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Abstract

The quadratic complexity of the attention mechanism in Transformer models has
motivated the development of alternative architectures with sub-quadratic scaling,
such as state-space models. Among these, Mamba has emerged as a leading ar-
chitecture, achieving state-of-the-art results across a range of language modeling
tasks. However, Mambas performance significantly deteriorates when applied to
contexts longer than those seen during pre-training, revealing a sharp sensitivity
to context length extension. Through detailed analysis, we attribute this limitation
to the out-of-distribution behavior of its state-space dynamics, particularly within
the parameterization of the state transition matrix A. Unlike recent works which
attribute this sensitivity to the vanished accumulation of discretization time steps,
exp(−

∑N
t=1 ∆t), we establish a connection between state convergence behavior

as the input length approaches infinity and the spectrum of the transition matrix
A, offering a well-founded explanation of its role in length extension. Next, to
overcome this challenge, we propose an approach that applies spectrum scaling to
pre-trained Mamba models to enable robust long-context generalization by selec-
tively modulating the spectrum of A matrices in each layer. We show that this can
significantly improve performance in settings where simply modulating ∆t fails,
validating our insights and providing avenues for better length generalization of
state-space models with structured transition matrices. Our code is available at
https://github.com/gnepul-ace/mamba_modulation.

1 Introduction

In the new age of deep learning, the Transformers [129] architecture has spurred a new age of re-
search into large language models (LLMs) [31, 141, 25, 92, 148] that has largely dominated the space
of natural language processing (NLP) research since their introduction. Their surprising capabilities
and rapid development have led to their wide application across various domains, including chatbots,
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intelligent agents, code assistants, etc. However, the Transformer comes with various deficiencies,
which has led to research into alternative paradigms that seek to resolve these outstanding concerns.
One of these competitors, Mamba [45, 22], is based off the state-space model (SSM) paradigm from
control theory [47, 49] that have enabled the training of recurrent models that have overcome the
sequential bottleneck of traditional models [109, 55, 15].

Among the various motivation for Mamba and its successors is the goal of length extrapolation,
whereby a model that is initially trained on a limited context length (e.g. 2048 tokens in each
training sequence) is capable of generalizing to longer sequences at test time (i.e. without fur-
ther training) due to a more efficient inference-time token processing methodology. However,
various works [56, 29, 57] have brought about challenges to this claim. Meanwhile, a key com-
ponent in the Transformer is the position embedding, for which Rotary Position Embeddings
(RoPE) [121] has been a popular choice and applied in many LLMs. Various works have stud-
ied RoPE [139, 83] and shown it to be intuitive to manipulate to extend the context window within
Transformers [14, 11, 35, 96], whereas no equivalent method yet exists for Mamba-style models.
A common explanation for the ability to extend this context length is through as avoiding out-of-
distribution (OOD) rotation angles [83, 52] in RoPE, meaning the extended context length (OOD)
can be mapped to the in-distribution (ID) context length on which models have been properly trained.
However, Mamba does not utilize knowledge of token positions during training, thus making such
methods broadly inapplicable.

Recent works [146, 9, 3] have meanwhile made attempts at exploring how to conduct length general-
ization with Mamba models. A shared feature among these is the focus on a specific input-dependent
parameter, ∆, which is used to discretize the underlying state-space model and control for both the
state decay over time as well as the incoming input contribution to the state. Their observations rely
on the implicit notion that since the duration of the time-step influences the state, it can act as a
proxy to filter out (or ignore) parts of the input, or be scaled to influence the long-term information
decay within the model state. However, despite the compelling intuition behind such a notion, there
remains no fundamental theoretical justification for this.

In this work, we attempt to build a better understanding of how to better scale Mamba models for
improved length generalization. We begin with an analysis of the model and the implicit effects
this will have on the convergence behavior of the hidden state as the input length goes to infinity.
From this, we identify two ways in which this process can be controlled: either through the state-
transition matrix A, or through the discretization time-steps ∆. We then motivate why controlling
for or adjusting A is more well-founded, through arguments relating the eigenvalue spectrum with
long-term information decay. Through experiments on standard long-context extension settings,
such as long-context language modeling and passkey retrieval, we demonstrate empirically how
scaling A is more effective compared to scaling ∆, in the case of both Mamba and Mamba2 models.
Broadly, we summarize our contributions as follows:

I) We first provide a broader understanding of the length generalization ability of Mamba-based
models via spectrum analysis of their transition matrix. We demonstrate and justify that the
convergence behavior of the hidden states hinders their length generalization in Mamba models.

II) Based on our analysis, we identify how the scaling of A as opposed to the more common
practice of scaling ∆ is a more effective proposition.

III) Results on a series of long-context generalization tasks show such an intuition holds empirically
on Mamba models, highlighting the potential benefits of using A for length generalization.

2 Related Works

2.1 Language Models and Long Contexts

Being capable of modeling long sequences is an important desiderate in various LLM applications.
However, due to the quadratic complexity (relative to the sequence length) of the self-attention
mechanism in Transformers, long sequence modeling requires a large computational overhead [125].
Early work in efficient Transformers [74, 147, 8, 131, 16] attempted to reduce the computational
complexity of attention by inducing greater sparsity. Additional work has explored the use of
linear attention [72, 86, 143, 144, 150, 87] to remove the softmax activation that induces this
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quadratic complexity, however, such methods may impair performance on tasks that demand pre-
cise contextual recall [1, 133]. Furthermore, hardware optimizations for more efficient computa-
tion [22, 21, 114, 80] as well as inference-time acceleration methods [138] to reduce the compu-
tational and memory complexity of Transformers. However, a broader class of linear recurrent
models [49, 45, 93, 7, 101, 102], which resemble traditional recurrent neural networks but provide
an additional benefit of parallel training over the sequence elements, have emerged as an alterna-
tive for long sequences through a sub-quadratic complexity relative to sequence length as well as
constant-time inference complexity.

2.2 Length Generalization and Extrapolation

Various restrictions on the data available for training make it difficult to directly collect data of ex-
treme lengths (e.g., 100K+ tokens), hence there have been a great deal of efforts devoted to enabling
models to generalize beyond the training length. However, various works have demonstrated the
collapse of the performance [122, 83, 139], thus leaving this an open area of research. Based on the
wide dominance of RoPE as the positional embedding of choice, many recent works have focused
on extending the context window by scaling the rotary angles [11, 35, 96, 14] with potentially some
additional tuning, enabling extension to sometimes up to 10× the original training context length.
Alternatively, linear recurrent models present promise through their lack of direct positional encod-
ing; rather, a fixed-size hidden state is often utilized to maintain information from the past while the
sequence is being processed. While some promise has been shown on synthetic tasks [1, 99], where
these models have been shown to be able to filter out noise from the sequence while maintaining
useful information within the state, these observations have not extended to tasks such as real-world
long-context language tasks [56].

Yet because many existing methods relevant to Transformer length extrapolation rely explicitly on
positional information, it remains an open work to find ways to enable such linear recurrent models
to generalize beyond their training lengths. Alternatively, recent works [9, 146, 3] have investigated
the post-hoc length extension in Mamba models, with a particular focus on using the discretization
time-steps ∆t for context extension. Ben-Kish et al. [9] use the value of these time-steps to ’deci-
mate’ or remove tokens from the processing of the sequence at specific layers, resulting in a short-
ened sequence length. Similarly, Ye et al. [146] use the value of the time-steps to filter out tokens.
Azizi et al. [3] meanwhile calibrate scaling factors for these time-steps to adjust the long-term decay
within the model, extending the context length. Unlike these works, we do not analyze the effect of
discretization (∆) on extrapolation ability. Instead, we focus on establishing a connection between
the spectral characteristics of the state transition matrix and the asymptotic convergence behavior of
the hidden state as the input length approaches infinity.

2.3 Spectrum Analysis of Linear Recurrent Models

Previous works have provided specific analysis of the eigenvalue spectrum of linear recurrent models
as a way of understanding their state dynamics and the downstream influence this can have on
performance. Gu et al. [46] initially provided an understanding of the specific parameterization
of the state transition matrix in SSMs, determining the necessity of a Hurwitz matrix for effective
sequence modeling. Orvieto et al. [93] further demonstrated how the eigenvalues have a specific
influence on state decay as well as long-term dynamics during training. Beck et al. [7] further bound
the state of the recurrence, implicitly bounding the spectrum as well. Finally, Grazzi et al. [44] also
recently demonstrate the importance of negative eigenvalues for state-tracking tasks.

3 Background

3.1 State-Space Models (SSMs) and Mamba

The SSM-based models, i.e., structured state space sequence models (S4) [49] and Mamba [45] are
inspired by the continuous system, which maps a 1-D function or sequence x(t) ∈ Rdm to an output
y(t) ∈ Rdm through a hidden state h(t) ∈ Rdh . The system uses evolution parameters A ∈ Rdh×dh ,
B ∈ Rdh×dm , and C ∈ Rdm×dh , creating a continuous system whose dynamics are governed by

h′(t) = Ah(t) +Bx(t), y(t) = Ch(t) (1)
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The Mamba model uses the selective SSM blocks, which leverage the input-dependent discretization
into the recurrence computation. This is done by including an input-dependent timescale parameter
∆(xt) to transform the continuous parameters A, B to discrete parameters At and Bt. We follow
the official implementation of Mamba [45]:

ht = Atht−1 +Btxt, yt = Ctht, (2)

This method uses a Zero-Order Hold (ZOH) for the matrix At and a simplified Euler discretization
for the matrix Bt, omiting the computation of matrix inversion for B as required by the ZOH:

At = exp (−∆t ⊙A) , Bt = ∆t ⊗
(
(∆tA)

−1
(exp (∆tA)− I)B

)
, (3)

The key improvement of Mamba is making the parameterization (At, Bt and Ct) input-dependent.
Specifically, each part of them can be computed as follows:

∆t = softplus (Linear∆ (xt)) , Bt = LinearB (xt) , Ct = LinearC (xt) (4)
where Linear∆, LinearB and LinearC are regular linear projections,⊙ is the Hadamard product,⊗ is
the outer product, ∆t ∈ Rd

+ and A = diag (α1, . . . , αd) s.t.αi > 0 ∀i ∈ {1, . . . , d}. In Mamba, ∆,
B and C are input-dependent, such that at each time-step unique transition matrices can be used to
update the system (A is left as a fixed parameter in as the dynamics of the state should be consistent
across steps). This is based on the observation that some elements in a discrete sequence may not be
as important as others, therefore there is an incentive to possibly update the system differently based
on this factor. This results in unique update matrices at each time-step

(
∆t,At,Bt,Ct

)
, enabling

the ability to solve problems that require selective processing of the sequence. In order to maintain
computational efficiency A is restricted to having a diagonal structure such that only the diagonal
elements of these matrices need to be stored. Mamba2 [22] further restricts the diagonal matrix to
have the form of a scalar-times-identity matrix, enabling further computational improvements.

3.2 Limitations of Mamba in Long Context

The output can be reformulated as a matrix product form as follows:

Y =


y1

y2

...
yL

 =


C1B̄1 0 · · · 0

C2Ā2B̄1 C2B̄2 · · · 0
...

...
. . . 0

CL

∏L
t=2 ĀtB̄1 CL

∏L
t=3 ĀtB̄2 · · · CLB̄L



x1

x2

...
xL

 = MX (5)

In this formulation, each output yt is computed as a weighted sum of all inputs, with each weight
involving a product of transition matrices

∏L
t=j+1 Āt. This product term plays a crucial role in de-

termining the influence of past states and can be further disentangled to enable fine-grained analysis,
facilitating a deeper understanding of state evolution and transition behavior.

L∏
t=j+1

Āt =

L∏
t=j+1

exp (−A∆t) = exp

−A L∑
t=j+1

∆t

 (6)

Previous work [9, 146, 3] has primarily focused on analyzing the discretization step ∆t for long
context, particularly the vanishing effect of the accumulated term exp

(
−
∑N

t=1 ∆t

)
when N is

large and propose different solutions to overcome this out-of-distribution (OOD) issue. For instance,
Azizi et al. [3] propose applying scalar values s ≤ 1 across different model layers to mitigate OOD
discretization steps, ensuring smaller ∆t to prevent the vanishing issue of distant inputs. They
introduce two calibration methods and demonstrate superior length generalization performance in
calibrated Mamba models with unconstrained scaling factors. However, their work does not explain
why some of resulted scaling factors s > 1 could still enhance generalization performance.

4 Spectrum-Based Analysis of Mambas Length Generalization

In this section, we examine the length generalization ability of Mamba-based language models from
the perspective of spectrum analysis of their transition matrix. Specifically, we analyze the state
convergence behavior of the hidden state in Mamba. Based on our findings, we propose a spectrum
scaling method to enhance the length generalization capability of pre-trained Mamba models.
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4.1 Spectrum of Mamba Transition Matrix

We first visualize the spectrum of the continuous transition matrix Λ = diag (exp (−A))
of Mamba models. The exp (−A) parameterization guarantees all values λ ∈ (0, 1). We
stack all 48 layers and rank eigenvalues in descending order for each row. The magnitudes
(appearing to range from 0 to 1) imply that all eigenvalues λ lie well inside the unit cir-
cle, which is critical for the stability of the dynamics governed by the transition matrix for
Mamba training. High eigenvalue zones can be viewed as dominant temporal modes, useful
for modeling long-term dependencies, especially in language or time series tasks. We also ob-
serve that low-eigenvalue regions in the transition matrix spectrum correspond to rapidly de-
caying modes, which specialize in modeling local dependencies and high-frequency dynamics.

Feature Dimension (d=64)

La
ye

rs
 (N

=4
8)

Heatmap of Eigenvalues
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0.8

Figure 1: Heatmap of eigenvalues of
diag(exp(−A)) of mamba2-1.3b.

The heatmap in Figure 1 reveals a consistent spectral pat-
tern across layers: the coexistence of both large (near 1)
and small (near 0) eigenvalues. Next, we establish the
connection between the failure of length generalization
and the spectrum of the transition matrix by showing a
divergent tendency in the convergence of the state norm.

4.2 State Convergence in SSMs for Long Contexts

The previous section presented the numerical spectrum
of the transition matrix exp(−A). Next, we theoretically
investigate its influence on the convergence behavior of
Mamba states. We begin by introducing the following
lemma, which establishes an expected bound on the norm
of inputs.
Lemma 4.1. Let B ∈ Rd×d be a matrix with ∥B∥2 = σB , and let x ∈ Rd be a vector such that
each entry of x satisfies |xi| ≤ σx. The upper bound for ∥Bx∥2 is:

∥Bx∥2 ≤ σB · σx ·
√
d. (7)

Theorem 4.2. (Convergence of State Norm with Real-Valued Diagonal Transition Matrix). Let the
real-valued transition matrix Λ ∈ Rd×d be diagonal with eigenvalues λi ∼ Uniform[λmin, λmax],
where 0 < λmin < λmax < 1. Consider the system dynamics: ht = Λht−1 + Bxt where xt is
the input vector at time step t, and B is a weight matrix whose rows are independently sampled as
b ∼ N

(
0, 1

2dI
)
. Then, as t→∞, the expected squared norm of the state ht converges to:

E[∥h∞∥2] =
1

2(λmax − λmin)
log

(
1− λ2

min

1− λ2
max

)
· E[∥Bx∥2]. (8)

Under the setting of Theorem 4.2 (proofs in Appendix A), we consider two cases (Mamba and
Mamba2) corresponding to the architectural variants of structured state-space models, each char-
acterized by a different form of the structured transition matrix.
Corollary 4.3 (Norm of Mamba State). Suppose the diagonal entries of Λ are independently drawn
from a uniform distribution on [0, λ], a moderate discretized step value ∆ and the system evolves as
ht = Λht−1 +Bxt = diag (exp(−∆α))ht−1 + ∆Bxt. Then the growth rate ρ of the expected

squared norm of the limiting state satisfies O
(

∆
2λ log

(
1

1−λ2

))
.

Corollary 4.4 (Norm of Mamba2 State). Suppose Λ = λI = exp(−∆α)I is a scalar multiple of
the identity matrix, where λ ∈ (0, 1), a moderate discretized step value ∆ and the system evolves as
ht = Λht−1 +Bxt = exp(−∆α)⊙ ht−1 +∆Bxt. Then the convergence rate ρ of the expected
squared norm of the limiting state can be estimated as O(∆·λ

1−λ ).

These provide insight into the asymptotic convergence behavior of Mamba states as the input se-
quence length grows with different eigenvalues. If λ→ 1, or λ→ 0, then

lim
λ→1−

ρ =∞, lim
λ→0+

ρ = 0 (9)

5



These rates shed light on challenges in length generalization for structured state-space models
(SSMs) with constrained diagonal transition matrices. In particular, both extremely large eigenvalues
(approaching 1) and extremely small eigenvalues (approaching 0) can induce instability in the Mamba
state norm as input length increasesleading to state explosion or vanishing, respectively. While tun-
ing the discretization step ∆ can help modulate the convergence rate (as suggested by Corollary 4.3
and 4.4), it does not address the root cause: the distribution of the transition matrix eigenvalues. To
directly tackle this issue, we propose a spectrum scaling method that adjusts the spectral distribu-
tion of a pre-trained Mamba model by compressing large eigenvalues and inflating small ones. This
rescaling aims to stabilize the state norm across longer sequences, thereby improving the models
ability to generalize over input length.

4.3 State Norm Analysis across different input lengths

ProofPile 1K 2K 4K 8K 16K 32K 64K

State norm (max) 131.4489 174.6176 892.7114 1330.5321 1141.5253 1130.6537 1157.5122
State norm (min) 0.0046 0.0030 0.0007 0.0007 0.0004 0.0003 0.0005

PG19 1K 2K 4K 8K 16K 32K 64K

State norm (max) 158.7656 160.8465 166.3788 876.0833 1241.3979 1201.5530 1242.7589
State norm (min) 0.0033 0.0014 0.0050 0.0004 0.0005 0.0003 0.0002

Table 1: State norm statistics for ProofPile and PG19 datasets across different sequence lengths.

We conducted a series of experiments to examine how the hidden state of the SSM evolves with
increasing input sequence length, as shown in Table 1. Using randomly sampled data from ProofPile
and PG19, we measured the maximum difference between the largest and smallest SSM state norms
across all layers of the mamba2-1.3b model. The observed divergence in state norm magnitude as
sequence length grows provides empirical validation for the theoretical predictions outlined in the
previous section.

5 Mamba Modulation for Length Extrapolation

In the following sections, we describe a series of experiments that we conduct to validate our previ-
ous intuitions. Appendix C provides more specific implementation details and design choices.

5.1 A Simple Case Analysis on Constant Scaling

2¹² 2¹ 2¹

1e1

1e2

1e3

1e4

1e5

2¹² 2¹ 2¹

Constant Modeling Perplexity

Length

PP
L

Mamba-2.8B Mamba2-2.7B

(Alpha, Delta) (1, 1) (1, 1/2) (1, 1/3) (1/2, 1) (1/3, 1)

Figure 2: Language modeling perplexity on Proof-
Pile after applying a constant scaling factor to either
A or ∆t. Lines are distinguished by their colors.
(1, 1) means the baseline where nothing is scaled.

To confirm our intuition, we first attempt
a simple comparison between the effects of
scaling ∆t and A. Here, across all layers,
we use a fixed, constant-valued scaling fac-
tor. We evaluate language modeling perplex-
ity on the ProofPile dataset [40], following
Peng et al. [96], across a varying number of
context lengths. This method uses no tun-
ing or training; the scaling is applied explic-
itly during the forward pass. Figure 2 shows
these results after applying a scaling on per-
plexity on context lengths from 2K to 128K
tokens, with scaling factors of 2 or 3 applied.

We see that scaling A by a constant scal-
ing factor is significantly better at incurring
a lower perplexity, however, it remains the
case that such a constant scaling factor needs
to be properly tuned for, particularly in the
case of mamba-2.8b. Given the simple set-

ting/scenario on which we experiment, this is unsurprising; as we investigated in Section 4.2, differ-
ent layers have different underlying behavior in terms of their eigenvalues, making it likely difficult
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to find a constant scaling factor that can work across all layers. In the case of mamba2-2.7b, we
can see that applying these scaling factors can significantly bound the long-context perplexity from
exploding.

5.2 Adapting MambaExtend to Scale A

Algorithm 1 MambaExtend methodology.

1: Input: ModelM, calibration set C and function CF
2: Output: Scaling factors S = [s1, . . . , sL] ∈ Rds×L

+
3: for i ≤ L do
4: si ← U(0, 1)
5: end for
6: S ← CF(S, C,M)
7: return S

Given our observations and analysis re-
garding the relationship between A and
∆t, a natural method against which
we can compare is MambaExtend is a
training-free method that scales the dis-
cretizations steps at each layer. For a
model with L layers, the objective is to
learn a set of constant scaling factors for
each layer {si}Li=1 which can be used
to adjust the discretizations steps ∆t. In
general, si can be set to either a scalar or a vector. These scaling factors serve as learnable param-
eters in within the model but are consequentially tuned in a manner that does not require training
any other parameters within the model. The idea of the algorithm is to take a pre-trained model
along with a small set of samples for calibrating the scaling factors; depending on the setting, the
calibration function can vary, with the only restriction being that the original model parameters are
not modified during calibration. Appendix C.3 describes the implementation in further detail.

Although the original MambaExtend learns scaling factors only for ∆t, their methodology is adapt-
able to usage with A instead; given the shared dimensionality for both A and ∆t, the scaling factors
can be directly used for calibrating A. Furthermore, this means that tuning scaling factors for A
does not require any additional computation, time or memory requirements as compared to tuning
them directly ∆t, leading to a simple yet effective algorithm that can directly be applied to the
adaptation of A for long-context generalization. The following sections evaluates the performance
and efficiency of tuning these scaling factors for A on a number of standard settings for evaluating
long-context generalization of models. As a baseline, we compare directly with MambaExtend.

6 Experiments and Results

6.1 Language Modeling Perplexity

We first experiment by measuring language modeling perplexity after calibrating scaling factors for
either ∆t or A. In this task, we use the black-box zeroth-order calibration method suggested by
Azizi et al. [3]; we train a single scaling factor si ∈ R+ for every layer i in the model. For a
L-layer model, this means L individual scaling factors are used. To calibrate, 20 samples of the
corresponding context length are used. For example, for a length of 16K, 20 samples of this length
are used for the calibration of the set of si. Figure 3 shows these perplexity results on a number of
validation datasets, namely ProofPile [40], PG19 [103] and GovReport [59].

In particular, scaling A leads to better perplexity on nearly all validation datasets, for both Mamba and
Mamba2 models. In many cases, this gap can be significant, particularly in the case of mamba2-2.7b,
where the perplexity at long sequences when calibrating ∆t explodes for all three datasets whereas
calibrating A can lead the model to maintain a consistent perplexity up to 1000× lower.

6.2 Passkey Retrieval

Next, we conduct experiments on the Passkey Retrieval task, also known as the Needle-in-A-
Haystack. Similar to before, we conduct this to compare the effectiveness of tuning scaling factors
for A as opposed to ∆t; we again conduct this experiment across different Mamba models. Unlike
the language modeling perplexity task however, we train the model on a training set. This train-
ing set contains samples of length 4096 corresponding to the task, where the objective is standard
instruction-tuning [32]. However, we freeze all parameters except the scaling parameters for each
layer. For Mamba, it is equivalent to the number of inner state dimensions, i.e. each inner state uti-
lizes the same scaling factor for each dimension of the SSM state. For Mamba2, this is the number
of heads, meaning that each head shares the same scaling factor for each component of its state.
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Figure 3: Model perplexity by calibrating scaling factors for either log (A) (red) or ∆t (turquoise),
across different datasets and sizes. Baseline means the base model with no calibration, i.e. the
model is used directly without modification.

Evaluation is conducted on a set of fixed lengths and depths to evaluate for both generalization
ability as well as potential biases to relative location within the sequence. The exact setup follows
from Ben-Kish et al. [9], in particular, the task comprises of a 5-digit code embedded at a random
sequence depth within samples from the WikiText-103 dataset [89]. Models are deemed to have
solved length/depth pair if they can correctly solve all evaluation examples, i.e. retrieve the code
within the example.

Figure 4 and Appendix C.3.2 visualize these results. In particular, we see very consistent results
similar to our language modeling perplexity results; for Mamba, smaller models appear to fare slightly
better when trained to scale ∆t, but as the models get larger, learning to scale A closes the gap and
eventually exceeds the performance of scaling ∆t. Similarly, for Mamba2 models, scaling A appears
to nearly always be a more appropriate choice in comparison to scaling ∆t, as seen by a nearly
constant improvement in performance on the task. Further comparing with a full-fine-tuning of the
model, we observe that scaling A is as effective despite fewer parameters being trained, whereas
scaling ∆t does observe a drop-off in performance.

6.3 LongBench

LongBench [6] is a popular benchmark for testing the long-context abilities of LLMs, serving as a
more suitable real-world benchmark on which we can explore how the scaling of A as opposed to
∆t can influence performance. Here, we again use the zeroth-order optimization method as we used
for our initial perplexity experiments. More specifically, a constant scaling factor is used for each
individual layer. We compare against both the initial base model, as well as MambaExtend. Table 2
shows results on mamba2-2.7b. In particular, we show that we can increase performance by over
6% through the calibrated scaling of A, with a relative improvement of nearly 10% compared to if
the scaling was instead calibrated for ∆t.

Table 2: Results on LongBench [6].
Model Strategy Qasper HotpotQA 2WMHQA TREC TriviaQA LCC RB-P Average

mamba2-2.7b
Base Model 1.17 1.54 2.18 8.33 10.60 23.46 14.97 8.75

MambaExtend 12.53 1.63 5.99 24.63 10.33 23.00 17.09 13.60
Calibrated Scaling A 12.90 5.69 11.18 24.32 10.49 23.36 16.91 14.98
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Figure 4: Passkey Retrieval performance of Mamba models by calibrating scaling factors for either
log (A) or ∆t. Turquoise squares mean that the model was able to solve all examples of the given
evaluation length/depth pair after tuning scaling factors, while red squares means otherwise.

Furthermore, if looking more specifically at individual tasks, there are no settings where calibrating
∆t results in a meaningful performance increase compared to A, whereas calibrating A instead
appears to significantly increase performance on HotpotQA and 2WikiMultihopQA.

6.4 Comparison with Alternative Methods

As a final point of comparison of our proposed methodology, we compare against other propos-
als that have aimed towards extending the context of Mamba. Unlike MambaExtend, both of these
methods use a filtering mechanism rather than directly scale ∆t; in LongMamba [146], channels are
prevented from exponential decaying by filtering out tokens from the training sequence if the update
of a specific token within the sequence ∆t is smaller than a preset threshold. DeciMamba [9] instead
defines decimating layers that directly filter out tokens that are then not passed to the following
layer, significantly shortening the sequence that the last layers within the model observe. Both mod-
els require additional tuning; LongMamba calibrates multiple hyper-parameters to tune their filtering
mechanism, while DeciMamba requires training the decimation layers on longer sequences.

For reasons of public code availability3 and methodology4, we compare DeciMamba against
mamba-1.4b/2.8b and LongMamba against mamba2-1.3b. We also provide results using the ini-
tial base model, MambaExtend, as well as the previous two ways we tested for scaling A, namely
constant scaling as well as the calibrated scaling based on MambaExtend. Table 3 compares the
effectiveness of these different methods on perplexity on the PG19 dataset. We note that in all cases,
the calibrated scaling of A performs either the best or second best on all context lengths across
the different tested models with marginal gaps when not the best performing method, while other

3LongMamba did not release their tuning code: https://github.com/GATECH-EIC/LongMamba
4DeciMamba only modified Mamba CUDA kernels: https://github.com/assafbk/DeciMamba
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Table 3: Comparison of PG19 perplexity at varying lengths. Cases where scaling A leads to the
lowest perplexity are bolded and underlined when second best. If the best method does not involve
scaling A, it is highlighted in violet.

Model Context Length
2K 4K 8K 16K 32K 64K

mamba-1.4b

Base Model 9.67 10.23 11.43 17.46 59.77 444.09
DeciMamba 11.45 12.34 14.65 19.83 24.85 28.48
MambaExtend 4.69 3.89 3.83 3.55 5.31 1648.0
Constant Scaling A 44.68 53.46 59.56 63.51 75.86 114.44
Calibrated Scaling A 5.31 4.31 4.13 6.88 14.94 19.13

mamba-2.8b

Base Model 8.66 9.42 22.78 91.43 202.20 508.88
DeciMamba 11.34 13.45 15.63 18.34 21.53 26.54
MambaExtend 4.25 3.80 3.63 5.25 87.00 60.00
Constant Scaling A 28.80 33.93 39.80 69.37 162.77 355.77
Calibrated Scaling A 4.44 4.31 5.63 8.94 12.75 40.00

mamba2-1.3b

Base Model 9.52 10.54 25.49 115.65 634.32 1479.45
LongMamba 10.12 10.31 11.36 11.61 12.81 13.55
MambaExtend 4.34 3.69 3.44 5.00 14.94 27.50
Constant Scaling A 11.12 11.83 12.47 12.71 12.85 13.22
Calibrated Scaling A 4.38 3.78 3.44 3.28 4.03 4.72

methods are fairly inconsistent on this front. Meanwhile, a constant scaling is generally ineffective,
confirming previous doubts from Section 5.1 regarding the usefulness of a single constant factor
based on the previous eigenvalue analysis. These results further support our analysis regarding the
use of scaling factors for A for length generalization compared to a wide variety of methods.

7 Conclusion

In this work, we conduct an in-depth exploration regarding the state transition matrix of Mamba
models. We first provide a broader understanding of the SSM parameterization and how it can affect
length generalization in Mamba models. In particular, we analyze the eigenvalue spectrum of both
Mamba and Mamba2 models, identifying the specific role this can have on the convergence of SSMs
given long inputs. Then we identify how the scaling of A as opposed to the more common practice of
scaling ∆ can be more effective at tuning this spectrum, enabling models to better generalize to long-
contexts that far exceed the training context. We experiment on multiple long-context generalization
tasks to validate that this newly built intuition holds empirically, on both Mamba and Mamba2 models,
highlighting the potential benefits of using A for length generalization.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: All claims come with experimental support as well as theoretical proofs when
necessary.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these
goals are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We provide this in the Appendix.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means
that the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The au-
thors should reflect on how these assumptions might be violated in practice and what
the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the ap-
proach. For example, a facial recognition algorithm may perform poorly when image
resolution is low or images are taken in low lighting. Or a speech-to-text system might
not be used reliably to provide closed captions for online lectures because it fails to
handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to ad-
dress problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: We provide proof to all these in the Appendix.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theo-

rems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a
short proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be comple-
mented by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide all these details in full.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps
taken to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture
fully might suffice, or if the contribution is a specific model and empirical evaluation,
it may be necessary to either make it possible for others to replicate the model with
the same dataset, or provide access to the model. In general. releasing code and data
is often one good way to accomplish this, but reproducibility can also be provided via
detailed instructions for how to replicate the results, access to a hosted model (e.g., in
the case of a large language model), releasing of a model checkpoint, or other means
that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all sub-
missions to provide some reasonable avenue for reproducibility, which may depend
on the nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear

how to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to re-
produce the model (e.g., with an open-source dataset or instructions for how to
construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case au-
thors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: We mention which code bases we base our experiments off of.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/

public/guides/CodeSubmissionPolicy) for more details.
• While we encourage the release of code and data, we understand that this might not

be possible, so No is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We provide these details in our experimental section.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of

detail that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We show these within our plots.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should prefer-
ably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of
Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We provide this in the Appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments
that didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have complied with the NeurIPS Ethics Guidelines.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We provide this in the Appendix.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact spe-
cific groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
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generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitiga-
tion strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: We do not introduce anything within this work that would be interpreted as
having possibility of misuse.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by re-
quiring that users adhere to usage guidelines or restrictions to access the model or
implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The authors cite the original paper that produced used code packages and
dataset.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the pack-

age should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the li-
cense of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
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Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can
either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?

Answer: [NA]

Justification: This paper does not involve crowd-sourcing nor research with human sub-
jects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should
be included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, cura-
tion, or other labor should be paid at least the minimum wage in the country of the
data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This paper does not involve crowd-sourcing nor research with human sub-
jects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Depending on the country in which research is conducted, IRB approval (or equiva-
lent) may be required for any human subjects research. If you obtained IRB approval,
you should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity
(if applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: We do not use LLMs in any non-standard or novel manner.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Proofs

A.1 Proof of Lemma 4.1

Lemma 4.1. Let B ∈ Rd×d be a matrix with ∥B∥2 = σB , and let x ∈ Rd be a vector such that
each entry of x satisfies |xi| ≤ σx. The upper bound for ∥Bx∥2 is:

∥Bx∥2 ≤ σB · σx ·
√
d.

Proof. For any vector x ∈ Rd, it follows that:

∥Bx∥2 ≤ ∥B∥2 · ∥x∥2 .

Substituting ∥B∥2 = σB , we obtain:

∥Bx∥2 ≤ σB · ∥x∥2 .

And

∥x∥2 ≤

√√√√ d∑
i=1

σ2
x =
√
d · σx.

Substituting the bound on ∥x∥2 into the inequality for ∥Bx∥2, we have the norm of logit vector
u ∈ Rd:

∥u∥2 = ∥Bx∥2 ≤ σB · ∥x∥2 ≤ σB ·
√
d · σx.

A.2 Proof of Theorem 4.2

Theorem 4.2. Assume the transition matrix Λ is diagonal with eigenvalues λi ∼
Uniform[λmin, λmax] for 0 < λmin < λmax < 1. Suppose the system evolves as

ht = Λht−1 +Bxt, (10)

where xt ∼ N (0, I) and B is a weight matrix whose rows are independently sampled as b ∼
N (0, 1√

d
I). Then, in the limit t→∞, the expected squared norm of the hidden state converges to

E[∥h∞∥2] =
1

2(λmax − λmin)
log

(
1− λ2

min

1− λ2
max

)
· E[∥Bx∥2]. (11)

Proof. We begin by unrolling the recurrence:

ht =

t−1∑
i=0

ΛiBxt−i. (12)

Assuming stationarity and independence of the inputs xt, the expected squared norm at steady state
is

E[∥h∞∥2] =
∞∑
i=0

E[∥ΛiBx∥2]. (13)

Consider the case of a single unit with eigenvalue λ ∈ [λmin, λmax]. The contribution of this unit is:

E[h2] =

∞∑
i=0

λ2iE[∥bx∥2] = σ2

1− λ2
, (14)

where E[∥bx∥2] = Eb[Ex[(bu)
2|b]] = Eb[∥b∥2] = σ2 is the contribution from the corresponding

row of B, and B is a weight matrix whose rows are independently sampled as b ∼ N (0, 1√
d
I).
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With λ ∼ Uniform[λmin, λmax], where 0 ≤ λmin < λmax < 1, the expected contribution over all
units is

E[∥h∞∥2] = d · Eλ

[
σ2

1− λ2

]
= σ2d · 1

λmax − λmin

∫ λmax

λmin

1

1− λ2
dλ. (15)

Evaluating the integral: ∫ λmax

λmin

1

1− λ2
dλ =

1

2
log

(
1− λ2

min

1− λ2
max

)
. (16)

Hence,

E[∥h∞∥2] = σ2d · 1

2(λmax − λmin)
log

(
1− λ2

min

1− λ2
max

)
. (17)

Since E[∥Bx∥2] = d · σ2, we obtain the final expression:

E[∥h∞∥2] =
1

2(λmax − λmin)
log

(
1− λ2

min

1− λ2
max

)
· E[∥Bx∥2]. (18)

A.3 Proof of Corollary 4.3 and Corollary 4.4

Corollary 4.3 [Norm of Mamba State] Suppose the diagonal entries of Λ are independently drawn
from a uniform distribution on [0, λ], a moderate discretized step value ∆ and the system evolves
as ht = Λht−1 + Bxt = diag (exp(−∆α))ht−1 + ∆Bxt. Then the convergence rate ρ of the
expected squared norm of the limiting state satisfies O

(
∆
2λ log

(
1

1−λ2

))
.

Proof. Given Theorem 4.2, the convergence rate ρ of Mamba state can be estimated as λmin → 0:

ρ = lim
t→∞

E[∥ht∥2]
E[∥Bx∥2]

= lim
t→∞

∆E[∥ht∥2]
E[∥Bx∥2]

=
∆

2λ
log

(
1

1− λ2

)
(19)

Corollary 4.4 [Norm of Mamba2 State] Suppose Λ = λI = exp(−∆α)I is a scalar multiple of
the identity matrix, where λ ∈ (0, 1), a moderate discretized step value ∆ and the system evolves as
ht = Λht−1 +Bxt = exp(−∆α)⊙ ht−1 +∆Bxt. Then the convergence rate ρ of the expected
squared norm of the limiting state can be estimated as O(∆·λ

1−λ ).

Proof. Given Theorem 4.2, the convergence rate ρ of Mamba2 state can be estimated as δ = |λmax−
λmin| → 0:

ρ = lim
t→∞
δ→0

E[∥ht∥2]
E[∥Bx∥2]

= lim
t→∞
δ→0

∆E[∥ht∥2]
E[∥Bx∥2]

= lim
δ→0

∆

2δ
log

(
1− λ2

min

1− (λmin + δ)2

)
(20)

Let λmin = λ, λmax = λ+ δ, δ → 0

Substitute into the expression:

ρ = lim
δ→0

∆

2δ
log

(
1− λ2

1− (λ+ δ)2

)
= lim

δ→0

∆

2δ
log

(
1− λ2

1− λ2 − 2λδ − δ2

)
(21)

Let λ = λmin, δ = λmax − λ, then:
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= lim
δ→0

∆

2δ
log

(
1− λ2

1− (λ+ δ)2

)
(22)

= lim
δ→0

∆

2δ
log

(
1− λ2

1− λ2 − 2λδ − δ2

)
(23)

= lim
δ→0

∆

2δ
log

(
1 +

2λδ + δ2

1− λ2

)
(24)

≈ lim
δ→0

∆

2δ
· 2λδ + δ2

1− λ2
(25)

=
∆λ

1− λ2
(26)

B Elaboration on Theorem 4.2

The divergent convergence behavior is irrespective of spectral assumptions. We provide an elabora-
tion on Theorem 4.2 and corresponding convergence analysis without imposing any strict distribu-
tion assumptions.

B.1 Setup and notation

Let d,m ∈ N. For i = 1, . . . , d let λi ∈ (0, 1) be i.i.d. samples from a density p(λ) supported on
[λmin, λmax] ⊂ (0, 1). Denote

Λ = diag(λ1, . . . , λd) ∈ Rd×d.

Consider the linear system
ht = Λht−1 +Bxt, t ≥ 1, (27)

where {xt} are i.i.d. N (0, Im) and B ∈ Rd×m has i.i.d. rows b1, . . . ,bd, each distributed as

bi ∼ N
(
0,ΣB

)
,

with ΣB ∈ Rm×m a (given) covariance matrix.

Assume h0 = 0 (or any initial condition that decays under Λ). We are interested in the steady-state
expected squared norm

E
[
∥h∞∥2

]
:= lim

t→∞
E
[
∥ht∥2

]
,

where the expectation is over the driving noise {xt} and the random matrix B and the random
eigenvalues {λi}.

B.2 Theorem (Expected state norm under general spectral distribution)

Theorem B.1. Under the assumptions above, the limit E[∥h∞∥2] exists and equals

E
[
∥h∞∥2

]
= E

[
∥Bx∥2

]
·
∫ λmax

λmin

p(λ)

1− λ2
dλ, (28)

where x ∼ N (0, Im) is independent of B and λ, and the expectation on the left of the product is
taken over B and x.

Proof. Because Λ is diagonal and xt ∼ N (0, Im) i.i.d., the process equation 27 is Gaussian with
zero mean for all t. Let

Σt := E[hth
⊤
t ] ∈ Rd×d

be the (time-t) covariance of the hidden state. From equation 27 we have the Lyapunov-type recur-
sion [108, 2]

Σt = ΛΣt−1Λ + E[Bxtx
⊤
t B

⊤].

36



Since xtx
⊤
t has expectation Im and is independent of B and Λ, the driving covariance is

Q := E[Bxtx
⊤
t B

⊤] = E[BB⊤].

Because Λ is diagonal, the steady-state covariance Σ∞ := limt→∞ Σt is also diagonal; denote its
diagonal entries by si := (Σ∞)ii, i = 1, . . . , d. The scalar recurrence for each diagonal entry is

si = λ2
i si +Qii,

hence (since |λi| < 1)

si =
Qii

1− λ2
i

.

Therefore the steady-state expected squared norm equals

E
[
∥h∞∥2

]
= E

[
trace(Σ∞)

]
= E

[
d∑

i=1

Qii

1− λ2
i

]
.

Because the pairs (Qii, λi) are i.i.d. across i and rows of B are independent of the λi’s, we have for
a generic row b ∈ Rm

E
[
∥h∞∥2

]
= d E

[
∥b∥2

1− λ2

]
= d E[∥b∥2] E

[
1

1− λ2

]
,

where λ is a generic draw from p(λ) and independence between b and λ was used to factor the
expectation.

Observe that

E
[
∥Bx∥2

]
= EBEx

[
∥Bx∥2

]
= EB

[
trace(B⊤B)

]
= EB

[ d∑
i=1

∥bi∥2
]
= d E[∥b∥2].

Combining the last two displayed equalities yields equation 28:

E
[
∥h∞∥2

]
= E

[
∥Bx∥2

]
E
[

1

1− λ2

]
= E

[
∥Bx∥2

] ∫ λmax

λmin

p(λ)

1− λ2
dλ.

This completes the proof.

B.3 Evaluation of E
[
∥Bx∥2

]
in the isotropic row case

If each row bi ∼ N (0, σ2
BIm) (i.i.d. across rows), then

E[∥b∥2] = trace(σ2
BIm) = mσ2

B , E
[
∥Bx∥2

]
= dmσ2

B .

In the special (informal) normalization used in the statement above, where each row has covariance
ΣB = (1/

√
d)Im, one has σ2

B = 1/
√
d and hence

E
[
∥Bx∥2

]
= dm

1√
d
= md1/2.

B.4 Asymptotic analysis of the integral

Define

I(λmin, λmax) :=

∫ λmax

λmin

p(λ)

1− λ2
dλ = E

[
1

1− λ2

]
.

(1) As λmax → 1−. Near λ = 1 we have the expansion 1 − λ2 = (1 − λ)(1 + λ) ≈ 2(1 − λ).
Suppose p is continuous at λ = 1 and p(1) > 0. For λ close to 1,

p(λ)

1− λ2
∼ p(1)

2
· 1

1− λ
.

Hence for λmax sufficiently close to 1,

I(λmin, λmax) =

∫ λmax

λmin

p(λ)

1− λ2
dλ ≈ p(1)

2

∫ λmax

λmin

1

1− λ
dλ =

p(1)

2
log

( 1− λmin

1− λmax

)
.

Therefore

I(λmin, λmax) ∼ −
p(1)

2
log(1− λmax) as λmax → 1−,

and in particular I(λmin, λmax)→ +∞ with logarithmic divergence.
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(2) As λmax → 0+. When λmax is small, 1− λ2 ≈ 1, so the integrand is approximately p(λ). If p
is continuous near 0 with p(0) > 0, then

I(λmin, λmax) ≈
∫ λmax

λmin

p(λ) dλ ≈ p(0) · (λmax − λmin).

If we also take λmin = 0 or consider the leading-order scaling in λmax, then

I(λmin, λmax) ∼ p(0)λmax as λmax → 0+,

i.e., I vanishes linearly with λmax.

Combining the prefactor E[∥Bx∥2] from equation 28 with the asymptotics above yields

E
[
∥h∞∥2

]
∼

−
p(1)

2
E
[
∥Bx∥2

]
log(1− λmax), λmax → 1−,

p(0)E
[
∥Bx∥2

]
λmax, λmax → 0+.
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C Additional Experimental Details and Results

C.1 Technical Details

All experiments were conducted on a single machine with 2 NVIDIA RTX4080 16GB GPUs. Ex-
periments were run in an environment using CUDA version 12.6 and PyTorch 2.6.0.

C.2 Constant Scaling Language Modeling Perplexity
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Figure 5: Language modeling perplexity on ProofPile after applying a constant scaling factor to
either A or ∆t. The red line with ’o’ mark indicates the baseline, where neither A nor ∆t are
scaled.

39



C.3 MambaExtend Calibration

Here, we give an overview of the calibration functions we use within our MambaExtend-based exper-
iments. Each of the described methods replace the calibration function CF within Algorithm 1. In
our explicit implementation for calibrating scaling factors for A, we use the same hyperparameters
as Azizi et al. [3].

Calibration via back-propagation. To train the un-frozen calibration parameters on a calibration
set, we apply a back-propagation algorithm to find the optimal scaling factors. This is described in
Algorithm 2.

Algorithm 2 Calibration via back-propagation

1: Input: Frozen modelM, calibration set C, initial scaling factors S. Learning rate η, perturba-
tion magnitude c, iterations K

2: Output: Learned scaling factors S = [s1, . . . , sL] ∈ Rds×L
+

3: optimizer = Adam(S, η)
4: for k ≤ K do
5: L = eval (Mc×S+ , C)
6: L.backward ()
7: optimizer.step ()
8: S ← clamp (S, 0.001)
9: end for

10: return S

Calibration via zeroth-order optimization. Zeroth-order optimization offers an efficient yet nois-
ier method for calibration, as it relies solely on forward passes to approximate gradients. Specifi-
cally, this is a multi-iteration process in which, at each iteration, the scaling factors are randomly
perturbed using a random variable δ sampled from a Rademacher distribution. The magnitude of
the perturbation and the learning rate for the updates are controlled by the hyper-parameters c and η,
respectively. We employ the two-sided variant of the simultaneous perturbation stochastic approxi-
mation method (SPSA) [110], which obtains gradient approximations by applying both positive and
negative perturbations to the parameters simultaneously. The two-sided SPSA approach yields gra-
dient estimates with lower variance than the one-sided version, thus enhancing accuracy, especially
in noisy environments [119]. This is described in Algorithm 3.

Algorithm 3 Calibration via zeroth-order optimization

1: Input: Frozen modelM, calibration set C, perturbation magnitude c, iterations K
2: Output: Learned scaling factors S = [s1, . . . , sL] ∈ Rds×L

+
3: for k ≤ K do
4: δ ∈ Rds×L ∼ Radamacher()
5: S+ = S + c× δ
6: S− = S − c× δ
7: ℓ+ = eval(Mc×S+ , C)
8: ℓ− = eval(Mc×S− , C)
9: ∇̂S = (ℓ+ − ℓ−)/(2 · c · δ)

10: S ← S − η · ∇̂S

11: S ← clamp (S, 0.001)
12: end for
13: return S
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C.3.1 Language Modeling Perplexity
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Figure 6: Language Model Perplexity performance of Mamba2 models by calibrating scaling factors
for either log (A) (red lines) or ∆t (cyan lines). Perplexities are reported across various datasets
(GovReport, PG19, ProofPile, Pile) as well as model sizes.
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Figure 7: Language Model Perplexity performance of Mamba models by calibrating scaling factors
for either log (A) (red lines) or ∆t (cyan lines). Perplexities are reported across various datasets
(GovReport, PG19, ProofPile, Pile) as well as model sizes.
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C.3.2 Passkey Retrieval
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Figure 8: Passkey Retrieval performance of Mamba2 models by calibrating scaling factors for either
log (A) or ∆t. Blue squares mean that the model was able to solve all examples of the given
evaluation length/depth pair after tuning scaling factors, while red squares means that at least one
mistake was made, i.e. an incorrect passage was retrieved.
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Figure 9: Passkey Retrieval performance of Mamba models by calibrating scaling factors for either
log (A) or ∆t. Blue squares mean that the model was able to solve all examples of the given
evaluation length/depth pair after tuning scaling factors, while red squares means that at least one
mistake was made, i.e. an incorrect passage was retrieved.
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C.3.3 LongBench

We evaluate the following tasks from LongBench (Table 4). Due to our pre-training on an English
dataset, we choose to use only the English language tasks included in the benchmark.

Table 4: Tasks from LongBench on which we evaluate.

Task Context Type Average Length Metric Data Samples

QASPERQA [23] Science 3619 F1 200
HOTPOTQA [145] Wikipedia 9151 F1 200
2WIKIMULTIQA [54] Wikipedia 4887 F1 200
TREC [78] Web Questions 5117 Accuracy 200
TRIVIAQA [70] Wikipedia/Web 8209 F1 200
LCC [50] Github 1235 Edit Similarity 500
REPOBENCH-P [82] Github Repositories 4206 Edit Similarity 500

C.4 Pre-Trained Model Checkpoints Used

We use the official pre-trained model checkpoints of Mamba from the Hugging Face model Hub,
found at https://huggingface.co/state-spaces. :

• state-spaces/mamba-130m
• state-spaces/mamba-370m
• state-spaces/mamba-790m
• state-spaces/mamba-1.4b
• state-spaces/mamba-2.8b
• state-spaces/mamba2-130m
• state-spaces/mamba2-370m
• state-spaces/mamba2-780m
• state-spaces/mamba2-1.3b
• state-spaces/mamba2-2.7b

We use the original Mamba5 implementations for adjusting scaling parameters.

5https://github.com/state-spaces/mamba
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D Broader Impacts

This work explores a novel method for length generalization of Mamba-based language models.
While the direct usage of such models can entail potential broader risks within AI-based systems
if potentially trained to scale, these risks do not stem directly from the methods and analysis pre-
sented within the paper. As such, there are no risks that are deemed significant and worthy of further
discussion.

E Limitations

The primary limitation of our current work is that it is focused on Mamba-style models; as such, the
methodology requires adaptation to similar models that utilize state-transition dynamics. However,
many analogies exist between how information is written to the state and read out from the memory,
presenting a potential avenue for use in other such models.

Another potential limitation is the lack of instruction-tuned models that are available for direct use,
limiting the set of experiments and evaluations on which can be adequately conducted.
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