
ing rate of 1e-6 for Gemma and 1e-5 for Llama to maintain training stability. We employ the
AdamW optimizer Loshchilov & Hutter (2017) with default weight decay. Training is conducted
over a single epoch with a 10% warm-up of training steps to mitigate overfitting.

The appendix (B.5) contains synthetic example solutions from question 20 of the GSM8K Cobbe
et al. (2021a) train set, illustrating the reasoning steps taken by different models. For the iterative
fine-tuning experiments using Algorithm 1, we set the number of pruned examples per round to 2000
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for GSM8K and 1000 for CodeContests, performing up to N = 4 rounds of iterative improvement.
Evaluation is conducted at a temperature of 0.7. For GSM8K, we select a subset of 500 questions
from the test set, ensuring that answers exactly match the ground truth, including formatting, to
enforce both correctness and adherence to the expected answer format. Additionally, we evaluate
our recursively trained models on the 140 questions without image tags from CodeContests, using
standard input/output matching to verify correctness.

4 RESULTS:

Our results are broken into three sections:

• We first analyze how dataset size and the model generating the data impact fine-tuning
outcomes.

• Next, we evaluate the Think-Prune-Train process on GSM8K and CodeContests

• Finally, we validate our pruning strategy, demonstrating that pruned synthetic data outper-
forms unpruned data and that our approach generalizes to LLaMA variants.

Synthetic data scaling

We investigate whether increasing the size of synthetic datasets, and the models used to gener-
ate them, leads to performance gains. Experimental results reveal that more synthetic data does
not necessarily translate to better outcomes across all dataset types. We also compare how SFT on
increasing amounts of human generated data from the training set effects the model’s performance
for comparison.

For GSM8K, we observe that small amounts of synthetic data generated by the larger Gemma-9B
model outperform those from the 2B model. At 2,000 examples, the 9B-generated data achieves a
Pass@1 of 54.0%, compared to 52.5% for 2B-generated data. However, as dataset size increases,
performance plateaus or even slightly declines for both 2B and 9B-generated data.

The results indicate that simply scaling data is not a universally effective strategy. performance is
shaped by the interplay between data quality, dataset size, and the model used for generation.

Model Approach Size Data Source Pass@1(%) Pass@20(%)

Gemma-2-2B Baseline - - 41.9 76.0
Self-gen 1k 2B 50.6 81.8

2k 2B 52.5 83.0
4k 2B 54.8 82.6
6k 2B 51.6 81.0

Human 2k GSM8K 45.5 83.0
4k GSM8K 44.3 83.4
6k GSM8K 44.0 85.6

Distill 1k 9B 51.2 83.1
2k 9B 54.0 83.8
4k 9B 53.1 83.0
6k 9B 51.2 82.6

Gemma-2-9B Baseline - - 66.4 88.4
Self-gen 1k 9B 80.5 89.0

2k 9B 81.1 90.0

Table 2: Scaling synthetic dataset size shows no clear trends, motivating a different solution
(TPT) 1. GSM8K Pass@1% and Pass@20% for fine-tuned Gemma-2-2B and Gemma-2-9B models
scaling number of training examples.

4.1 RECURSIVE DATA PERFORMANCE

Next, we examine how recursive synthetic data generation influences performance across mul-
tiple tasks. Our investigation reveals a pattern of cumulative improvements across multiple tasks,
particularly for single-attempt performance. These findings align with Muennighoff et al. (2025),
though with a key distinction: while their approach begins with models explicitly trained to reason
and uses budget forcing to extend reasoning length, our method starts with plain instruct models and
prompts them to develop reasoning behaviors.

Mathematical Reasoning Recursive Performance: Through recursive fine-tuning, where each
subsequent model (Model1, Model2, etc.) is trained on synthetic data generated by its predecessor,
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Model Stage Source Data Pass@1 Pass@20 Correct@20

Gemma-2-2B Baseline - - 41.9 76.0 380
Init (Model 1) 2B 2k 52.5 83.0 415
Rec 1 (Model 2) M1 2k 56.0 83.0 415
Rec 2 (Model 3) M2 2k 56.9 83.2 416
Rec 3 (Model 4) M3 2k 57.6 83.2 416

Gemma-2-9B Baseline - - 66.4 88.4 442
Init (Model 1) 9B 2k 81.1 90.0 450
Rec 1 (Model 2) M1 2k 82.3 89.4 447
Rec 2 (Model 3) M2 2k 82.4 90.2 451

Table 3: Recursive fine-tuning improves
GSM8K performance across multiple
iterations. Performance of recursively
trained Gemma models on GSM8K, showing
Pass@1(%) and Pass@20(%) improvement
when following the algorithm, These are the
numbers for Figure 2 Pass@1 shows a clearer
upward trend with Pass@20 plateauing after 2
rounds.

Model Stage Source Data Pass@1 Pass@50 Correct@50

Gemma-2-2B
(CodeContest) Baseline - - 0.90 5.70 8

Init (Model 1) 2B 1k 0.84 7.14 10
Rec (Model 2) M1 1k 1.00 9.20 13
Rec (Model 3) M2 1k 1.10 9.20 13
Rec (Model 4) M3 1k 1.14 7.85 11

Gemma-2-9B
(CodeContest) Baseline - - 5.10 15.00 21

Init (Model 1) 9B 1k 7.30 18.50 26
Rec (Model 2) M1 1k 7.60 17.80 25
Rec (Model 3) M2 1k 7.90 18.50 26

Table 4: Recursive Fine-Tuning on Code Con-
test dataset shows minor improvement at
Pass@1 and plateaus for Pass@50. Pass@1
improves steadily through iterative fine-tuning,
reaching 1.14% for the 2B model and 7.90% for
the 9B model. However, Pass@50(%) exhibits
diminishing returns, indicating potential limita-
tions in further refinement. The Correct@50
metric further illustrates that while improve-
ments occur, gains diminish over iterations.

we observe significant gains in mathematical reasoning capability. The Gemma-2B model’s exact
match Pass@1 performance on GSM8K, as seen in Table 2 ,increases from 41.9% to 57.6% over
four iterations of recursive training, accompanied by gains in Correct@20. Similarly, the Gemma-9B
model demonstrates improvement, reaching a Pass@1 of 82.4% from 66.4 % within three iterations.

While Pass@1 steadily increases, Pass@20 shows diminishing returns, mostly plateauing af-
ter the first iteration, suggesting that recursive training primarily enhances accuracy rather than
improving diversity across sampled generations.

We hypothesize that the reasoning-intensive nature of mathematical tasks enables recursive fine-
tuning to build upon previous patterns. This phenomenon aligns with findings from STAR Zelikman
et al. (2022), which highlights the effectiveness of structured rationale generation for reasoning
tasks.

Figure 2: Recursive training enhances GSM8K
Pass@1/20 performance in Gemma models.
On GSM8K Gemma2-2B model’s Pass@1(%)
performance increases from 41.9% to 57.6%
over four iterations of this process 1 While,
the Gemma-9B model improves to a Pass@1
of 82.4%. Bars M1-4 represent the models
trained though the TPT process, starting with base
Gemma2-2B/9B .

Code Contest Recursive Results: In the domain of code generation, we observe more nuanced
outcomes, Code Contest pass@1 performance improves but pass@50 plateaus. The 2B model
steadily improves in Code Contest, seen in Table 4 Pass@1, rising from 0.9% to 1.14% after four
recursive training iterations. However, Pass@50 plateaus around 7.85–9.2%, possibly due to code
generation being less reliant on step-by-step reasoning. We also trained on 1k data each recursive
round as opposed to 2k for GSM8K, this is due to the smaller dataset size, as well as lower model
accuracy on that dataset.
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4.2 IMPACT OF PRUNING ON SYNTHETIC DATA QUALITY

Pruning plays a crucial role in ensuring the effectiveness of self-generated synthetic data di-
rectly influencing model performance. Experiments with un-pruned self-generated data showed
deteriorated performance, contrasting with Setlur et al. (2024) which suggests value in incorrect
data for mathematical tasks when critical errors are avoided. With pruning, models trained on 2B
and 9B-generated data achieve comparable performance. However, without pruning, 9B-generated
data significantly outperforms 2B-generated data across all tasks, demonstrating pruning’s role in
equalizing data quality across model sizes. We also show results from soft pruning experiments
where we keep examples that pass one or more tests where we observed increased diversity.

Model Stage Source Data Pass@1(%) Pass@20/50(%)

Gemma-2-2B
(GSM8K) Baseline - - 41.9 76.0

2k No-Prune 2B 2k 45.13 71.6
6k No-Prune 2B 6k 44.57 71.0

Gemma-2-2B
(Code Contest) Baseline - - 0.90 5.70

1k No-Prune 2B 1k 0.85 5.70
1k No-Prune (9B Data) 9B 1k 0.94 6.40
5k No-Prune 2B 5k 0.90 6.42
5k No-Prune (9B Data) 9B 5k 0.67 9.29
1k Soft-Pos 2B 1k 0.70 8.57

Table 5: SFT without pruning performs poorly, while soft pruning increases diversity. Pass@1
and Pass@20 and Pass@50, results for GSM8K and Code Contest respectively on Gemma-2-2B
models trained on different dataset sizes and pruning strategies.

4.3 RESULTS SYNTHESIS:

Our experimental results demonstrate differences in learning efficiency across model scales when
applying TPT (Think Prune Train) recursive fine-tuning. The smaller Gemma-2-2B model required
four complete recursive TPT rounds to achieve its peak accuracy, while the medium-sized Gemma-
2-9B improved faster after three rounds. In contrast, the significantly larger LLaMA-70B model
attained 91.5% pass@1 accuracy after merely a single round of TPT recursive fine-tuning. The en-
hanced Pass@1 metric is noteworthy as it measures the model’s ability to generate correct solutions
on the first attempt. LLaMA-70B’s 91.5% pass@1 score indicates that TPT effectively transfers rea-
soning abilities even with minimal self-generated training iterations when applied to larger model
architectures.These findings highlight the importance of considering model parameter size when
designing training regimes.

Figure 3: Recursive Fine-Tuning Can
Improve Over Open Source Models.
The Gemma-2-9B model improves from
66.0% to 82.4%, while LLaMA-70B im-
proves from 76.0% to 91.5% Pass@1,
surpassing GPT-4o (82%). This figure
highlights the performance gains achieved
through recursive fine-tuning.

Model Stage Source Data Pass@1(%) Pass@20(%)

LLaMA-1B (GSM8K) Baseline - - 18.2 65.2
2k Fine-Tune LLaMA-1B 2k 20.8 68.4

LLaMA-70B (GSM8K) Baseline - - 78.6 92.2
6k Fine-Tune LLaMA-70B 6k 91.5 95.8

Table 6: The Think-Prune-Train method improves GSM8K performance on LLaMA models
One round of the TPT process improves performance. Notably, LLaMA-70B achieves a Pass@1
increase from 78.6% to 91.5%
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4.4 POSSIBLE MODE COLLAPSE

Our observed Pass@1 improvements alongside stable Pass@20 and Pass@50 metrics suggest a form
of mode collapse Kossale et al. in recursive synthetic data generation, where the model prioritizes
high-confidence solutions over diversity. Mode collapse occurs when a model converges on a nar-
rower set of high-probability outputs at the expense of diversity. This phenomenon has been studied
in recent work on synthetic data feedback loops, including ?, which explores the long-term effects
of training models on their own synthetic outputs.

The authors argue that recursive training pipelines without sufficient real and synthetic data accumu-
lation can lead to progressively narrowing distributions, where models produce increasingly homo-
geneous outputs, and performance degradation. While their work emphasizes the dangers of such
feedback loops—particularly in open-ended, creative tasks—our setting differs in that correctness is
strictly defined. We do observe less diversity in outputs, but increased correctness, this outcome is
not inherently detrimental, particularly for domains such as mathematics and programming, where
correctness and efficiency take precedence over diversity.

Though we observe reduced output variety, increased accuracy aligns with our goal of enhancing
precision through pruning. This effect may relate to fine-tuning’s impact on hallucinations Kang
et al. (2024). If diversity were the priority, techniques like soft-positive sampling, as seen in in Table
5, or data accumulation would be preferable, however our iterative approach naturally reinforces
high-confidence, precise outputs.

5 CONCLUSION

This study presents an analytical investigation of what factors influence self-improvement in lan-
guage models, centering on our Think, Prune, Train framework. Our findings challenge the notion
that simply scaling synthetic dataset size and model scale is sufficient to enhance reasoning capa-
bilities. We demonstrate that correctness-based pruning stabilizes training, preserving knowledge
while enhancing reasoning.

Our experiments highlight how recursive fine-tuning improves first-attempt accuracy, with Gemma-
2B increasing from 41.9% to 57.6% Pass@1, Gemma-9B reaching 82%, and LLaMA-70B-
Instruct achieving 91%, surpassing GPT-4o’s 82%. Additionally, we identify key conditions for
effective self-improvement, analyzing the impact of data volume, model size, pruning strategies,
and fine-tuning iterations. This provides insights into iterative reasoning refinement, showing that
structured selection plays a more critical role than sheer dataset size.

Finally, we evaluate the Think, Prune, Train (TPT) framework, demonstrating that structured rea-
soning prompting, correctness-based pruning, and supervised fine-tuning on validated solutions en-
able scalable self-improvement without external supervision, highlighting the potential of simplistic
frameworks to unlock further advances in LLM reasoning and accuracy.

ACKNOWLEDGMENT

We would like to thank Azalia Mirhoseini for her invaluable guidance and mentorship throughout
this project. We are grateful to Anna Goldie for all her help and support and to Simon Guo for
the helpful insights and guidance. We thank Rishabh Ranjan, Adrian Gamarra La Fuente, and the
Scaling Intelligence Lab for creating such an inspiring environment. I also thank AMD for their
GPU sponsorship that enabled the LLaMA 70B runs and Ceramic AI for access to their cluster for
fine-tuning experiments.

9



Published at the Scaling Self-Improving Foundation Models (SSI-FM) Workshop, ICLR 2025

REFERENCES

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training Verifiers to Solve Math Word Problems. arXiv preprint arXiv:2110.14168,
2021a.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training Verifiers to Solve Math Word Problems, 2021b. URL https://arxiv.
org/abs/2110.14168.

DeepSeek AI Team. DeepSeek R1: Advancing Open-Source Language Models with Reinforcement
Learning and Supervised Fine-Tuning. arXiv preprint arXiv:2404.14618, 2024.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, Anirudh Goyal, Anthony
Hartshorn, Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Korenev, Arthur Hinsvark,
Arun Rao, Aston Zhang, Aurelien Rodriguez, Austen Gregerson, Ava Spataru, Baptiste Roziere,
Bethany Biron, Binh Tang, Bobbie Chern, Charlotte Caucheteux, Chaya Nayak, Chloe Bi, Chris
Marra, Chris McConnell, Christian Keller, Christophe Touret, Chunyang Wu, Corinne Wong,
Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Allonsius, Daniel Song, Danielle Pintz, Danny
Livshits, David Esiobu, Dhruv Choudhary, Dhruv Mahajan, Diego Garcia-Olano, Diego Perino,
Dieuwke Hupkes, Egor Lakomkin, Ehab AlBadawy, Elina Lobanova, Emily Dinan, Eric Michael
Smith, Filip Radenovic, Frank Zhang, Gabriel Synnaeve, Gabrielle Lee, Georgia Lewis Ander-
son, Graeme Nail, Gregoire Mialon, Guan Pang, Guillem Cucurell, Hailey Nguyen, Hannah
Korevaar, Hu Xu, Hugo Touvron, Iliyan Zarov, Imanol Arrieta Ibarra, Isabel Kloumann, Ishan
Misra, Ivan Evtimov, Jade Copet, Jaewon Lee, Jan Geffert, Jana Vranes, Jason Park, Jay Ma-
hadeokar, Jeet Shah, Jelmer van der Linde, Jennifer Billock, Jenny Hong, Jenya Lee, Jeremy
Fu, Jianfeng Chi, Jianyu Huang, Jiawen Liu, Jie Wang, Jiecao Yu, Joanna Bitton, Joe Spisak,
Jongsoo Park, Joseph Rocca, Joshua Johnstun, Joshua Saxe, Junteng Jia, Kalyan Vasuden Al-
wala, Kartikeya Upasani, Kate Plawiak, Ke Li, Kenneth Heafield, Kevin Stone, Khalid El-Arini,
Krithika Iyer, Kshitiz Malik, Kuenley Chiu, Kunal Bhalla, Lauren Rantala-Yeary, Laurens van der
Maaten, Lawrence Chen, Liang Tan, Liz Jenkins, Louis Martin, Lovish Madaan, Lubo Malo,
Lukas Blecher, Lukas Landzaat, Luke de Oliveira, Madeline Muzzi, Mahesh Pasupuleti, Man-
nat Singh, Manohar Paluri, Marcin Kardas, Mathew Oldham, Mathieu Rita, Maya Pavlova,
Melanie Kambadur, Mike Lewis, Min Si, Mitesh Kumar Singh, Mona Hassan, Naman Goyal,
Narjes Torabi, Nikolay Bashlykov, Nikolay Bogoychev, Niladri Chatterji, Olivier Duchenne, Onur
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Batra, Harsh Dhand, Ivan Nardini, Jacinda Mein, Jack Zhou, James Svensson, Jeff Stanway, Jetha
Chan, Jin Peng Zhou, Joana Carrasqueira, Joana Iljazi, Jocelyn Becker, Joe Fernandez, Joost van
Amersfoort, Josh Gordon, Josh Lipschultz, Josh Newlan, Ju yeong Ji, Kareem Mohamed, Kar-
tikeya Badola, Kat Black, Katie Millican, Keelin McDonell, Kelvin Nguyen, Kiranbir Sodhia,
Kish Greene, Lars Lowe Sjoesund, Lauren Usui, Laurent Sifre, Lena Heuermann, Leticia Lago,
Lilly McNealus, Livio Baldini Soares, Logan Kilpatrick, Lucas Dixon, Luciano Martins, Machel
Reid, Manvinder Singh, Mark Iverson, Martin Görner, Mat Velloso, Mateo Wirth, Matt Davidow,
Matt Miller, Matthew Rahtz, Matthew Watson, Meg Risdal, Mehran Kazemi, Michael Moyni-
han, Ming Zhang, Minsuk Kahng, Minwoo Park, Mofi Rahman, Mohit Khatwani, Natalie Dao,
Nenshad Bardoliwalla, Nesh Devanathan, Neta Dumai, Nilay Chauhan, Oscar Wahltinez, Pankil
Botarda, Parker Barnes, Paul Barham, Paul Michel, Pengchong Jin, Petko Georgiev, Phil Culli-
ton, Pradeep Kuppala, Ramona Comanescu, Ramona Merhej, Reena Jana, Reza Ardeshir Rokni,
Rishabh Agarwal, Ryan Mullins, Samaneh Saadat, Sara Mc Carthy, Sarah Perrin, Sébastien M. R.
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A APPENDIX

Complexity of Reasoning We have focused on GSM8K rather than more challenging datasets like
GPQA because we consider smaller models with less memory and aim to study their reasoning
capabilities rather than their recall ability. The reasoning in more difficult problems is often not
much more complicated than in grade school math but just covers more esoteric subjects. Consider
a problem from GPQA Rein et al. (2023) that asks about the angles of drops of liquid on a smooth
and rough surface. We paraphrase the GPQA question here.

Complex Math Problem

On a surface, we apply a coating which
makes it completely smooth. We put a
drop of water and a hydrocarbon on it
and measure the contact angles as 130°
and 102°. We then roughen the surface
and measure the angle of water as 150°.
What is the contact angle for a lighter
hydrocarbon on the roughened surface?
126°,131°,136°,141°

The Cassie-Baxter equation says that if θ1 is the contact angle on a smooth surface, then the angle
on a rough surface, θ, obeys cos(θ) = f ∗ cos(θ1) + f , where f is a constant for the surface. The
f for the rough surface can be found from the two angles for water, cos(150) = f ∗ cos(130) − f ,
so f = 0.53. Then, we can find the rough angle for the hydrocarbon, θh, by using the formula
cos(θh) = 0.53 ∗ cos(105) − 0.53, so θh = 131. The other hydrocarbon is lighter, so it has lower
surface tension; thus, its angle is less than 131. The only choice that is less than 131 is 126.

This does not seem easy because few can readily recall (if ever knew) the formulas for the wettability
of rough and flat surfaces. Once reminded of —the Cassie Baxter equation—the problem becomes
isomorphic to the following.

Given two numbers, x, and y, and a formula f , work out another number, z, using the equation.
x = f(y, z) Then, use z and another instance of the formula to compute w where w = f(y′, z). We
are told w′ is less than w, and given only one choice that is less than w. If f is invertible then this is
grade school math.

The GPQA problem has the same type of reasoning as a grade school problem. The difference is
using a obscure formulas that an LLM cannot recall.

Simple Math Problem

Jane has a number of buckets. 3 apples
fit in each bucket. She can fit 15
apples in her buckets. If a bucket
can fit 4 lemons, and limes are
smaller than lemons, how many limes
can fit in her buckets?
10, 15, 19, 24

GPQA questions often do not have complex reasoning but are difficult due to the subject matter. As
we aim to study reasoning, as opposed to the ability of the models to remember difficult facts, we
believe GSM8K sufficient.

B SCALING SYNTHETIC DATA FOR CODE CONTEST AND LEETCODE

Our investigation into the impact of scaling synthetic code data reveals that increasing the amount
of synthetic data does not always yield better performance.
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For example, in the Code Contest dataset, a Gemma-2B model trained with 2,000 self-generated and
filtered synthetic examples outperformed the same model trained on synthetic data from Gemma-
9B. However, as our ablation studies indicate, when unpruned, synthetic data from the 9B model
leads to better performance than 2B-generated data.

This suggests that smaller models can generate high-quality data that, when validated effectively,
can match or even surpass the usefulness of data from larger models. This trend is seen across
datasets, reinforcing the importance of careful data curation and filtering.

B.1 DIMINISHING RETURNS IN SYNTHETIC DATA SCALING

Pass@1 performance on Code Contest reveals an interesting trend: while synthetic data generated
by Gemma-9B improves performance initially, further scaling results in stagnation or decline. At
4,000 and 6,000 synthetic examples, performance either levels off or worsens.

Similarly, introducing small amounts of human-generated training data negatively impacts Pass@1,
possibly due to an out-of-distribution effect.

The LeetCode dataset shows a smaller performance gap between synthetic data generated by
Gemma-2B and Gemma-9B. A model trained on 1,000 2B-generated examples achieved a Pass@1
of 14.65%, slightly outperforming a model trained on 9B-generated examples, which achieved
12.82%. Despite this, both models performed similarly on Pass@20 and Correct@100, again sug-
gesting that smaller models can generate useful training data.

B.2 IMPLICATIONS FOR SYNTHETIC DATA GENERATION STRATEGIES

These results demonstrate that simply increasing synthetic data volume does not guarantee better
outcomes. Instead, there is a complex interplay between dataset size, data quality, and the model
used for data generation.

Our findings highlight the need for targeted synthetic data generation strategies and reinforce the
potential for smaller models to contribute meaningfully to model improvement.

Model Stage Source Data Pass@1(%) Pass@50(%)

Gemma-2B (Code Contest) Baseline - - 0.90 5.70
1k-2B-synth Gemma-2B 1k 0.84 7.14
2k-2B-synth Gemma-2B 2k 0.71 7.14
4k-2B-synth Gemma-2B 4k 0.56 7.85
6k-2B-synth Gemma-2B 6k 0.66 8.57

Human Data (Code Contest) 1k-Human Trainset 1k 0.60 6.43
2k-Human Trainset 2k 0.41 7.10
4k-Human Trainset 4k 0.24 5.71
6k-Human Trainset 6k 0.29 5.00

Gemma-9B (Code Contest) Baseline - - 5.20 15.00
1k-9B-synth Gemma-9B 1k 7.30 17.80
2k-9B-synth Gemma-9B 2k 7.10 18.50
4k-9B-synth Gemma-9B 4k 6.70 17.10

Table 7: Code Contest Scaling Amount of Synthetic Data Performance. Pass@1 and Pass@50
performance on different sizes of synthetic data.

Model Stage Source Data Pass@1(%) Pass@20(%)

Gemma-2B (LeetCode) Baseline - - 13.66 36.60
1k-2B-synth Gemma-2B 1k 14.65 33.66
1k-9B-synth Gemma-9B 1k 12.82 33.66

Gemma-9B (LeetCode) Baseline - - 13.66 36.60
1k-9B-synth Gemma-9B 1k 14.65 33.66

Table 8: LeetCode Scaling Amount of Synthetic Data Performance. Pass@1 and Pass@20 per-
formance with different sizes of synthetic data.
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B.3 IMPACT OF MIXING REAL AND SYNTHETIC DATA

We also explored the impact of combining small amounts of real and synthetic data for training.
Our findings indicate that mixed datasets performed well in terms of Pass@1 scores, particularly
in smaller training sizes (e.g., 1k 500 each). However, attempts to recursively refine models
using mixed datasets consistently failed. A possible explanation is that the introduction of real data
disrupts the recursive self-improvement process, making it more difficult for the model to generalize
effectively from its own outputs.

Model Stage Source Data Pass@1(%) Pass@50(%)

Gemma-2B
(Code Contest, Mixed) 1k-500-each Trainset/2B 1k 1.0 7.14

2k-1k-each Trainset/2B 2k 0.60 7.85
4k-2k-each Trainset/2B 4k 0.24 5.71

rec mixed-sft 1k both on 1k both 1kboth 1k 0.87 7.14
2B1k on base Gemma-2B 1k 0.92 4.28

Table 9: Mixed Dataset Ablations. Evaluating model performance when fine-tuning on a mix of
real and synthetic data.

B.4 THE COT PROMPT USED

The following is the Chain-of-Thought (CoT) prompt used in our experiments.

Mathematical Reasoning Prompt

You are an expert mathematician.
You are provided with a math problem. Your task is to solve the problem step-by-step, clearly showing all relevant calculations and reasoning.

Problem: "Bella bought stamps at the post office. Some of the stamps had a snowflake design, some had
a truck design, and some had a rose design. Bella bought 11 snowflake stamps. She bought 9 more
truck stamps than snowflake stamps, and 13 fewer rose stamps than truck stamps. How many stamps did
Bella buy in all?"

Requirements:

1. Provide a complete and correct solution in a markdown block.

2. Explain each step of the solution in detail.

3. Conclude with the final numerical answer on a new line in the format #### [Answer], replacing [Answer] with the actual answer.

Solution:

B.5 EXAMPLE REASONING TRACES

Gemma 2B

Solution: Here’s a step-by-step solution to the problem:

**1. Calculate the number of truck stamps:**
Bella bought 9 more truck stamps than snowflake stamps, and she bought 11 snowflake stamps.
Therefore, she bought 11 + 9 = 20 truck stamps.

**2. Calculate the number of rose stamps:**
Bella bought 13 fewer rose stamps than truck stamps, and she bought 20 truck stamps.
Therefore, she bought 20 - 13 = 7 rose stamps.

**3. Calculate the total number of stamps:**
Bella bought 11 snowflake stamps + 20 truck stamps + 7 rose stamps = 38 stamps in total.

**#### 38**

Gemma 9B

Solution: Here’s the step-by-step solution to the problem:
1.**Find the number of truck stamps:**
* Bella bought 9 more truck stamps than snowflake stamps, which she bought 11 of.

* Therefore, she bought 11 + 9 = 20 truck stamps.
2. **Find the number of rose stamps:**
* Bella bought 13 fewer rose stamps than truck stamps, which she bought 20 of.

* Therefore, she bought 20 - 13 = 7 rose stamps.
3. **Calculate the total number of stamps:**
* To find the total number of stamps, add the number of each type of stamp: 11 snowflake stamps + 20
truck stamps + 7 rose stamps = 38 stamps.
#### 38
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LLaMA 70B

Solution: ### Step-by-step solution to the problem
To find the total number of stamps Bella bought, we first need to determine the number of stamps for
each design. We are given the following information:
- The number of snowflake stamps = 11
- The number of truck stamps = 9 more than snowflake stamps
- The number of rose stamps = 13 fewer than truck stamps
### Calculating the number of truck stamps
Since Bella bought 9 more truck stamps than snowflake stamps, we calculate the number of truck stamps
by adding 9 to the number of snowflake stamps.
Number of truck stamps = Number of snowflake stamps + 9
= 11 + 9
= 20
### Calculating the number of rose stamps
Given that Bella bought 13 fewer rose stamps than truck stamps, we calculate the number of rose
stamps by subtracting 13 from the number of truck stamps.
Number of rose stamps = Number of truck stamps - 13
= 20 - 13
= 7
### Calculating the total number of stamps
To find the total number of stamps, we add the number of snowflake, truck, and rose stamps together.
Total number of stamps = Number of snowflake stamps + Number of truck stamps + Number of rose stamps
= 11 + 20 + 7
= 38
#### 38

LLaMA 1B

Solution: ### Step 1: Interpret the Problem and Identify Given Information
### Step 2: Set Up Equations Based on Given Information
From the problem, we can set up the following equations:
1. ‘s = 11‘ (number of snowflake stamps)
2. ‘t = s + 9‘ (number of truck stamps)
3. ‘r = t - 13‘ (number of rose stamps)
### Step 3: Express the Number of Rose Stamps in Terms of Snowflake Stamps and Truck Stamps
Now, we’ll substitute the expressions for ‘t‘ and ‘r‘ into the third equation:
‘s = 11‘
‘t = s + 9‘
‘r = (s + 9) - 13‘
### Step 4: Solve for the Number of Rose Stamps
Let’s simplify the expression for ‘r‘:
‘r = (s + 9) - 13‘
‘r = s - 4‘
So, the number of rose stamps in terms of the number of snowflake stamps is ‘r = s - 4‘.
### Step 5: Find the Total Number of Stamps
The total number of stamps is the sum of snowflake stamps, truck stamps, and rose stamps. Therefore,
we can write an equation representing the total number of stamps:
‘s + t + r = 11 + (11 + 9) + (s - 4)‘
Simplify and solve for ‘s‘ (snowflake stamps):
‘s + t + r = 11 + 20 + s - 4‘
‘s + t + r = 26 + s‘
‘s - s = 26‘
‘s = 26‘
Since ‘s‘ represents the number of snowflake stamps and we know ‘s = 11‘, the actual number of
snowflake stamps is indeed 11. Let’s confirm this with the other equations.
### Step 6: Confirm the Number of Truck and Rose Stamps
Now, we’ll find the number of truck stamps ‘t‘ and rose stamps ‘r‘ using the equations:
‘t = s + 9‘
‘r = t - 13‘
We found ‘s = 11‘, so:
‘t = 11 + 9‘
‘t = 20‘
‘r = 20 - 13‘
‘r = 7‘
## Step 7: Verify the Total Number of Stamps Calculations
To ensure the correctness of our solution:
‘s + t + r = 11 + 20 + 7‘
‘s + t + r = 38‘
Using the original formula ‘20 + 7 - 4 = 37‘, this confirms our conclusion that ‘s = 11‘ is a perfect
and easy-to-explain solution that satisfies all given conditions.
### Step 8: Conclusion with the Final Answer
We finally have the total number of stamps Bella bought in all - 11 snowflake stamps, 20 truck
stamps, and 7 rose stamps.
#### 38
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