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Abstract

Many time series can be modeled as a sequence of segments representing high-
level discrete states, such as running and walking in a human activity application.
Flexible models should describe the system state and observations in stationary
“pure-state” periods as well as transition periods between adjacent segments, such
as a gradual slowdown between running and walking. However, most prior work
assumes instantaneous transitions between pure discrete states. We propose a
dynamical Wasserstein barycentric (DWB) model that estimates the system state
over time as well as the data-generating distributions of pure states in an un-
supervised manner. Our model assumes each pure state generates data from a
multivariate normal distribution, and characterizes transitions between states via
displacement-interpolation specified by the Wasserstein barycenter. The system
state is represented by a barycentric weight vector which evolves over time via a
random walk on the simplex. Parameter learning leverages the natural Riemannian
geometry of Gaussian distributions under the Wasserstein distance, which leads
to improved convergence speeds. Experiments on several human activity datasets
show that our proposed DWB model accurately learns the generating distribution
of pure states while improving state estimation for transition periods compared to
the commonly used linear interpolation mixture models.

1 Introduction
We consider the problem of estimating the dynamically evolving state of a system from time-series
data.1 The notion of “state” in such contexts typically is modeled in one of two ways. For many
problems, the system state is a vector of continuous quantities (Kalman, 1960; Krishnan et al., 2016),
perhaps constrained in some manner. Alternatively, discrete-state models take on one of a countable
number of options at each point in time, as exemplified by hidden Markov models (HMMs) (Rabiner,
1989) or “switching-state” extensions (Ghahramani and Hinton, 2000; Linderman et al., 2017).

Many time-series characterization problems of current interest warrant a hybrid of continuous and
discrete state representation approaches, where the system gradually transitions in a continuous
manner among a finite collection of “pure” discrete states. For example, in human activity recognition
using accelerometer sensor data (Bi et al., 2021), some segments of data do correspond to distinct
activities (run, sit, walk, etc.), suggesting a discrete state representation. However, when using sensors
with high-enough sampling rates, transition periods when the system is evolving from one state to
another (e.g. the individual accelerates from standing to running over a few seconds) can be well

1Code available at https://github.com/kevin-c-cheng/DynamicalWassBarycenters_Gaussian
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resolved. Gradual evolution between pure states can also be observed in other domains of time series
data, such as economics (Chang et al., 2016) or climate science (Chang et al., 2020). Characterizing
these systems requires a model with a continuous state space to capture the gradual evolution of the
system among the discrete set of pure states.

Motivated by this class of applications, we consider models for time series in which the system’s
dynamical state is specified by a vector of convex combination weights for mixing a set of data-
generating distributions that define the individual pure states. Many approaches, such as mixture
models, interpret such a simplex-constrained state vector (Rudin, 1976) as assignment probabilities;
that is, the system is assumed to be in a pure state with uncertainty as to which. As a result, the
data-generating distribution at moments of transition is a convex, linear combination of the pure-state
emission distributions. While useful in many applications, such linear interpolation does not capture
the gradual transitions among pure states in the time series of interest to us.

To illustrate the shortcomings of linear interpolation, consider the toy data task in Fig. 1, where a
system gradually transitions between three pure states over time. During the transition periods (e.g.
at times 600 and 1400), the linear interpolation method infers a data-generating distribution that is
multi-modal, shown in Fig. 1(b). If we refer to our pure states as “walk” and ”run,” this approach
models the walk-to-run transition as sometimes walk and sometimes run. This does not intuitively
capture the gradual nature of accelerating from walk to run in our intended applications.

To overcome this limited representation, we consider another way to mix together pure-state distri-
butions: displacement-interpolation (McCann, 1997), which is related to the Wasserstein distance
(Peyré and Cuturi, 2019), a metric over the space of probability distributions (Sriperumbudur et al.,
2010). While the work of McCann (1997) is limited to combining two distributions, it is extended
to multiple distributions using the notion of a Wasserstein barycenter (Agueh and Carlier, 2011).
Fig. 1(c) shows how a Wasserstein barycenter approach to time-series modeling infers data-generating
distributions during transitions that are not multi-modal but instead place mass in between where the
two pure-state distributions do. This intuitively captures gradual transition between two pure states.

Inspired by this framework, in this work we develop a dynamical Wasserstein barycentric (DWB)
model for time series intended to explain data arising as a system evolves between pure states. Our
model uses a barycentric weight vector to represent the system state. Given an observed multivariate
time-series and a desired number of states K, all parameters are estimated in an unsupervised way.
Estimation simultaneously learns the data-generating distributions of K pure discrete states as well
as the K-simplex valued barycentric weight vector state at each timestep.

Given the nature of our model, we require that the state lie in the simplex at every timestep, a
constraint not respected by the Gaussian noise that drives common continuous-state processes (Welch,
1997). Building on work by Nguyen and Volkov (2020), we employ a random walk where the
driving noise comes from independent, identically distributed (IID) draws from a mixture of two Beta
distributions, representing stationary and transitional dynamics. By blending the current state and a
mixture-of-Betas draw in a convex manner, we construct a new state that lies in the simplex.

To specify the emission distributions of our model, we assume that each pure state generates data
from a multivariate Gaussian. While a Gaussian model may not be suitable in all applications, this
choice allows us to exploit useful properties of Gaussian densities under the Wasserstein distance
(Takatsu, 2011). Specifically, a closed-form expression exists for the Wasserstein distance between
Gaussians, the Wasserstein barycenter among Gaussians can be computed via a simple recursion, and
the estimation of the Gaussian mean vectors and covariance matrices can be performed conveniently
over a Riemannian product manifold. Empirically, we find our proposed DWB model with Gaussian
pure-states performs well on human activity datasets, accurately characterizing both pure-states
emission distributions and capturing the system state in pure states and transition periods.

Contributions: We introduce a displacement-interpolation model for time series where the data-
generating distribution is given by the weighted Wasserstein barycenter of a set of pure-state emission
distributions and a time-varying state vector. We propose a simplex-valued random walk with flexible
dynamical structure to model the system state. We exploit the Riemannian structure of Gaussian
distributions under the Wasserstein distance for parameter estimation for faster convergence speed.
We evaluate on human activity data and demonstrate the ability of our method to capture stationary
and transition dynamics, comparing with the linear interpolation mixture model and with a continuous
state space model.
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Figure 1: (a) Three Gaussian distributions� 1; � 2; � 3 each representing distinct activities with cor-
responding meansm 1; m 2; m 3 that are marked ('x') in all plots as reference points. The time
series is drawn from a time-varying distribution according to the ground truth state vector as the
system transitions linearly from� 1 to � 2; t = 1 ; :::; 1000, then continues to� 3; t = 1000; :::; 1800.
(b) Under the linear interpolation state-transition model, the PDF at select times oft = 600; 1400
are linear combinations of� 1; � 2; � 3. (c) Alternatively, the proposed displacement-interpolation
transition model between pure-states given by the Wasserstein barycenter translates the mass between
pure states. (d) Following the Wasserstein barycentric model for time series, our proposed method
accurately recovers both the pure state distributions and state vector from the observed time series.

Outline: Sec. 2 provides an overview of the Wasserstein distance, barycenter, and the associated
geometry for Gaussian distributions. We then formalize our problem statement and estimation
problem in Sec. 3. Sec. 4 discusses the model parameters, covering the dynamical simplex state-space
model in Sec. 4.1 and the pure-state parameters in Sec. 4.2. Sec. 5 discusses the optimization of our
model parameters leveraging geometric properties of the Wasserstein distance for Gaussians. Finally,
Sec. 6 evaluates and discusses the advantages of our model in the context of human activity data.

2 Technical Background
A core component to our approach is to model the intermediate transition states of a time series using
the Wasserstein barycenter (Agueh and Carlier, 2011) of probability distributions, which generalizes
the displacement-interpolation framework (McCann, 1997) beyond two distributions. We refer the
works of (Peyré and Cuturi, 2019) and (Villani, 2009) for a detailed discussion on these concepts.

Consider the space of all Borel probability measures overRd with �nite second moment. The squared
Wasserstein-2 distance for two distributions� 1; � 2 with squared Euclidean ground cost is de�ned as,

W 2
2 (� 1; � 2) = inf

M 2 �( � 1 ;� 2 )

Z

Rd � Rd
k� � � k2

2 M (d� ; d� ); (1)

where�( � 1; � 2) is the set of all joint distributions with marginals� 1; � 2, andM is the optimal
transport plan, the element that minimizes the total transportation cost. When these measures are
Gaussian, parameterized by their mean vectorsm i 2 Rd, and symmetric positive-de�nite covariance
matricesSi 2 Symd

+ , the squared Wasserstein-2 distance has a closed form solution (Takatsu, 2011),

W 2
2 (� 1(m 1; S1); � 2(m 2; S2)) = km 1 � m 2k2

2| {z }
E2 (m 1 ;m 2 )

+ tr
�

S1 + S2 � 2
�

S
1
2
1 S2S

1
2
1

��

| {z }
B2 (S1 ;S2 )

: (2)

This distance decomposes into sum of the squared Euclidean distance between mean vectors,
E2 (m 1; m 2), and the squared Bures distance (Bhatia et al., 2017) between covariance matrices,
B2 (S1; S2). Thus, the contributions of the mean and covariance to the Wasserstein distance between
Gaussians are decoupled, a property that is uncommon for Gaussian distribution distances (Nagino
and Shozakai, 2006) and has important implications for optimization and barycenter computation.

The Wasserstein barycenter extends the notion of the weighted average of points inRd using the
Euclidean distance to the space of probability distributions with the Wasserstein distance. Given a set
of K measures and the barycentric coordinate vector on theK -simplex,x 2 � K , the Wasserstein
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barycenter is the measure that minimizes this weighted Wasserstein distance to the set of measures,

� B

�
x ; f � k gK

k=1

�
= argmin

� 2P 2 (Rd )

KX

k=1

x [k]W 2
2 (� k ; � ): (3)

When� k are Gaussian distributions,� B de�ned in (3) is itself Gaussian (Agueh and Carlier, 2011)
with parametersm B ; SB . Again, because of the decomposition of the Wasserstein distance in(2),
the Wasserstein barycentric problem in (3) can be solved separately for its components,

m B = argmin
m 2 Rd

KX

k=1

x [k]E2(m k ; m ); SB = argmin
S 2 Sym d

+

KX

k=1

x [k]B2(Sk ; S): (4)

The optimal mean can be computed in closed-form:m B =
P

k x [k]m k . The optimal covariance
matrix can be solved via the �xed-point iteration proposed in Álvarez Esteban et al. (2016).

3 Problem Formulation

Figure 2: Graphical model diagram of our proposed dy-
namic Wasserstein barycenter (DWB) time series model.
For each window of data, indexed byt, our model forms an
emission distribution� B t that is the Wasserstein barycen-
ter given known pure-state Gaussian parameters� =
f m k ; Sk gK

k=1 and time-varying weight vectorx t . The
simplex-valued state sequencef x t gT

t =1 is drawn from a
random walk using Beta-mixture draws t (Sec. 4.1), with
hyperparametersH = f w ; a0;1; b0;1g and initial statex 0.
Random variables are denoted by circles. Figure shown
hasn = 2 , � = 1 Colors correspond to terms in (9).

Model De�nition. Our DWB model's
data-generating process is illustrated in
Fig. 2. First, thepure-state emission
parameters� � f (m k ; Sk )gK

k=1 , de-
�ne a Gaussian distribution� k for each
pure statek. Second, thestate vector
x t de�nes the system state att and lies
on the simplex. Given� andx t , we
can form a time-varying Gaussian dis-
tribution � B t (x t ; � ) � N (m B t ; SB t )
for eacht, which is a barycentric com-
bination of theK pure Gaussians using
weightsx t via (4). We can write the
states for an entire sequence asX , com-
prised of an initial state and a sequence
of simplex-valued state vectors, denoted
X � f x 0; f x t gT

t =1 g.

Data Preprocessing. We are given a
vector-valued time series of observa-
tions y � 2 Rd; � = 1 ; :::; T . Instead
of modeling this data directly, to im-
prove smoothness we model the em-
pirical distribution of sliding windows
of 2n + 1 samples (Aghabozorgi et al.,
2015) strided by� samples. We retain
only windows with complete data, with
start times corresponding to� = 1 ; (� + 1) ; (2� + 1) ; :::; b(T � (2n +1))

� c� + 1 , which we index
sequentially ast 2 f 1; 2; : : : Tg. A window indexed att corresponds to a window centered at
� = ( � (t � 1) + n + 1) , which provides an estimates of the underlying distribution aty � . For each
window locationt, we compute an unbiasedempiricalGaussian distribution̂� t = N (m t ; St ) where,

m t =
1

2n + 1

2n +1X

i =1

y � ( t � 1)+ i ; St =
1

2n

2n +1X

i =1

(y � ( t � 1)+ i � m t )(y � ( t � 1)+ i � m t )T : (5)

Minimizing the Wasserstein distance between this sequence of empirical distributions�̂ t and the
model-predicted distributions� B t drives our model's parameter learning.

Estimation Objective. In practice, we are given an observed sequence of empirical distributions
f �̂ t gT

t =1 and a desired number of statesK . We wish to estimate the state sequenceX and emission
parameters� . We pose the estimation ofX and� as the solution to an optimization problem
seeking to balance �delity to a prior model on the parameters of interest with the desire to minimize
the time integrated Wasserstein distance between the predicted and observed distributions:

X̂ ; �̂ = argmin
X ;�

� log (p(X )p(� )) + �
TX

t =1

W 2
2 (�̂ t ; � B t (x t ; � )) : (6)
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The scalar weight� > 0 trades off the model's �t to data (measured by the Wasserstein distance)
with the probability of the state sequenceX and pure-state emission parameters� under assumed
prior distributions. Our chosen priorsp(X ) and thep(� ) are covered in the following section.

4 Model Parameter Priors
4.1 Prior on Simplex States over Time

Figure 3: Given current statex t , we transition to next
statex t +1 by averagingK step-to-vertex updates. For
eachk = 1 ; :::; K , step-length t [k] 2 [0; 1] represents
a proportional step fromx t to simplex vertexek .

Here we develop thetransition model
that generates the sequence of state vec-
tors x 0; x 1; : : : x T . We assume a �rst-
order Markovian structure: p(X ) =
p(x 0)

Q T
t =1 p(x t jx t � 1). Recall that each

state vector lies on theK -dimensionalsim-
plex. The geometry of the state space in
the case ofK = 3 states is shown in Fig. 3,
wherex t lies in the convex hull of the three
simplex vertices, the unit coordinate vec-
tors e1; e2; e3. Each vertex is associated
with a pure-state in our problem. For a
more generalK -state problem, this is gen-
eralized to theK � dimensional simplex,
denoted� K , in a straightforward manner.

To ensure that each new statex t lies in the simplex, we de�ne its update using aK -dimensional
“innovations” vector, t . As seen in Fig. 3, we imagine takingK different steps from the previous state
x t � 1. Each step (indexed byk) moves toward vertexek with proportional step length t [k] 2 [0; 1].
A zero-length step ( t [k] = 0 ) leaves the state at its previous valuex t � 1 while a full step ( t [k] = 1 )
jumps to the vertexek . Unlike prior methods (Nguyen and Volkov, 2020), we repeat this process for
each of theK components and average their results to achieve the next statex t ,

x t = (1 � 1
K

P K
k=1  t [k])x t � 1 + 1

K  t : (7)
By construction, (7) delivers a valid statex t that lies in theK -simplex.

Inspired by ideas from dynamical Bayesian nonparametric models (Ren et al., 2008), a suitable prior
over innovations t on the domain[0; 1] is the Beta distribution (Yates and Goodman, 2005). We
draw independent innovation values for each component (indexed by K) as IID across time according
to a two-component Betamixture. The �rst component (index 0) capturesstationarybehavior and the
second component (index 1) capturestransitionsbetween pure states:

p
�
f  t gT

t =1

�
=

TY

t =1

KY

k=1

w[k]Beta( t [k]; a0 [k]; b0 [k]) + (1 � w [k]) Beta( t [k]; a1[k]; b1[k]) : (8)

This Beta-mixture prior for t allows �exibility in how x t evolves on the simplex. By requiring that
the Beta parameters of each component are larger than one (a[k] > 1; b[k] > 1), we induce uni-modal
distributions on[0; 1]. For the stationary component (index 0), we expect innovations close to zero,
which means we should setb0[k] � a0[k]. We �x a0[k] = 1 :1; b0[k] = 20 in all experiments. For
the transition component (index 1) of each statek, we allow Beta parametersa1[k]; b1[k] as well as
the mixture weightw [k] to belearnablehyperparameters, denotedH = f w ; a1; b1g. To prevent
mode collapse we constraina1[k] > 1:1, a 1 [k ]

a 1 [k ]+ b1 [k ] > 0:15, andw [k] 2 [0:01; 0:99].

As mentioned in Sec. 3, the simplex-statex t represents the barycentric mixing weights used to
compute the model-predicted distribution of the data. In our current formulation, this sequence of
states isdeterministicaccording to(7), given the initial state and the sequence of innovation vectors.
Since these innovations are the random variables of interest, it is convenient to replaceX in (6) with

� �
n

x 0; f  t g
T
t =1

o
resulting in the estimation problem,

�̂ ; �̂ ; Ĥ = argmin
� ;� ;H

� log
�

pH (� ) p(� )
�

+ �
P T

t =1 W 2
2 (�̂ t ; � B t (� ; � ) )

| {z }
F ( � ;� ;H ;f ^� t gT

t =1 )

: (9)

In our implementation, we are indifferent to the initial state and therefore setp(x 0) as uniform over
the simplex. The coloration in (9) is linked to the associated parameters in Fig. 2.
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4.2 Prior on Pure-State Emission Parameters

The �nal component to(9) is p(� ), the prior on the pure-state emission parameters. Using a reference
normal distributionN (m 0; � 0I ), we can de�ne a probability density function over the space of all
Gaussian distributions derived from the Wasserstein distance to this reference distribution,

p(m ; S) = � (s; � 0) exp
�

�
1

2s2 W 2
2

�
(m ; S); (m 0; � 2

0 I )
�
�

(10)

= � (s; � 0) exp
�

�
1

2s2 kq � q0k2
2

�
;

wheres is a scalar hyperparameter that controls the variance of this prior. A simple calculation shows
that(10) is equivalent to a multivariate Gaussian distribution overq � [m ; ! ] 2 R2d, the joint space
of meansm and the eigenvalues! of the covariance matricesS 2 Symd

+ . This Gaussian has mean
q0 = [ m 0; � 0; :::; � 0] and covariance equal tosI . Since the eigenvalues ofS must be positive, it
follows that the normalizing constant needed for(10) to be a valid distribution given the normal CDF
function� is � (s; � 0) =

��
2�s 2

�
�

� � 0
s

�� � d
. We assume that the pure-state distributions parameters

are mutually independent. To ensure that this prior scales similarly to the other terms in(9), all of
which scale with the length of the time seriesT, we setlog (p(� )) = T

P K
k=1 log (p(m k ; Sk )) .

5 Model Estimation

Algorithm 1: Dynamical Wasserstein Barycenter (DWB) Time-Series Estimation

Input:
y � ; � = 1 : : : T : Time series observations
K : Number of pure states

Hyperparameters:
n: Window size, � : Window stride
� : Weight on data-�t term
s: Variance on prior for�
(� 0; � 0): Mean, var. ofp(� ) reference dist.
� : Convergence threshold

Output:

� =
n

f m k ; Sk gK
k=1

o
: Pure-state emission params

� =
n

x 0; f  t g
T
t =1

o
: Initial state and innovations

X = f x t g
T
t =1 : Wasserstein barycentric state vector

(Computed from� via (7))
H = f w ; a1; b1g: Beta mixture parameters for

transition dynamics

1 for t = 1 ; :::; T whereT = b(T � (2n +1))
� c + 1 do

2 m t = 1
(2n +1)

P 2n +1
i =1 y � ( t � 1)+ i ; // Preprocessing of windowed

3 St = 1
2n

P 2n +1
i =1 (y � ( t � 1)+ i � m t )(y � ( t � 1)+ i � m t )T ; // empirical distributions

4 �̂ t = N (m t ; St )
5 end

6 c(0) = F
�

� (0) ; � (0) ; H (0) ; f �̂ t g
T
t =1

�
; // Cost function F defined in (9)

7 do

8 � (n +1) ; H (n +1) = argmin � ;H F
�

� (n ) ; � (n ) ; H (n ) ; f �̂ t g
T
t =1

�
; // Adam

9 � (n +1) = argmin � F
�

� (n +1) ; � (n ) ; H (n +1) ; f �̂ t g
T
t =1

�
; // Riemannian line search

10 c(n +1) = F
�

� (n +1) ; � (n +1) ; H (n +1) ; f �̂ t g
T
t =1

�

11 while (c(n ) � c(n +1) ) > � ;

Given a desired number of statesK and a multivariate time series datasety , Alg. 1 details the steps
needed to learn all parameters of our DWB model:� , the initial state and innovations sequence
that drive the dynamical state model;� , the pure-state emission distribution means and covariance
matrices; andH , the hyperparameters governing transition dynamics on the simplex.

The algorithm performs coordinate descent (updating some variables while �xing others) to optimize
the objective function in(9). We chose this structure because the update to� is able to exploit spe-
cialized optimization structure. Gradient descent methods are used to implement each minimization
step in Alg. 1 taking advantage of auto-differentiation in PyTorch (Paszke et al., 2017). The runtime
cost of each step in Alg. 1 isO(TKd 3), whered is the dimension of each observed data vectory t .
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Updates to� ; H via Adam. The Adam optimizer (Kingma and Ba, 2017) is used to solve the� ; H
problem on line 8 of Alg. 1. To ensure that t 2 [0; 1] for t = 1 ; : : : ; T . we clamp these parameters
to [�; 1 � � ] for � = 1e� 6. The initial state vector is clamped and normalized to stay on the simplex in
a similar manner and the parameters ofH are clamped as mentioned in Sec. 4.1.

Updates to� via natural Riemannian geometry.The pure-state emission parameters� de�ne the
mean and covariance parameters forK Gaussian distributions. While a variety of methods each based
on different geometries have been proposed for optimizing Gaussian parameters (Lin, 2019; Hosseini
and Sra, 2015; Arsigny et al., 2007), in this work we choose to leverage the geometry of Gaussian
distributions under the Wasserstein distance (Malagò et al., 2018). From the decomposition in(2), we
see that optimization for� � f (m k ; Sk )gK

k=1 under Wasserstein geometry can be carried out over a
Riemannian product manifold

�
Rd � Symd

+

�
(Hu et al., 2020) with standard Euclidean geometry on

Rd, and Wasserstein-Bures geometry onSymd
+ (Malagò et al., 2018; Takatsu, 2011; Bhatia et al.,

2017). Therefore, we estimate� over this Riemannian product manifold using a gradient descent
line search algorithm (Absil et al., 2008). The supplement provides further details and experimental
results demonstrating improved optimization speeds compared to standard Euclidean geometry.

6 Real World Results

6.1 Datasets and Evaluation Procedures

Datasets.Our work is motivated by applications in human activity accelerometry where “pure” states
correspond to atomic actions such as walking, running, or jumping. We evaluate our algorithm on two
datasets where smooth transitions between states are observable and the number of states is known.

BT MSR
n 100 250
� 25 125
� 100 100
s 1.0 1.0
� 1e-4 1e-4

Table 1: Model hy-
perparameters

Beep Test (BT, proprietary):46 subjects run between two points to a
metronome with increasing frequency. In this setting the subject alternates
between running and standing thus we estimate a two state model. Data is
captured from a three-axis accelerometer sampled at 100 Hz.

Microsoft Research Human Activity (MSR, Morris et al. (2014)): 126 subjects
perform exercises in a gym setting. Exercises vary among subjects covering
strength, cardio, cross-�t, and static exercises. Each time series is truncated to
�ve minutes. We setK to the number of labeled discrete states in the truncated
time series (range:2 to 7). The three-axis accelerometer is sampled at 50 Hz.

Available labels.All models are trained inunsupervisedfashion: each method is provided only the
3-axis accelerometer signaly and desired number of statesK as input. While some ground-truth state
annotations are available, each timestep is labeled as belonging exclusively to one discrete state. This
assumesinstantaneoustransition between pure states and belies the underlying gradual transitions
(e.g. acceleration from stand to run) that actually occur in the data stream, which our method is
designed for. Because annotations that properly characterize the gradual transition between states
are not available, we evaluate performance based on how well a given model's predicted emission
distribution �ts the observed data over the whole time series.

Performance metrics: We measure data �t quality using both the average Wasserstein er-
ror (11), akin to the model-�t term in(9), as well as the negative log likelihood(12) of all
samples in each window given the model's inferred barycentric distribution for that window.

eW =
1
T

TX

t =1

W 2
2 (�̂ t ; � B t ); (11) enll =

1
T(2n + 1)

TX

t =1

2n +1X

i =1

� log
�
� B t (y � ( t � 1)+ i )

�
: (12)

Baseline methods:To the best of our knowledge, the problem of characterizing continuous transitions
among discrete pure states is largely unexplored. Most relevant are continuous state space models
which identify a continuous latent state, but not in a manner that identi�es pure-states of the system.
Therefore, we compare our proposed DWB model a continuous-state deep neural state space (DSS)
model. Additionally, we baseline the Wasserstein barycentric interpolation model against the linear
interpolation model given by discrete-state Gaussian mixture models (GMM).

GMM Linear interpolation baseline.Under the linear interpolation model, each timestep's emission
distribution is a Gaussian mixture of the pure states,� G t =

P K
k=1 x t [k]N (m k ; Sk ). We highlight

that� B t and� G t are equivalent when thex t is in a pure-state, thus the difference between models
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