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ABSTRACT

The enormous size of large language models (LLMs) limits their deployment and
application. Some research utilizes structural pruning to alleviate this by remov-
ing redundant weights in a hardware-agnostic manner. However, existing methods
tend to apply a uniform pruning strategy across all layers, ignoring the layer-wise
functional diversity and risking the removal of essential model components. To
tackle this challenge, we propose a Hierarchically-Adaptive Pruning-Aware Tun-
ing (HA-PAT) method. Based on the pruning-aware tuning framework, HA-PAT
employs Hierarchical Pruning Ratio Scheduling (HPRS) to derive optimal layer-
wise sparsity guided by each layer’s unique functionality. It preserves the gen-
eral linguistic functions of shallow layers, while aggressively pruning the deeper
layers that primarily encode task-specific features. To better preserve model per-
formance, HA-PAT introduces a magnitude vector into the compensation mecha-
nism, enabling the reconstruction of pruned weights based on a broader informa-
tion space. Experimental results show that our method consistently outperforms
the baseline both in average accuracy and inference efficiency. On LLaMA2-13B
with 25% pruning ratio, our approach surpasses the PAT baseline by 4.01% in
average accuracy across 14 benchmarks, along with a 30% inference speedup.
Further experiments on downstream tasks indicate that HA-PAT better preserves
the pre-trained language understanding capabilities.

1 INTRODUCTION

Large language models (LLMs) (Brown et al., 2020; Touvron et al., 2023b; Achiam et al., 2023)
have achieved revolutionary breakthroughs in numerous fields of natural language processing. Their
enormous performance is primarily attributed to their massive parameter scale (Kaplan et al., 2020).
The continued growth in the size of LLMs has introduced significant computational and memory
costs that severely limit their practical deployment in resource-constrained environments (Patterson
et al., 2021; Narayanan et al., 2021; Wan et al., 2023), making model compression research crucial
for reducing these overheads.

To address this challenge, various model compression techniques have been proposed, including
quantization (Dettmers et al., 2022; Liu et al., 2024b), knowledge distillation (Sanh, 2019; Tun-
stall et al., 2023), and model pruning (Goyal et al., 2020; Frantar & Alistarh, 2023). Quantization
reduces model size by lowering the numerical precision of parameters (e.g., from FP16 to INT4),
which can lead to substantial compression. However, hardware-dependent support for quantization
techniques varies across platforms, potentially limiting model portability. Knowledge distillation
transfers knowledge from a large teacher model to a smaller student model by aligning their behav-
iors. While effective, it often requires costly and time-consuming redesign of the student model (Gou
et al., 2021; Eldan & Li, 2023). In contrast, structural pruning removes redundant model compo-
nents (e.g., neurons, channels, or attention heads) (Michel et al., 2019; Frantar & Alistarh, 2022;
Zhu et al., 2024), thereby reducing both memory usage and floating-point operations (FLOPs). Its
key advantage is enabling hardware-agnostic inference acceleration, making it a promising direction
in model compression research.

Traditional structural pruning methods (Zafrir et al., 2021; Liu et al., 2021) typically decouple prun-
ing and fine-tuning, following either a pruning-then-finetuning or finetuning-then-pruning paradigm.
This disjointed process disrupts the synergy between pruning and task adaptation, leading to notable
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and often irreversible performance degradation. Such degradation arises because pruning disrupts
the knowledge embedded in pre-trained weights, while subsequent fine-tuning fails to fully recover
the lost capacity. To address this issue, Liu et al. (2025) recently proposed a novel paradigm called
Pruning-Aware Tuning (PAT). By integrating pruning and fine-tuning into a unified framework, PAT
allows the model to simultaneously adapt to downstream tasks and identify redundant parameters.
This collaborative learning strategy not only alleviates performance degradation but, in some cases,
even allows pruned models to surpass the performance of their unpruned counterparts.

Pruning
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(SliceGPT)
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Figure 1: Comparisons between our method
(HA-PAT), traditional structured pruning
(e.g., SliceGPT), and PAT. (1) Traditional
methods (e.g., SliceGPT) apply uniform
pruning strategy across all modules and re-
quire separate fine-tuning; (2) PAT integrates
pruning into fine-tuning but uses uniform
strategiey for all modules; (3) HA-PAT per-
forms pruning during fine-tuning and adapts
layer-specific pruning strategiey.

However, most existing pruning methods, includ-
ing PAT, apply uniform pruning strategies across
all layers or modules of the model. This implic-
itly assumes that redundancy is evenly distributed
throughout the model, overlooking the layer-wise
functional diversity and risking the removal of essen-
tial model components. Extensive research (Tenney
et al., 2019; Belinkov & Glass, 2019; Geva et al.,
2020) has demonstrated that deep neural networks,
including LLMs, learn hierarchical feature represen-
tations. Lower layers typically capture general lin-
guistic patterns such as syntactic structures, while
higher layers tend to encode more abstract, task-
specific semantic and logical information. Although
some studies (Sun et al., 2024; Ling et al., 2024; Ali
et al., 2025) have attempted to differentiate prun-
ing strategies across layers, they often rely on pre-
defined heuristic metrics to determine pruning tar-
gets. These approaches cannot support end-to-end
optimization for learning task-driven, adaptive spar-
sity directly from the model’s own gradients and data
flow.

To tackle these challenges, we propose
Hierarchically-Adaptive Pruning-Aware Tuning
(HA-PAT), a flexible and structure-aware paradigm
that integrates hierarchical adaptivity into the
pruning-aware fine-tuning framework. A conceptual
comparison of HA-PAT against related methods is
presented in 1. Specifically, we introduce three key
improvements over the PAT paradigm: (1) Layer-
wise Independent Masks (LIM), which replace the
uniform mask strategy, enabling each module to independently learn its optimal pruning structure;
(2) Hierarchical Pruning Ratio Scheduling (HPRS), which applies progressively increasing pruning
ratios across model depths, thereby better capturing the layer-wise distribution of redundancy in
LLMs; (3) Adaptive Compensation Operator (ACO), which decouples the pre-trained weights
into magnitude and direction, enabling the reconstruction of pruned weights based on a richer
representational space.

Extensive experiments on multiple LLMs demonstrate that our proposed HA-PAT framework
achieves significant performance improvements over baseline methods. Under a 25% pruning ratio
on the LLaMA2-13B model, HA-PAT outperforms the PAT approach by 4.01%, along with a 30%
inference speedup. The main contributions of this work can be summarized as follows:

• We propose the HA-PAT framework to solve the performance bottleneck caused by existing
uniform pruning strategies that ignore layer-wise functional diversity.

• We introduce Layer-wise Independent Masks (LIM), enabling each layer to autonomously
learn its optimal sparse structure , thus facilitating more fine-grained and flexible pruning.

• We design Hierarchical Pruning Ratio Scheduling (HPRS) to preserve foundational lan-
guage representations in shallow layers while more aggressively compressing redundant,
task-specific features in deeper layers.
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2 RELATED WORK

2.1 PRUNING

Network pruning is a fundamental and widely used technique in model compression, aimed at re-
ducing computational and storage costs by removing redundant parameters. According to the level
of granularity, pruning methods are generally classified into unstructured pruning and structured
pruning. Unstructured pruning removes individual weights based on importance metrics. For in-
stance, Wanda (Sun et al., 2024) and SparseGPT(Frantar & Alistarh, 2023) identify and remove
the least important weights using weight-activation products and Hessian information, respectively.
Although these methods can achieve high sparsity, the resulting irregular sparse patterns typically
require specialized hardware or custom computational libraries for efficient inference. In contrast,
structured pruning has garnered increasing attention for its hardware-friendliness, as it removes en-
tire parameter groups (e.g., rows or columns of weight matrices). For example, LLM-Pruner (Ma
et al., 2023) leverages gradient-based dependency analysis for task-aware structured pruning, while
Sheared LLAMA (Xia et al., 2023) performs end-to-end shape-oriented pruning with dynamic batch
loading to enhance efficiency. However, existing structured pruning methods predominantly follow
a pruning-then-finetuning paradigm. This disjointed process disrupts the knowledge embedded in
pre-trained weights, leading to significant and often irreversible performance degradation.

2.2 PARAMETER-EFFICIENT FINE-TUNING

Parameter-Efficient Fine-Tuning (PEFT) aims to achieve performance comparable to full fine-tuning
while updating only a small subset of model parameters or introducing a limited number of train-
able modules, thereby significantly reducing computational and storage costs. Among various ap-
proaches, Low-Rank Adaptation (LoRA) (Hu et al., 2022) is one of the most representative. LoRA
freezes all pre-trained weights and injects two trainable low-rank matrices into specific linear layers.
During fine-tuning, only these low-rank matrices are updated, substantially decreasing the number
of trainable parameters. Building on this foundation, recent methods such as DoRA (Liu et al.,
2024a) further enhance performance by decomposing pre-trained weights into magnitude and direc-
tion components. However, it is important to note that most PEFT methods are primarily designed
to reduce training costs. During inference, they still require to load the full model, thus failing to
reduce the model’s storage requirements and inference latency, which are advantages that structured
pruning can effectively offer.

3 METHODOLOGY

Our work builds upon and significantly extends the Pruning-Aware Tuning (PAT) paradigm (Liu
et al., 2025). The following subsections will first introduce the PAT framework as a foundation for
our work, and then detail our hierarchically-adaptive enhancements designed to address its inherent
limitations.

3.1 PRELIMINARY: PRUNING-AWARE TUNING (PAT)

The core idea of PAT is to synchronously and adaptively remove redundant structures in LLMs
during fine-tuning. This is achieved by inserting pluggable Hybrid Sparsification Modules (HSMs)
between the Attention and FFN components. Each HSM operates on the output of its preceding
linear layer and consists of a compensation matrix D and a trainable pruning mask M. The compu-
tation can be formulated as:

Z = (M⊙D) ·WX (1)
where X is the input, W denotes the weights of the upstream linear layer, and ⊙ indicates element-
wise multiplication. D is a trainable compensation matrix, and M is a pruning mask whose values
converge to 0 or 1 after training, determining which output channels are retained. To reduce training
overhead, D is constructed as a parameter-efficient Hybrid Identity Operator (HIO), defined as:

D = L1 · L0 + I (2)

where L0 and L1 are trainable low-rank matrices, and I is the identity matrix. During training,
I remains fixed, allowing gradients to flow only through L0 and L1. During fine-tuning, both the
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Figure 2: Framework of Hierarchically-Adaptive Pruning-Aware Tuning (HA-PAT). Similar to the
PAT paradigm, HA-PAT inserts Hybrid Sparsification Modules (HSMs) after the Attention and
Feed-Forward Network. Each HSM consists of an Adaptive Compensation Operator (ACO) and
an independent trainable pruning mask. Leveraging Hierarchical Pruning Ratio Scheduling (HPRS),
HA-PAT performs channel-wise pruning in a layer-adaptive manner, aligned with the functional het-
erogeneity across different layers of LLMs. During fine-tuning, both the masks and compensation
matrices are jointly optimized. At inference stage, the learned compensation matrices are merged
into the upstream linear layers, and redundant channels are removed based on the mask values.

mask and compensation matrices are jointly optimized. At inference stage, the learned compensation
matrices are merged into the upstream linear layers, and redundant channels are removed based on
the mask values.

However, a key characteristic of PAT is the Unified Sparsification Mask (USM), where all HSMs
across the model share a single, globally trained mask M. While this design ensures structural con-
sistency, it imposes a fundamental limitation: it enforces a uniform sparsity pattern across all layers.
This strategy implicitly assumes that model redundancy is evenly distributed, thereby overlooking
the functional heterogeneity present in different layers of LLMs.

Motivated by this, we propose Hierarchically-Adaptive Pruning-Aware Tuning (HA-PAT). HA-PAT
introduces hierarchical adaptivity through Layer-wise Independent Masks (LIM) and Hierarchical
Pruning Ratio Scheduling (HPRS), enabling layer-specific sparsity that better aligns with the repre-
sentational roles of each layer. The overall framework of HA-PAT is illustrated in Fig. 2.

3.2 LAYER-WISE INDEPENDENT MASKS (LIM)

A straightforward strategy for introducing hierarchical adaptivity is to relax the global sharing con-
straint imposed by the USM. We propose Layer-wise Independent Masks (LIM), which applies a
more flexible mechanism tailored to the hierarchical heterogeneity of LLMs. Specifically, each
HSM is assigned an independent, trainable mask Ml, where l denotes the layer index. Unlike PAT,
LIM enables each layer’s HSM to autonomously learn its own optimal sparse structure, based on its
specific functional role and input distribution. Accordingly, Eq. (1) is reformulated as:

Zl = Ml ⊙Dl ·WlXl (3)

where Zl,Ml,Dl,Wl,Xl are the corresponding variables for layer l. LIM enables each layer to
independently select channels for pruning, thereby preserving syntactic features in shallow layers
and emphasizing semantic abstractions in deeper layers. This flexibility prevents the loss of critical
high-level information while safeguarding essential low-level representations.
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3.3 HIERARCHICAL PRUNING RATIO SCHEDULING (HPRS)

Although LIM offers the necessary flexibility, it implicitly assumes all layers are equally important
and lack prior guidance for optimization. This can lead to inefficient exploration of the optimal
sparse structure, as the model must learn the relative importance of each layer from scratch. To
address this, we introduce Hierarchical Pruning Ratio Scheduling (HPRS). Instead of enforcing a
uniform pruning ratio, it applies a structural pruning schedule where the target pruning ratio pl for
the l-th layer increases progressively with depth.

The Information Bottleneck (IB) principle(Tishby et al., 2000) posits that each layer of a deep neural
network learns an optimal representation Z, that maximizes compression of its input X while pre-
serving as much information as possible about the final task Y . This trade-off is formally captured
by the following objective:

min
p(z|x)

L(Z) = I(X;Z)− βI(Z;Y ) (4)

where I(·; ·) denotes mutual information, and β is a Lagrange multiplier that balances the trade-off
between compression and prediction. Furthermore, an L-layer language model can be seen as an
information-processing Markov chain:

X → Z1 → · · · → Zl → · · · → ZL → Ŷ (5)

where X is the input text, Zl is the hidden representation of the l-th layer, and Ŷ is the final predicted
output. According to the Data Processing Inequality(Cover, 1999),

I(X;Y ) ≥ I(Z1;Y ) ≥ I(Z2;Y ) ≥ · · · ≥ I(ZL;Y ) (6)

which means that the mutual information with respect to the target task Y cannot increase as in-
formation is passed through successive layers. The role of each layer is to refine and transform
the information, making its representation more suitable for processing by subsequent layers and
ultimately for making predictions.

The shallow layers of the model extract fundamental linguistic features (e.g., syntax) essential for
all downstream tasks, thus their representations Zl must maximize information about the input
I(X;Zl). Structural pruning directly constrains this information flow by setting a physical up-
per bound via the channel capacity Cl, where I(X;Zl) ≤ Cl. Aggressive pruning in shallow layers
would sharply decrease Cl, creating a restrictive bottleneck that causes an irreversible loss of this
foundational information, crippling the reasoning capabilities of subsequent layers. Therefore, a low
pruning ratio is crucial to preserve the model’s core linguistic capabilities. In contrast, the deep lay-
ers are more specialized, focusing on refining abstract features relevant to the specific downstream
task Y and aiming to maximize I(Zl;Y ). To achieve better generalization, the IB principle suggests
these layers should compress their input Zl−1 by retaining only task-relevant information. Applying
a higher pruning ratio in deep layers thus serves as a reasonable and effective mechanism for this
task-oriented compression, aligning with the model’s optimization goals.

Therefore, the HPRS strategy, which employs conservative pruning in shallow layers and aggressive
pruning in deep layers, constitutes a direct and practical application of the Information Bottleneck
principle in the context of structured pruning for large language models. We instantiate this strategy
with a simple yet effective linear scheduling function. Specifically, the target pruning ratio pl for the
l-th layer is defined as:

pl = pmin + (pmax − pmin) ·
l − 1

L− 1
(7)

where L denotes the total number of transformer modules, l ∈ {1, 2, ..., L} is the layer index,
and pmin, pmax are target ratios for the first and last layers, respectively. The sensitivity analysis
of the HPRS pruning ratio range are detailed in Sec. A.4. To validate that the effectiveness of
HPRS stems from the hierarchical principle itself rather than this specific linear formulation, we also
explored several non-linear scheduling functions (e.g., cosine and sigmoid). These comprehensive
robustness analyses and experiments, detailed in Sec. A.2 and Sec. A.3. To enforce this schedule
during training, we define the pruning ratio regularization term Lratio in a layer-wise manner:

Lratio =

L−1∑
l=0

∥∥∥∥∥Ntarget,l −
dh∑
i=1

1(mi,l > 0)

∥∥∥∥∥
2

(8)
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where mi,l is the i-th element of Ml, dh is the hidden dimension, 1(·) is the indicator function,
and Ntarget,l denotes the target number of retained channels for layer l. This regularization term
encourages each layer to converge to its designated sparsity level. By combining the flexibility
of LIM with the structured guidance of HPRS, HA-PAT can more precisely identify and target
redundant structures within the model.

3.4 ADAPTIVE COMPENSATION OPERATOR (ACO)

In addition to enabling HA-PAT to adaptively identify layer-wise redundancy, we also aim to mit-
igate performance degradation caused by pruning. Inspired by DoRA (Liu et al., 2024a), we posit
that an effective compensation process should decompose the complex task of knowledge transfer
into two orthogonal subproblems: redirecting the flow of information (direction) and modulating the
signal strength (magnitude). Decoupling these factors leads to more stable optimization and more
efficient knowledge transfer. Therefore, we propose the Adaptive Compensation Operator (ACO),
which achieves functional decoupling by introducing a trainable scaling vector v ∈ Rr (where r is
the rank of low-rank matrices) between the two low-rank matrices L0 and L1 in HIO. The modified
compensation matrix D′ is:

D′ = L1 · diag(v) · L0 + I (9)

where diag(v) transforms v into a diagonal matrix. Under this parameterization paradigm, (1)
the matrices L0 and L1 are encouraged to become orthogonal under the constraint of identity loss
Lidentity (See Eq. (11)). Their primary role is to learn an orthogonal transformation basis, which
represents the direction of knowledge transfer. (2) the vector v explicitly learns the importance of
each basis vector (i.e., each rank component), representing the magnitude of the knowledge transfer.
This decoupled direction-magnitude parameterization offers greater expressiveness and better opti-
mization characteristics than the original HIO. It enables the model to more robustly and precisely
reorganize and transfer knowledge from pruned channels to the retained ones, ultimately enhancing
the overall performance of the pruned model.

3.5 OVERALL OPTIMIZATION OBJECTIVE

The training of HA-PAT is governed by a multi-objective loss function that jointly optimizes for task
performance, target sparsity, and training stability. The overall optimization objective L is defined
as:

L = Linstruct + Lratio + Lidentity (10)

Here, Linstruct is the standard instruction fine-tuning loss, typically cross-entropy. It serves as the
primary driver for task-specific learning, ensuring that both pruning decisions and information re-
covery are ultimately aimed at maximizing task-relevant information. Minimizing cross-entropy is
equivalent to minimizing the conditional entropy H(Y |Z), which in turn is equivalent to maximiz-
ing the mutual information I(Z;Y ). Consequently, the process of minimizing Linstruct via gradient
descent is, in essence, implicitly maximizing the mutual information I(Z;Y ) between the model’s
representations and the task labels. Since the learning of the pruning masks Ml is driven by these
same gradients, the model adaptively learns to retain neural channels that are most critical for maxi-
mizing I(Z;Y ). The other two terms are regularizers: Lratio imposes cumulative sparsity constraints
across the network layers (see Eq. (8)); Lidentity imposes an orthogonality constraint on the low-rank
factors L0 and L1 within the ACO, ensuring they specialize in learning the direction of knowledge
transfer, while stabilizing the gradient flow and the overall learning process. Specifically, the identity
regularization term is defined as:

Lidentity =

L−1∑
l=0

(∥L0,l · LT
0,l − I∥2 + ∥LT

1,l · L1,l − I∥2) (11)

where L0,l and L1,l are low-rank factors forming Dl.
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4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Models. We conduct experiments on four widely adopted large language models: Gemma-2B and
7B (Team et al., 2024), Llama2-7B and 13B (Touvron et al., 2023a). For each model, we evaluate
our method under three pruning ratios: 20%, 25%, and 30%.

Baselines. In addition to the PAT, we compare against two representative structured pruning ap-
proaches: LLM-Pruner (Ma et al., 2023) and SliceGPT (Ashkboos et al., 2024), both of which follow
a pruning-then-finetuning pipeline. We also include standard LoRA fine-tuning without pruning as
a performance reference.

Datasets. We use the LaMini-instruction dataset (Wu et al., 2023) for supervised fine-tuning. To
reduce training costs, we randomly sample 10% of the datasets, resulting in 256K training pairs. For
evaluation, we follow the PAT paper and test on 14 downstream tasks using zero-shot accuracy with
the First-Capital-Word method (Contributors, 2023).

Implementation Details. All experiments are conducted on NVIDIA A100 GPUs for 3 epochs.
Following the PAT configuration, we use a learning rate of 5× 10−5 and apply cosine annealing to
schedule the mask convergence within the first third of the training steps. The batch size is set to
128, and the sequence length is 256 tokens.

4.2 EXPERIMENTAL RESULTS AND ANALYSIS

Performance Comparison. Tab. 1 shows the average zero-shot accuracy of HA-PAT, compared
with our reproduced PAT and other structured pruning methods across 14 downstream tasks. The
results reveal the following key findings: (1) our proposed HA-PAT consistently outperforms the
PAT baseline in terms of average accuracy, strongly supporting our central claim that incorporating
a hierarchical adaptive mechanism leads to improving model performance; (2) the model pruned by
HA-PAT exhibits minimal performance loss and, surprisingly, even outperforms the unpruned LoRA
baseline in certain cases. For instance, under a 20% pruning ratio, the HA-PAT-pruned LLaMA2
model achieves 2% to 4% higher performance than the unpruned LoRA baseline. See the Sec. A.7
for detailed results on each dataset.

Table 1: Zero-shot evaluation results of different pruning methods on four LLMs with 20%, 25%,
and 30% pruning ratios. The structured pruning methods LLM-Pruner and SliceGPT both adopt the
pruning-then-finetuning paradigm. Accuracy is the average across 14 datasets.

Ratio Method Gemma
2B

Gemma
7B

Llama2
7B

Llama2
13B

0% LoRA-64 53.82 71.59 58.76 66.74

20%

LLM-Pruner 48.87 65.45 58.53 65.28
SliceGPT 48.21 66.60 57.81 65.86

PAT 48.56 65.70 58.84 65.64
Ours 53.84 68.32 63.06 68.96

25%

LLM-Pruner 42.32 60.50 52.50 58.63
SliceGPT 45.23 62.22 52.98 60.69

PAT 47.79 61.43 56.52 63.36
Ours 49.65 63.75 59.88 67.37

30%

LLM-Pruner 39.71 50.28 50.60 51.28
SliceGPT 40.07 53.14 50.91 56.12

PAT 45.92 59.14 56.32 58.63
Ours 49.04 60.43 58.74 65.69

7
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Table 2: Ablation study on Layer-wise Independent Masks (LIM), Hierarchical Pruning Ratio
Scheduling (HPRS) and Adaptive Compensation Operator (ACO).

Ratio Metric Llama2 7B Llama2 13B

PAT Ours PAT Ours

20%

LIM ✗ ✓ ✓ ✗ ✓ ✗ ✓ ✓ ✗ ✓
HPRS ✗ ✗ ✓ ✗ ✓ ✗ ✗ ✓ ✗ ✓
ACO ✗ ✗ ✗ ✓ ✓ ✗ ✗ ✗ ✓ ✓

Acc. 58.84 61.16 62.83 60.03 63.06 65.64 68.24 68.85 66.53 68.96

25%

LIM ✗ ✓ ✓ ✗ ✓ ✗ ✓ ✓ ✗ ✓
HPRS ✗ ✗ ✓ ✗ ✓ ✗ ✗ ✓ ✗ ✓
ACO ✗ ✗ ✗ ✓ ✓ ✗ ✗ ✗ ✓ ✓

Acc. 56.52 58.30 58.38 58.13 59.88 63.36 66.91 67.09 64.01 67.37

Ablation Analysis. To validate the effectiveness of each core component in our framework, we
conduct a series of ablation experiments. From Tab. 2, we get the following key observations: (1)
layer-wise adaptive masking serves as the foundation of HA-PAT’s performance improvements. By
empowering each layer to learn its optimal sparse structure, it consistently outperforms the baseline
that uses a globally shared mask; (2) building upon LIM’s strong adaptive capacity, HPRS provides
stable and consistent performance gains. As a fine-grained control mechanism, HPRS helps guide
the model toward more favorable sparse solutions, further optimizing performance beyond what
LIM alone can achieve; (3) HA-PAT variants with only ACO also consistently outperform the PAT
baseline, as its direction-magnitude decoupling enhances functional transferability. Ultimately, the
combination of HPRS and ACO works synergistically, tackling both the identification of redundancy
and the facilitation of functional transfer to achieve precise and efficient model pruning.

Downstream Task Capability Analysis. Although HA-PAT consistently demonstrates superior
average performance, its improvements are not uniformly distributed across all downstream tasks.
To investigate this phenomenon in depth, we analyze the performance differences between HA-PAT
and the PAT baseline across various tasks, as shown in Fig. 3. A clear pattern emerges: HA-PAT
shows the most significant advantages on tasks that requiring deep language understanding, such as
WSC (which requires precise coreference resolution), BOOLQ (which involves textual information
extraction), and MultiRC (which demands multi-sentence reasoning). In contrast, for tasks that
heavily rely on commonsense reasoning, the advantages of HA-PAT become less prominent and, in
some cases, it even underperforms the PAT baseline, as observed on WinoGrande (WG) and PIQA.

This phenomenon underscores the intrinsic alignment between pruning strategies and the character-
istics of specific tasks. HPRS tends to preserve general linguistic representations in shallow layers,
while guiding deeper layers to specialize in more abstract, task-relevant semantic functions. Con-
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Figure 3: Performance comparison of the Llama2-7B model across 14 tasks under a 25% pruning
ratio.
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Figure 4: The VRAM usage and speedup of Llama2 models under various pruning ratios.

sequently, for tasks such as WSC, where precise disambiguation and contextual understanding are
essential, HA-PAT demonstrates superior effectiveness. Conversely, for tasks that rely more on as-
sociative knowledge distributed throughout the network, the uniform pruning strategy of PAT may
better preserve globally relevant information. These task-specific variations suggest that HA-PAT is
more effective at preserving the model’s language understanding capabilities. This finding further
supports the intrinsic alignment between the hierarchical structure of LLMs and their functional
specialization.

Memory and Latency. Beyond improvements in model accuracy, HA-PAT also inherits the ef-
ficiency benefits of structured pruning. As shown in Fig. 4, applying a 25% pruning ratio to the
LLaMA2-13B model reduces GPU memory usage by approximately 6.01 GB compared to the orig-
inal dense model and improves average inference speed by 30%. These results demonstrate that
HA-PAT is not only theoretically effective but also offers a practical solution for deploying large
language models on resource-constrained devices.

5 CONCLUSION

We propose the Hierarchically-Adaptive Pruning-Aware Tuning (HA-PAT). HA-PAT integrates
pruning and fine-tuning into a unified process, enabling adaptive pruning that aligns with the layer-
wise functional diversity by introducing Layer-wise Independent Masks (LIM) and Hierarchical
Pruning Ratio Scheduling (HPRS). This allows for precise identification and removal of redundant
structures during fine-tuning. Moreover, the Adaptive Compensation Operator (ACO) further en-
hances the model’s ability to recover performance after pruning. Experimental results show that HA-
PAT significantly improves inference efficiency while maintaining the performance of the unpruned
baselines, particularly on tasks requiring deep language understanding. These findings underscore
the importance of task-aware adaptive pruning strategies and offer an efficient and high-performing
solution for the practical deployment of LLMs.

Limitations and future work: Although HA-PAT demonstrates strong theoretical grounding and
empirical gains, several limitations suggest promising directions for future research. First, the HPRS
schedule, though theoretically justified via the Information Bottleneck and empirically robust to
functional variations, is still predefined. Future work could investigate learnable scheduling strate-
gies for fully adaptive end-to-end pruning. Second, our analysis indicates that a single hierarchical
pruning strategy may not be universally optimal for all types of downstream tasks. Future research
could explore task-specific adaptive pruning mechanisms that dynamically adjust strategies based on
task characteristics. Furthermore, applying the principles of hierarchical adaptation to other struc-
tural components, such as attention heads or entire network layers, presents a promising avenue for
further investigation.
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REPRODUCIBILITY STATEMENT

We are committed to ensuring the full reproducibility of our research. The overall pipeline of our
proposed HA-PAT method is detailed in Algorithm 1. For complete transparency and to facilitate
reproduction, our entire source code and experimental scripts are included in the supplementary
materials. Comprehensive details of our experimental setup, including the models used, data pro-
cessing procedures, and all hyperparameters (e.g., learning rate, batch size, and the pmin and pmax

settings for HPRS), are thoroughly documented in Sec. 4.1 and Sec. A.5. All datasets used for
fine-tuning (LaMini-instruction) and evaluation (14 downstream benchmarks) are publicly available
resources, with corresponding citations provided in Sec. 4.1 and Sec. A.5. Furthermore, our exper-
imental framework is built upon publicly available and widely adopted open-source components to
maximize transparency and ease of verification. The base models we use (Llama2, Gemma) are
sourced from the Hugging Face Hub, ensuring a standardized starting point for all experiments.
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A APPENDIX

A.1 USE OF LARGE LANGUAGE MODELS (LLMS)

During the preparation of this paper, we used large language models (LLMs) as a writing assistant.
The LLMs were used to enhance the clarity, grammar, and fluency of the text, ensuring it adheres to
a formal academic writing style.

A.2 HPRS SCHEDULING STRATEGIES

In the Sec. 3.3, we instantiate the Hierarchical Pruning Ratio Scheduling (HPRS) with a simple
linear function for clarity. To demonstrate that the effectiveness of HPRS stems from its hierarchical
pruning principle rather than a specific functional form, we introduce four alternative scheduling
strategies. All strategies compute a target pruning ratio pl for each layer l (where l ∈ {1, 2, . . . , L}),
which progressively increases from a predefined minimum value pmin to a maximum value pmax.

1. Linear Scheduling This is the default strategy used in the main experiments, providing a
uniform increase in the pruning ratio with layer depth:

pl = pmin + (pmax − pmin) ·
l − 1

L− 1
(12)

2. Half-Cosine Scheduling-1 This schedule uses a quarter of a cosine period with a fast-start and
slow-finish pattern, where the growth of the pruning ratio decelerates with layer depth:

pl = pmax + (pmin − pmax) · (1 + cos π
2 (1 +

l−1
L−1 )) (13)

3. Half-Cosine Scheduling-2 This schedule uses a quarter of a cosine period with a slow-start
and fast-finish pattern, where the growth of the pruning ratio accelerates with layer depth:

pl = pmax + (pmin − pmax) · cos π(l−1)
2(L−1) (14)

4. Cosine Scheduling This schedule follows half of a full cosine period, yielding an S-shaped
pruning ratio growth curve that is slow at the beginning and end, and fast in the middle:

pl = pmax +
pmin − pmax

2
· (1 + cos π(l−1)

L−1 ) (15)

5. Sigmoid Scheduling This is a classic S-shaped function where the pruning ratio increases
rapidly around the middle layers and more slowly at the extremes:

pl = pmax + (pmin − pmax) · 1

1+e
k(

l−1
L−1− 1

2
)

(16)

In all the formulations above, L denotes the total number of transformer modules in the model, l is
the current layer index, where l ∈ {1, 2, . . . , L}, pmin and pmax are the target pruning ratios for the
first and last layers respectively, and k is the slope parameter of the sigmoid (which is set to 12 in our
experiments). The performance comparison of these scheduling strategies is presented in Sec. A.3,
confirming the generality of the HPRS principle.

A.3 ROBUSTNESS ANALYSIS OF HPRS SCHEDULING STRATEGIES

To verify that the performance gains of HA-PAT primarily derive from the hierarchical principle,
rather than a specific scheduling function, we evaluate the five strategies described in Sec. A.2.
The experiments are conducted with Llama2 7B under two pruning ratio settings: 25%±5% and
30%±5%. The results are shown in Tab. 3.

The results lead to two key findings. First, all scheduling strategies significantly outperform the
PAT baseline which uses uniform pruning, confirming the universal effectiveness of the hierarchical
approach. Second, despite their different functional forms (linear, fast-start, slow-start, S-shaped),
the performances of these five strategies are closely aligned, suggesting that the success of HA-PAT
stems from the hierarchical principle itself rather than careful tuning of the scheduling curve.
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Table 3: Comparison of average zero-shot accuracy on 14 downstream tasks for different HPRS
scheduling strategies.

Ratio PAT Ours

Linear Half-Cosine 1 Half-Cosine 2 Cosine Sigmoid

25%±5% 56.52 59.88 60.82 59.95 60.53 58.72

30%±5% 56.32 58.74 56.85 58.78 57.24 58.37

A.4 SENSITIVITY ANALYSIS OF THE HPRS PRUNING RATIO RANGE

Another critical hyperparameter of HPRS is the pruning ratio range ∆p, which determines the gap
between pmin and pmax, i.e., the steepness of the hierarchy. To investigate the sensitivity of model
performance to this hyperparameter, we centered the pruning ratio p at 25% and 30% and varied ∆p
within the set {5%, 10%, 15%}. The results are presented in Tab. 4.

Table 4: Comparison of average zero-shot accuracy of HA-PAT on Llama2 7B under different prun-
ing ranges ∆p. The HPRS strategy is Linear Scheduling function.

Center Ratio (p) Method Range (∆p) pmin pmax Accuracy

25%

PAT N/A N/A N/A 56.52

Ours
5% 20% 30% 59.88
10% 15% 35% 60.68
15% 10% 40% 61.30

30%

PAT N/A N/A N/A 56.32

Ours
5% 25% 35% 58.74
10% 20% 40% 59.12
15% 15% 45% 60.72

Two observations emerge. First, our method consistently outperforms the uniform-pruning PAT
baseline across all tested ∆p settings, underscoring the superiority of hierarchical pruning. Second,
we observe a compelling trend: as ∆p increases, the model’s performance consistently improves.
This trend provides strong empirical support for our core theoretical argument that redundancy in
LLMs is unevenly distributed across layers: a larger ∆p enforces stronger preservation of shal-
low linguistic features while allowing more aggressive compression of deep task-specific features.
Such a steeper hierarchy better aligns with the intrinsic functional specialization of LLMs, thereby
unlocking greater performance potential.

A.5 IMPLEMENTATION DETAILS

Full list of 14 downstream tasks: WSC (Levesque et al., 2012), WinoGrande (Sakaguchi et al., 2021),
WIC (Pilehvar & Camacho-Collados, 2018), HellaSwag (Zellers et al., 2019), COPA (Roemmele
et al., 2011), PIQA (Bisk et al., 2020), SIQA (Sap et al., 2019), ARC-C/E (Clark et al., 2018),
OpenBookQA (Mihaylov et al., 2018), BOOLQ (Clark et al., 2019), MultiRC (Khashabi et al.,
2018), RTE (Wang et al., 2019), and MMLU (Hendrycks et al., 2020).

To ensure fair comparison, we adopt the same rank settings for HIO and LoRA modules as in the
original PAT implementation. Specifically, for the baseline using only LoRA fine-tuning, the rank of
the LoRA modules is set to 64. For experiments on Gemma models, the rank of the LoRA modules
is set to 20, while the rank of the HIO modules is set to 300. For LLaMA models, the LoRA rank is
set to 20, and the HIO rank is set to 200.

A.6 OVERALL PIPELINE OF HA-PAT

The overall pipeline of HA-PAT is described as Algorithm 1

14
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Algorithm 1 Overall Pipeline of HA-PAT
Input: Pre-trained LLM, Instruction-tuning dataset Dinstruct, Overall target pruning ratio p
Parameter: ACO low-rank r, Pruning ratio range ∆p
Output: A structural pruned and fine-tuned LLM

Initialization Phase:
1: Insert HSMs into LLM.
2: For each layer l ∈ {1, ..., L}, initialize an independent trainable mask Ml and a compensation

matrix Dl.
3: Define the hierarchical pruning ratio range: pmin ← p−∆p, pmax ← p+∆p.
4: for each layer l = 1 to L do
5: Calculate layer-wise target pruning ratio pl
6: end for

Pruning-Aware Tuning Phase:
1: while not converged do
2: Sample a data batch and forward pass through the model with HSMs.
3: Calculate the multi-objective loss L ← Linstruct + Lratio + Lidentity.
4: Backward pass and optimization
5: Update masks {Ml} and compensation matrices {Dl}.
6: end while

Finalization for Inference:
1: Obtain final binary masks {M∗

l }Ll=1 where values are either 0 (prune) or 1 (keep).
2: for each layer l = 1 to L do
3: Merge compensation matrix: W ′

l ← Dl ·Wl.
4: Physically remove the channels in W ′

l where the corresponding value in M∗
l is 0.

5: end for
6: return Pruned and fine-tuned LLM.

A.7 DETAILED MAIN RESULTS

We evaluate LoRA (Hu et al., 2022), LLM-Pruner (Ma et al., 2023), SliceGPT (Ashkboos et al.,
2024), PAT (Liu et al., 2025), and our HA-PAT on 14 tasks. Results are shown in Tabs. 5 to 8. For
experiments involving HPRS, we adopt the Linear Scheduling function, the minimum and maximum
pruning ratios pmin and pmax are defined as p − 5% and p + 5%, respectively. For example, when
the target pruning ratio p = 25%, we set pmin = 20% and pmax = 30%.

Table 5: Zero-shot evaluation of Llama2 7B on 14 public datasets.

Ratio Method WSC WG WIC HS COPA PIQA SIQA ARC-E ARC-C OBQA BOOLQ MULTIRC RTE MMLU AVG
0% LoRA-64 65.39 52.57 51.10 47.51 72.00 64.80 58.50 72.49 50.17 73.20 59.57 60.09 52.35 42.93 58.76

20%

LLM-Pruner 62.50 52.64 47.34 34.41 93.00 65.78 59.88 71.78 51.19 68.80 64.50 60.89 46.93 39.79 58.53

SliceGPT 57.69 52.09 52.04 34.76 78.00 65.56 58.24 65.43 51.19 67.00 65.05 60.07 64.26 37.96 57.81

PAT 52.89 49.57 48.12 48.11 82.00 68.83 53.84 69.31 51.19 70.20 67.10 63.97 58.48 40.20 58.84

Ours 61.58 51.30 50.94 46.65 86.00 68.39 62.34 74.49 54.56 71.40 77.26 68.17 67.87 41.87 63.06

25%

LLM-Pruner 65.38 52.33 50.00 26.76 80.00 64.42 56.50 57.14 35.25 61.20 48.50 57.98 47.29 32.18 52.50

SliceGPT 60.58 50.67 54.08 38.91 73.00 64.58 45.65 58.55 41.02 60.40 48.44 58.35 54.87 32.59 52.98

PAT 47.12 51.07 50.47 44.23 72.00 66.00 52.20 67.02 47.12 70.00 65.87 57.01 63.18 38.02 56.52

Ours 57.69 49.12 50.00 47.01 78.00 62.46 58.85 70.37 48.81 70.60 72.64 66.34 63.46 40.98 59.88

30%

LLM-Pruner 50.48 51.07 52.51 37.04 75.50 60.88 44.91 49.82 35.59 50.10 63.52 52.71 51.44 32.77 50.60

SliceGPT 48.08 50.95 53.84 37.82 67.00 58.87 47.54 49.65 40.00 50.20 64.47 52.92 58.66 32.79 50.91

PAT 42.31 50.67 50.94 39.95 82.00 62.84 54.76 62.26 44.41 69.60 68.69 58.79 64.79 36.51 56.32

Ours 59.50 50.51 53.29 43.43 76.00 60.99 56.91 65.08 48.14 68.40 73.52 66.67 61.37 38.58 58.74
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Table 6: Zero-shot evaluation of Llama2 13B on 14 public datasets.

Ratio Method WSC WG WIC HS COPA PIQA SIQA ARC-E ARC-C OBQA BOOLQ MULTIRC RTE MMLU AVG
0% LoRA-64 65.39 56.43 50.00 61.22 92.00 76.99 66.68 81.31 66.44 81.00 70.70 68.50 47.29 50.39 66.74

20%

LLM-Pruner 64.42 53.83 50.47 62.18 95.00 75.52 62.79 77.60 59.66 76.20 54.07 66.30 70.40 45.53 65.28

SliceGPT 50.96 56.00 53.68 57.11 88.50 71.60 63.84 77.25 61.19 78.50 77.46 72.03 70.76 43.22 65.86

PAT 63.46 54.30 55.78 55.88 93.00 72.04 60.03 79.37 58.24 80.00 63.95 68.40 69.93 44.64 65.64

Ours 64.65 52.17 56.47 65.88 93.00 70.40 61.06 78.48 62.03 79.00 79.12 76.81 78.95 47.36 68.96

25%

LLM-Pruner 63.46 51.38 50.31 57.98 71.00 71.76 56.65 70.72 60.00 74.40 40.64 59.78 47.29 45.51 58.63

SliceGPT 53.85 53.75 52.90 56.80 70.50 67.52 58.80 71.96 62.20 72.40 59.72 64.32 61.19 43.78 60.69

PAT 63.46 51.46 50.94 51.91 88.00 71.82 58.29 75.84 56.61 76.40 62.42 67.45 68.95 43.51 63.36

Ours 65.45 50.91 55.66 58.46 93.00 70.65 61.21 77.60 57.29 79.00 77.68 74.65 75.95 45.65 67.37

30%

LLM-Pruner 51.44 51.10 50.00 42.89 63.50 56.28 50.72 51.06 40.85 53.80 65.14 54.92 50.36 35.87 51.28

SliceGPT 64.42 53.63 50.00 47.31 70.00 65.53 51.89 58.47 51.19 62.10 58.88 64.99 47.65 39.55 56.12

PAT 65.39 53.35 50.31 46.16 81.00 65.34 56.76 71.08 49.15 73.80 57.49 59.26 51.26 40.51 58.63

Ours 66.81 52.49 56.00 55.16 88.00 64.32 57.42 75.13 58.36 76.85 78.72 69.91 75.05 45.46 65.69

Table 7: Zero-shot evaluation of Gemma 2B on 14 public datasets.

Ratio Method WSC WG WIC HS COPA PIQA SIQA ARC-E ARC-C OBQA BOOLQ MULTIRC RTE MMLU AVG
0% LoRA-64 36.54 52.33 49.69 39.19 88.00 64.85 50.31 66.49 42.71 67.40 63.73 41.50 52.71 38.08 53.82

20%

LLM-Pruner 63.46 50.99 50.00 34.07 58.50 56.09 41.48 46.56 34.58 56.60 48.24 63.22 48.92 31.52 48.87

SliceGPT 60.58 50.59 46.08 34.65 54.00 52.34 44.63 45.86 34.92 49.00 55.44 60.81 55.24 30.84 48.21

PAT 58.65 52.17 50.47 28.97 60.00 61.05 43.14 44.97 29.15 50.40 62.97 53.26 55.24 29.33 48.56

Ours 62.54 50.20 49.84 33.92 72.00 60.94 51.59 61.20 40.00 66.40 63.85 54.68 55.96 30.67 53.84

25%

LLM-Pruner 50.00 50.12 50.00 28.61 51.00 51.31 34.42 31.13 27.80 35.20 54.40 52.25 50.36 25.84 42.32

SliceGPT 34.62 51.30 50.00 28.90 71.00 57.18 43.45 42.33 29.49 43.40 61.56 42.86 52.71 24.38 45.23

PAT 34.58 49.67 48.12 33.31 71.00 58.32 48.26 46.03 32.88 55.40 58.47 53.40 50.71 28.96 47.79

Ours 44.23 50.91 46.40 30.53 72.00 57.35 49.23 49.03 31.86 62.60 59.90 53.11 60.18 28.71 49.65

30%

LLM-Pruner 36.54 49.57 50.00 25.05 55.00 49.51 32.91 27.87 21.36 27.50 62.16 42.80 52.71 22.93 39.71

SliceGPT 63.46 50.43 50.00 25.06 45.00 50.44 32.86 25.40 27.80 21.20 37.77 57.20 47.29 27.12 40.07

PAT 35.58 51.46 46.55 32.37 61.00 60.12 45.91 41.62 29.15 49.60 61.93 44.88 52.71 29.93 45.92

Ours 39.42 51.30 49.84 30.89 70.00 55.66 46.93 52.38 30.17 59.80 66.51 46.43 57.40 30.82 49.04

Table 8: Zero-shot evaluation of Gemma 7B on 14 public datasets.

Ratio Method WSC WG WIC HS COPA PIQA SIQA ARC-E ARC-C OBQA BOOLQ MULTIRC RTE MMLU AVG
0% LoRA-64 54.81 57.22 57.68 74.57 93.00 84.06 68.94 89.77 80.00 85.60 85.05 54.41 60.29 56.82 71.59

20%

LLM-Pruner 54.09 55.31 56.31 62.62 83.25 72.58 64.29 81.04 64.83 80.25 76.01 60.54 58.84 46.36 65.45

SliceGPT 47.60 55.05 53.06 62.05 92.50 74.48 66.68 85.54 64.92 81.90 82.28 58.60 62.64 45.10 66.60

PAT 46.15 54.85 59.40 63.86 85.00 75.30 68.22 74.30 63.14 83.60 78.61 54.41 65.48 47.49 65.70

Ours 56.73 54.93 58.61 65.50 89.00 75.49 69.31 80.60 67.46 79.00 81.77 58.33 68.85 50.93 68.32

25%

LLM-Pruner 42.19 54.09 51.70 55.83 83.88 69.41 59.51 71.87 55.89 68.88 77.41 53.30 62.05 41.05 60.50

SliceGPT 60.10 56.24 55.41 57.67 72.50 68.88 59.85 73.37 60.17 75.30 67.83 62.30 56.68 44.77 62.22

PAT 37.50 53.28 58.46 52.96 84.00 70.99 64.23 72.19 54.73 84.20 70.32 53.17 63.65 40.39 61.43

Ours 43.27 53.28 60.94 53.58 86.00 71.01 66.57 76.19 56.61 85.00 76.73 57.11 66.32 39.98 63.75

30%

LLM-Pruner 52.82 52.26 50.93 40.23 64.44 59.95 46.56 49.69 40.15 46.44 57.70 55.24 54.67 32.89 50.28

SliceGPT 42.07 52.47 51.37 43.47 72.75 62.00 49.97 56.61 43.64 54.75 72.07 50.70 57.67 34.44 53.14

PAT 42.27 51.46 49.72 50.88 82.00 65.46 60.62 77.43 57.97 73.40 72.46 51.01 57.85 35.44 59.14

Ours 43.27 52.28 50.94 51.58 85.00 68.01 61.57 76.19 56.61 75.00 76.13 54.11 56.32 38.98 60.43
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