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Abstract

We study linear regression from data distributed over a network of agents (with no
master node) under high-dimensional scaling, which allows the ambient dimension
to grow faster than the sample size. We propose a novel decentralization of the
projected gradient algorithm whereby agents iteratively update their local estimates
by a “double-mixing” mechanism, which suitably combines averages of iterates
and gradients of neighbouring nodes. Under standard assumptions on the statistical
model and network connectivity, the proposed method enjoys global linear con-
vergence up to the statistical precision of the model. This improves on guarantees
of (plain) DGD algorithms, whose iteration complexity grows undesirably with
the ambient dimension. Our technical contribution is a novel convergence anal-
ysis that resembles (albeit different) algorithmic stability arguments extended to
high-dimensions and distributed setting, which is of independent interest.

1 Introduction

Consider M-estimation over a network of m agents, modeled as an undirected graph with no server
(termed mesh network). Each agent ¢ owns a sample of n i.i.d observations, drawn from an unknown,
common distribution on Z C RP, and collected in the set S;. Agents aim at minimizing the total
empirical loss over N = m -n samples, resulting in the following empirical risk minimization (ERM):
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where £;() is the empirical loss of agent 7, with x; € R? being the vector of predictors and y; € R
the associated response; R is a (convex) regularizer (with R > 0) controlling the complexity of the
solution; and €2 is some (convex) subset of R<,

The ERM (1) is a surrogate of the minimization of the (strongly convex) population loss

6* = argmin £(6) £ 2E(, sl 8 — 1)?). @)
OeRd 2
We are interested in estimation problems that are underdetermined, meaning that the ambient dimen-
sion d exceeds (and grows faster than) the total sample size IN. Therefore, we assume that 6* lies in a
smaller subset of 2 or is well approximated by a member of it-the regularizer R in (1) enforces this
constraint. Instances of such M-estimation problems include ¢;-constrained sparse linear models,
low-rank matrix recovery via nuclear norm, and matrix regression with soft-rank constraints [2].

Our goal is to study statistical and computational guarantees of first-order distributed algorithms
for (1). The benchmark is the centralized Projected Gradient Algorithm (PGA) [2]: under suitably
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restricted notions of strong convexity and smoothness of £ (see Sec. 2)-which hold with high
probability for a variety of statistical models—as well as conditions for statistical consistency—e.g.,
slogd/N = o(1) for s-sparsity—the iterates {0’} generated by the PGA (starting from 6°) satisfy:

16" = 01 < A" 16° — 0I1* + o116 — 6"%), ©)

with A € (0,1). In words: the optimization error ||§* — || decays linearly with rate A, up to a

tolerance of a smaller order than the statistical error of the model, ||# — 6*||2. Therefore every limit
point of {#*} is within the statistical error from §*. This is the the best one can hope for statistically
(ignoring lower order terms) and computationally (within first-order, non accelerated methods).

The PGA is not implementable on mesh networks: agents cannot compute locally the full gradient
VL. This calls for the design of distributed algorithms. The following questions arise naturally:

(Q1) Can (3) be achieved by distributed algorithms? Of primary interest is the regime wherein the
local sample size n is not sufficient for statistical consistency while the total one [V is so.

(Q2) How do sample rate and convergence rate scale with the model parameters (d, n, IN) and
network parameters (connectivity, size m, and topology)?

As documented next, current literature does not provide a satisfactory answer to the above ques-
tions for the majority of distributed algorithms. In a nutshell, most of existing studies are of pure
optimization type, they lack statistical analysis, and break down under high-dimensional scaling
d/N — .

1.1 Related works

The ERM (1) is an instance of a (non strongly) convex optimization problem—several distributed
algorithms are applicable. Early decentralizations of the PGA have been proposed in [18, 19]; when
applied to (1), they reduce to the following distributed gradient descent (DGD):

oIt = H Z@ije;—avci(ef) , i=1,...,m, 4
QN{R(O)<R} \JEN;

where 6! is the estimate from agent i of the common variable 6 at iteration ¢; o € (0,1] is the
stepsize; N is the set of neighbors of agent i; w;;’s are suitably chosen nonnegative weights; and
[ Lo = (0)<r(®) is the Euclidean projection of its argument onto the convex set { € O : R(¢) < R}.
Subsequen? works [33, 34, 7] extended convergence analyses of (4) to other classes of loss functions,
and [5, 6, 24] proposed alternative forms of mixing of local and neighboring information.

When applied to the minimization of an average loss f(6) = 1/m .-, fi(6), convergence guar-
antees of the above DGD-like algorithms, including (4), can be roughly summarized as follows: (i)
when f; are smooth, strongly convex, DGD schemes using constant stepsize converge at linear rate,
but only to a neighborhood of the minimizer of the average-loss f [33, 34]. Convergence to the exact
minimizer is achieved employing diminishing stepsize rules, at the price of slower sublinear rate
[34, 12]. These results are unsatisfactory when applied to the ERM (1). First, for fix d and N, they
would predict sublinear convergence rate, as the loss £ is convex but not strongly convex (recall
d > N); this would suggest a negative answer to (Q1)—a conclusion that seems to be confuted by
recent experiments [28, Fig. 1], showing instead linear convergence of DGD (4) up to a tolerance.
Second, when d grows faster than N—the typical situation in high-dimension—these optimization
studies break down. In fact, they all require global smoothness of the loss functions £;’s and L, a
property that no longer holds under the high-dimensional scaling d/N — oo: for commonly used
designs of predictors x;’s, the Lipschitz constant of V£ grows indefinitely with d/N [30].

A statistical study of a DGD-like algorithm solving the LASSO problem (in the Lagrangian form)
over mesh networks was recently proposed in [13]: For standard statistical models of predictors, the
iterates generated by the algorithm enter an e-neighborhood of a statistically optimal estimate after

1
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where p € [0, 1) is a measure of the connectivity of the network and  is the condition number of the
data covariance matrix (population loss). This improves on classical optimization analyses, showing



that this instance of DGD achieves centralized statistical accuracy at a linear rate. However, this rate
scales as O(d). In this paper, we prove that the DGD scheme (4) applied to (1) inherits the same
undersirable scaling of the rate—see Appendix H. This would provide a negative answer to (Q1).

A natural question is whether other distributed algorithms offer a more favorable rate scaling, in
particular those employing some form of correction of the local gradient direction in the agents’
updates. Examples include: primal-dual schemes [27, 11, 25, 26, 14] and gradient tracking methods
[21, 17, 32, 8, 29]. However convergence of these algorithms in high-dimension has not been
investigated. For fixed d and N, with d > N, existing analyses predict a pessimistic sublinear
convergence rate of those methods applied to (1). Furthermore, with the exception of [28], they lack
of any statistical analysis and, as those for DGD methods, they break down under high-dimension
scaling, d/N growing. The very recent work [28] studied the LASSO problem over networks and
proposed a decentralization of PGA based on gradient tracking, termed NetLASSO. Under suitable
assumptions, the scheme is proved to reach a neighborhood of a statistically optimal estimate of
an s-sparse parameter at linear rate. The analysis of NetLASSO is ad-hoc, as it builds on the
specific dynamics of the algorithm—hence questions (Q1) and (Q2) remain open for other distributed
algorithms. Furthermore, [28] seems to suggest that gradient-tracking is needed to achieve dimension
independent (linear) convergence rates over mesh networks. In this paper we prove that gradient
tracking is actually not necessary.

1.2 Major contributions

(i) Algorithm design: To cope with the ‘speed-accuracy dilemma’ of DGD in high-dimensions, we
propose a new distributed algorithm whereby agents update their local estimate and optimization
directions via a ‘double-mixing” mechanism, aiming at enforcing consensus on both iterates and local
gradients. We termed the algorithm DGD?. At the high-level, our approach brings a new perspective
to the design of distributed algorithms in high-dimension: the ultimate goal is not solving the ERM (1)
exactly but reaching instead an estimate of 6* within the statistical error . This can significantly relax
the algorithmic design. For instance, contrary to what one might infer from [28], gradient-tracking is
not needed to efficiently achieve statistically optimal solutions, as our design and analysis prove.

(ii) Statistical guarantees: We identify deterministic conditions under which the iterates generated
by DGD? converge at linear rate to a limit point that is within a fixed tolerance from the unknown
parameter 6*. When customized to statistical models—including sparse linear regression with ¢;
regularization, low-rank matrix recovery with nuclear norm, and matrix completion—our conditions

hold with high-probability, and the tolerance becomes of the order of the statistical error || — 6*||.
For such models, DGD? enters an e-neighborhood of a statistically optimal estimate of 6* after

1 1
O (n -log E) iterations (gradient calls) and O (1Lp -log(m - k) - log E) communications,

(6)
for any p € [0,1). The former matches the rate of PGA; the latter compares favorably with the
complexity of DGD in (5), which instead degrades with d. Finally, (6) is showed to be invariant under
high-dimensional scaling d/N — oo, as long as ||§ — 6*|| = O(1). All this addresses (Q1) and (Q2).
Quite interestingly, it also shows that gradient-tracking as in [28] is not needed in high-dimensions.

(iii) New convergence analysis: We put forth a new analysis, inspired by the idea of algorithmic
stability for stochastic optimization [4, 9]-note that that theory is not applicable in high-dimensions
and distributed setting. Leveraging the more favorable landscape of the population risk, our approach
contrasts the trajectory of DGD? to that of a “virtual” DGD? instance applied to a population
(penalized) variant of the ERM, and establishes conditions for the two trajectories to stay within
the desired tolerance while letting DGD? inherit fast linear converge of its population counterpart.
This contrasts with existing works of distributed algorithms in high-dimension [13, 28], whose
convergence is established on the empirical landscape, splitting thus the estimation error ||6} — 6*||

between optimization ||0! —6)|| and statistical ||/ —6*|| errors. This makes the analysis very algorithmic-
dependent and hard to extend to other solution methods (see remark in Sec. 4.2 for technical details).
On the contrary, our approach leads to simpler proofs, potentially applicable to other distributed
algorithms than DGD? in high-dimensions (e.g., primal-dual). An example is given in Appendix H,
where convergence of a variant of DGD in [13] applied to the constrained LASSO problem is provided.
Our approach will be applied to other distributed algorithms in future works.



2 Setup and Background

We develop our analyses under the following assumptions.

Assumption 1. The population risk L is ji-strongly convex and L-smooth on R, with i, L € (0, 00).
The condition number is k = L/ 1.

We consider regularizers R in ERM (1) that are decomposable [2]. Let M C ) be the so-called
parameter subspace, capturing constraints from the model (e.g., vectors with a particular support
or a subspace of low-rank matrices); and let M~ be the perturbation subspace, representing the
deviations from the model subspace M. Decomposability is defined as follows.

Assumption 2 ([30]). (i) R : Q@ — R is a norm, with Q@ C R? convex. Furthermore, given a
subspace pair (M, M), such that M C M: (i) R is (M, M*)-decomposable, that is, R(z+1) =
R(x)+R(y), forall x € M andy € M>*; and (iii) When M # {0}, R is ¥(M)-Lipschitz over M
with respect to some norm || e ||: ¥(M) £ supge i1\ (o R()/ 0] If M = {0}, we ser ¥ ({0}) = 0.
Fast convergence of the PGA relies on the empirical risk £ satisfying suitably restricted notions of
strong convexity and smoothness [2]. Under Assumption 1, this can be enforced by controlling the
deviation of the Hessian V2L of £ from the Hessian V2L of the population loss £, along certain

directions, as stated below. Note that V2£ > 0 is the covariance matrix of the predictors x;’s while
V2L = (1/N)XTX, with X = [z1,2,...,2n]".

Assumption 3. There exist V41, Vg2, Ty > 0 and a matrix ¥’ = 3" = 0 such that
AT(V2L = VL) A<y ||AlE +7,R*(A), VA € Qs
AT(VZL = V2L)A> —y, 0| A3 —7,R?(A), VA € Q.

Assumption 3 enforces a curvature property on V2L along the directions A € ' C R? where R?(A)
is sufficiently small. In the distributed setting, we need also a local counterpart of Assumption 3,
associated with the agents’ Hessian matrices V2£; = (1/n) X, X;, with X; = (z;)es, .

Assumption 4. There exist Yo 1,7ve2 T¢ > 0 and a matrix ¥ = X'T = 0 such that, for all i,
AT(VEL — VL) A <1 || A% + 7R (A), VA € Qs
AT(VQE_ - VQEi)Az —ye2l| A% — T R*(A)VA € Q.

The practical utility of Assumptions 3 and 4 is that they can be certified with high probability by a
variety of random data generations. Here, we consider the following widely used statistical models,
which cover a variety of estimation tasks, such as sparse linear models with ¢; regularization, low-rank
matrix recovery with nuclear norm, and matrix regression with soft-rank constraints [15, 2, 30].

Assumption 5. The random predictors x; € R? are i.i.d. and fulfill one of the following conditions:
(i) x; ~ N(0,X) and are i.i.d., for some 3. = 0;
(ii) x; are (7'2, Y)—sub-Gaussian and i.i.d., with & > 0;
(iii) z; = e; where j ~ uniform[1,d] and i.i.d.
Under Assumption 5 the curvature conditions in Assumptions 3 and 4 hold with high probability. The

following lemma makes this formal under Assumption 5(i), and is a minor modification of [2, Prop.
1, supplementary]. Similar results under Assumptions 5(ii)-(iii) can be found in Appendix F.

Lemma 1. Under Assumption 5(i), there exist universal constants cg,c1,co > 0 such that, with
probability at least 1 — ¢y exp(—c1 N + logm) and N > 10, Assumptions 3 hold with parameters

£'=VL, 151=1/2, v42=1, Ty=ca(E[R(,)))*/N;
and so does Assumption 4 with parameters
S =V2L, y1=1, ypa=4m, g=cz (E[R1z:)])*/n,

where R* is the dual norm of R. When R(-) = || - ||, (E[R*(z;)])? < 9(max;(X),;)log(d).




Network setup: Agents are embedded in a communication network, modelled as an undirected graph

G = {V, &}, where the vertices V = [m] £ {1,...,m} correspond to the agents and £ is the set of
edges of the graph; (i, j) € £ if and only if there is a communication link between agents i and j.

The set of neighbors of each agent i is denoted by N; = {j € V : (i,) € £} U {i}. We focus on
distributed algorithms using gossip weight matrices in their communication steps, as below.

Assumption 6. W = [w;;|[}_; satisfies: (i) wi; > 0, if (i, j) € E; otherwise w;; = 0; furthermore,
wi; > 0, foralli € [m)]; @) W = WT and W1 = 1 (stochastic); and (iii) there holds p =
|W — J||2 < 1, where J £ 117 /m.

Assumption 6 is standard in the literature of distributed algorithms and is satisfied by several weight

matrices; see, e.g., [16]. Note that p < 1 holds true by construction for connected graphs. Roughly
speaking, p measures how fast the network mixes information; the smaller p, the faster the mixing.

3 Algorithm Design: DGD?

We begin providing some rationale on the new design. Our goal is to cope with the speed-accuracy
dilemma of DGD (4)-see (5)-while retaining linear convergence to statistically optimal solutions.

It is convenient to rewrite (4) in matrix/vector form. Define the “augmented” quantities:

1 & < A v
0" £ [0, ..., (0,)T]T, £(0) = o D> Li(6;) and WEW Iy, @)
i=1
with ® denoting the Kronecker product. Then, DGD (4) can be rewritten as
o = ] (Wat —am vc(at)) , ®)
QNR(O<R

where the projector operator is now intended acting block-wise on each d-dimensional block. It is
well-known that (8) can be interpreted as the iterate dynamics of the projected gradient algorithm (with

stepsize m «) applied to the following optimization problem [33]: using @ £ [(61)7,...,(6.,)"]7,
1

i L£(0)+—10]? « 9

6:c: RO R, Vi [m] @) + 2maH 17— ©

The quadratic penalty in the objective aims at enforcing consensus among agents’ variables 6;’s, as
a|0. Our analysis (see Appendix H) shows that exact consensus is not needed; in fact, « = O(d~1)
is enough to drive the estimation error (1/m)||6"—1®6* || within an e- neighborhood of a statistically
optimal solution of (2) in a number of communications steps as in (5). Numerical results confirm that
a=0(d™1) is necessary for statistical consistency.

This undesirable scaling of the rate (5) with d is a consequence of the restrictive condition o =
O(d~1). At a high level our goal is then clear: we need to ease such a constraint. Our idea is to
share the consensus-achieving burden in (9) between « (the penalty term) and the first term £(6).

Notice that at consensus, 8 = J@, and thus £(0) = £(J0), where J = J © I;. However, £(J0)
(and its gradient) is not computable distributively, as agents cannot perform full averages in a single
communication step, as subsumed by the operation J@. We propose then to approximate £(J0) by

L(W0), where W £ T I, for some gossip matrix ¥ (Assumption 6). The gradient of £(W@)
is now additively separable across the agents and thus locally computable. We thus replace (9) with

i LWO)+ ——|0]° «,. 10
eiGQ:R(gl')lngWG[m] ( )+2mo¢H ”I*W (10)

Our new algorithm is obtained as projected gradient method applied to (10) (with stepsize ma):
o = ] (vwt - amWV[,(WOt)) .
QNRO)<R
This algorithm is fully distributed. However, for arbitrary W and W, it requires three communication
exchanges per iteration. This number can be reduced to two by choosing W = W?2, yielding
0= [ (W(Wé' —amVL(We))). (11)
QNR(O<R

The agent-level implementation is given in Algorithm 1. Two rounds of mixing (communications)
are performed by each agent; hence, we term the algorithm DGD?.



Algorithm 1 : DGD?

Data: Any feasible 6, foralli =1,...,m, a € (0,1];
Iteratet = 1,2, .

[S.1]: Each agent ¢ exchanges 0% with N; and updates

t+1/2 Z w;; 0 ] —aVL; ( Z wwﬁj)

JEN; JEN;

t+1/2

[S.2]: Each agent 7 exchanges s; with V; and updates:

g+l — H Z wig st St1/2

QNRO)KR \JEN;

4 Statistical-Computational Guarantees

This section studies convergence of DGD?. Our first result (Theorem 1) establishes conditions under
which the estimation error (1/m) Y 7" | [|6f — 6*||3 shrinks at linear rate up to some tolerance A?.
In a number of subsequent corollaries, we show that our conditions hold with high probability for the
statistical models in Assumption 5, and the tolerance AZ? is within minimax statistical rates.

We begin introducing some notation. The tolerance A? is composed of two terms, A2, and A2,

U2(M R(IT o0 (6%
2%, 2 T M p g g2 UM ) e v
[ 7
Stat. error Misspecification error
LW | Rl (07)

2
Anet

m3p? max (R* (VL;(0%)))* + m3/? p max R* (VL;(0%)),

G j€[m] M j€lm]

where 11,1 (resp. 11 ;) denotes the Euclidean projection onto the orthogonal complement of the
subspace M (resp. onto M).Notice that A2, matches the tolerance achievable by the PGA in
the centralized setting [2] on star networks. The second term in A2, is zero if 6* € M (as in
sparse vector recovery). On the other hand, A2, is a network dependent error, and is the price for

decentralization. Observe that the smaller p, the smaller A2 .. The overall tolerance is defined as

AZ 2 (1+ @) (AZa + AL + %C(M,W) <1+ @) |

where _ _ _
CM,W) 2 T2(M) -7y + T2(M) -7 p-m*P. (12)

Notice that A? depends also on the parameters 7, and 7 (see Assumptions 3 and 4) via ¢ (M, W).
The first term in (12) accounts for the lack of strong convexity and smoothness in a global sense of
the empirical loss—the same dependence is observed in the centralized setting [2]-while the second
term, depending on p, is a consequence of the distributed nature of the estimation.

We are now equipped to state the main convergence result.

Theorem 1. Consider the ERM problem (1) and associated population minimization (2), under
Assumption 1, and regularity conditions in Assumptions 3 and 4 such that: R = R(0*),

Y1 T+ gfd <V2L and B2(M) -7, < Co, (13)

for some constant Co > 0. Let {(61)™,} be the sequence generated by DGD?, with stepsize
= (2L)~! and gossip matrix W satisfying Assumption 6 and such that

-1

-

p < poly (Fam max (Ve , Ve, ) T—£> . (14)
g



Then, the estimation error ' (1/m) > | ||0F — 0*||3 satisfies: for some constant Cy > 0,

o (1= ) Gy (W) /L ,
r S( 1—01'(C(M7W))/L )TO—FO(A). (15)

The expression of the constants, a more general statement (Theorem 2), and its proof can be found in
Appendix D. A sketch of the proof highlighting our new analysis is presented in Sec.4.2.

On the rate and tolerance: Theorem 1 guarantees linear convergence of the estimation error up to a
tolerance O (AQ) The contraction factor depends on the condition number x of the population loss
as well as the network connectivity p and the tolerance parameters 7, and 7, via ¢ (M, W )—the latter
being a consequence of the lack of strong convexity and smoothness of the empmcal loss globally.
Notice that, for sufficiently small (M, W), a condition that holds for increasing sample size N and
decreasing p, this rate is of the order of 1 — (8x) —1, which matches that of the PGA in the centralized
setting. Referring to A2, it will be shown in the examples to follow (see Sect. 4.1) that, for a variety

of statistical models A? is of the order of the centralized statistical error, A2 = O(||0 — 6*||2).

On the conditions (13) and (14): Conditions in (13) are the same as those required in the centralized
settmg [2]; they are satisfied by a variety of statistical models (as those considered in Sec. 4.1);
in particular, ¥2(M) - 7, < Cj calls for a minimum number of samples N which, for the models
in Sec. 4.1, is near (minimax) optimal. Notice that no extra conditions are imposed on the local
samples size n, which can be as small as one. On the other hand, (14) is a consequence of the
decentralization of the M-estimation; it calls for a sufficiently connected network—the larger m or the
more ill-conditioned the population loss (larger ), the smaller p. When the graph G is not part of the
design and W is given, (14) can be enforced by employing multiple rounds of communications per
gradient evaluations. For instance, given W satlsfymg Assumptlon 6, one can build a new matrix,
W = WX, whose associated p = |W — J|| = p satisfies (14); it is sufficient to choose

K {(1 ) o (10801(Zu)wm : ﬂ |

Algorithm 1 is then implemented using the weights 1/, which results in & rounds of communications
per iteration ¢, each one using the weights . An e-estimate of 6%, with ¢ > O (A?), is then
achived in O (klog1/¢) and O (k(1 — p)~'log 1/¢) numbers of iterations (gradient evaluations)
and communications, respectively, where O hides log-factors independent on the dimension d.
If instead W is chosen according to Chebyshev polynomials [31], the dependence on p in the
communication complexity can be improved to (1 — p)_l/ 2,

4.1 Statistical guarantees

We now develop some consequences of Theorem 1 for specific statistical models. Specifically,
Corollary 1 below considers (hard and weak-)sparse linear regression with ¢; regularization while
Corollary 2 deals with a matrix completion problem. In Appendix C, we study sub-Gaussian linear
regression (Corollary 3) and matrix regression with nuclear norm constraint (Corollary 4).

1) Sparse vector regression: We assume that 6* is sparse. To capture hard- and weak-sparsity we

let |6*|l; < Ry, with ¢ € [0, 1]. Note that ¢ = 0 corresponds to vectors with support on a set of
cardinality at most Ry (hard-sparsity); the case ¢ € (0, 1] models approximate sparsity. We consider
the following linear generation model over the network: y; = J:JT 0* +w,;,j € S;and i € [m], where
w; ~ N(0,0?) is the measure noise and z; satisfies Assumption 5(i). For convenience, we define
ns = max;([X]s;). With this setup we have the following consequence of Theorem 1.
Corollary 1. Consider the linear regression problem above via ERM (1), with R(:) = | - |1,
R 10|11, and Q@ = R9. Suppose that (13) holds, which becomes: V*(M) - 1, =
C1Rynx (log d/N)l_q/2 < Cy, for some constants Cy, C; > 0, and given q € [0,1]. Ler
{(69)™ 1} be the sequence generated by DGD? under the conditions of Theorem 1, where (14)
becomes p < Csi(k m®/ =1 for some constant C1; > 0. Then, with probability at least
1 —¢pexp (—c1 N + log(m)), for some co,c1 > 0 Cs, Cy > 0, the following holds:

7 <Ay + O (A?) +0(A?),



where
1R G (P 7,/ 1)
- 1—C3- (¥2(M) - 74/L)

9 logd -3 Nxo? nécr
=R, (22 + 20 () )

G L
and §(q) = 1 when q = 0, and 0 otherwise.

Note that A2, above is (near) minimax optimal for either cases of ¢ = 0 and ¢ € (0,1] [22].
Furthermore, the rate A is invariant under high-dimensional scaling d/N — oo and fixed m, as long
as A2, = O(1), a condition necessary for statistical consistency. This matches guarantees of the
PGA in the centralized setting [2]. Also, (i) it improves on communication complexity (5) of DGD
(4) (applicable here when ¢ = 0), which scales undesirably with d [13]; and (ii) compares favorably
with [28], exhibiting same convergence rate order but sightly more favorable scaling of p with m
(m?® vs. m®). This shows that gradient-tracking is not needed to match centralized statistical errors.

2) Matrix Completion: In this model, the observation y; is a noisy version of a randomly selected
entry [©*],(;).5(;) of the unknown matrix ©* € RP*P. We assume that |©* ||, < Ry, with ¢ € [0, 1],

where [|©*]|, £ >, |0;(©*)]%, and 0;(©*) denotes the i-th singular value of ©*. Note that
g = 0 corresponds to matrices ©* with rank at most R, while ¢ € (0, 1] promotes matrices of
all ranks but with relatively fast rate of decay of the singular values. Denoting by X; the p x p
matrix with [X],(;j),5(;) = 1 and all the other entries zero, we can write: y; = (X, 0) + (0 /d)wy,
j € S;and i € [m], where (-,-) is the trace inner product; w; are noise samples, assumed to
be sub-exponential with parameter 1, i.i.d., and independent from X;; z; £ vec(X;) satisfies
Assumption 5(iii); o > 0 is given, and d = p2. This M-estimation can be written in the ERM form
(1), with § = vec(0) € R?, with © € RP*? being the unknown matrix, and z; = vec(X;). We
choose the set 2 = {© € RP*P : |0, < w/p} of candidate matrices with bounded element-wise
£+ norm, with w > 1. This eliminates matrices that concentrate too much their mass in a single
position. With this setup, we can specialize Theorem 1 as follows.

Corollary 2. Consider the ERM (1) solving the matrix completion problem above, with R(©) = ||©||1

and R = ||©*||;. Suppose that (13) holds, which becomes: (p logp/N)l_cq/2 < Cy, for some
constant Co > 0 and q € (0,1]. Let {(6)™,} be the sequence generated by DGD? under the
conditions of Theorem 1, where o reduces to o = 1 and (14) becomes p < Cim™°, for some
constant Cy > 0. Then, with probability at least 1 - co(m + 1) exp(—plog(p)), for some ¢y > 0,
Cy > 0 there holds:

q

r2<(1-1/8)'r24+0 (A?%), with A*=CyR, (plogp/N)' ™2 (w1 +0?)

Although quantitative aspects of the rates are different, Corollary 2 is analogous to Corollary 1: linear
convergence is guaranteed up to a tolerance of the order of (near optimal) statistical minimax rates
for the matrix completion problem under the soft-rank model [23]. The more demanding scaling
of p with m=>® (vs. m~2") is due to the slower rate the empirical loss concentrates around the
population for such statistical models.

4.2 Sketch of proof of Theorem 1

We highlight here the key novelty of our convergence analysis—see Appendix D for the full proof.

At the high level, our proof studies the dynamics of the estimation error r* = (1/m) Y_." | ||0f — 6*|3
using as potential function the following population instance of (10), which inherits the curvature
properties of L:

L°0) 2 LWO) + 1007w, with £(0) £ =>"L(6;). (16)
=1

3

2ma
Leveraging global strong-convexity and smoothness of £, we establish the following decay for r**1
(see Lemma 2 in Appendix E):

Pt < Art 4 20(VL(WO') — VL(WEO'), W(0'! — 6%)). a7
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Figure 1: Estimation errors vs. iterations, for DGD? (solid lines) and NetLASSO (dotted lines); centralized
statistical accuracy (horizontal dashed lines). (a) Rate invariance under d/N 1, m = 5, and A2 ~0.2; (b)
Growing A2, with m = 5 and W fixed. (c) Fixed d, and m 1, with p | 0. (d) Same as (c) with p constant.

for some A € (0,1). The first term on the RHS is contractive, due to the strong convexity of L,
while the second term captures the discrepancy between the gradient of the empirical loss and that of
the proxy population loss along the direction W(Ot+1 — 0%). The rest of the proof boils down to
carefully control this error term. This is sensible; for instance, the approach used to study algorithmic
stability [4, 9] is not satisfactory here: it would upper bound the aforementioned inner product
generating in particular the term

IVL(WO') — VL(WO")|? = O(d/n),
which grows indefinitely under d/n — oo, the typical scaling in high-dimensions.

This suggests that the discrepancy of the two gradients needs to be controlled along the direction
W(Ot+1 — 0™). This is the core of our analysis. Under Assumptions 3-4-limiting the deviation of
the empirical loss £ from the population loss £ along suitable directions—and proper choices of the
regularization value R and sufficiently small network connectivity p, we prove that the inner product
in (17) generates an error that preserves contraction (from the first term) while adding an overall
tolerance, which can be made of the order of the statistical error.

Remark: Our proof differs from existing convergence studies of first-order methods in high-
dimensions, both centralized [2] and distributed [13, 28]; they all use exclusively the empirical
loss, decoupling the estimation error ||#? — 6*|| in optimization |6 — @|| and statistical ||6 — 6%
errors. While Hé — 0*]| is known for several estimators in the centralized setting [30], this is no
longer the case for distributed ERM problems, e.g., as those arising from the design of some DGD-
like algorithms [13]-which deal with lifted, penalized formulations—or primal-dual methods, based
on saddle-point reformulations. This makes the analyses using the above decomposition problem-
dependent and hard to generalize to other formulations (algorithms). Our approach passing throughout
the population loss bypasses this issue.

5 Numerical Results

We provide some numerical results validating our theoretical findings; more experiments (including
on real data) can be found in Appendix B of the supporting material. All simulations are performed
on a computer with an Intel 17-8650U CPU @ 1.9 GHz using 16 GB RAM running Windows 10.

We simulate the distributed s-sparse linear regression problem, as in Corollary 1. We set ¢ = 0,
Ro = 5, % = Iy, 0% = 0.25, and R = ||6*||;. The statistical error for this problem reads A2, =



slogd/N. The communication network is generated using an ErdGs-Rényi graph with m agents
and link activation probability p. Unspecified values above are given for each particular experiment,
as needed. DGD? is tuned according to the theory, o = 1/(2L) = 1/2; we use same stepsize for
NetLASSO. All curves are obtained using 10 repetitions via Montecarlo simulation.

(i) Dependence on AZ ;. Fig. 1(a): We set m = 5, p = 0.1 to generate a base graph and W;
we let W = W7, with T = 41, to achieve a connectivity of p = 0.023 ~ m~2", as required
by Corollary 1. We plot the log-normalized estimation error log (||6" — 6*||3/]0*|3) versus the

iteration, for different values of d and IV as indicated in the legend and s = [\/E], so that d grows
faster than N while keeping A%, ~ 0.2. Dashed-line curves correspond to the solution to (1)
obtained by PGA while solid-and dotted-line curves refer to DGD? and NetLASSO, respectively.
Fig. 1(b): We use the same fixed network W (m = 5) as in Fig. 1(a) and plot the same quantities, now
parametrized on the statistical error A2, € {1,0.5,0.2,0.4,0.01}. To do so, we fix d = 20000,
s = [27'log(d)] and vary N accordingly, i.e., N € {50,100,250,1250,5000}. Discussion:
Fig. 1(a)-(b) validates (14): under s, d/N growing, the convergence rate of DGD? is linear and
remains invariant, as long as A2, stays constant (Fig. 1.(a)) while algorithm’s performance degrades
when A%, increases (Fig. 1(b)). Note that DGD? matches the rate of the centralized PGA and

performs as good as NetLASSO without employing any gradient tracking.

(ii) Dependence on m and p. Fig. 1(c): We plot the same quantities as in Fig. 1(a), now parametrized
on m, for fixed d = 5000, s = [v/d], and N = 2500 = m - n (this varying n). We choose
m € {50, 625,1250, 2500} and generate the underlying graph such that p varies to satisfy the required
condition p < m ™25, For this, we set p = 0.8, resulting in a base graph with associated gossip W,
we then build W,,, = Wrg ,T'= 7, and use such W, in all the algorithms. Fig. 1(d): We use the
same setup as in Fig. 1(c) with the difference that the underlying graphs are generated so that p ~ 0.2,
for all m. To achieve this we set the link activation probabilities to p € {0.87,0.4,0.22,0.15} for the
associated values of m. Discussion: Fig. 1(c)-(d) demonstrates the necessity of a decreasing network
connectivity p for increasing m and fixed N, as predicted by out theory. In fact, under p < m =25,
the convergence rate and statistical error remain roughly invariant, as m grows (Fig. 1(c)). On the
other hand, all the algorithms break down if p does not decrease with m (Fig. 1(d)).

6 Concluding Remarks

We proposed DGD?, a decentralized scheme solving high-dimensional quadratic M-estimation
problems over mesh networks, which employs a double-mixing procedure averaging suitably iterates
and local gradients. DGD? converges linearly to statistically optimal solutions, without requiring any
condition on the local sample size (but centralized statistical consistency); differently from DGD-like
schemes, the rate is independent on the ambient dimension (under standard assumptions on statistical
consistency of the estimators), Quite interestingly our results show that, despite common wisdom,
centralized statistical consistency can be achieved over networks without employing any explicit
gradient tracking mechanism but instead just mixing local gradients at sufficiently fast rate. The
analysis of other distributed algorithms for high-dimensional M-estimation problem remains a task of
future investigations.
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