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ABSTRACT

Consider episodic Markov decision processes (MDPs) with adversarially chosen
transition kernels, where the transition kernel is adversarially chosen at each
episode. Prior works have established regret upper bounds of O(\/T +C7F), where
T is the number of episodes and C'" quantifies the degree of adversarial change in
the transition dynamics. This regret bound may scale as large as O(7T'), leading to a
linear regret. This raises a fundamental question: Can sublinear regret be achieved
under fully adversarial transition kernels? We answer this question affirmatively.
First, we show that the optimal policy for MDPs with adversarial transition kernels
must be history-dependent. We then design an algorithm of Adversarial Dynamics
Follow-the-Regularized-Leader (AD-FTRL), and prove that it achieves a sublinear

regret of O(1/(|S||A|)XT), where K is the horizon length, |S| is the number
of states, and |.A] is the number of actions. Such a regret cannot be achieved by
simply solving this problem as a contextual bandit. We further construct a hard
MDP instance and prove a matching lower bound on the regret, which thereby
demonstrates the minimax optimality of our algorithm.

1 INTRODUCTION

Reinforcement learning (RL) (Sutton et al.l [1998)) is a general framework for sequential decision-
making, where a learner interacts with an unknown environment in order to learn the optimal policy
over time. Consider the episodic setting as an example, where the number of interactions between the
agent and the environment is a fixed number K in each episode. At each stage k € {0, ..., K — 1}, the
learner takes action a* according to the current state s* or histories h* = {s%,a%, ..., s*71 aF~1 s¥}.
Then, the learner observe the next state s**1 which is sampled from a unknown transition kernel
P(-|s*,a*), and received a loss £(s*,a"). The interaction terminates at the step K, then a new
episode starts. The goal of RL is to find a policy sequence to minimize the regret, which is defined as

the gap between the total loss obtained during learning and under an optimal fixed policy.

Existing works mostly focus on MDPs with fixed transition kernel and loss function, which do not
change across episodes (Sutton et al., 1998} |Auer et al., 2008} [Azar et al.| 2017} Jin et al., [2020D)).
However, in practice, the environment can be time-varying or subject to adversarial corruptions.
Recent studies formulate this problem as adversarial MDPs, where loss and/or transition kernels may
be chosen adversarially at each episode. One line of research focuses on the case with adversarial
loss, where the loss function is adversarially perturbed but the transition kernel is the same across
episodes [Even-Dar et al.|(2009); Neu et al.|(2010); Zimin & Neu| (2013); Jin et al.| (2020a; 2021));
Rosenberg & Mansour|(2019). When the transition kernel is also adversarially chosen at each episode,
the problem becomes significantly more challenging, and studies on this problem are quite limited.
For this problem, recent works (Jin et al.| 2023} |Wei et al.l | 2022) showed regret bounds that scale
with a term of C'*’, which quantifies the corruption level of the transition kernels. Notably, in the fully
adversarial case, C*" can be as large as O(T), leading to a linear regret. This raises a fundamental
question:

Can we develop an algorithm for RL with adversarially chosen transition kernels,

and prove a sublinear regret?

In this paper, we answer this question affirmatively. Specifically, we develop a learning algorithm,
Adversarial Dynamics Follow-the-Regularized-Leader (AD-FTRL), that operates under bandit feed-
back with unknown adversarially chosen transition kernels. We show that it achieves a sublinear
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regret bound of O(+/(|S||.A|)¥T), where K is the horizon length, |S| is the number of states, and
|A] is the number of actions. Furthermore, we demonstrate that this regret bound is minimax optimal
by constructing a matching lower bound, thereby establishing the minimax optimality results for
MDPs with adversarially chosen transition kernels.

1.1 CHALLENGES

In standard episodic MDPs with a fixed transition kernel, it is proved that there exists a Markov policy
that is optimal (Sutton et al.,|1998). The same may not be true for adversarial MDPs, though some
existing works (Jin et al.} 2021} 2023)) consider Markov policies for simplicity of analysis. A simple
example can be constructed as follows. Consider the case where the initial state reveals the transition
kernel chosen by the adversary; then the optimal policy must be history dependent (i.e., it depends on
the initial state). Therefore, we need to search over the more expressive class of history-dependent
policies, which is more challenging to tackle.

Designing algorithms for history-dependent policies is substantially more difficult than Markov
policies, noting that the history space can be significantly larger than the state space. Moreover, the
learner operates with bandit feedback and lacks knowledge of the transition kernels { ; };¢ [}, which
are chosen adversarially and may vary arbitrarily across episodes. Estimating these transitions is
infeasible, and even estimating their average P is insufficient, as the optimal policy for P may be
far from optimal for the sequence { P;}. This mismatch introduces an unavoidable regret penalty,
quantified by the C'* term in existing analyses (Jin et al.,|2023; ' Wei et al., 2022; |Chen et al., 2021}
Lykouris et al.,[2019; [Wei et al., |2022). To address these challenges, we avoid estimating P altogether
and instead propose an approach based on importance sampling and trajectory-level occupancy
measures (a type of visitation measure). Furthermore, we carefully design a regularization term
to ensure a sublinear regret bound, as the occupancy measures are affected by the time-varying
transitions—a complication that does not arise in settings with adversarial losses but fixed transition
kernels (including fixed kernel with corruption).

However, we notice that our bound is still exponential in K, which is less favorable. This also
naturally raises another question: Can the regret of \/(|S||.A|)¥ be improved? To answer it and also
understand the minimax optimality, we face two major technical challenges. First, in adversarial
RL settings, the study of history-dependent policies is still scarce. As a result, the lack of structural
understanding of such policies makes it particularly difficult to construct an appropriate hard MDP
instance for minimax lower bound derivation. Second, deriving a tighter lower bound requires
reducing the regret minimization problem to a composite hypothesis testing problem—a necessity
imposed by the adversarial nature of the transition dynamics. This reduction forms the core of our
technical contribution. However, unlike binary or multi-hypothesis testing scenarios commonly
studied in standard RL, composite hypothesis testing and its corresponding regret analysis present
significantly greater challenges, as is widely acknowledged.

1.2  CONTRIBUTIONS

1. Characterization of the Optimal Policy. We first prove that the optimal policy that minimizes
cumulative loss with adversarially chosen transition kernel must be a history-dependent
policy, instead of a Markov one.

2. Algorithm Design for Adversarial Chosen Transition Kernels. Under the challenging setting
of bandit feedback losses and unknown, adversarially chosen transition kernels, we propose
an Adversarial Dynamic Follow-the-Regularized-Leader (AD-FTRL) algorithm that updates
a history-dependent policy. Moreover, with a carefully designed regularization term, we
prove that our algorithm achieves a sublinear regret bound of O(1/(|S||A|)XT), without
requiring prior knowledge of the transition kernels.

3. Minimax Optimal Regret Bound. We carefully design a hard instance of MDPs with regret
lower bound of Q(+/(|S||.A|)%T) order, matching the regret upper bound of the AD-FTRL
algorithm, which shows the minimax optimality of our results. Compared to the lower
bound presented in (Tian et al., [2021), our result is tighter and explicitly shows that the
regret scales with both the state and action space dimensions. This optimal minimax regret
bound confirms the fundamental difficulty of the problem and the minimax optimality of our
algorithm. In our proof, we introduce a new analytical approach for handling adversarial or
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time-varying transitions using information-theoretic tools from composite hypothesis testing.
Our newly constructed hard instance of MDPs and accompanying analysis framework
provide a unified and complete solution for the minimax optimal regret bound of adversarial
RL.

1.3 RELATED WORKS

Upper Bound Analysis. Firstly, we introduce the work for the regret against a fixed optimal policy
among the total episodes. For the case with adversarial loss functions but a fixed transition kernel,
adversarial RL has been widely studied in previous works (Even-Dar et al.,[2009; |Zimin & Neul [2013
Neu et al., [2010; [Dick et al., 2014; Jin & Luo} 2020; Rosenberg & Mansour, |2019; Jin et al., 2020a;
2021} |[Rosenberg & Mansour, 2019; |Chen & Luo, 2021} |Luo et al., 2021} |Dann et al., [2023a3b)).
Among these works, with bandit feedback of adversarially chosen losses and fixed but unknown
transition kernel, the works (Jin et al.,|2020a; 202 1)) provide different algorithms obtaining a sublinear

O(+/|S||A|T) regret bound, which also holds in fully adversarial losses setting.

However, when the transition kernel at each episode is also adversarially chosen, the problem becomes
challenging, and related studies are limited. The work (Abbasi Yadkori et al., 2013) provides an
algorithm for adversarially chosen but known transition kernels. When the adversarially chosen
transition kernels are unknown, previous works (Jin et al.| 2023} Wei et al.| [2022; |Chen et al., 2021}
Lykouris et al., |2019; Wei et al.,[2022)) estimate the central/true transition kernel and update the policy
based on the estimated one. The best regret upper bound from these works is O(1/|S||A|T + CF),
which performs well when the corruption level is sublinear in 7". However, under a fully adversarial
setting, the corruption level becomes linear in T', i.e., ¥ = O(T), leading to a linear regret bound.
In contrast, our method directly estimates the visitation measure to minimize the regret, and reaches a

sublinear O(+/(|S[|A|)KT) regret.

Finally, we note another line of research on non-stationary reinforcement learning. These works
also include different non-stationary measure terms in their dynamic regret bounds, such as the
number of switches in the environment (Auer et al., 2008};|Gajane et al.,|2018)), or variation/corruption
measures (Wei & Luo, 2021} [Cheung et al., 2023; [Li et al.| 2024bza). However, most of them focus
on dynamic regret, which evaluates the learner’s performance relative to the optimal sequence of
policies that may change over time, which are generally not directly comparable to ours.

Recent work has extended adversarial reinforcement learning beyond tabular settings. (Cai et al.,[2020)
analyzed adversarial rewards under linear function approximation, and (He et al.| 2022) achieved
near-optimal guarantees for adversarial linear mixture MDPs. More recently, (Ye et al.,2024) studied
adversarial corruption of the transition kernel under general function approximation, obtaining
near-optimal regret bounds. However, these results are not directly comparable to ours.

Lower Bound Analysis. For standard RL with a fixed but unknown transition kernel and loss
function, |Auer et al.|(2008) provides a regret lower bound under the average-reward setting. Besides,
(Azar et al.,2017) provides a minimax optimal regret bound for finite-horizon RL problems. In the
episodic RL setting, (Auer et al.|[2008) claims a regret lower bound based on average-reward analysis,
which is later improved by (Jin et al., 2018)). However, neither work (Auer et al.,[2008}; Jin et al.,
2018)) provides a complete or rigorous proof of the episodic RL problem. Recently, (Domingues
et al.l 2021} offers unified and complete proofs for regret lower bounds, establishing that the regret

must be at least (+/|S||.A|T) in the episodic RL setting.

Under bandit feedback with adversarial losses and an unknown fixed transition kernel, the regret
lower bound for vanilla episodic RL is often stated as the lower bound for the adversarial loss setting,
as in (Jin et al.| [2020a)). However, in the setting with adversarial transitions, the regret bound analysis
becomes challenging. As a related setting, Markov game, a lower bound of Q(v 25T is derived in
(Tian et al.| 2021). However, it is unclear whether this bound is tight or achievable. Moreover, the
bound does not specify the dependence on the size of the state space and/or action space. In our work,

we present an algorithm and prove that the minimax-optimal regret reaches Q(+/(|S|[A|) KT).
2 PRELIMINARIES

We consider the episodic setting, where a learner interacts with a sequence of 7' adversarial
episodic MDPs with time-varying transitions and losses, which can represented by the tuple
(S, A, K, {Pi}ieiry), {4t feerm), here [T] = {1,2,...,T}. All MDPs share the same joint state
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space S and joint action space .A. We adopt a layered MDP structure and assume, without loss of
generality, that S is partitioned into K + 1 disjoint subsets S, ..., SX, where S¥ = {5} contains
the terminal state and no actions are taken; A is partitioned into K disjoint subsets A°, ... K AK~1,
Transitions are allowed only between consecutive layers. We define the history space at stage k < K
as H" := (®;<xS? ®;j<i A7) x S*. The environment selects the transition kernels { P, };¢ (7| and
loss functions {/; };c|7) adversarially in advance, given the learner’s algorithm. These sequences
remain fixed and unknown to the learner. In each episode ¢, the learner executes a history-dependent
policy 7 := ®kK:7017Tf, where 7F : H¥ — A(A). Unlike Markov policies, each ¥ maps full
histories to actions. The learner begins at s?, sets hY = {s¥}, and at each stage k < K, selects
af ~ k(- | h¥), receives loss £ (s¥, al), and transitions to s¥™1 ~ P(- | s¥ a¥), with updated
history by ' = hf U {af, b(sf, af), s}

Although the learner’s policy is history-dependent, the environment’s transition dynamics and loss
functions are Markovian, consistent with prior works such as (Jin et al.,|2023). The learner has no

prior knowledge of these functions. After each episode, only the losses for visited state-action pairs
are revealed (bandit feedback losses), and the transition kernels remain entirely hidden.

To simplify notation, we assume that each layer has a fixed number of states and actions: |S| := |S¥|,
|A| := |A¥| for all k < K. Additionally, we define a® = null and set the terminal loss
as £(s%,a®) == £(s¥). Then, let 7, = {s%,a,...,s571 af~1 sK} denote the trajectory
generated at episode t under transition kernel P;, loss function ¢;, and policy w. Define the
trajectory space as C; = (®;<xS; ® A;) ® Sk, and the cumulative loss of a trajectory as

(1) = ZkK:O ¢¢(s*,a¥). Given a history-dependent policy m, the value function is defined as
Vi(m) .= Vp, () = E [£(1¢) | P;, 7], which is the expected cumulative loss when executing 7 in

the ¢-th MDP. The regret against any policy 7 is then Reg,(7) = E Zle (Vi(my) — Vi(m))| . Let
7* denote an optimal policy in the history-dependent policy class that maximizes this regret, i.e.,
Reg,(m") = max Reg ().

For simplicity, we write Reg, := Reg,(7*) as shorthand. Therefore, the aim of the algorithm is to
minimize the regret Reg under bandit feedback losses and unknown transition dynamics setting.

3 WARM-UP: CHALLENGES AND SOLUTIONS UNDER ADVERSARIAL
DYNAMICS

History-Dependent Policy Class. In this paper,
unlike prior work such as (Jin et al) 2023), we

update policies within the history-dependent pol- s #80 =c) =0
icy class rather than the Markov class. Below, 0 0

we explain the motivation for this design choice. ¢ 5o
Generally, the Markov policy can be regarded as ’ oY

a special case of history-dependent policies. For 0 !

standard episodic MDPs with fixed transitions and = (S" = o) =0
loss functions, (Sutton et al.,|1998)) proved that the €S? =% =0
optimal policy over the history-dependent class 0 ! y !

is Markovian. Consequently, many subsequent 5 (S =) = 0;
works optimize within the Markov policy set. In ) / )\ / s
the adversarial loss setting with a fixed transition

kernel, the problem can be reduced of learning 5 st =e)=0

under a sequence of loss functions {/; }+<|7 to op-
timizing against the average loss / = % Zte[T] Uy,
where optimal Markov policy is similar to the stan-
dard episodic MDP setting.

However, under adversarially varying transitions,
existing studies remain unclear whether the op-
timal policy remains Markovian. We present a
counterexample (Figure [T)) showing that history-
dependent policies can outperform Markov ones.

& P

Figure 1: Counterexample: states o,*,/\; ac-
tions 0, 1; transitions alternate between P; and
P;.
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Under the transition sequence { Py, P2, P, Py, P1 }, let:

* . [ 7 * .
Tarkoy = argmin  V(m), This = arg min V(n).
mE€Markov policy class 7 €history-Dependent policy class
. . * 2 _ . [/ * _ 2
At stage 1, the optimal Markov policy sets 7y, (s° = o) = 0 and achieves V (yj,40,) = £- In

contrast, a history-dependent policy that sets 5 (s° = 0,a” = 0, 8! = x,a' = 0,5? = 0) = 0 and

T (s® = 0,0 = 0,s' = 0,a' = 0,s% = o) = 1 achieves V(r,) = 0. This demonstrates that
the Markov optimal policy can be strictly suboptimal, with a non-vanishing gap in expected return.
Motivated by this, we restrict our analysis to history-dependent policies throughout the paper.

Occupancy Measure. The occupancy measure is a widely used concept in adversarial RL, which
quantifies the visitation frequency over the probability space (e.g., the state—action pairs). For a fixed
transition kernel P and stochastic policy =, the state-action occupancy measure pp : S x A — [0, 1]
defines the probability of visiting each (s, a) pair.

In adversarial reinforcement learning, the goal is to minimize the total regret: Reg; = Zthl Vi(my) —
Vi(7*). To better illustrate the challenge in this setting, we consider a simplified adversarial setting
where the loss function ¢ is fixed, but the transition kernels {P;}Z_; vary adversarially. In this
case, the regret can be rewritten as: Reg, = Z?:1<ppt7wt — pp, =+, ). Minimizing this regret
requires access to the state-action occupancy measure pp, . for policy 7 and each transition kernel
P,. However, under adversarial and unknown transitions, estimating these quantities is infeasible: the
learner only observes sampled state-action-next-state triplets (s¥, ¥, s*™1) from interactions with
the environment and cannot access the full transition dynamics. Instead, the learner can only estimate
the average transition kernel P = % Ele P, and use it to compute the corresponding occupancy
Pp,r» Which is often treated as a proxy for the true dynamics in prior works (Jin et al., 2023).

However, the average occupancy measure p, = 7 Zt 1 PPy is generally inaccurate and differs
from the occupancy under the average transition kernel, i.e., pr # pp .. As a result, for any fixed
policy 7, there exists a gap introduced by the mismatch across T’ eplsodes

T

T
Z VPt (7T) - VP(W) = Z<prr 7p}577r>€>'

t=1

It further introduces an additional corruption term O(CT’) in regret bounds. On the other hand, the
average occupancy measure p, may not even correspond to any realizable transition model, further
limiting the effectiveness of transition-based estimation approaches in adversarial settings.

To overcome this, we directly estimate the average trajectory occupancy measure, avoiding reliance
on transition estimation. Define the trajectory-level occupancy gpr = C; — [0,1], where for
7= (520 ...,s5 a® sKH): gp o (7) = P(s )H,C o m(a® | h¥) - P(sFt1 | 8% a). Unlike
prior methods that estlmate state-action occupancy via known transitions, we operate directly in
trajectory space. We estimate ¢p, (7) using trajectories generated under a behavior policy 7, via
importance sampling. The following lemma provides an unbiased estimator:

Lemma 3.1 (Trajectory Occupancy via Importance Sampling). Let m; € Cr . be the behavior
policy at episode t, and let 7 = (s°,a°, ... % af sK+1) € C,, where Cr.c is an e-greedy class
(i.e,ming pr o 7 (ak | B*) > €).

Then for any target policy 7:
k
Hk o W(af | ht)
ETtNQ P
Tt hk)

Hk 0 7rt(at |
This gives an unbiased estimator for any m, bypassing the need to estimate P;. Given trajectory
Tt ~ qr,,p,» We further construct:

R T hk
o = [ TS 1)

k=0 ﬂ-t(allfC | h]lfc) rec,

) ]ITt:T = dqr,p, (T)

b= {t(n) Lr=r}ee,

The estimated return at episode ¢ can be written as: Vi(7) = (Gr.p,,0:) = (Gr.p,, £y), which is
unbiased: E[V,(7)] = Vi(n) and E[Gx,p,] = ¢, p,. Therefore, rather than estimating adversarial
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transitions, we can directly estimate trajectory occupancy using importance sampling. Next, we will
show that this technique avoids the corruption penalty from estimating P, enabling sublinear regret
under adversarial dynamics and bandit feedback.

Remark 1. A tempting idea to solve adversarial dynamic episodic MDPs is to reduce them to a
bandit problem (considering a nontrivial horizon H > 1). However, in our setting, the transitions are
unknown and they cannot be estimated accurately because the average occupancy measure differs
Sfrom the occupancy measure under averaged transitions, i.e. pr # pp .. Consequently, the standard
mapping from an episodic MDP with known transitions to a bandit model does not apply. Another
strictly sub-optimal approach is to treat each policy as an arm, thereby reducing the problem to a
multi-armed bandit (MAB) setting. However, this leads to extremely large regret because it ignores
the intrinsic structure and dependencies within the MDP. A remaining approach treats each length
H action sequence, (ay, . .. ,ax_1), as a single arm which yields a bandit with | A|* arms. However,
the best open-loop sequence is strictly suboptimal since it cannot exploit state feedback within the
episode. More broadly, actions influence future state distributions, so the contexts observed later
depend on earlier actions, which violates the contextual bandit assumption that the context law
is exogenous. Together, these facts imply that adversarial dynamic episodic MDPs with unknown
transitions cannot, in general, be solved by reducing them to bandit problems.

4 ADVERSARIAL DYNAMICS FTRL ALGORITHM

Under adversarial dynamics, the Follow-the-Regularized-Leader (FTRL) framework is a well-
established and powerful method for deriving online learning algorithms, particularly in settings
where the environment changes over time. In our work, we adapt the FTRL framework to control
changes in the trajectory occupancy measure, rather than the conventional state-action occupancy
measure used in earlier works. This is essential in our setting, as the occupancy induced by a policy
must account for both the policy’s history dependence and the adversarially changing transition
dynamics.

Assuming access to accurate trajectory occupancies g, p, and trajectory loss function vector ¢, the
ideal FTRL update rule with regularizer ® (¢, p,) is given by:

: 1
7 = argmin f(7) 1= Z(qﬂ,pb,fﬁ + n—@(qﬂ,t),
m t

<t

where G : = >, ¢r,p, represents the cumulative trajectory occupancy up to time . However,
in the bandit feedback setting with unknown adversarial transitions, we do not have access to the
true occupancy or loss functions. Instead, we must rely on their estimators: ), _, 4 p, and U A
naive application of FTRL with these estimates inside the regularizer would lead to high variance and
unstable updates. To mitigate this, we exploit the structure of the trajectory distribution and carefully
rewrite the occupancy and regularization terms. Specifically, we decompose the averaged trajectory
occupancy measure as:

Grt (T 7Z%P :jHﬂ'(T)ZFL(T):HTF(T)Ft(T))
o<t o<t
where we define I, (1) = [[1—y" (a* | h¥), (1) = P(s°) [Tr—y P.(s**1 | s*,a¥) and {a*} U
{h*} C 7. This decomposition allows us to isolate the dependence on the policy 7, which appears

only in II.(7), while treating F(7) as fixed with respect to policy optimization. This structure
motivates our design of the regularization term @ (g ¢).

Regularization plays a central role in FTRL-style algorithms, directly influencing the convergence
and stability of learning. However, since the distributional term f ; is unknown in our setting, we
define the regularizer using only the policy-dependent part. Specifically, we set:

QTr t Z H 1Og ( )) ’
T€CH

where I1 is the trajectory distribution induced by the policy 7. This Shannon entropy regularizer
encourages stability between successive policies while retaining theoretical tractability. Given this
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regularizer, we rewrite the FTRL update rule as:

. 1
T = argman(quL,ﬂ )+ <I>t(q7rt = argmlnz Z I, ( V(1) + — P (T1,)
4 <t <t TeC, M
1
= arg IHIHZ ., L)+ <I>t(H ) = arg min(IL;, T;) + — &, (I1,),
<t T Ui
where we define
K—1
L.(r)=F.(r)(r)=P(s)) [] P.s¥ | sF,af)eu(r) 1
k=0

and Yy(1) = >, ., L.(7).

This formulation allows us to perform efficient updates over policies while avoiding variance inflation
from estimated transitions. Importantly, it also enables regret analysis under adversarial dynamics, as
shown in the subsequent sections.

Algorithm 1 Adversarial Dynamics Follow-the-Regularized-Leader (AD-FTRL) algorithm
1: Imitialize: 7o, Yo, Il ,

2: fort=0,1,..., 7T —1do

3 Observe s9 ~ PP(-); Set hY = {s¥}

4 fork=0,...., K —1do

5: Take the action: af ~ m;(- | k)

6 Observe the loss £;(sF, af), and next state s¥,, ~ P,(- | s, al)

7 end for

8 Observe the loss ¢;(s)

9: Getry = {s0,a?,....,s5 1 a1 5K}, 0, = Eh o le(sh,al)
. ~ KTt

10: Update./\ﬁt m []IT:Tt]TECT

11: T = Tt + ﬁt

12: T¢q41 = arg mlnﬁecm <<Hﬂ—, Tt+1> + 77f+1 ®t+1(H ))

13: end for

Building on the discussions, we derived the adversarial dynamic FTRL update rule. Building on
this foundation, we now present our AD-FTRL algorithm. The algorithm begins by initializing a
history-dependent policy 7, an estimated summation estimated trajectory-loss vector T, and the
corresponding vector Il .

At each episode ¢, the learner follows the policy 7; to select actions, receives a loss, and observes
a sampled trajectory. Since the policy 7 is known, the associated distribution vector II;, can be
computed directly. To update the summation trajectory-loss estimate, we use an unbiased estimator
for L;, given by

L= b | - ©)

= K—1 k k T=TtlreC, >
v+ =g me(ai | hy)

where v > 0 is a small constant added for numerical stability and importance weight clipping. Next,
the algorithm updates the cumulative vector Y, 1 and computes the new policy 71 according to
the adversarial dynamics FTRL rule. To ensure the importance sampling estimator is unbiased, the
updated policy 7,1 is required to belong to an e-greedy history-dependent policy class Cy ., where
min7(-) > €. A typical choice is € = % The regularizer used in the update is the Kullback—Leibler
divergence,

By (1T ZH ) log (I (7)), 3)

T€C,

which encourages smooth updates in the trajectory distribution. This procedure is repeated iteratively
for each episode.
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Remark 2. Compared with prior studies on FTRL-based algorithms, our approach shares the core
principle of using FTRL to encourage smooth updates in the trajectory distribution. However, the key
novelty in our method lies in applying the trajectory occupancy measure—rather than the traditional
state-action occupancy measure—to constrain changes in the policy. This shift is crucial in the
adversarial setting, where transition dynamics may vary arbitrarily. Moreover, we carefully design
the regularization term to avoid dependence on unknown quantities, thereby preventing inflated
variance in the regularizer and ensuring stable learning.

5 THEORETICAL RESULTS: OPTIMAL MINIMAX REGRET BOUND

In this section, we first provide a sub-linear upper bound for our AD-FTRL algorithm. Next, we
prove that our regret is indeed minimax optimal, i.e., matches the minimax lower bound we will show
later.

Theorem 5.1. For AD-FTRL algorithm, under adversarial bandit feedback loss functions and

K
unknown adversarial transitions, set n = (%) * log(|S|A) it holds that

1 _ 1
VT 1T (S ANTPVT
Regr < O ((SIIAN /> VT) .

Under the fully adversarial transitions setting, the corruption measure of transitions achieves the
O(T) order. Under this setting, the regret bound in previous works (Jin et al.,[2023) is linear in T’
(where the regret bound is larger than O(Ct) = O(T)). But in our AD-FTRL algorithm, when the
total episodes 1" is larger enough, the sub-linear regret can be achieved.

Next, we provide the lower bound of this problem under fully unknown adversarial transitions and
bandit feedback loss functions.

Theorem 5.2 (Minimax Regret Lower Bound). For any algorithm Alg, there exists an MDPs
My, = (8, A K {Pi}ieir), {lieeir)), such that for T > 4(|S||A[)* logT, it holds that

Regp(Alg, M};,) > 7\’('81'5‘8”)KT -0 ( (\S||A\)KT) s For T < 4(|S||A|) X log T, there exists

When T' < 4(|S||A|) ¥ log T, the regret upper bound is trivially O(T) due to bounded rewards.
When T' > 4(|S||A|)% log T, the regret lower bound matches the upper bound rate. Consequently,
the rate min{T’, \/(|S||.A|)X T} characterizes the minimax-optimal regret for this adversarial RL
setting. This result establishes that, without structural constraints on the transition dynamics, a regret

of order min{7, v/ (|S||.A|)¥ T} is both unavoidable and achievable.

Under a related setting of Markov Games, (Tian et al., 2021)) established a lower bound of V2K T.
However, their result does not specify dependence on the state or action space dimensions. In contrast,
our result explicitly characterizes them in the complexity of learning under adversarial transition
dynamics.

Remark 3. In prior adversarial RL works, importance sampling is often avoided due to its high
variance and its negative impact on regret bounds. However, our results demonstrate that, despite
these challenges, importance sampling can still achieve the minimax-optimal regret rate in adversarial
dynamic RL settings. We acknowledge that our FTRL-based algorithm may have limited applicability
in practice, particularly in low-data regimes; however, it is still promising. First, the structure of
history-dependent policies generalizes across settings, broadening the potential applications of our
method. Moreover, with the great advancement of quantum computation and other computational
resources, our algorithm has the potential to be applied more widely in practical reinforcement
learning scenarios. For more details, the computational cost is provided in the appendix.

6 PROOF SKETCH OF MINIMAX LOWER BOUND

In this section, we present the construction of a hard MDPs instance and provide a sketch of the
minimax regret lower bound proof. We begin by describing the structure of the hard MDPs.
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Figure 2: One of Hard MDPs: MDP with transitions P, here the trajectory 7 =
{89,a%0, 510 q10 | gK-1.0 oE—=10 gK — 000d}. ¢(good) = 0, ¢(bad) = 1, and £(s*, a*) = 1
if £ # K . The state transitions in this trajectory occur with probability 1. Other branches model
deviations and are included with stochastic transitions (e.g., uniform distribution over next states
when actions differ from those in the trajectory).

Let 7 be a history-dependent policy. We define the set of successful trajectories under 7 as I'(7) =
{7 : 8% = good € 7, II.(7) # 0}. From Figure we observe that each trajectory 7 induces a
corresponding MDP with transition kernel P.. To construct the minimax regret lower bound, we
design a sequence of adversarial transition kernels. Given a deterministic history-dependent policy
7', we define, for each trajectory 7 € I'(n’), a corresponding transition kernel P, using the process
illustrated in Figure[2] Then, for each episode ¢t € [T, the transition kernel P; is sampled uniformly
from the set {P- : 7 € I'(n")}. The loss function is fixed and follows the structure defined in Figure[2}
As a result, the MDP instance faced by the algorithm is drawn from the class:

Maig € {(S, A, K, AP e 0) : P € {P- : 7 € D(7%)}} .

In this construction, the hard MDPs are designed such that the policy 7’ is optimal for every MDP
(S, A, K, P, £) in the sequence. Based on this hard instance, an optimal history-dependent policy
must select optimal actions using the observed trajectory history 2 ~1. For histories A" ~! that are
prefixes of some 7 € I'(7*), choosing the correct action is critical. This reduces the problem to a
contextual multi-armed bandit with |S|% contexts and |.4| arms—each corresponding to a possible

history and action in the last stage—yielding a regret lower bound of order Q(\/|S|¥|A|T).

To match the regret upper bound of our algorithm, however, we aim to prove a tighter lower bound
of Q(v/(|S]|A|)XT). Achieving this is non-trivial due to dependencies across different trajectories.
For instance, if the algorithm knows that a trajectory belongs to I'(7’), it can correctly infer parts of
the optimal policy, such as 7/(- | s°), which introduces dependency between options. To formally
establish the tighter lower bound, we reduce the problem to a composite hypothesis testing task. By
leveraging Assouad’s Lemma and Fano’s method, we analyze the mutual information between the
learner’s observations and the composite hypothesis class (detailed proof is provided in the appendix).

7 CONCLUSION

In this paper, we first analyze the structural properties of the optimal policy under adversarially
changing transitions and prove that the optimal policy must be history-dependent, instead of Marko-
vian. Motivated by this observation, we introduce the concept of the trajectory occupancy measure
and develop the AD-FTRL algorithm, which effectively operates under bandit feedback and adver-
sarial transitions. We further show that our algorithm achieves a sublinear regret bound of order

(@] (\/ (|S|]A)ET ) , even in the fully adversarial setting, standing for the first sublinear result under

this setting. Furthermore, we construct an example and establish a matching lower bound, proving
our regret is minimax optimal. These results collectively demonstrate both the necessity of handling
history dependence and the fundamental difficulty of learning under adversarial transition dynam-
ics. Our study provides the first comprehensive understanding of RL with adversarially changing
transitions.
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A THE USE OF LARGE LANGUAGE MODELS (LLMS)

We used large language models (LLMs) to assist with phrasing, copy-editing, and I&TEX formatting.
All technical choices, derivations, and results are our own; LLM outputs were reviewed and edited by
the authors.

B UPPER BOUND ANALYSIS.

B.1 NOTATION AND PRELIMINARIES.

Firstly, we introduce essential notations used in our analysis.

We begin by reviewing the following definitions for a trajectory 7 = {s%,a®,..., s% o sK+1}
and histories h* = {s% a%, ... s*}:

(1) := I, (1) = £<:—01 mi(a® | h¥): the measure of generating trajectory 7 under
history-dependent policy 7;

Fu(m):=Fp,(r)= kI:()l Py(s**1 | s* a*): the measure of transitioning along trajectory

7 under transition kernel P;;

b(1) = ZkK:O ¢;(s*, a%): the cumulative loss incurred along trajectory 7;

Li(1) = F(T) - £4(7): the transition-weighted loss for trajectory 7.
We also define the normalized trajectory loss estimator:

Bir) = g

This quantity is used in importance sampling when estimating the trajectory loss without requiring
direct knowledge of the transition probabilities.

We now present a key lemma used in our analysis:

Lemma B.1 (Trajectory Loss Estimation via Importance Sampling). Let 7, be a trajectory sampled
under policy T, and transition kernel P, i.e., Tv ~ G, p,. Then, for any T € C,,

Erymge iy |[E0(0) - Trimr] = £4(7).

This lemma shows that £, (7) is an unbiased estimator of £;(7) when trajectories are sampled from
gr,,p,- Next, we define the cumulative trajectory loss:

Ti(7) := Z L.(7).

We use bold vector notation to represent trajectory-indexed quantities, such as: £; = {£;(7)}rcc. ,
and likewise for I1;, £, T, etc. With these notations in place, we now proceed to present the regret
bound analysis for the proposed algorithm.

Besides, we introduce the high-probability upper bound of our AD-FTRL algorithm.

Theorem B.2. For AD-FTRL algorithm, under adversarial bandit feedback loss functions and

K
unknown adversarial transitions, set ) = (%) ’ 10g(|8||.,4|)%, v = W, with proba-
bility at least 1 — 6, it holds that

T
Regp(m™) = Z Vi(me) = Vi(m™)
_ log(1/0) log(1/9)
2y

+AKT(S||ADK + nK*T|AK + Kn - o

1
+ E\S\KKlog(ISHAIT)

= O (log(1/8)(ISI|AN FVT ).

12
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B.2 PROOF OF THEOREM[3.1]

At the beginning, we review the definitions that
Vi(m) :=Vp,(7) = My, Lt).
Next, denote by estimated value function ‘7t = (II,, Zt> Then, according to Lemma
E[Vi(m)] = E (I, £2)| = (I, £,) = Vi(m),

which means the V; () is unbiased estimator of function V; () for any policy .

Next, to simplex, we set II, := II;«, II; := IIm,. We do the error decomposition of regret as follows:

T T
Reg, =E | > Vi(m) = Vi(n")| =E | > (I, — 1L, Ly)
t=1 t=1
T T T
E|Y (I, —1.,L)| +E Z M, L; — E|Y (.2 - ] Y
t=1 t=1 t=1
€ITOor reg error 1 error 2

Error 1 Term:
Firstly, it holds that error 1 < 0. The £ = defined is unbiased estimator, ]E[Zthl (I, L — Zt>] =0
Since it holds that

~ 12
L= K—lﬂ [lr=r] cc
v +1TZe mlaf | sf) "

Vs, - L= Tf]TEC br, - [H.,. Tr]TEC
a (7+H£-(::)1 mi(af | s7)) Hk =0 7rt(at | s7) Hk 0 7rt(at | s¢)
. Yz, - []IT=Tt]7—eCT
a (v + I, (7)1, (7)

Next, we can bound the error 1 as:
T

D (e, Lo — L2

t=1

+ L.

T
E +E | (ay, L — L2)
t=1

T
7€Tf, ) HT:Tt
. [Z () + T, (7))

Sy y e )
t=1 7 v + Hwt )
SWZZKZWKTUSHADK ®)
t=1 1
Error 2 Term:
Then, for term error 2, we introduce the following lemma:

S[l.AD*

Lemma B.3. For the sequence of vectors o, . . ., ar, a; € [0, 27]( , we have with probability

at least 1 — 0, .,
~ 1
ti 1 TEECT o (T) (Et(T) - Et(T)) < log (5> )

From the Lemma [B.1]and the fact II(7) < 1 and 2II(7) < 2 for all II, 7, we can easily get that
with probability at least 1 — 4,

T

> I Ly -

t=1

error2 = E

T 1
B> (0 £ >1 < loi(j); (©)

13
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Error Reg Term:

Next, we analyze the error reg term. Firstly, we introduce a lemma for the convexity of the trajectory
distribution set.

Lemma B.4. The set {I1; : m € C,} forms a convex set.

According to the AD-FTRL update rule,

Iy, = arg mlg 7t H’”Z£ + &, (II;) = arg mlél nt<H7T,T )+ @ (I1,).
T, <t T,

Then, set 71 = n2,...,= nr = 1. Denote the Bregman divergence with convex function F, i.e.
D¢(p,q) = F(p) — F(q) — (p — ¢, VF(q)). Combined with Lemma[B.4] we can get the follows
equation:

1
(I,Y L)+ @t(Ht)

W<t

1
Ht+17zﬁ + W(I)t Oig1) —

<t

(Myqq — IOy, Z £ - *‘I’t(nt)‘i‘ (Dt(HtJrl))
<t+1

<t

1 1 1
< (ep, Y L)+ ®(Teen) = (<Ht+1 11y, nv<1>t(nt)> = (M) + ncbt(HtH))
D

1
= (1, Y L)) + n@t(HtH) (Mg, )

<t

1
n

~ 1 ~ 1 1
= (M1, Y L)+ ;(I)t+l(nt+1) — (Mey1, Le) + ;‘I’t(ﬂml) - E(I)tJrl(HtJrl) — Dig, (41, ITy),
<t+1

where the inequality comes from and convex property in Lemma [B.4]and the first order optimality
condition of T, i.c. <Ht+1 —T, 3, L+ %vq>t(nt)> > 0.

Taking the summation of above equation and we can get that

thﬁ )+ ‘P (II) < (IIr, Z L) +n‘1>T+1(HT+1)

<1 <TH+1

T T T
~ 1 1
- E (g1, L4) — E (nq’t+1(nt+1) - n‘bt(HtJrl)) - E D%ét(HtJrlaHt)-
t=1

t=1 t=1

14
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Here, (IT1,>, 4 EL> = 0. Then, we can rewrite the error reg term as follows:

T T

~ 1 1
Z<Ht —1IL., L) < Z( H*,ﬁt <HT+1, ZE > + E@T+1(HT+1) - 71’1(1_[1)

t=1 t=1

T T T
1
= (M1, L) =Y ( Per (M) =~ @o([les) ) =D Dig, (Hes1,1L)
t=1

t=1 t=1

o

T
~ ~ 1
(g = M1, £4) = Dig, (ipa, Ht)) = > (W, Le) + <HT+17 Zﬁt> + —®ria (i)

1 t=1 t=1

== (P (ig1) — 2¢(IMi41))

t=1
Term I
1 T
== (Prp1([ig1) — 4(IMig), @)
n t=1
Term II

where the last inequality follows from the fact that:
1 1
HT+1;Z£t + ‘I)T+1(HT+1) *,Zﬁt + (I)T+1(H )-
t=1 t=1
Boundary of Term I:

Next, we bound Term I. We relax the constraint IT € RIS/l and get the following inequality:

<Ht - Ht+172t> - Dl(b, (Ht+1,Ht) S max {<Ht - H,Zt> - Dl@f (H,Ht)}
no MerRUSIADK nor

Next, we define the optimal value vector ﬁt as follows:
I, == argmax {"7<Ht — 1L, L;) - Diqy(H’Ht)} :
Lo,

Here, we need to remark that the condition ﬁt+1 ¢ {I1, : m € C,} may happen.
We begin by analyzing the optimal condition of the update, i.e.

9 N
o (n<Ht ~ 1L, L) — De, (I Ht)) —0.

We compute the derivative of the Bregman divergence:
0

o 0 (@ (I1) — @4(I1;) — (IT = TI;, V@4 (I13))) = VO(II) — VP (I1y).

i Do T[T =

Therefore, it holds that R
) V(I)t(Ht) = —7’]£t

P, (II
Using the identity V®,(II) = (II, log 1.? ) =log 1.% + 1,, we can obtain that:

V&, (I1,) — VO,(IT;) = log Bt = —nL;.

Above, we can get the expression of ﬁt, ie.,

I, = II; - exp(—nLy).

15
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Next, substituting the definition of ®,, we analyze the Bregman divergence.
Dg, (IL|| Iy) = ®4(I1) — @¢(I1;) — (1L — II;, VO (L))
= (I, log IT) — (I}, log IT;) — (IT — I, log IT; + 1)
I
:<H,log>—H+Ht. ®)
11y

We now continue the regret analysis by bounding the inner product term. Using the optimality of I,

we upper bound the above expression by:
0y — yy1, £y) — Do, (g1, 1) < (I, — 1y, L) — D, (L, I1,)
= (I, — T, L) — @ (T1) + B4 (I1,) — (I, — I, VO, (I1,))
(I, — II;, =V, (IL,)) — D, (I1,) + @, (I1,)
®

(@)

= Dg, (I1;,T1;),

where step (a) uses the fact that
VO, (I1;) — VO (IT,) = nly; I = I, exp(—nLy).

‘We now bound the term I from Eq. [/| Recall that:
-~ ét (T) . H-,—:T
II -L =1I . < L <K.
t(7) - Le(7) =1L (7) () S mex t(7) <

Using this, the cumulative Bregman divergence is bounded as:
T ~
~ 11, ~
ZD@(Hth) = <Ht»10g > =1L + 11,
t
=TI, (nEt + exp(—nLy) — 1)

T T
=D IDRICREVACLES S D) DEErICH

t=1
t=1r1€eC,

t=11€eC,
where the first inequality comes from the fact that y + e ¥ — 1 < 42 for all y > —1 and nEAt >—1
We now invoke a concentration result. Let a;(7) = 2y, combined with Lemma with probability
1
= . 10
(5) (10)

at least 1 — 4, we have:
T o~
S 2y (Lilr) — Li(7)) < log

t=1r1€eC,

With probability at least 1 — §, combining these gives

T T
Y Da,(IL, 1) < Ky > 0 Ly(r)
= ; T7€Cr ., i
=KY Y - Lon) +Kn*Y Y (Lulr) = Li(7)
t=1reC, t=1reC,
a T O
< KY Y 0’ Lilr)+ Kn*- osll/e) g;/é)
log(1/9)
2y

t=1T1€C,
K-1
(H Py(sH! Isk,ak)> ly(T) + K -
k=0

T
)
5Sp o
t=1r1€C,
log(1/6
§K2T772|A‘K+K,’72 Ogé / )7
Y

16



Under review as a conference paper at ICLR 2026

where (a) follows from the equation|10jand (b) follows from the definition of £ in equation

According to the above equation and equation[9] with probability at least 1 — &, we obtain the regret
bound:

log(1/9)

3y <<Ht ~Tly1, L) — Dig, (Hm,nt)) < KTy |AK + K- o

t=1
Boundary of Term I:

We consider the Term II: ZZ;I (®¢(Ty41) — ®y41(Ii41)) in Eq. [7} From the definition of regular-
izer term in equation 3] it holds that

D (Iyg1) — @4 (yyq) = 0.
Therefore, Term II = 0.

Boundary of the Regularizer Terms:

We next bound (11 for any II and ¢ by a constant, where IT € {IL : 7 is %—greedy policy class}.
Then, it holds that

K
1
1) =) "TI(7)log (TI(7)) < ZH )log <) = Klog(|S||A|T) - [S|¥.
. |SIIAIT
Therefore, with probability at least 1 — §, the error reg term can be bounded as:
T
~ log(1/d 1
S~ 1L, £ < i TAP i 20 4 s Rk og(SIAIT.
t=1

Above all, combining all error 1 bound in equation[5] error 2 in equation[6] and error reg in equation[TT]
we obtain that with probability at least 1 — 4:

T
>Vt — Vitr) <250 e (s <

log(1/6
+77K2T|A|K+Kn-og§7/)

1
+5\SIKKlog<ISHAIT) (12)

Bounding deviation in expected regret. We also observe that the difference in expected regret
from replacing 7* with 7 is bounded as:

> Vi) — Vi Z ) < KT.
t=1 t=1

Now setting 0 = =, we bound the expected regret:

1w
T
Z )

log T

<K+

logT 1
+yKT(IS||ANK + nT|AKK? + Kn - Ogy

+ 5|$|KK1og(|5|\A|T).

Optimizing the learning rate n and sampling rate . Set the parameters as follows:

1S\ /2 1 1
:<AI) osSIA) T T=  siayvE

Then the regret becomes:

K
Regy <K + (IS]|A)"/* VT 1og T + (IS||A) "> VT

+ K2 (IS|[ADS 1og (IS Al) + K (|SIIANS"? - VT log T + (IS||A)*/ - VT log T
o ((sI14)"**VT) .
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B.3 DISCUSSION: ALTERNATIVE REGULARIZATION VIA KL AND MIRROR DESCENT.

We briefly discuss the effect of switching the regularizer. In particular, one can replace our default
regularization with a Kullback—Leibler (KL) term and perform mirror descent instead of AD-FTRL
algorithm. Concretely, given the similar step, the KL-regularized mirror step is defined as:

T = argmax {m{ge, ) — Prcr (T TL) },

TECH

where regularization term ®xy,(I1||T1;) plays the role of a KL-type divergence,

i1 (L) := Pxr, (A |[T1;) = <Hw710g (Iéw)> :

t

Although it resembles the KL divergence, it is only KL-like since II is an occupancy measure rather
than a normalized distribution.

Remark 4. This formulation can be viewed as mirror descent with the negative entropy of occupancy
measures as the mirror map, where @1, serves as the corresponding Bregman divergence. Intuitively,
it balances exploitation of the gradient direction g; with proximity to the previous iterate 11, in the KL
geometry. From a theoretical standpoint, the analysis follows the same high-level structure as in our
main framework (via one-step potential inequalities and telescoping arguments). However, the non-
normalization of I1; introduces additional technical difficulties, making the analysis considerably
more involved. These challenges are addressed in detail in the above proof.

Algorithm 2 Adversarial Dynamics Mirror Descent (AD-MD) algorithm
1: Initialize: 7y, Yo, Il ,
2: fort=0,1,...,7T—1do
3: Observe s9 ~ PP(-); Set hY = {s¥}

4 fork=0,...., K —1do
5 Take the action: af ~ m;(- | k)
6: Observe the loss £;(sF, af), and next state s¥,, ~ P,(- | s, al)
7: end for
8 Observe the loss ¢;(s)
— — K .

9: Getr, = {s9,a0, ...,s5 1 af ™ 5K}, 0, =305 bi(sF,al)

. . ~ j— ZTt
10: Update: L£; = AT e (b 1) []IT:TJTECT
11: Tp1 = argmingec, , ((Hmﬁt) + ﬁ@wl(ﬂﬂ))

12: end for

B.3.1 COMPUTATIONAL COST DISCUSSION

Here we discuss the computational cost of the algorithms. The major computational cost lies in the
Line 12 of Algorithm[IJand Line 11 of Algorithm[2] In Algorithm [T} the computational cost relies
in solving an optimization problem defined over a space of size (|S|[.A|)¥. This step dominates the
overall computational cost of the algorithm.

In the Algorithm[2] the Line 11 can be rewritten as the policy optimization (PO)-based method.

By applying the KKT conditions and noting that Et contains only one nonzero entry, we obtain the
following update:

g1 (aF 1P oc (0¥ |RF) exp(—miLy).
Hence, for all a, h, k, the policy can be iteratively updated as:
me(a¥|h*) exp(—melr, I({1", a*} € 7))
D acar me(alhF) exp(—nel I({h*, a} € 7))

g1 (a®|hF) =

Under this formulation, the computational cost is reduced from O((|S||A|)%) to O(|S||A|K).
Therefore, the proposed PO-based method offers a more efficient alternative.
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Figure 3: Tllustration of the MDP P, 7 = {s,a%0, 510 q10 . sK-1.0 K=1.01 The top row
shows the trajectory induced by a deterministic history-dependent policy my. The state transitions
in this trajectory occur with probability 1. Other branches model deviations and are included with
stochastic transitions (e.g., uniform distribution over next states when actions differ from those in the
trajectory). The loss is received only in the terminal states, i.e., {(G) =0 and ¢(B) =1, where
G denotes the ”good” state and B denotes the ’bad” state.

C LOWER BOUND ANALYSIS.

C.1 HARD MDPs DESIGN.

In this section, we provide the detailed Hard MDPs design process for further proof.

Let 7 be a history-dependent policy. We define the set of successful trajectories under 7 as I'(7) =
{7 : % = good € 7, I1,(7) # 0}. From Figure we observe that each trajectory 7 induces a
corresponding MDP with transition kernel P, i.e.

P, (s*1|s%, a®) = 1if {s*, a¥, s* 1} c 1,

PT(sk+1|sk, ak)

if ¥ € 7,a" ¢ T, Plas ¢ T;

SR
1
P, (s"1s®, o) = 5 if s* ¢ 7.

To construct the minimax regret lower bound, we design a sequence of adversarial transition kernels.
Given a deterministic history-dependent policy 7/, we define, for each trajectory 7 € T'(n’), a
corresponding transition kernel P, using the process illustrated in Figure 2] Then, for each episode
t € [T, the transition kernel P, is sampled uniformly from the set {P, : 7 € I'(7’)}. The loss
function is fixed and follows the structure defined in Figure[2] As a result, the MDP instance faced by
the algorithm is drawn from the class:

Mag € {(S, A, K AP} e 0) : P e {Pr : 7 € D(7%)}} .

In this construction, the hard MDPs are designed such that the policy 7’ is optimal for every MDP
(S, A, K, P, ?) in the sequence. Based on this hard instance, an optimal history-dependent policy
must select optimal actions using the observed trajectory history 2 ~1. For histories A/ ~! that are
prefixes of some 7 € I'(7*), choosing the correct action is critical. This reduces the problem to a
multi-armed bandit with |S|% arms—each corresponding to a possible history—yielding a regret

lower bound of order Q(+/|S|%¥T), which is lower than the target minimax optimal lower bound.

C.2 MOTIVATION

In this section, we introduce the proof sketch and motivation. At the beginning, we introduce theorems
concerning the regret and loss lower bound of parameter estimation.

Theorem C.1 (31.2 (Assouad’s lemma) (Polyanskiy & Wul 2025)). Assume that the loss function ¢
satisfies the a-triangle inequality

£(0o,61) < a (£(00,0) + £(61,0)) .
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Suppose © contains a subset ©' = {0, : b € {0,1}} indexed by the hypercube, such that £(0y, 0y) >
B - di(b,0) for all bt and some 3 > 0. Then

. L
f E > 1—- TV (Py,, P . 1
g El0.0) 2 30 (1= s, TV o) =

Theorem C.2 (Theorem 31.3 (Polyanskiy & Wul 2025)). Let d be a metric on ©. Fix an estimator 0.
ForanyT C © and € > 0,

P [d(e,é) > %} > C) +log2 (14)

=7 logM(T,d,e)’

where C(T) 2 sup I1(6; X) is the capacity of the channel from 0 to X with input space T, with the
supremum taken over all distributions (priors) onI'. Consequently,

. 5 €\ C’(T)+log2)
fsupEgld(0,0)] > s Y (1o e Tosc ) 15
s ald0.0] > sw (5) (1 o s (1)

In our work, we aim to provide the lower bound with order O((|S||.A|) = v/T'). For this tighter lower
bound, simple Fona’s Two points method is not enough. Therefore, we combine the above two
theorems to provide the regret lower bound.

C.2.1 DESIGN # AND 6,

Firstly, we parameterize the history-dependent deterministic policy g, here 6 € RUSIAD® - we
prove that there exists a one-to-one mapping from policy 7 to parameter 6, i.e. , for 7 € C, denote
by 0[] the 7 entry of the vector 6, then, the mapping from policy 7 to parameter vector 6 is:

K-1
Oc(r] = [ 7(a*n%), mo(a®IP*)=1( > 6, #0
k=0 {ak},hFCT
Based on the above definition, we define the parameter set © as follows:

O := {0 : 7y is a deterministic history dependent policy }

Next, we introduce the policy optimal trajectories set as follows:
['0)=T(mg), I(r)={r|L(r',7)#01 €C},
where
K—-1
I(r,7) = H m(a®| WM 1[{a"}, b C 7.

k=0

Remark: 1f the trajectory T € I'(my), then under our constructed hard MDPs M, the expected loss
of 7 is minimized. This implies that any sampled trajectory belonging to I'(7g) corresponds to an
optimal trajectory.

Next, denote trs = (5%, s', ..., s%) € SX the state trace. Then, we can find a one-to-one mapping

[|S|5] = Cyus = ®kl,{:1 Sk, for any number n € [|S|¥],
Tas(n) = trs, s.t. T (trs) = n,
where Cy is the state trace available set and function 7~ is the inverse function of Tgs.

Next, we introduce a function to find a corresponding trajectory, i.e.,
K-1
I (Tws(d),0) = 7, st ] me(a® | B¥) =1, Tu(d) C 7,
k=0
where a state trace trs C 7 indicates that all states in trs appear in the trajectory 7 in the same order.
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One transition kernel P is constructed based on the transition kernel generated by the trajectory
shown in the first row of Figure

Specifically, the set I'(mp) includes all |S|¥ deterministic trajectories that are consistent with the
policy 7g. Each such trajectory generates a distinct transition kernel.

Then, hard MDPs M are defined using these transition kernels, sampled uniformly from the set of
all kernels induced by I'(7g). Formally, the transition probability of My is given by:

T ~ Mg from I'(mg); P (s"T1 | s, a*) for k =0,1,..., K — 1

where P; is the transition kernel induced by trajectory 7, My is uniform distribution over I'(7).
Here, the transition kernel in one episode is assumed to be the same.

Remark 5. Here, we discuss the adversarial or disturbed nature of the MDP process: in each
episode, the MDP samples a transition kernel from a reliability set. The transition kernel remains
fixed throughout the episode but may change between episodes.

Remark 6. The hard MDP Mg has the following properties:

e mp € argmin, Vp_(7), here P, € My. Then, set Vo, (m) = Ep_opm, [Ve. (7)), mo €
arg ming Vi, (7).
o Vp,(mg) = 3 — eand Vpy,(mp) = 1 — .

Therefore, under the hard MDPs M, optimal history dependent policy is my. The sample complexity

analysis problem can be transferred to the following estimation process # — My — IT — 6. Here,
I' is the histories up to episode ¢ the Z! = {I'} is the set of possible histories up to episode ¢. The
algorithm tries to estimate the value of # from the sampled histories I7. However, the regret-bound
analysis is more challenging. The problem should be transferred to the following estimation iteration:

0 — (M, ét) — It — 9t+1. In general, the sample complexity lower bound analysis is fundamental
to the regret lower bound.

Therefore, let us review the Theorems [C.1]and [C.2] From these two theorems, we could see that it is

the first step to design a mapping from b to 6, in our work, where b € {0, 1}‘5|K. Since bisa0—1
vector, a general idea for designing a mapping is to set 6 as a baseline.

Then, we define a function to find the corresponding trajectory:
k—2
I(Tis(d), 0) = 7°, st (H mo(a" | hk)) o (AL (at) | RM ) =1,
k=0
where h* U {a*~1} C 7¢. Here, set the function A*(-) as follows:

k,i—1 .
k k1 k,|A* ko ki av i #1
A :{a yeees @ ! ‘}’ A (a Z)_{ak,IA’“7 =1
b)

Next consider any b € {0,1}I51° 8 € ©, d € [|S|¥]

g(da by = 0, 9) = F(Wrs(d)v 9)7 g(dv by = 179) = Fc(ﬂrs(d)a 9)

Set a gy as follows:
mor(aF | B*) = mg(a® | B¥), fork < K —1

_ _ 1, ifa""teg(d by, 0 B
T (af71 | RFTL) = {O othérwise ( ) where d = N (trs(h*~1))

Then, it holds that
99,1; = 0(my)

Define the parameters set: Og := {Gb’g |be {0, 1}‘S‘K} ; tp: uniform distribution over {0, 1}‘5|K.
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Above all, we design a set Mg = (Og, us). By revising Theorem C.1] the problem can be reduced to

estimating 6 from the set Og. Applying Theorem and we could obtain sample complexity
lower bound. However, establishing a regret lower bound requires further analysis, as discussed
earlier.

C.3 EPISODE-HISTORY ANALYSIS
Now, define the episode information I* = i = {r;, {;(7;)}, where ¢, is the total loss at step ¢. From
the Figure[3] the loss structure is defined as:
L(G) =0, {(B)=1.

That is, the loss distribution only depends on the trajectory 7, i.e.,

]P)(Et = - ‘ Tt) = P(ft = - ‘ it_17Tt),
meaning the loss at step ¢ depends only on 7.
Here, we define vf = it71 U {s0,a?,...,s"}, and use Algf( | vF) € A(A) to represent the

algorithm’s action at step k of round ¢. Here, Algt (- | vF) denotes the distribution over actions
induced by the algorithm. Then, the joint probability of observing a sequence of episode information

T under the transition kernel sequence (which is unknown for the estimator) P, ..., PT is:
T
P(IT =" | Py,...,P H (H AlgF(al | vF) - PF(sF4Y | 8 a )> Pty | )
T _
= (H Algf | Vt ) . Pt(Tt)Pt(gt ‘ Tt),
=1 \ k=0
where vF = it 1 U {s9,a?, ..., sF} and By(r) = [[o_,! PF(sF1 | sk, ab).

Now, take expectation over the randomness of the transition kernel sequence under prior My:

Py, (1" =i") =Ep,,..prom, [PAT =" | P1,..., Pr)]

T K-1
=Ep ... Pramy lH (H Algj (a | Vf)) Bi(mi) Pty | Tt)]

t=1 \ k=0
T [K-1 T
_H<HAlgf(a?|Vf)>']EP1 ..... Pr~Mgy H () Pe( £t|7—t)‘|~
t=1 \ k=0 t=1
term 1
Now consider the inner expectation term:
T
term [ =Ep,  prory |Epr PreoM, Hﬁt(Tt)Pt(zt | 7) | P1,...,Pr
t=1
T-1
=Ep,,..Pr_1~M, H Py(r))Py(Cy | 7¢) - Eppp, [Pr(rr) Pr(rr | TT)]‘| : (16)
t=1

Lemma C.3. Define the joint distribution
Prty (1) i= Epanty |[P(7)] and Pag, (7,0) i= Epona, [P(O)P(E]7)]
where P(1) = [[r_y P(s*t1 | s%,a), 5%, a¥ s"1 e 7.

Then, it holds that

1
PMe (T) - W’
i 1 (1_ if T € T(mp)
Po(ri—1y—mF G
Mo (T ) {SllK . %7 otherwise.
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Recall the expression for term I in Eq. [T6}

T
Term I = EPl,»-wPTNMe H Pt(Tt)Pt(gt | Tt)]
t=1
T ~ ~
=Ep,...prety | | [ Pe(r) Pi(le | 72) | Py (7, 1)
t=1
T ~
.= H Mg(’rt,Et)'
t=1

We then obtain the full marginal probability:
T /K-1 )
=T T1 st 1)) Pusc
t=1 \ k=0

]PMG (IT

where

SI¥
1

S|K

1
. (3+¢€), 7 €l(m),
PMS(Tt,ftZO)Z{ 21

2

otherwise.

C.4 REGRET ANALYSIS

Firstly, given a fixed I7 = iT, the regret is defined as:

T T
Reg (17 =", My) = Zét - ZVt(W )
t=1 =

Now consider the expected regret:

Reg(My) = E [Reg (I" = i", My)]

DD Erresy, M=) =0)] - (3 —)T—

7€l (mg) t=1

(@) o

= Y Errepy, lZH(TtZT)]P’Me(ftzl =7 = (3 —T
TET (79) t=1

7€l ()

T
Z Errpp, [Z Tt—T‘| E-9-G-9T

T
Z EITNPMQ lz t—T‘| 5
T¢I (7o) t=1
T
=l —¢ Z ]EITNPMH [Z Tt—T‘| ,
7€l (mg) t=1

where (a) follows from the fact that if 7, € I'(mp), then

P(ly=1|7)=P,=0i""7)=1

276
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otherwise,
]P(gt = 1 ‘ Tt) = ]P)(gt = 0 | Z‘til,’rt) = %

Next, define N, = N, (IT) := 23:1 I(m = 7). Then, it holds that:

RegMe S € T - Z EITN]PMG [NT(IT)}

7€l (mg)

C.5 REGRET LOWER BOUND PROOF: O(|S|% v/T).

Consider a fixed 4, b € {0, 1}'5‘K, and define
05 :={0,,0: b€ {0,1}I5I"}

_ 1
DI

where (b =b)
Then, it holds that
max Reg(My) > E,, [Reg(/\/l(@bg))]

=E,, [T—¢ > Ertnppngo, 5y Nr(7)]

TEF(Tng é)

=l — €k, Z EITNPM(%»@) [NT(IT)]

Tel(mo, 5)

Next, let us review the definition. The function to find the corresponding trajectory is defined as:

K—1
[(Tws(d),0) = 7, st H m(a’C | hk) =1, Tw(d) Cr,
k=0

k—2
I°(Tws(d), 0) = 7¢,  sit. (H mo(a” | h’“>> -mo(AM M (af) [ R =1,
k=0

where h* U {a*~1} C 7¢. Here, the function A () is defined as follows:
) k,i—1 : 1
Ak — gkl gklAT AR (gkiy = ¢ , 1F
{a ) ,a }7 (CL ) CLk’|‘Ak‘, i=1

Next consider any b € {0, 115", 0 € ©, d € [|S|¥]

g(d,bg =0,0) :=T(Tys(d),0), g(d,bg=1,0):=T°Tus(d),0).

Then, we could get that:

S| ™
S Er (NI = S Epr [Ng(d’bd,g)} . (17)
7€l (7g) d=1
For any 0y, g(d, by, 0) € D(m, ,). If 7= g(d, ba,0), then HkK:_Ol mg(a® | h¥) = 1and h* C 7.

Since [{7 = g(d, by, 0) : d € [|S|*]}| = |S|*, and all such 7 C I, the set is well-defined.
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Apply Eq[T7to the last inequality, it holds that

méxxReg(./\/lg) > el — €k, Z ]E]TNPM(eng) N-(IT)]

TEF(ﬂ'eb é)

5|
=e|T- E#b Z E;r [Ng(d,bd’é)]
d=1

K
1 S|

=e|T - 5 Z (]Eub|bd:1[~/\/g(d,bd:1,§)] + Eub\bd:()['/\/g(d,bdzo,é)]) 5
d=1

where we used that py(bg = 0) = (g = 1) = 1.

Define the joint distribution of histories I under conditional marginal:

P(IT | by =1) :=E,, {IP(IT | Mo, ;b4 = 1, é)} .

Then, it holds that

|S|¥
€
mgXReg(Me) el - Z (EP(Ide:Lé) Wy ba=1,8) + Epr7b,=0,8) [Ng(d,bd:o,é)]) :
d=1
Next, define
Noa,g) = Nyapa=1,8) + Ny(a,pa=0,5)-
Set event:

2T
s~ {Noan < 5 |

Lemma C.4 (Bounding Visit Counts and Concentration). IfT > 2|S|% /T log T, then 1 —P(Aq) <
% for any algorithm.

Next, consider the following upper bound term that arises in the regret lower bound derivation.

Is|*
3 Z Ep(r71ba=1) Ny (d,pa=1,8)] T Er71ba=0) [Ny (d,b4=0,8)]-
d=1

This term quantifies the expected number of visits to the constructed trajectories under both possible
values of the binary indicator by. We decompose this using the indicator event Ay := {N, 9(d.0)
2T 1.

S|K S

B
% Z EP(1T|bd:1)[Ng(d,bd:m)] + Ep(17p,=0) [Ng(d,bd:o,é)]
d=1

S|

= 1 3 [Ertrmppamn Wotabumr.0)1(A2)] + Eo(r7 1,20 Wyas,—0.8)1(A)]
d=1

+ 3 [EP(IT\bdzl)[Ng(d,bdzl,é)H(A?z)] + Ep(17p,=0) [Ng(d,bdzo,é)H(A?l)]} :
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‘We now bound the second term. Since the number of visits N < T deterministically and the event
complement probability P(45) < 5 by Lemma L we get:

|S|%
1 [E]P’(IT\bdzl) Ny (a,ba=1,0)1(A)] + Ep(r7p,—0) [Ng(d,bd=o,é)H(A§)]}
d=1
|S‘K |S|K
<337 (Betrming=n Woanamt H(AD] + Eerrin, -0 Wytasumop l(Aa)] ) + -
d=1

Now, on the event A,, we know:
2T 2T

Ny@pa=1.8) < S|K Ny ba=0.9) < |S|K”
To control the average visit count under the mixture distribution P(I7 | 8), we use:

PI" | 0) = 3P(IT | by =1,0) + SP(I" | by = 0,0), where g(d,bg = 0,0) = trs.

Thus, the total expectation becomes:
Ep(r71b,=1) Ny (d,ba=1,8)] T BT 16,=0) Ny (4, ba=0,8)]
< Eprrjpa=1) Ny (a,be=1,0)1(Ad)] + Ep(r7 5,1y Ny (d,pu=0,0)1(AG)]
+ Ep(1716,=0)[Ny(d,ba=0,0)L(Ad)] + Ep(17 5,20y Ny (d,pu=0,)L(AG)]-

We now apply the fact that E[I(A5)] < 7z and bound the remaining terms as follows:

]EIP’(ITIbdzl) [Nq(d,bdzl,é)] + EP(IT\bd:O) [Ng(d,bdzo,é)]
< Eprm bu=1)Ny(d pa=1,6)L(A)]] + Ep171,=0)Ny(d,pa=0,6)1(Aa)] + 7=

Next, using the upper bound NV, (4, -1,9)1(Aa) < ‘—l we have:

IE113>(IT|bd:1) [Nq(dﬁd:lﬁ)] + EP(1T|bd:0) [Nq(d,bd:o,é)]
< Bp(rrbg=1) Ny(dpa=1,61(A2)] + Ep(r715,—0) Ny (a,pa=0,0) 1(Ad)] + 7=

2T |3|K
< WEIP(IT‘IM:I) |:2T’Ng(d,bd—1,0_)H(Ad):|

S|

o Ep P(IT[bg=0) |: 2T Nq(d7bd_07§)H(Ad):| + %

2T
TSI

Finally, by Pinsker’s inequality |p — ¢|> < KL(p||q) and the fact Ny(apa=1,01(Aa) < S, we
conclude:

2T S|K S|K
5L (EP(Ide—l) |:|Z|11Nq(d,bd—l79)H(Ad):| — Ep(rri9) |:|2TNq(d7bd—1,9)H(Ad):|>
< o V/AKLEUT [ by = BT [9)).
Similarly, it holds that
2T S|K S|K
SIF <EP(Ide—O) |:|2r|A,ng(d,de,0)]I(Ad):| — Ep(iri9) |:|2TNg(d,bd0,6)H(Ad):|>

< 5 VAL [ by = 0[BT [0)).
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Above all, we could conclude that

|S|*
3 Z (E]P’(IT|bd ) WNg(d,pa=1,8) T Ep7 5,20 [Ng(d,bdzo,é)D

Bl
S K
< % (EP(1T|bd:1)[Ng(d,bd:Lé)]I(Ad)] + Ep(r7)p,=0) [Ng(d,bd:o,é)H(Ad)]) + ‘T‘z
d=1
5% o
<3 Ep(;7)9) [Ng(d,bdzl,é)H(Ad) + Ny(dpa= oa)H(Ad)} Ti‘z
d=1
EN 5%
+ > VKLU | B)PUT | by = 1)) + 2F > VKL(B(IT | )[BT | by = 0))
SN S|
< 3Beqrria) | D Ny(@bum10) + Ny(avam00) | + 73
d=1

S
+ 15k Z VKLU | )[BT | by = 1)) +/KLEUT | )[BT | by = 0))

IS
S|¥ 2T
2 | | \S[|K Z (term I + term II).

Next, consider the term [ and term I, we introduce the following lemma:

Lemma C.5.

KL(P(I™ | 0)[P(IT | ba = 1,0)) = Esrri) [Ny(apumr.0) + Nyanumos) (€ + O(e1),

(BT | B)[PUT | ba = 0,0)) = Ezrrig) [Nyana—1.8) + Nytarumos)] (€2 + O(e")).

Next, consider the following upper bound term that arises in the regret lower bound derivation:

[SI®
5 Z Ep(r71ba=1) Ny (d,00=1,8)] T Er7 1b2=0) [Ny (d,p4=0,8)]- (18)

Therefore, applying Lemma [C.3]
s

5 Z (E]P’(IT\bd 1 WNy(abe=1.8)] + Eprr)p,— 0)[Ng(d,bd:o,9’)])

IS\K
S%_F‘T‘? "‘\\g{{f \/]EIF’IT|0 g(d,bg= 19)+N (d,bg= 09)]

According to the fact that Ny 1,1 9) + Ny(4p,=0,8) < T:

3 (E P(I7ba=1) Ny(d,ba=1,6)] T Er(17|p4=0) [Ng(d,bd:o,a‘)])

1
T 2T K T S|¥ 213/
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Next, the regret lower bound becomes:

|S|*
max Regp(Mg) > e (T -3 (EP(1T|bd=1)[Ng(d,bd:mﬂ + Ep(r7)p,—0) [Ng(d,bdzo,é)D

T _ [S|® _ Verd?
Eﬁ(Tfi‘“ﬁffjﬂwf'

e e 1SIK _ T IS|% T
Lete = T m,thenlf 7 < §,>the T e < £

K/2,/T
m k2o (p_ T T 1y < SITVT
ériXRegT(M")Z \/32|8| T (T-3-§-%)< 322

C.6 PROOF OF THEOREM [5.2}

To add the | A|%/? term, we first introduce the following lemma:
Lemma C.6. Let 0y = 0, 0, = ¢, and let X = {x1,...,2n}.
Define the probability as follows:

Py(XN) = ()Y,

N
P(XM)y =G+ G-V 5, s= Za:i, z; ~ Bern(% + 0;¢).
i=1

Further, it holds that,

1 2M —1
Ny _ N N
PMO(J" ):Po(l‘ )a PM1(£ ):Mpl(x )+ M PO(aj )

Then the KL divergence can be bounded as follows:

Ne? Neé?

€
KL(Put|Paty) < 535, KL(Par|[Pag,) <

Next, define the policy class:
V() :={m : 0 € O, 5},
Then, find a policy class cover:
Q0) == {¥(8;) Ne . such that:

j=0

(D) [2(0)] = |AJF1|Al/2 = Ny
(2) Any 01,05 € (:)b satisfy \11(91) n ‘11(92) = Jor \11(91) = \11(92);
(3) ¥(0) € Q(6).

Define the joint parameters set as:

Oy = U O ¢ €N st existsamap o > 8, € ().
0eQ(0)

For any b € {0, 1}|S‘K, to simplex, set 0,5, = 6y, 5_. Then, the parameters set © is defined as:

0= {0 |9 €N, e {0,117},
Next, /1y, ,, is the uniform distribution over [N,)] x {0, 1}IS b
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Then, it holds that

faﬂeagRegT(Me) > Eg, o~ [ReEr (M, )] -

Then, the regret satisfies the following equation:

RegT(Mﬁmp) =E [RegT(ITv M9b,w)]

T
= Y Eln=7t=1-(3-9T
)

t=1rel(7

=e|T - Z E[N;]

Ter(ﬂ'gb’w)

S|

=e|T— Z E [Nq(d,bdﬂb,w)]
d=1

Next, we take the expectation of regret bound, and it holds that

Eeb,w"’#b,w [RegT (Meb,zp )}

N,
1 »
= N Z Epr [RegT(Meb,w)]

¢ w1
1 Ne [SI*
- N, D By [ [T B,y [No@poon)]
? =1 d=1
1 Is|* | Ne
- (1 o dz—:l <Nw ; (Eprrini=ro,.0) Wottbi=t.000)]

+ Ep(17)164=0,05 ) [No(d,0a=0,05.)] ))) :

Next, 119, uniform distribution over [N,,] x {0, 1}
Then, it holds that
I;laécRegT(Mg) > Ko, » [Regp (Mo, )] -
E

Further, we can rewrite the regret as:

Reg, (Mg, ) =E [RegT(IT, Mo, )]

=> Y Elln=rbt=1-(5+T

t=1 TGFgw

=e|T- Z E[N;]

S| *

= € T— Z]E[Ng(d7 bdaab,w)]
d=1
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Next, to convenience, we rewrite Ny (d, ba, 0p.) = Ny(d, ba, 6y). Then, it holds that

N,
]Eew,lwue,b [RCgT(Mew,b)] = ]\2; Z Epp, [RegT(Mew,b)]
p=1
1 Ny, |S‘K
=% ZEbNHb e|lT - ZEPMa . N, (d, b4, 0)]
¥ yp=1 d=1
1 ISI*
=er 1 of 2= \ N, leEIP(Iﬂbd 1,0,) Ny (d, bg = 1,0,)]

+Ep(1715,=0,0,) [N (d,ba =0,0y)])) -

Set:
N, 1 e 1
Z (-1 bg=1,04) = N > P(| 9¢)+EP(- | bg=1,05) (resp. bd = 0).
o=1 P=1
Then, the regret lower bound can be bounded as:
mgmeegT(Mg)
Is|* N. No
>l [1- = Z Z Z Ep(1ba=1,00) LN, (ba=1,0,)] Z Ep10,)[In; (d,ba=1,0,)]
d 1 4p=1 ® =1 ¥ e
IS|I™ N
>l |1 - — Z Z q(-|ba=1,04) H/\/ (bg=1 9¢)] + Ege(-|ba=0 911))[]@\/ (ba=0 01/))])
d 1 ¢=1

term I

Term I Estimate. From the Lemma[C.4]and proof in the previous section, we could bound:
Term I <Eq[Ly, (a,0,=1,0,) + In, (d,0a=0,0,)]

- éﬁ( <\/ KL(qllq(- | d,bg =1,04)) + \/;KL(q”q(. | d, by = 0’91&))> N

1
ﬁ.

Then summing over all d, v

|SI¥ N. |SI% N, |S\KN
>Y Temi<z Z Z Iy @ bu=r00) + Iy @bam0.00)) | + =2
d=1 =1 d=1 =1

SI*N, T
ST+ T +W.N \/E ]IN(dbd 101/,)+]IN(dbd Oew)] \/T

Next, we define the joint distribution as follows:

K .
max Regr(Mp) > €I’ (1 b <T+ |S]® N, " el -VT >>
€

27 NI

_erf1_ |S|KN¢ 3 VT
228 (/IS[EN, )

_ V2SIEN, _ (2ISIK[SIK
C="wmT T T

/ V2 (IS[AN=ET
I;leagRegT(Mg) >\ /ISIEN,T - 5 (5—%—1) > T

30

Here, set

,if T > (|S||A])¥ log T, then
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If T < 4(|S||A]) log T, we frozen some states, i.e. Ns = [ [1—; |S*|active> and 2Ns|A[K log T >
T > 4Ns|A|¥ log T. Then, with similar proof process,

VNSIAIET _ 2Ns|AK T
Reg, (M) > > > .
maxRegr(Mo) 2 =158 2 15810g T = 12810g> T

The proof completed.

D PROOF OF LEMMAS

Proof of Lemma|B.3| Here, we provide the proof of Lemma[B.3] We set 8 := Ay and A = 2. Then,
we do error decomposition as follows:

B (1)
Et(T) _ gt(T) ) HT:Tt < Kt(T) : HT:Tt < HT:‘I} . I, (1) .
(7)) +v = () +79b(r) = B 14 84D

2114 (7)

From the inequality Tzz/z <log(1 + z) for all z > 0, we have:

-~ l o ﬁ . gt(T) . HT:‘I}

Then, to simplex the presentation, we rewrite E; := E., (p, r,). Combining with the inequality
z11og(1 + 2z2) <log ((1 4 z122)) for z; < 1, we can get:

exp <T€CT at[(;) log (1 LB ftl(ITt)(T-)HT—Tt>>]

0 (1 L) étti?) e, )]

T

E¢

exp (Z at(T)Et(T)>] <E,

T€Cr

(a)
< E;

(_b) Qg (T) . Et (T) . ]IT:Tt
= E |1+ T%C:T ) 1
_ (1) - ly(7) - Lrery
=1+E T;T T0,(7) ]
©y + Z oy (7) Lo (T)Ly—r,
T7€Cr
< exp (Z at(T)ct(T)> : (19)
T€Cr

where (a) from the constrict that ‘”2—(77) < 1 and (b) follows from the fact that

]IT’:Tt]IT:Tt = 0; HT:Tt]IT:Tt = ]I‘r:‘r,y

The (c) follows from the Lemma[B.1]
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Then, we can further get

P (ZZ > aur) (Lulr) -

where (a) follows from the Eq.

Therefore, we can get that
3 (
t=1reC,

Proof completed here.

~ Ly(7)) < log ((15)

Proof of Lemma[B.4] For any two policy w, 7’ € Cr and any 7 € C;, it holds that

K-1
= H m(a® | BF), 11
k=0

K-1
= H 7' (a® | hF).
k=0

For [T, = AIL; + (1 — A)II,/, where A € [0, 1], we can get the 7 from II.. For convenience, we set

T(h*, a*) = [T5_ 7(af|h?) and TI(A*) = 3, TI(h*, a*
the value of TI(h*, a*) and TI(h*) easily by the iteration IT1(h*, a*
T() = 3,0 TI(hE, o).

). Clearly, given the vector II, we can get

) = IL(h**+1) Rk a* C h**! and

Next, set 7 is the policy corresponding to the vector I, we next prove that 7(a*|h¥F) =

AL, (h*,a®)+(1=N)1 ./ (h*,a*
NI, (hRF)+(1—MIL,/ (hF)

Firstly, it holds that

) and 7 (a¥|h*) € C,.

o AL (B¥, a¥) 4 (1 — MLy (h*, a¥)
;W(aﬂhk) — %: ML (%) + (1 — MLy (hF)
AZak H (h ak) + ( )Zak H""/(hk’ak)
I (hF) + (1 = NIy (hF)
AL (R ) (1= I (%) _
T AL (hF) 4 (1 — MLy (hE) —

Therefore, the 7 is a policy.

Moreover, since policy 7 and 7/ are e-greedy policy, i.e. 7(a¥|h*),

"(a|hk) > ¢, it holds that

e AL (BF,aR) + (1 = VL (hF, aF) I (h*, a*) e (R, a®)
et = Z N () + (L= ) 2™ T ) )
= min{m(a®|h*), 7 (a*|h*)} > e

Therefore, the 7 is an e-greedy policy. Above all, the policy @ C C,.
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Besides, we have that TI(R*~1, a*) = TI(R¥) for {h*~1,a*} C h*. Then, if {h* a*} C 7 for
k=0,...,K —1,7 € C,, we can get
Ihl iy = T el 0 + (1= VL (1% )

AL (hF) + (1 — ALy (hF)

k=0 k=0

— ()\Hﬂ(ho aO) + (1 . k) (1 — )\)Hﬂ/(hk,ak)

]-_-[ AL, h’c 1 a’f D+ (1= NI (hF=1, ak—1)
= (A (K51 a® N + (1 - )\)Hﬂ/(hK 1,aK 1) = AL (1) + (1 — ML (7).

Policy 7 is the policy corresponding to the vector II.

Above all, proof completed here. O

Lemma D.1. Define the averaged distribution

P, (1) := Epm, [ﬁ’(r)} and Py, (1,7) := Epp, | P(T)P(r | 7')} ,

where P(1) = f ! P(sktt | sk ak), sk ak, sk e T
Then,

~ 1

P, (1) = W7

Pp,(r,r=1) = {‘{lK(;JFG), if T € I'(mp)

1 1 i
SLEE otherwise.

Proof of Lemma|D.1} Next, consider the hard MDPs described in the figure/definition.
If 7/ € T'(mp), then

1
PM9 |K Z Pr( |S‘K’
7' €l (mg)

- 1 1
PMB(T7T:1):|‘S|I{(2+€>.

Define the set 'K ~1(7y), i.e
K (mp) & {TI H m(a® | h¥) = 1},

K—-2
=1y £ {T: I mo(a® | B¥) =1, m(a"—1 | RF7Y) = o},

k=0

k—1 K-1
I*(m) & {T: [ mota® | 8¥) =1, T] mo(@®" | n571) = o}
k=0 k=0

Remark 7. A trajectory in this set means: at the K-th step, the action is not optimal.
If trajectory 7/ € I'5~1(my), then

Priy(7) = ﬁ Z( )Pm
T T
| ‘K Z T+, hK_1CTal’ldhK_1CT/)
T'€l(mg)
1 |S|-1 1
CSIE ISI-1 T fSIK
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Here, the event {7’ # 7, A% ~1 C 7, hE~1 C 7} indicates that the current trajectory is consistent
with the past optimal actions except the final step.

We now evaluate the probability of a suboptimal trajectory 7’ ¢ I'(y) under the averaged distribution.

PMe |S‘K Z

TET (7g)
1 (Sl-pEE
SIE (|3|—1)K_’“_|5\K'

The individual term inside the sum is

1

P () = e

-1(7' is available in P, ),

where availability means the trajectory is reachable under P;.

The total number of such trajectories satisfies

> I(r is available in P;) = (|S] — 1)%~*
TED ()

Thus, the expected joint distribution for a suboptimal trajectory is

Pagy () = e and Pr, (ry7 = 1) = 2|;‘K if 7 ¢ D(mo).

IS\K

Above all, the proof ends here. O

Proof of Lemma[C4). Firstly, it holds that given any 17,
) T T
Ny(d,0) = Zﬂnzg(d,bd:Lé) + Z]In:g(d,bdzo,é)-
t=1 t=1

From the definition of g(d, b4, #), both forms are instances of I'(7s(d), 6).
Set

Nis := Z]I(trs(rt) = trs).

t=1
‘We observe that
{r:7=9(d,bg,0)} C {7 :trs(7) = trs(d)}.

Therefore, we need to prove that
P(Nis > (5(x) < 75, forT > 2|S|%\/TlogT.

Next, we prove:

(1) ]P)(-/\[lrsw/\/trs’) = P(MrsaMrs’), i-e~9 trs i.i.d.
(2) P(trs(r) = trs) = “S%
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We compute:

T
ENu] =E [ZH (trs(m) trs)}

t=1

I
M=

E [I(trs(r:) = trs)]

o~
S

1

=> > Prrm, (71)

t=1 1, €C, trs(1¢)=trs

> (HAlg | o) )m )

ake Ak

. T
]P S(Tt):W.

MH ITM’%

~+~
Il
_

Thus, Ny ~ Binomial(ﬁ, T). Therefore,

Var(Niw) =T (W) (1 - \SL") S SER

Using Bernstein or Chernoff bounds,

( trs — W > W) <P (Nus |5\TK> < exp <_|STK : :1))> <exp (—3(logT))
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