
Under review as a conference paper at ICLR 2023

DISTRIBUTION AWARE METRICS FOR CONDITIONAL
NATURAL LANGUAGE GENERATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Traditional automated metrics for evaluating conditional natural language gen-
eration use pairwise comparisons between a single generated text and the best-
matching gold-standard ground truth text. When multiple ground truths are avail-
able, scores are aggregated using an average or max operation across references.
While this approach works well when diversity in the ground truth data (i.e. dis-
persion of the distribution of conditional texts) can be ascribed to noise, such as
in automated speech recognition, it does not allow for robust evaluation in the
case where diversity in the ground truths represents signal for the model. In this
work we argue that existing metrics are not appropriate for domains such as visual
description or summarization where ground truths are semantically diverse, and
where the diversity in those captions captures useful additional information about
the context. We propose a novel paradigm for multi-candidate evaluation of con-
ditional language generation models, and a new family of meta-metrics built on
top of existing pairwise metrics that compare the distributions of reference and
model-generated caption sets using small sample sets of each. We demonstrate
the utility of our approach with a case study in visual description: where we show
that existing models optimize for single-description quality over diversity, and
gain some insights into how sampling methods and temperature impact description
quality and diversity.

1 INTRODUCTION

Recent models for conditional language generation, particularly in the field of visual description,
have shown dramatic improvements in both fluency and the ability to ground generated language in
context (Liu et al., 2021; Zhou et al., 2020; Mokady et al., 2021; Chen et al., 2018). Standard metrics
for these tasks such as BLEU, ROUGE, METEOR, and CIDEr, compare a generated text with a
reference set of texts and compute some measure of quality for the generated text. By construction of
these metrics, a model will achieve the best performance by generating a single high-scoring text. In
contrast, it has been widely observed that large language models such as GPT-3 (Brown et al., 2020)
or LAMDA (Thoppilan et al., 2022) generate the most realistic texts at temperatures close to one,
where the set of potential texts generated is often very diverse. More significantly, if we look at an
example of an image from MS-COCO and its set of reference captions (Figure 1), we notice that each
(human-generated) reference contains a unique subset of the overall information in the image:

“A woman in a red robe is sitting at a dining table.”
“A woman in a red flowered shawl sits at a table while a man wearing jeans is in the kitchen looking at her.”
“A person sits at a table and another person stands in the kitchen.”
“A woman is sitting at a table wearing a robe while a man is cooking.”
“Man and woman in a kitchen looking in the same direction.”

Important features like the red robe, the man, the gaze of the two people etc, are mentioned only in
one or a few captions. Metrics that encourage generating information from only one of these captions
will generally fail to capture much of the important detail in the image. This holds for more than
just image description. For many conditional language generation tasks such as video captioning,
abstractive summarization, translation, and open-ended question-answering, it is often beneficial to
be able to sample from a diverse distribution of generated outputs.
If we compute a caption from a state-of-the-art model (Zhou et al., 2020) we get:

”A woman sitting in a kitchen next to a man.”
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Figure 1: Samples from these two models achieve similar BLEU scores, however, the samples from
VLP lie near a center of the distribution, and fail to capture the dispersion of natural language in the
ground truths, while the samples from an ideal model better match the ground truth distribution. In
this work, we introduce metrics which better measure deviations between samples from candidate
and reference distributions, compared to single-sample pairwise metrics.

In this description, we see that only information common to most or all of the reference captions is
preserved. This is intuitive, since including more information runs the risk that no reference caption
contains that information, leading to a low score. Note that this caption may not actually be the
most likely (highest expected similarity to a reference caption), because e.g. the BLEU score also
includes a term encouraging longer texts. It seems the designers of these metrics are already aware
that direct use of shortest distance to a reference caption favors generated captions which are even
shorter and more impoverished. However, the (log-) text length heuristic in standard metrics is a poor
proxy for actual diversity. Instead of generating a variety of captions, taking 10 samples from the
state-of-the-art model, yields only 10 repetitions of the above caption.
Thus, we encounter an issue in the evaluation of conditional text generation models from multiple
sampled texts. When several ground truths are available, typically the metric score is based on the
maximum score with some ground truth. This leads to an issue, shown earlier, where the model is
encouraged to produce a text with the lowest expected distance (max pairwise score for a particular
n-gram as in BLEU) to a reference text, i.e. near a strong mode in the training text distribution.
Changing the metric aggregation method, say from max score over reference examples to average or
sum (ROUGE), does not change the situation substantially. The model will still be encouraged to
produce a single output with high average scores to nearby references, which will be maximized at a
smoothed mode in the training text distribution. Failure modes of other methods of aggregation are
discussed in both Caglayan et al. (2020) and Yeh et al. (2021), including issues with multi-modal
reference distributions and single outlier texts.
Such an over-reliance on simple aggregations for multiple candidates and references has, over time,
compounded into several issues: The first, discussed further in section 3, is that, as observed in
visual description by Chan et al. (2022) and dialog generation by Caglayan et al. (2020), human
performance on datasets under existing metrics is often lower than model performance, even though
human-generated captions tend to receive higher scores under human evaluation. The second,
discussed in section 2, is that diversity of candidate texts is largely relegated to reference-unaware
measures, encouraging models to diverge from ground truth distributions to hit diversity targets.
In this work, we aim to solve these problems by introducing several novel automated ways of
measuring the performance of conditional text generation models based on measuring the divergence
between samples from two text distributions. While some recent methods have been designed to
closely measure the divergence between full distributions of text data in the unconditional case
(Pillutla et al., 2021), no such methods exist for the conditional generation case, which operates on
the level of 10s of reference samples and candidates. Our contributions are summarized as follows:

1. We introduce a new paradigm for the evaluation of conditional text generation models based
on sampling from both candidate and reference distributions.

2. We introduce two new families of metrics which extend existing semantic distances: triangle-
rank metrics, and kernel-based metrics, designed to measure the divergence between small
text samples from candidate and reference distributions.
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3. We explore how our new metrics behave in the context of visual description (both image
and video description) and show that by measuring distributional effects, we can capture
nuances in the data that existing metrics cannot explore.

2 RELATED WORK

This work is not the first to notice the shortcomings of traditional metrics for the automated evaluation
of conditional language generation models. In visual dialog, Caglayan et al. (2020) find that a number
of the automated metrics proposed for visual dialog do not match well with human judgment, while
in visual description, Chan et al. (2022) find that current automated metrics do not assign high scores
to human-generated descriptions. This work not only quantifies such issues but proposes a method
for addressing these cases without developing novel metrics for measuring text semantic distance. In
this section, we review related works, roughly divided into three groups; methods for evaluating text
quality, text diversity and distribution aware metrics.

Measuring the Quality of Generated Text: The evaluation of machine-generated text has long
been an active area of research, which has continuously evolved to keep pace with accelerating
advances in text generation. As a consequence of the tools available and the state of early text
generation approaches, classical measures have primarily focused on evaluating the quality of
generated text with respect to ground truth references using surface-level text statistics. Most notably,
these include n-gram matching based metrics like BLEU (Papineni et al., 2002), METEOR (Banerjee
& Lavie, 2005), ROUGE (Lin, 2004), and CIDEr (Vedantam et al., 2015). More recently, the rapid
progress enabled by large-scale language models has motivated new evaluation techniques which
go beyond superficial n-gram statistics and toward measures that aim to capture the underlying
semantics of language (Shimanaka et al., 2018; Clark et al., 2019; Zhang* et al., 2020; Sellam
et al., 2020). These approaches leverage high dimensional representations of generated and reference
text provided by a state-of-the-art language model, such as BERT (Devlin et al., 2018) in the case
of BERTScore (Zhang* et al., 2020) and BLEURT (Sellam et al., 2020). While such methods
are focused on measuring the semantic distance between two pairs of natural language texts, the
evaluation of the diversity of the generated captions has largely been done independently of quality.

Measuring the Diversity of Generated Text: Until recently, measures of diversity for generated
text have been largely secondary to measures of quality, since the pursuit of human-like generated
text has been the primary focus of the field. In fact, many diversity measures quantify surface-level
statistics of the generated text (Van Miltenburg et al., 2018), such as metrics based on the number of
unique tokens, unique sentences, or unigram frequency statistics, such as Zipf coefficients (Holtzman
et al., 2019). Similarly, n-gram-based diversity measures such as self-BLEU (Zhu et al., 2018),
compute scores between samples from a model. Unfortunately, these approaches do not consider the
diversity of a model’s outputs with respect to the diversity of human references. Such measures are
also primarily focused on the diversity of the vocabulary, rather than the aggregate semantic diversity,
a factor that our proposed work aims to address.

Distribution Aware Measures of Generated Text: Recently, MAUVE, proposed by Pillutla et al.
(2021), addresses the single-text evaluation paradigm by measuring the divergence between multi-
candidate samples and multiple ground truths using density estimates in a text embedding space. Such
an approach has the power to measure both dispersion of the text and the quality of the generated
text simultaneously. In this respect, MAUVE is the most similar work to ours, in that it proposed a
distribution-aware metric. That being said, MAUVE is designed for the setting of unconditional text
generation, where many ground truth samples are available, and the entire dataset of human reference
texts is compared to model outputs. Unfortunately, while MAUVE works well in these scenarios,
it does not work well when only a few references are available (due to its K-means distributional
approximation) (see appendix B.5). Such a low-reference scenario is common in conditional NLG,
making MAUVE unsuitable for many potential applications.

3 METHODS

In this section, we introduce our two primary contributions. First, we introduce and demonstrate
the need for a paradigm for multiple candidate evaluation for conditional language generation, and
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Figure 2: Intuition for TRMs. For samples from different distributions (left), in-distribution edges
will often be short, but for identical distributions (right), edge rank-distributions will be more uniform.

second, we introduce several simple augmentations to existing pairwise metrics, designed to alleviate
the sensitivity issues induced by evaluating conditional language generation models with only a single
candidate text. Our family of augmented metrics, which we dub Triangle-Rank Metrics (TRMs),
represents the first step towards optimizing metrics that force models not only to generate samples at
the locus of a distribution but also with sufficient variance, hopefully alleviating the field-wide issues
that optimizing standard pairwise-metrics can induce.

3.1 MULTIPLE CANDIDATE/MULTIPLE REFERENCE EVALUATION

Traditionally, most methods for conditional language generation have been designed to sample a
single candidate example using beam search, designed to be a maximum likelihood sample of the
data. This single candidate is compared against the reference data. Unfortunately, as discussed in
section 1, models can easily exploit such aggregations. For example, when the best score amongst
the ground truths is chosen (the “min-distance” aggregate), models generate texts optimizing the
expected minimum distance to the reference distribution. Such a text is, by definition, the mode of the
distribution. While we don’t know exactly what this looks like in the case of natural language, the
mode likely represents some amount of central tendency. In practice, we observe such central captions
tend to be bland and uninformative, as demonstrated in Chan et al. (2022) for visual description, Yang
et al. (2019) for image generation, and appendix B.3.
Thus, a single candidate may not be sufficient to understand if the model has learned to approximate
the reference distribution. Consequently, we aim to develop methods that can sample several suitable
candidate texts, each with high accuracy, while matching the diversity of the ground truth distribution.
In this work, to extend methods to multiple candidate generation, we leverage temperature-based
sampling or nucleus sampling (as indicated) to produce multiple candidates from each model’s
distribution. While beam search can generate multiple candidates, Vijayakumar et al. (2016) showed
diversity among beams is relatively poor, leading to samples that diverge from the model distribution.
This gives us a model which generates multiple candidate samples, and requires an evaluation metric
which compares multiple candidate samples to multiple reference samples.
Note that a sampling approach to generating diverse captions does not preclude a future effort toward
generating single “omnibus” captions, which capture detail from many diverse captions. However,
such captions will be much longer than typical human captions, and will score poorly under the
standard metrics, as they would be quite different from (much more detailed than) individual reference
captions. A path toward such omnibus captions (assuming they are practically useful), would be to
first generate diverse human-like captions, and then summarize a set of them into a single text. The
present work still supports the first step of diverse caption set generation and optimization.

Extending Existing Metrics for Multi-Candidate Evaluation Currently, no standard pairwise
metrics (BLEU, METEOR, CIDEr, ROUGE, CIDEr, SPICE) support a comparison between multiple
candidates and multiple references, and the most efficient extension of existing metrics to multi-
candidate, multi-reference situations is a non-trivial task. In this work, we naively extend the existing
pairwise metrics (Papineni et al., 2002; Agarwal & Lavie, 2008; Lin, 2004; Vedantam et al., 2015;
Zhang* et al., 2020) to multiple candidates through the use of mean aggregation. Thus, for a standard
pairwise score S, set of candidates (c1, . . . , cn) = C and a set of references (r1, . . . , rm) = R, we
assign the output score Sagg as:

Sagg =
1

N

N∑
i=1

S(ci, R) (1)

3.2 TRIANGLE-RANK METRICS (TRMS)

Existing metrics for semantic similarity are extremely powerful for determining pairwise semantic
distances between two utterances (Papineni et al., 2002; Agarwal & Lavie, 2008; Lin, 2004; Vedantam
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et al., 2015; Anderson et al., 2016), thus, it makes little sense to discard the existing research when
extending metrics to a multiple-candidate evaluation. Further, these metrics are already well correlated
with human judgements of quality - thus, we need only to increase the sensitivity of these measures
when faced with multiple candidates and references, rather than rebuild the entire set of distributional
measures. How, then, can we leverage already strong pairwise tools in a multiple candidate scenario?
Unfortunately, many statistical techniques for measuring the distances between samples require points
to lie in a metric space (Basseville, 2013) - however, most text distances neither respect symmetry
nor triangle inequality.
We propose an answer based on an application of the triangle-rank statistic for statistical testing
proposed by Liu & Modarres (2011). The triangle-rank statistic has several promising properties: it
neither requires symmetry nor the triangle inequality in the metric space (it only requires d(x, x) = 0),
and it is computed using only pairwise distances, meaning that we can easily reuse existing text
semantic distance functions when computing the statistic.
For the purpose of explanation, it can be helpful to think of texts as points on an arbitrary manifold
(based on the selected text distance function). To compute the triangle-rank statistic for a given
distance S, a set of candidates (c1, . . . , cn) = C and a set of references (r1, . . . , rm) = R, we first
extract all directed triangles (t1, . . . ) = T , such that one point lies in C and two points lie in R. We
refer to the edge between points from the same distribution as eIN

ti and the other two edges as eE0
ti and

eE1
ti . We then compute the score for each of the edges. For (a, b) = e...ti , let

d(e...ti ) = S(a, b) (2)
We then compute indicators I0, I1, I2 for each triangle ti as follows:

I0(ti) =1 if d(eIN
ti ) ≤ d(eE0

ti ), d(eE1
ti ) else 0

I1(ti) =1 if d(eE0
ti ) ≤ d(eIN

ti ) ≤ d(eE1
ti ) or d(eE1

ti ) ≤ d(eIN
ti ) ≤ d(eE0

ti ) else 0

I2(ti) =1 if d(eE0
ti ), d(eE1

ti ) ≤ d(eIN
ti ) else 0

(3)

These indicators represent the rank of the same-sample edge (if it is the smallest, largest, or middle-
sized edge). The directed statistic for the sample (C,R), Q(C,R) is then computed as:

Q(C,R) =

∣∣∣∣
∑

ti∈T I0(ti)

|T |
− 1

3

∣∣∣∣+ ∣∣∣∣
∑

ti∈T I1(ti)

|T |
− 1

3

∣∣∣∣+ ∣∣∣∣
∑

ti∈T I2(ti)

|T |
− 1

3

∣∣∣∣ (4)

For the experiments in this paper, we use an extension of the directed statistic, the undirected statistic,
TRM(C,R) = Q(C,R) + Q(R,C), which increases the sensitivity of the metric by taking into
account rank statistics of both within-candidate and within-reference edges.
An intuition for how this statistic measures divergence between distributions is given in Figure 2.
If the in-distribution edges are always short compared to the cross-distribution edges, this suggests
that either the distance between the candidate and reference distributions is high (different locus),
or the spread of the candidates in the semantic space is significantly less than that of the references
(different spread). If the in-distribution edge is always the longest edge, it suggests that the spread or
dispersion of the candidate samples is higher than the dispersion of the reference samples. Because
this statistic takes into account the full distribution through triplets of samples, it does not suffer from
the issues with aggregation discussed in section 1 and earlier in this section. Not only does it solve
these issues, the TRM extensions build on the existing pairwise metrics, allowing us to increase the
sensitivity of the metrics while retaining the existing semantic distance measure and intuitions.

3.3 KERNEL-BASED METRICS

While TRMs represent one method of augmenting existing pairwise metrics, a second possible
approach relies on representing utterances as points in the embedding space of a model, particularly a
large pre-trained model such as BERT (Devlin et al., 2018) or GPT (Brown et al., 2020). Evaluating
the distance between two distributions based on representative samples on a Euclidean manifold is
relatively well studied in GAN literature. One option, MAUVE, introduced by Pillutla et al. (2021),
uses a K-Means density estimator to estimate the distribution of the points on this manifold and
then computes a fixed divergence (such as Kullbeck-Libeller) between the two density estimates.
Unfortuantely, MAUVE can struggle to correctly estimate the density when there are few samples,
such as in the case of conditional language generation, as the K-means density estimator is poorly
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Table 1: The p-value for the test dataset (using single-video tests, aggregated using HMP (Wilson,
2019) for tractability) generated using standard metrics under the current method of predicting a
single best text sample. With a single candidate text (the current evaluation paradigm), the metrics
are unable to make a statistically significant distinction between ground truth samples. Additional
experimental detail in appendix A.5.

Dataset Model BERT CIDEr-D BLEU@4 METEOR ROUGE-L
MSR-VTT TVT (Chen et al., 2018) 0.6582 0.4098 0.7813 0.4573 0.4771

O2NA (Liu et al., 2021) 0.6455 0.4574 0.7959 0.5646 0.5938
Human 0.5153 0.5314 0.8291 0.5306 0.5669

MS-COCO CLIPCap (Mokady et al., 2021) 0.5581 0.8223 0.8788 0.7483 0.7985
VLP (Zhou et al., 2020) 0.5925 0.7424 0.8593 0.6644 0.7706
Human 0.6406 0.6686 0.8743 0.6358 0.6841

suited to such situations. Several possible extensions to MAUVE could be considered as an alternative
family of distribution-aware metrics, which we dub “Kernel-Based Metrics” (KBMs).

Frechet BERT Distance The Frechet Inception Distance (Salimans et al., 2016) represents the
squared Wasserstein distance between multidimensional Gaussian distributions fitted to the compo-
nents of the input. In the Frechet BERT Distance metric, we replace the Inception embeddings with
those from a pre-trained BERT model (Devlin et al., 2018). See appendix A.6 for details.

MMD-BERT A related metric is the maximum mean discrepancy distance function (Li et al.,
2017), which leverages a density estimate of the data, and computes the maximum mean discrepancy
between the density estimates for each sample. In our case, we leverage a Gaussian kernel estimate
over the embeddings generated by a pre-trained BERT model (Devlin et al., 2018). See appendix A.7
for details. While we primarily explore BERT-based embeddings, we explore additional embedding
methods in subsection B.1.

4 CASE STUDY: VISUAL DESCRIPTION

Visual description is a challenging conditional natural language task, which requires that a model pro-
duce a natural language description of a visual context containing objects, actions, and relationships
present in a scene. Data sets for visual description often set themselves apart from other datasets for
conditional natural language generation (such as those for translation and summarization), as they
contain more than one ground truth sample, making it possible to evaluate visual description models
using reference data that has already been collected. In this set of experiments, which look at two
datasets for visual description, MSCOCO (image description) (Lin et al., 2014) and MSR-VTT (Xu
et al., 2016) (video-description) (full dataset details in appendix A.2), we demonstrate that current
metrics are not sensitive enough to evaluate the performance of several existing models with our new
metrics. We then demonstrate quantitatively how a multi-candidate evaluation paradigm can close
this gap, and how a more sensitive metric, such as TRMs or KBMs, can provide new model insights.

Existing single-ground truth comparison is not sensitive enough A natural first question to
ask when evaluating the performance of a metric is, “given the existing data, is the metric sensitive
enough to distinguish between a model and a reference distribution?” To answer this question, we
evaluated the p-values for several existing metrics on a single video. The results, shown in Table 1
demonstrate that using a single description for the candidate dataset is insufficient to tell even known
different distributions apart, motivating a transition to a paradigm with significantly more sensitivity.
This is a similar result to the observations made in Yeh et al. (2021) and Liu et al. (2016) for dialog
generation: most metrics are unable to produce significant results using existing techniques. Thus,
even for standard metrics, it makes sense to sample more than one ideal candidate description and
aggregate the metric score across these candidate descriptions.

TRM and KBM metrics are more sensitive than naive aggregation In section 3, we proposed
several new metrics which can be leveraged by switching to multi-candidate evaluation. Figure 3
shows the sensitivity of both the newly introduced metrics and existing metrics using the naive
aggregation schemes discussed in section 3, as we increase the number of candidate samples from the
model. While the sensitivity increases for all models to significance, our proposed metrics are much
more sensitive with fewer candidate and reference descriptions. As an additional check, when tested
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Figure 3: Plots showing the log p-values for the existing and proposed metrics as we increase the
number of sampled candidate descriptions from the models. TRMMETEOR achieves a 162% increase
in sensitivity over METEOR, while TRMCIDEr represents a 49.3% increase over CIDEr-D for O2NA
evaluated on the MSR-VTT dataset. Additional experimental details are given in appendix A.5.

Figure 4: A qualitative sample from CLIPcap. Candidate set one uses beam search (8 beams), while
candidate set two uses nucleus sampling (with temperature one, top-k of 20 and top-p of 0.9). As the
diversity increases, the TRMMETEOR divergence decreases, but METEOR fails to correctly capture
the diversity/correctness trade-off, leading to decreased scores for more complete caption sets that
are still relatively high quality. Additional qualitative examples are provided in appendix B.6.

on human captions, our metrics do not consider the two distributions significantly different (p > 0.05,
see appendix B.4). Our proposed metrics do not alter the manifold: so, for example, TRMMETEOR and
METEOR measure the same underlying intuitive divergences (n-gram recall with some additional
synonym matching), however, our TRM method increases the sensitivity of the test, allowing us to
measure the full distribution divergence, instead of using naive aggregates. It is useful to note that
when computing the metrics for a practitioner, computing the p-value of the data is unnecessary (we
need only sample enough candidates so we can be sure of the statistical significance of the metric).

Multi-candidate evaluation illustrates a diversity vs. likelihood trade-off A metric’s sensitivity
to the full distribution has the power to give us novel insights into the visual description task. Consider
the two models, VLP (Zhou et al., 2020), a standard transformer-based model pre-trained on large-
scale vision and language data, and CLIPCap (Mokady et al., 2021), a transformer-based model
which is initialized with a large language model, and uses prefix-tuning with CLIP (Radford et al.,
2021a) embeddings (Additional details in appendix A.3). While VLP (Zhou et al., 2020) outperforms
CLIPcap (Mokady et al., 2021) in the standard scoring methods, CLIPcap outperforms VLP in
the TRMMETEOR metric. Why is there such an inversion? We can begin to understand the results
when looking a bit closer at Figure 5, which plots sampling temperature from the model, against
the performance on the TRMMETEOR and standard METEOR metrics. At low temperatures, where
the model is sampling from single maximum-likelihood estimates, VLP outperforms the CLIPcap
method. As the temperature increases, there is an inversion in the model performance, and at higher
temperatures, CLIPcap outperforms VLP. On the other hand, in the standard METEOR metric, as we
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Figure 5: Plots indicating the impact of temperature on the metric scores. Left: TRMMETEOR (↓) for
CLIPcap and VLP. Right: Standard METEOR Score (↑) for CLIPcap and VLP.
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Figure 6: Plots indicating the impact of search technique on divergences. Left: TRMMETEOR (↓) for
TVT on MSR-VTT. Right: METEOR Score (↑). See appendix A.8 for experimental details.

increase temperature, performance monotonically decreases, giving little insight. Figure 5 illustrates
that TRMMETEOR captures a subtlety in the model comparisons that METEOR does not capture
alone: while VLP produces better descriptions at low temperatures, it becomes less fluent (likelihood)
on average as we introduce diversity, leading to a change in position. The result is also visible
in qualitative samples, given in Figure 4, where we see TRM metrics prioritize both diversity and
likelihood. These results confirm observations made by Zhang et al. (2021) for open-ended language
generation tasks such as storytelling and dialogue: a fair comparison of approaches must not only
compare at the same level of entropy but at a range of entropy levels.

Sampling algorithms matter Not only does the temperature of the generation process matter
when correctly trading off between diversity and description correctness (as seen in the previous
discussion), but the sampling process itself matters. Figure 6 shows the performance at different
temperatures of the Nucleus sampling method (Holtzman et al., 2019) vs. standard sampling, beam
search, and greedy, approaches. While maximum-likelihood methods achieve the best METEOR
scores, they have relatively high divergence, as they sample only a single description. From Figure 6
we can further see that TRMMETEOR illustrates how Nucleus sampling allows models to achieve
higher temperatures than standard sampling without diverging significantly from the distribution.
METEOR alone does not indicate such an effect and only monotonically decreases.

5 DISCUSSION AND LIMITATIONS

Kernel-Based Metrics (KBMs) vs. Triangle-Rank Metrics (TRMs) A natural question to ask is:
”which metric should practitioners choose when evaluating conditional language models?” KBMs
have one major, distinct, advantage over the TRMs in that they are naturally differentiable, yet
KBMs also have downsides. The first is that, unlike the TRMs, they require both a pre-trained BERT
model and a kernel-density estimator which both have complex behavior affecting the performance
of the model. The TRMs, however, can be specified on top of existing natural language distance
functions, improving the ability of the user to intuit the model performance. Additionally, TRMs

8



Under review as a conference paper at ICLR 2023

Table 2: Method evaluation efficiency on the MS-COCO dataset with 5 references and 10 candidates
using an intel i7-6850K CPU and 2 NVIDIA Titan X GPUs.

METEOR TRMMETEOR CIDEr TRMCIDEr MMD-BERT FID-BERT MAUVE
Samples/Sec 298.4 ± 18.3 161.18 ± 21.2 131.23 ± 12.6 97.54 ± 9.1 53.76 ± 38.7 17.45 ± 4.6 2.29 ± 0.78
Wall Time (Min) 2.26 4.18 5.14 6.92 12.55 38.68 294.78

are bounded and have p-values that can be computed analytically. Finally, because the TRMs do not
need a density estimate, they can be more sensitive with small sample sizes (see Figure 3), which
is essential for conditional language generation where we have only a few gold-standard samples.
Table 2 demonstrates another key benefit of TRMs: efficiency. The time per sample to compute
TRMs, while higher than single metric standards, is lower than KBMs on average. In the case of
Mauve, computing the p-values is largely intractable (See appendix B.5).

Perplexity We acknowledge that perplexity (likelihood of the test distribution) is another alternative
metric to proposed methods. While methods for conditional language generation should report the
perplexity of their models, it has also been noted by Theis et al. (2015) that perplexity can suffer from
several issues in the evaluation of generative models. For example, a lookup table storing sufficiently
many training examples will produce convincing results but have poor perplexity on the test data.
On the other hand, van den Oord & Dambre (2015) demonstrates that even in situations where the
perplexity is high, models may not generate high-quality test samples.

A Discussion on Human Correlation In this work, we do not provide any experiments correlating
our metric scores with human judgments. The reason is two-fold. First, humans are relatively
poor at measuring the semantic distance between two distributions in the presence of distractors
(Durga, 1980). Further, some evidence has shown that existing decoding methods optimize for
fooling humans over correctness (Ippolito et al., 2019). Automated metrics represent a key method
for bridging this gap: methods such as TRMs allow us to overcome any deficiencies in human
judgment and sensitivity. The second is that the TRM-metrics build on existing, well-established
measures with strong human correlation (Vedantam et al., 2015; Lin, 2004; Agarwal & Lavie, 2008;
Papineni et al., 2002). Because we do not alter the distance manifold, our contributions only serve to
increase the sensitivity of existing measures of semantic similarity, rather than replace the measures
altogether. While sensitivity can be enhanced by hacking the p-values of the metrics (such as taking
the power of an existing measure), Table 3 demonstrates that low sensitivity is still observed in human
leave-one-out experiments (which would not be the case if sensitivity was increased across the board).

A Note on Reference-Free Metrics Some metrics, such as CLIP-score (Hessel et al., 2021) for
visual description, are immune to ground truth aggregation effects as they are computed in a reference-
free way, and focus on pre-trained models’ ability to ground vision and language information.
Unfortunately, such large, black-box, models represent a liability as a metric as their capabilities are
largely unknown, and untested (Floridi & Chiriatti, 2020; Caglayan et al., 2020). Further, the metric
is only as good as the model, and CLIP has been known to suffer from numerous issues including
counting, attribute-association, and spatial reasoning (Blattmann et al., 2022; Ramesh et al., 2022).

6 CONCLUSION

In this work, we have introduced a robust framework for multi-candidate evaluation of conditional
language generation models, shown that existing metrics for semantic similarity can be seamlessly
extended to this framework, and demonstrated through a case study of visual description that multi-
candidate evaluation paired with more sensitive distribution-aware metrics has the power to provide
novel insights into existing models and methods. Our method is not without limitations, for example,
one of the core drawbacks is the availability of multi-reference data. Outside the field of visual
description, it is often not a standard practice to collect more than one gold-standard reference (even
in fields such as summarization, where it makes sense to do so). It is necessary for future work to
explore how a wider range of existing generation techniques and models perform under this new
paradigm, and, as data availability expands, to understand the implications of distribution-aware
evaluation in fields beyond visual description. We hope that this step toward a more robust evaluation
paradigm will inspire further research into this area of evaluating conditional language generation.
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A ADDITIONAL EXPERIMENTAL DETAILS

In this section, we discuss additional experimental details for interested readers.

A.1 CODE

We make all code/data publicly available for use at https://s3.us-west-1.wasabisys.
com/anon-neurips2022/neurips.tar.gz (Github link in camera ready). We hope that
releasing our code, along with the JSON files containing test-set predictions for the models in question
will help inspire further research and examination into the evaluation of models for visual description.

A.2 DATASETS

MSR-VTT Dataset: The MSR-VTT dataset (Xu et al., 2016) is a dataset for video description
consisting of 10,000 videos, with 20 reference ground truth descriptions for each video. It was
collected by downloading 118 videos for each of 257 queries from a popular video sharing website.
MSR-VTT contains 41.2 hours of video, with an average clip length lying between 10 to 30 seconds.
It has a vocabulary size of 21,913. For more details about the diversity of the language present in the
dataset, we refer readers to Chan et al. (2022).

MS-COCO Dataset: The MS-COCO dataset (Lin et al., 2014) is a large-scale dataset for image
description, object detection and segmentation. MS-COCO contains 328K images, each with 5
ground truth descriptions generated by human AMT workers. For more details about the diversity of
the language present in the dataset, we refer readers to Chan et al. (2022). MS-COCO is licensed
under a Creative Commons Attribution 4.0 license.

A.3 MODELS

This paper explores the performance of our metrics over several models: two video captioning models,
and two image captioning models.

TVT The Two-View Transformer (Chen et al., 2018) is a baseline method for video description,
which consists of a transformer encoder/decoder structure. While we did not have access to the
original code, we trained our own version of the model on the MSR-VTT dataset (standard splits),
leveraging features from Perez-Martin et al. (2021). The model was trained for 300 epochs, with a
batch size of 64, model hidden dimension of 512, 4 transformer encoder and decoder layers with 8
heads each, and dropout of 0.5. For optimization, we leveraged the Adam optimizer with a learning
rate of 3e−4 and weight decay of 1e−5 with exponential learning rate decay with gamma 0.99. This
model achieves a CIDEr score of 56.39 on the test dataset. The model was trained using a Titan
RTX-8000 GPU over the course of several hours.

O2NA O2NA (Liu et al., 2021) is a recent approach for non-auto-regressive generation of video
captions. While the method had available code and checkpoints which we used for this experiment,
the method is not designed to sample more than one candidate caption at any given time. To adjust
the model to sample multiple candidate captions, we made several adjustments. First, the model was
modified to sample a length according to a softmax distribution over the length likelihoods (instead of
using a greedy choice of length, or beam search over lengths, as proposed in the paper). Second, the
model was modified to sample tokens at each non-autoregressive step from a temperature-adjusted
softmax distribution instead of greedily sampling tokens. We make our modified code available
as a patch to the original repository, in the hopes that other users will continue to build on these
alterations.

CLIPCap CLIPCap (Mokady et al., 2021) is a recent model for image description based on using
the CLIP (Radford et al., 2021a) model for large vision and language pre-training as a feature encoder,
and GPT (Brown et al., 2020) as a natural language decoder. CLIPCap code and MS-COCO trained
model checkpoints are publicly available from the authors, however we made some alterations to
support temperature-based and nucleus sampling. We make our modified code available as a patch
to the original repository, in the hopes that other users will continue to build on these alterations.
CLIPCap is licensed under the MIT license.

14

https://s3.us-west-1.wasabisys.com/anon-neurips2022/neurips.tar.gz
https://s3.us-west-1.wasabisys.com/anon-neurips2022/neurips.tar.gz


Under review as a conference paper at ICLR 2023

VLP VLP (Zhou et al., 2020) is a unified vision and language pre-training model, designed to
perform both image captioning and visual question answering. The model is pre-trained on the
Conceptual Captions (Sharma et al., 2018) dataset, and fine-tuned on the MS-COCO captions dataset
for image description. The authors make code and pre-trained models publicly available, however we
modified the code somewhat to support additional sampling methods. We make our modified code
available as a patch to the original repository, in the hopes that other users will continue to build on
these alterations. VLP is licensed under the Apache License 2.0.

A.4 DISTANCE METRICS

In this paper, we explore three base semantic metrics as distance underlying our TRM methods,
CIDEr-D (Vedantam et al., 2015), METEOR (Agarwal & Lavie, 2008), and BERT Distance (Zhang*
et al., 2020).

CIDEr-D CIDEr-D (Vedantam et al., 2015) is a n-gram-based metric designed for visual description,
and based on the idea that common words are less useful in practice than uncommon words. In
practice, this takes the form of a cosine similarity between TF-IDF weighted vectors representing
the sentences. Because CIDEr-D is a score, and not a distance, we create a distance function:
d(c, r) = 10− C(c, r), which works as CIDEr-D is bounded by 10. Note that because CIDEr-D is
10 if and only if and only if the two sentences are equal, this fulfills the TRM requirements.

METEOR METEOR (Agarwal & Lavie, 2008) is a score which evaluates the semantic distance
between two text utterances based on one-to-one matches between tokens in the candidate and
reference text. The score first computes an alignment between the reference and candidate, and
computes a score based on the quality of the alignment. Because METEOR is a score, and not a
distance function, we use the distance d(c, r) = 1 −M(c, r), where M is the METEOR score of
the reference. Because METEOR is bounded at 1 if and only if the two utterances are identical, this
simple transformation satisfies the requirements of the TRM adjustment. While we could explore
other ways of deriving a distance from METEOR, we found that this simple approach was sufficient
to demonstrate the performance of our methods.

BERT Distance A recent method for determining the semantic distance between two samples is to
leverage a pre-trained BERT embedding model to create a semantic embedding of the text, and com-
puting the cosine distance between the test samples. In our work, we leverage the MiniLM-L6-v2
model from the sentence-transformers package by Reimers & Gurevych (2019) to embed our de-
scriptions. Because cosine distance is already a distance function, no additional transformation is
necessary.

A.5 P-VALUE COMPUTATIONS

For our experiments, our null hypothesis is that the candidate samples and the ground truth samples
are drawn from the same distribution. Because most of the methods do not have an analytical
way to compute the p-values (in fact, the TRMs are the only method which has an analytic p-
value computation given in Liu & Modarres (2011)), we instead must compute the p-values though
sampling. We thus enumerate the value of the statistic across all of the possible candidate/reference
partitions given the joint set of candidates and references, and determine the probability of observing
the sampled value, or some value more extreme.
The values in Table 1 represent the p-value obtained with a single candidate sentence, and 4 ground
truth candidates for MS-COCO, or 19 ground truth candidates for MSR-VTT. We reserve one gorund
truth description in both datasets to serve as the “Human” performance description. For TVT,
CLIPCap and VLP, we sample the descriptions using beam search with 16 beams. For O2NA, which
is a non-autoregressive model, we sample according to the method suggested in the original work
(see Liu et al. (2021)). Because there are several thousand videos per dataset, computing all possible
combinations across the dataset would be far from tractable. Thus, the p-values were computed on
a per-visual-input basis, and then aggregated across videos using the harmonic mean, as suggested
by Wilson (2019). Such an aggregation method is valid when the experiments are not independent
(which they are not), unlike Fischer’s method (Fisher, 1992).
Figure 3 demonstrates the log p-values for the proposed methods across several candidate samples.
For MS-COCO, we use all five reference captions, and between one and ten candidate captions
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sampled from CLIPCap using Nucleus Sampling (Holtzman et al., 2019) with a temperature of 1.0,
top-p of 0.9 and top-k of 20. The caption set is generated once, meaning that the two-candidate
set consists of the one-candidate set and one more additional caption. For MSR-VTT, we use 10
reference captions, and between one and seven candidate captions sampled from O2NA as described
in appendix A.3 with a temperature of 1.0 for both the length and token samples. We do not go to
the full 10 candidate captions for MSR-VTT due to tractability concerns, since adding an additional
caption forces twice the number of partitions to be evaluated when computing p-values.
The above experiments were performed on several n2d-standard-32 cloud GCP instances, containing
32vCPUs and 128GB of RAM.

A.6 FRECHET BERT DISTANCE

The Frechet Inception Distance, originally proposed in Salimans et al. (2016), has often been used
for the evaluation of the distance between samples of images generated by GANs. Images are first
embedded in a latent space using a pre-trained inception network, and then the Frechet distance
between the generated samples and the reference samples is computed. In our work, we replace
the images with text, and the inception network with a pre-trained BERT embedding network
(Devlin et al., 2018). For a set of candidate samples (c1, . . . , cn) = C, a set of reference samples
(r1, . . . , rm) ∈ R, and a BERT embedding function ϕBERT : C ∪R → Rk, we compute the Frechet
BERT Distance as:

d2 =

∣∣∣∣∣
∣∣∣∣∣ 1n

n∑
i=1

ϕBERT (ci)−
1

m

n∑
i=1

ϕBERT (ri)

∣∣∣∣∣
∣∣∣∣∣+ Tr

(
CC + CR − 2

√
CCCR

)
(5)

where CC andCR are the covariance matrices of the C and R sets embedded with ϕBERT respectively.
To get the BERT embedding, we leverage the CLS token of a large pre-trained model, in this case, the
MiniLM-L6-v2 model from the sentence-transformers package by Reimers & Gurevych (2019).
The computation of p-values for the Frechet-BERT distance is largely bottle-necked by the slow
performance of the sqrtm function, which, because the matrices are not symmetric, has no efficient
algorithm for computation. Additionally, unlike the feature computation, this operation must occur for
every partition, leading to significantly reduced efficiency compared to the other measures presented
in this paper.

A.7 MMD-BERT

Another common metric in the GAN literature is the computation of a maximum-mean discrepancy
between kernel-estimates of the samples introduced by Li et al. (2017). For a set of candidate samples
(c1, . . . , cn) = C, a set of reference samples (r1, . . . , rm) ∈ R, and a BERT embedding function
ϕBERT : C ∪R → Rk, we compute the MMD-BERT distance as:

ˆMMD =

N∑
i=1

N∑
j=1

K(ϕBERT(ci), ϕBERT(cj))+

M∑
i=1

M∑
j=1

K(ϕBERT(ri), ϕBERT(rj)) +

N∑
i=1

M∑
j=1

K(ϕBERT(ci), ϕBERT(rj))

(6)

where K is a kernel function. In our experiments, we use an RBF kernel function with σ equal to the
median distance pairwise distance divided by two.

A.8 SEARCH TECHNIQUES

In section 3, Figure 6, we explore the performance of several different search techniques for our
two-view transformer model on the MSR-VTT dataset. In this figure, we explore four decoding search
techniques: Greedy Search, Beam Search, Temperature-Based Sampling, and Nucleus Sampling. For
each method, and for each video in the test set, we sample 10 descriptions. For Greedy Search, we
sample 10 repeated sentences. For beam search we sample the top beam search candidate, and repeat
this ten times. While we did explore using the top 10 results from a larger beam search, we found that
a smaller beam search and repeated values produced better METEOR scores, so we chose to compare
against this. Wider beam searches did produce higher TRMMETEOR scores, but because optimizing
for METEOR would be the current paradigm, we decided to include that in the referenced figure.
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Sensitivity and performance on Human-Generated Captions

Method Log-P Samples/Sec
TRM-CIDEr -1.596 88.93
MMD-BERT -1.786 56.68
MMD-CLIP -1.887 14.41
MMD-GLoVe -1.952 54.8
MMD-FastText -1.954 57.45
MMD-BOW -2.022 49.41

Figure 7: Performance of several different embedding functions for the MMD-* family of metrics.
Left: Sensitivity when evaluated on the MSR-VTT dataset with ten reference captions and between
one and seven candidate captions generated by O2NA. Right: Sensitivity and speed when evaluated
on human reference samples with 5 references and 5 candidates.

For standard temperature based sampling, we sampled 10 results at each temperature. For Nucleus
sampling, we sample 10 results at each temperature, however we freeze they hyper-paramters of
top-p at 0.9 and top-k at 20, as we found these values to generate the best scores under the standard
pairwise metrics. It remains relevant future work to perform a deep-dive into the different generative
methods with respect to TRMs, as there are likely many interesting lessons that can be learned.

B ADDITIONAL RESULTS

In this section we present several additional interesting results to augment those in the main discussion.

B.1 EMBEDDING METHODS FOR KBMS

In the main work, we primarily explore a BERT-based embedding method for the kernel-based
methods. Such an exploration does not preclude the use of other embedding methods, each of which
has different trade-offs, when looking at the quality of the resulting metric, what the resulting metric
measures, the time required to compute the embedding, and the performance when the reference
distribution is limited to small numbers of human samples (such as happens in practice). Figure
Figure 7 shows a quick look at several possible choices for embedding methods in the MMD-* family,
including Bag of words (with a 5K vocab), GLoVe (Pennington et al., 2014), FastText (Bojanowski
et al., 2017), and CLIP (Radford et al., 2021b).
While we can see that some of the methods are more sensitive to deviations in the image distributions,
such methods come with additional trade-offs. CLIP-style embeddings are the most sensitive to
human versus generated captions with fewer captions created, but are significantly slower to evaluate
at test time (almost 4x slower) than MMD-BERT, and also produce a higher p-value when computing
the leave-one scores on the human captions (which is less desirable, as the human captions are drawn
from the same distribution).

B.2 UNIQUE VS. CORRECT DESCRIPTIONS

In Figure 8, we explicitly demonstrate how TRMs enable evaluation of both caption diversity and
quality. We artificially generate candidates for the MSR-VTT dataset by mixing human-generated
exact descriptions with human-generated descriptions from other videos. On one axis we have the
number of unique descriptions and on the other axis we have the number of correct (exactly-matching)
descriptions. Clearly, unlike METEOR alone, TRMMETEOR scores are affected by both correctness
and diversity.
Each experiment consisted of 10 candidate captions from the MSR-VTT dataset, and 10 reference
captions from the MSR-VTT dataset. We first split the 20 MSR-VTT reference captions into two
sets of 10. One set of 10 captions formed the references. To select the candidate captions, we first
sampled k unique captions from the remaining reference set (which formed the “correct pool”), and
k unique captions from other videos in the dataset at random (forming the “incorrect pool”). We
then selected m correct captions, from the correct pool (at random) and 10−m captions from the
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Figure 8: Plots showing how TRMs evaluate both diversity and quality. Left: TRMMETEOR, Right:
METEOR. Lighter colors represent better scores. While TRMMETEOR trades off between diversity
and quality, METEOR focuses only on quality not diversity.

Figure 9: Plots showing diversity vs. quality tradeoffs. Left: TRMCIDEr, Right: CIDEr. Lighter colors
represent better scores. While TRMCIDEr trades off between diversity and quality, CIDEr focuses
only on quality not diversity.

incorrect pool (at random). This was then plotted with m on the x-axis, and k on the y-axis, as a
heat-map, where lighter colors represent better scores (higher METEOR, or lower TRM-METEOR),
and darker colors represent poor scores.
We also explored the performance of the CIDEr metric across the same axes, the results of which
are shown in Figure 9. We can see that they are largely similar to those from the METEOR metric,
suggesting that regardless of the underlying metric, we are still making similar trade-offs between
diversity and correctness.

B.3 VISUALIZING CENTRAL DESCRIPTIONS

We have found that descriptions which minimize the expected distance to the ground truth distribution
are relatively sparse in detail compared to other descriptions. Figures 10, 11, 12 and 13 show
qualitative examples of such descriptions for the MS-COCO dataset. Each plot shows qualitative
examples of “central” captions. The caption marked with arrows is the ground truth caption which
minimizes the expected METEOR distance to the other reference captions, and the other captions
are the additional references in the MS-COCO dataset. Images are selected at random, and do not
represent cherry-picked samples from MS-COCO.

B.4 HUMAN P-VALUES

Strong metrics for distributional comparison will have high sensitivity to samples coming from distinct
distributions, and will produce high p-values for samples which come from the same distribution.
To check that such a relationship holds, we also perform leave-one-out experiments using human-
generated captions from the reference set for both MSR-VTT and MS-COCO. For MSR-VTT, we
split the reference data into sets of 10 candidate samples and 10 reference samples, and compute the
deviations using this partitioning. For MS-COCO, we leverage the c40 split which has 40 reference
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Figure 10: Qualitative example of “central” captions. The caption marked with arrows is the ground
truth caption which minimizes the expected METEOR distance to the other reference captions.

Figure 11: Qualitative example of “central” captions. The caption marked with arrows is the ground
truth caption which minimizes the expected METEOR distance to the other reference captions.
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Figure 12: Qualitative example of “central” captions. The caption marked with arrows is the ground
truth caption which minimizes the expected METEOR distance to the other reference captions.

Figure 13: Qualitative example of “central” captions. The caption marked with arrows is the ground
truth caption which minimizes the expected METEOR distance to the other reference captions.
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Table 3: Log P-Values on human leave-one our samples. We can see that, surprisingly, none of the
methods (even the standard aggregations) produce statistically signficant differences. That being said,
TRMs often produce higher p-values, indicating that they may be more robust to noise in human
caption sets. We do not compute the Frechet-BERT values for humans here, as it was prohibitively
expensive.

METEOR TRMMETEOR CIDEr TRMCIDEr BERT TRMBERT MMD-BERT
MSCOCO -0.6303 -0.5941 -0.5957 -0.4742 -0.6230 -0.5633 -0.6550
MSR-VTT -1.0046 -0.9613 -1.0224 -0.9777 -1.0172 -1.040 -1.0374

descriptions for 5000 samples of the ground truth. We partition the references for each video into
groups of ten descriptions, and compute the p-values from pairs of these partitions. Table 3 gives the
performance of the metrics on this human data.

B.5 MAUVE PERFORMANCE

In the main work, we found that MAUVE was prohibitively slow to use to compute p-values for
the training data. Because our p-values were computed with 10 reference sentences, and up to 10
candidate sentences, at the existing rate, it could take several years to compute the MAUVE p-values
for the 50,000 sample MS-COCO dataset. In Table 4, we present several high-variance estimates of
the MAUVE p-values (computed using only 100 samples).

Table 4: Log p-value estimates for MAUVE using five candidates, five references, and 100 samples
(at nucleus sampling temperature 1.0 for O2NA, CLIPCap and VLP models). We can see that Log
p-values for MSR-VTT and MS-COCO are signficantly worse than METEOR even with aggregation,
likely due to the method using k-means to approximate the text distributions with only 5 samples.

Dataset MAUVE Log p-value METEOR Log p-value
MSR-VTT (O2NA) -0.4414 -1.7881
MSR-VTT (Human Captions) -0.1441 -0.6037
MS-COCO (CLIPCap) -0.3980 -2.5585
MS-COCO (VLP) -0.3234 -2.8609
MS-COCO (Human Captions) -0.2189 -0.7233

B.6 ADDITIONAL QUALITATIVE SAMPLES

Figure 14: A qualitative sample from CLIPcap. Candidate set one uses beam search (8 beams), while
candidate set two uses nucleus sampling (with temperature one, top-k of 20 and top-p of 0.9).
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